
Context Tables in the
System-Theoretic Process Analysis

Domain Specific Language

Jana Kreiß

Bachelor Thesis
September 28, 2022

Prof. Dr. Reinhard von Hanxleden
Real-Time and Embedded Systems Group

Department of Computer Science
Kiel University

Advised by
M. Sc. Jette Petzold

Selbstständigkeitserklärung

Hiermit erkläre ich, dass ich die vorliegende Arbeit selbstständig verfasst und keine anderen als die
angegebenen Quellen und Hilfsmittel verwendet habe.

Kiel,

iii

Abstract

System-Theoretic Process Analysis (STPA), developed by Leveson, is a relatively new risk analysis
procedure used to analyze systems during their development. The aim of STPA is to find possible
safety flaws before the systems are brought into operation, in order to minimize the potential risks of
accidents or losses caused by the systems. While the procedure is able to find all kinds of safety flaws
in a system’s design, it is tedious to conduct on paper. Because of this, Petzold developed a Domain
Specific Language (DSL) as a Visual Studio Code (VS Code) extension that fully supports STPA to offer
an alternative that makes the procedure less time-consuming and more manageable.

This thesis introduces the implementation of context tables into the mentioned DSL. The context
tables act as visual support for analyzing a system’s structure for system behavior that can, under
worst-case circumstances, be leading to the risks that are aimed to be prevented. In the DSL, the context
tables can be displayed in a view next to the STPA file editor provided by the extension. The tables can
be edited by defining Rules, which have been implemented into the DSL’s grammar. A Rule describes
conditions for unsafe system behavior, which are immediately integrated into the context tables as
soon as the Rule has been fully defined, updating their results.

It is concluded that the tables offer options to further optimize the DSL in regard to time-efficiency
and user-friendliness. However, improvements can still be made, for example by implementing a
feature to automatically generate results from the tables.

v

Acknowledgements

First, I want to thank my advisor Jette Petzold for offering me to work on her DSL and giving me the
topic and motivation for my thesis. Moreover, without her help getting me acquainted with the DSL,
her continuous feedback to any progress I made and her advice and provided resources to help me
along the way, the conception of this thesis would not have been possible.

Next, I want to thank Prof. Reinhard von Hanxleden for giving me the opportunity to write
this thesis, offering me thorough feedback on progress I presented as well as help with my thesis
presentation when I needed it.

Furthermore, I owe gratitude to the Real-Time and Embedded Systems Group for welcoming me as
a member of the group and inviting me to several enjoyable events. The encouragement and feedback
regarding my thesis was also much appreciated.

Finally, I must thank my sister and my family for giving me unwavering support throughout my
studies. You helped me make decisions without which I would not have been able to do any of this,
and I will always be grateful for all that you have done to help me.

vi

Contents

1 Introduction 1
1.1 Problem Statement . 1
1.2 Outline . 2

2 Foundations 3
2.1 STPA . 3
2.2 The STPA DSL . 4

2.2.1 Extension . 4
2.2.2 Language Server . 5
2.2.3 Hazards . 6
2.2.4 Control Structure . 7
2.2.5 Unsafe Control Actions . 8

2.3 Context Tables . 9
2.4 Rules . 11

3 Related Work 13
3.1 XSTAMPP . 13
3.2 WebSTAMP . 13
3.3 An STPA Tool . 15

4 The Context Table Web-View 19
4.1 The View . 20
4.2 Context Tables . 20
4.3 Rules . 21

5 Implementation 23
5.1 Context Table View . 23
5.2 Assembling the View’s Content . 23
5.3 Language Server Communication . 25
5.4 Rules . 25

6 Conclusion 29
6.1 Summary . 29
6.2 Future Work . 29

Bibliography 31

List of Abbreviations 33

vii

List of Figures

2.1 The STPA extension. 5
2.2 The same control structure as in Listing 2.3 depicted in a diagram the DSL generated. . 8

3.1 The first four rows of a context table for the control action “Pumping Insulin” in
WebSTAMP [SPP+19]. 14

3.2 Confirmation request displayed by the tool [SPP+19]. 14
3.3 Creating rule R1 [SPP+19]. 14
3.4 Manually determining a Unsafe Control Action (UCA) [SPP+19]. 15
3.5 A context table for the control action “open” in An STPA Tool [ST14]. 16
3.6 Defining rules in An STPA Tool [ST14]. 17

4.1 The context table concept for the control action “Manual Braking” with type “provided”. 21

5.1 The context table view in the STPA DSL extension. 24
5.2 The communication between the DSL components when the user starts the context table

view. 26

6.1 Example of a simplified context table [Tho13]. 30

ix

List of Tables

2.1 Excerpt of an example context table [Tho13]. 10
2.2 Example rule table “Open door command provided“ modeled after Gurgel et al. 11

xi

Listings

2.1 Excerpt of the grammar definition of the STPA DSL. 6
2.2 Hazards in the DSL. 6
2.3 An excerpt of a control structure in the DSL. 7
2.4 Example of UCAs in the DSL. 9
4.1 The Rule concept. 22
5.1 The DSL’s grammar updated with Rules. 27
5.2 Rules in the STPA DSL extension. 27

xiii

Chapter 1

Introduction

Technology has become an increasingly significant part of people’s day-to-day lives. There are many
aspects where humanity has become reliant on machines, for instance cars, buses and trains for the
daily commute or the life-saving appliances in hospitals. Thus, when a machine or a system fails
to work correctly, it can have fatal consequences on its environment depending on the situation. In
consequence, hazard analysis is an important part of the development of all systems and needs to be
executed with utmost precision. Many types of system failures exist, such as component failures or
the ones caused by the environment, all of which need to be considered. Another type that must be
prevented is communication between system components which leads to undesired behavior. This
happens when errors in the system’s design exist, which cause the behavior to appear by default.

Diverse hazard analysis techniques have been developed in order to improve system safety
concerning this issue. One of these procedures is the STPA designed by Leveson, which analyzes
a system in four steps [LT18]. First, the purpose of the analysis is outlined, which in essence also
establishes its foundation. Then, the system structure is modeled in a functional model diagram called
the control structure. Afterwards, the results of the first two steps are analyzed together, with the aim
of finding possible design flaws which could compromise the system’s integrity. The fourth and final
step serves as a conclusion to the analysis, in which the design flaws as well as all of their consequences
are delineated. All four steps are further detailed in Section 2.1. STPA counts as a well-established
procedure for hazard analysis and can be used to find a wide range of safety issues. In comparison
with other techniques it consistently exceeded in the quality of results as well as the minimization of
time and resources used in the analysis [LT18].

However, despite its well-structured approach, applying STPA manually is tedious, complex and
prone to human errors, especially if the system is significantly intricate. In order to aid in this matter,
Petzold developed a DSL to systematize the procedure [Pet22]. The language aims to make STPA

execution easier for system developers. It is implemented as a VS Code1 extension and freely available
to download with Github2. This thesis aims to improve the already available DSL tools and further
automate the analysis procedure.

1.1 Problem Statement

Although the DSL already supports the entire STPA procedure, improvements to the language can still
be made [Pet22]. In this thesis, a special focus lies on the third step of STPA: Analyzing the system’s
structure for potential causes of undesired behavior. This is done by looking at all actions the system
components can take, and consequently analyze if these actions can, under certain environments, be a
potential catalyst for unsafe system behavior. In this case, these actions are called UCAs.

The more complex the system gets, the more arduous and harder to survey the analysis becomes
[Pet22]. Most systems used in day to day life, such as cars, airplanes, hospital equipment, etc., have

1https://code.visualstudio.com/
2https://github.com/kieler/stpa

1

https://code.visualstudio.com/
https://github.com/kieler/stpa

1. Introduction

elaborate control structures, which need thorough risk analyses to combat the significant risk of system
failure. Manually determining UCAs in cases as these is an option considerably prone to human error.
Goal of this thesis is to improve the aforementioned DSL to make it a more available tool for practical
STPA on complex systems.

One alternative to the manual procedure of determining UCAs are the context tables introduced by
Thomas [Tho13]. Here, a table serves to apply every possible set of environmental conditions to an
action that one of the system components takes, filling the table’s rows. Following this, it can then be
determined for each row whether UCAs can be identified.

According to Petzold, the main disadvantage of the DSL are the missing context tables [Pet22].
Changing this is the fundamental purpose of this thesis. In order to make the DSL a more viable tool
for conducting practical STPA, the focus of this thesis lies on implementing the context table procedure.
The rule-based approach will be applied to make the tables as optimized as possible. Said approach
can automatically determine UCAs for context table rows by utilizing user-defined rules, all of which is
further illustrated in Section 2.4. This implementation will make the tedious, error-prone process of
identifying UCAs almost fully automatic.

1.2 Outline

The next chapter will introduce the thesis foundations. In Chapter 3, related work considering automat-
ing context tables will be discussed, as well as their (dis-)advantages. Afterwards, Chapter 4 discusses
the concepts which went into the development of the context table implementation. Chapter 5 goes
into the actual implementation in three parts: web-view foundations, the table including visualization,
communication as well as data management, and rules. Finally, Chapter 6 concludes the thesis with a
summary and potential future work.

2

Chapter 2

Foundations

Context tables are a procedure specifically designed to simplify the process of finding UCAs in the
third step of STPA. Base knowledge about the tables as well as related topics needs to be present in
order to implement this. More concretely, the foundations of STPA, the DSL, context tables and rules
need to be understood.

This chapter is split into four sections, which detail these topics in the above-mentioned order:
Section 2.1 explains the STPA process, followed by Section 2.2, which elaborates on the DSL, as well as
on the components relevant for the implementation. Subsequently, Section 2.3 discusses context tables,
going into important types of data used to create them. Lastly, Section 2.4 introduces the rules used to
determine UCAs.

2.1 STPA

The STPA procedure is a well established method for identifying potential causes of accidents during a
system’s development [LT18] and serves to prevent system failures precipitated by poor development
practices. Risks can be effectively identified and proactive measures against them can be introduced in
consequence of the analysis.

STPA as introduced by Leveson analyzes a system in four consecutive steps [LT18]:

1. Define the purpose of the analysis. In the beginning step, foundational information of the analysis
needs to be determined, such as the system’s general purpose and boundaries. Moreover, the
potential hazards and losses are to be identified and indexed. In this context, a loss refers to losing
something of value to stakeholders, e.g. human lives, environmental damage or information leak.
Furthermore, a hazard is defined as a system state / set of conditions which, together with a
specified set of worst-case environmental conditions, lead to a loss. Usually, the losses that are
caused are referenced in each hazard’s definition. The desired scope of the analysis should be
regarded while identifying hazards. For instance, the analysis could serve only for data security
hazards, or perhaps instead could encompass multiple scopes, such as performance, safety and
environmental damages.

2. Model the control structure. Here, the system structure concerning controllers is identified. A
control structure is a functional model which represents a system with controllers, controlled
processes as well as control-feedback loops between the controllers with each other or controlled
processes. The different actors in the system as well as the control actions that can be taken within
it are determined in this step.

3. Identify UCAs. In this step, the control structure in the previous step is analyzed for behavior that
could trigger hazards and therefore cause losses. More specifically, control actions executed in a
specified, for it unsafe context, are sought after, which consequently are labeled as UCAs.

3

2. Foundations

4. Identify Loss Scenarios. This last step serves as a conclusion to the previous steps of the analysis.
With the UCAs determined in the previous step, the loss scenarios potentially caused by them are to
be declared. This way, system developers can take measures to prevent these scenarios.

2.2 The STPA DSL

The STPA DSL developed by Petzold aims to simplify the execution of STPA by providing an as optimized
as possible interface for the procedure [Pet22]. While other tools supporting STPA already existed
before the DSL’s development, Petzold discovered that all of them had advantages and disadvantages
concerning time and resources. Consequently, she aspired to create the DSL in a way that makes use of
all advantages and keeps the disadvantages minimized. After the main development had been finished,
it was concluded that the main advantage of the new DSL was the visualization component, which can
depict both the control structure of a defined system and the currently executed STPA process in two
separate diagrams. As mentioned in Section 1.1, the main disadvantage turned out to be the missing
context tables, which this thesis aims to fix.

The DSL is implemented as a VS Code1 Extension. VS Code is an Integrated Development Environment
(IDE) owned by Microsoft, which possesses a so-called Extension API. Accessing it allows programmers
to customize and enhance almost every part of the IDE. This includes adding custom components,
creating web views, which will be discussed in more depth in Chapter 5, and supporting new
programming languages2. Petzold made use of the last stated feature especially, creating a new
language out of the STPA process. This new language accepts files with the ending .stpa, reads them
and checks the current progress of the STPA process contained in the file with the help of the built-in
language server (more discussed in Section 2.2.2). The entire STPA process with all four distinct steps is
fully supported [Pet22].

2.2.1 Extension

Figure 2.1 shows an example view of how the extension looks like on startup. The standalone message
displaying “Activating STPA extension“ indicates a successful initialization of the DSL.

An .stpa file, when completed, encompasses all four steps of an entire STPA process [Pet22]. The
DSL is defined in a way that it consists of multiple aspects, those of which being: losses, hazards,
system-level constraints, control structure, responsibilities, UCAs, controller constraints, loss scenarios
and safety requirements. In the .stpa file, these aspects have to be defined in the order above. As
can be seen in Figure 2.1, most aspects are to be written with syntax “<ID> <String> [<Ref>, ...]”,
except for losses, which do not possess references, loss scenarios, which may also have syntax “<ID>
for <Ref> <String> [<Ref>, ...]”, and the control structure.

In Figure 2.1, on the top right of the window, below the window’s visualization menu, one can
find an assortment of buttons serving as the web view options. Clicking the most left of these buttons
opens up the STPA diagram view.

Once the diagram view has been started up, the two types of diagrams mentioned in Section 2.2 are
generated. Both the control structure diagram (example in Figure 2.2) and the STPA diagram provide a
better overview of the current process and its components. The DSL relies on an open-source web-based
framework called Sprotty3 [Pet22], whose components are responsible for rendering and creating the

1https://code.visualstudio.com/
2https://code.visualstudio.com/api
3https://projects.eclipse.org/projects/ecd.sprotty

4

https://code.visualstudio.com/
https://code.visualstudio.com/api
https://projects.eclipse.org/projects/ecd.sprotty

2.2. The STPA DSL

Figure 2.1. The STPA extension.

diagrams, as well as their user events. Sprotty communicates with the language server to send and
receive data to make this possible.

2.2.2 Language Server

The language server handles everything concerning the DSL’s language, including grammar definition,
language and file validation, scopes and language data [Pet22]. It was built under use of Langium,
which provides the tools for language parsing, language data management and editing support for
the extensions.

Since the DSL’s grammar is written exclusively using Langium, its definition in the .langium file
is closely leaning on the Extended Backus-Naur Form (EBNF), a family of notations used to describe
context-free grammars. The determining factor of a EBNF syntax is to define the grammar using
terminal symbols and non-terminal production rules [ISO96], which is maintained in Langium. For
instance, in Listing 2.1, the production rule for a Loss is defined by name = ID, which refers to the
definition of ID, followed by description = STRING, which requires a String type input, similar to a
terminal symbol. Directly underneath, a Hazard is described by the same two equations followed by
an optional non-empty list of Loss references. Finally, the Hazard rule allows another optional list of
newly defined Hazards to exist as the original Hazard’s subcomponents.

The language server provides multiple services, which in turn provide access to a variety of
data, such as specific states, currently open documents and the language model itself. Various other
components, such as the diagram components as well as the main extension component, need access
to the data. The server provides a connection for this reason, over which these other components can
communicate with it via notification sending and receiving when called.

5

2. Foundations

1 Loss:

2 name=ID description=STRING;

3

4 Hazard:

5 name=SubID description=STRING

6 (’[’refs+=[Loss] (’,’ refs+=[Loss])*’]’)?

7 (’{’ (header=STRING? subComps+=Hazard+)*’}’)?;

Listing 2.1. Excerpt of the grammar definition of the STPA DSL.

2.2.3 Hazards

As mentioned in Section 2.1, hazards are system states constructing hazardous system behavior that
may lead to a loss [LT18]. These system states are worst-case consequences of unsafe and undesired
behavior of the system, which are aimed to be prevented. For instance, in Listing 2.2, hazard H6

describes the aircraft departing its designated taxiway / runway / apron, which can cause substantial
harm to human lives, the aircraft and the environment. This harm is listed in the two losses L1 and L2

the hazard references.

1 H6 "Aircraft departs designated taxiway, runway, or apron on ground" [L1, L2]

2 H7 "Aircraft comes too close to other objects on the ground" [L1, L2] {

3 "Deceleration"

4 H7.1 "Deceleration is insufficient

5 upon landing, rejected takeoff, or during taxiing"

6 H7.2 "Asymmetric deceleration maneuvers aircraft toward other objects"

7 H7.3 "Deceleration occurs after V1 point during takeoff"

8 "Acceleration"

9 H7.4 "Excessive acceleration provided while taxiing"

10 H7.5 "Asymmetric acceleration maneuvers aircraft toward other objects"

11 H7.6 "Acceleration is insufficient during takeoff"

12 H7.7 "Acceleration is provided during landing or when parked"

13 H7.8 "Acceleration continues to be applied during rejected takeoff"

14 "Steering"

15 H7.9 "Insufficient steering to turn along taxiway, runway, or apron path"

16 H7.10 "Steering maneuvers aircraft off the taxiway, runway, or apron path"

17 }

Listing 2.2. Hazards in the DSL.

As can be seen in Listing 2.2 above, the hazards are to be written with the general syntax discussed
in Section 2.2.1. Furthermore, each hazard should reference at least one loss each. Optimally, the
references cover all identified losses. As an additional option, hazards can have sub-hazards [Pet22],
such as hazard H7. These sub-hazards serve as a refinement of the identified higher-level hazards
and can be assigned to hazard-individual categories. In Listing 2.2, these categories are named
Deceleration, Acceleration and Steering. It can also be seen that a category serves to contain a theme
to be reflected in each of the contained sub-hazards. If a hazard contains sub-hazards, other aspects
such as UCAs or loss scenarios will usually only reference the appropriate sub-hazards instead of the

6

2.2. The STPA DSL

higher-level hazard. However, while sub-hazards are in fact hazards with their own ID, they do not
reference losses. Instead, the references of the high-level hazards count for all their subcategories.

2.2.4 Control Structure

Defining the control structure constitutes the second step of the STPA. It provides a detailed look at
the system divided into its subcomponents, which, in this context, are controllers and controlled
processes. For instance, in the defined control structure visible in Listing 2.3 and Figure 2.2, there are
four components visible: the FlightCrew, the BSCU, OtherSubsystems and Wheels. The FlightCrew is a
controller only, while the other three are controlled processes in addition. This is indicated by the
fact that they possess lower positions in the hierarchy as expressed by their hierarchy levels. While
in other functional models, the FlightCrew may rather be part of the environment instead of a direct
component of the system, they do exert a controlling force on the system. Therefore, they need to be
directly included in the control structure as a component.

1 ControlStructure

2 Aircraft {

3 FlightCrew {

4 hierarchyLevel 0

5 processModel {

6 BCSUmode : ["on", "off"]

7 aircraftPosition: ["docked", "taxiing", "takeoff",

8 "air", "landing"]

9 }

10 controlActions {

11 [mc "Manual Controls"] -> Other Subsystems

12 [powerOff "Power Off BSCU", powerOn "Power On BSCU"] -> BSCU

13 [manual "Manual Braking"] -> Wheels

14 }

15 }

16 OtherSubsystems {

17 hierarchyLevel 1

18 feedback {

19 [modes "Other system modes", states "states"] -> FlightCrew

20 }

21 }

Listing 2.3. An excerpt of a control structure in the DSL.

In the DSL, the control structure does not follow the usual syntax described in Section 2.2.1.
Furthermore, it does not reference other aspects. Instead, the components defined inside the control
structure aspect only have references to other components in some of their properties, such as in
controlActions.

The control structure is defined component-wise. As can be seen in Listing 2.3, the single com-
ponents are defined in the scope of the system, which is also given an ID, in this case Aircraft.
The components’ definitions consist of various properties, most of them optional. The only required
property is the hierarchy level that defines the level a component is placed on in the control structure
diagram, as can be observed in Figure 2.2. While the other properties are optional, two of them are

7

2. Foundations

Figure 2.2. The same control structure as in Listing 2.3 depicted in a diagram the DSL generated.

important for the generation of context tables: the process model and the control actions. The process
model contains the context variables of a controller, which are further discussed in Section 2.3. The
control actions are the actions the controller under which they are listed can take. As mentioned in
Section 1.1, they are a key component of the context tables, as they are the target of the analysis
conducted with them.

2.2.5 Unsafe Control Actions

A UCA, as defined in Section 2.1, describes system behavior which is considered unsafe in the sense
that it could cause hazardous system behavior to occur, which, in turn, may lead to one or more losses
[LT18].

Obtaining a set of UCAs is the goal of step three of the STPA. This is done by focusing on the control
actions of the different components of the control structure built in the prior STPA step, and analyzing
them under all possible environmental conditions important to the controller that executes the action.
These environmental conditions are also called the context in which a control action is executed
in. A context consists of multiple process variables, which, in the DSL, are defined as the property
processModel, seen in Listing 2.3 where component FlightCrew possesses the two context variables
BCSUmode and aircraftPosition. For every possible context, the person conducting the analysis has
to determine if there is the possibility of the executed control action causing a hazard. Furthermore,
there are various ways in which a control action can be executed. These varieties are called types.
For instance, two basic control action types are “provided“ and “not provided“, which determine if
a control action is executed or not. The latter type is especially important for cases where a control
action needs to be executed for the system to behave safely, therefore not providing the action may
cause a hazard and consequentially has to be identified as a UCA.

The UCAs are composed of four different parts in the following order: the controller, the type, the
control action and the context. For example, in Listing 2.4, UCA2 is identified by controller BSCU, control
action type provides, control action Brake and context during takeoff. Furthermore, each UCA needs
to reference at least one hazard, which the UCA may to usually followed by the identifiers. UCA2 refers
to two hazards in its reference list indicated by the brackets: H7.3 and H7.6, both of which can be

8

2.3. Context Tables

looked up in Listing 2.2.
In the DSL, the UCAs themselves are written with the general syntax discussed in Section 2.2.1.

However, unlike other aspects, they are all sorted into categories. First, they get assigned to the
control action they result from. It is of note that every control action is called by the controller which
executes it. Following, they are categorized by their control action type. In Listing 2.4, UCAs of control
action BSCU.brake are listed. Here, the possible types listed are the two base types notProviding and
providing, in the addition of two more types, tooEarly/Late and stoppedToSoon. The UCAs are split
into these categories in order to create a better overview and ensure no type gets forgotten, instead of
listing them all one after another.

1 UCAs

2 BSCU.brake {

3 notProviding {

4 UCA1 "BSCU Autobrake does not provide the Brake control action

5 during landing roll when the BSCU is armed" [H7.1]

6 }

7 providing {

8 UCA2 "BSCU Autobrake provides Brake control action

9 during takeoff" [H7.3, H7.6]

10 UCA5 "BSCU Autobrake provides Brake control action

11 with an insufficient level of braking during landing roll" [H7.1]

12 UCA6 "BSCU Autobrake provides Brake control action

13 with directional of asymmetrical braking

14 during landing roll" [H7.1, H7.2]

15 }

16 tooEarly/Late {

17 UCA3 "BSCU Autobrake provides the Brake control action too late

18 after touchdown" [H7.1]

19 }

20 stoppedTooSoon {

21 UCA4 "BSCU Autobrake stops providing the Brake control action too early

22 when aircraft lands" [H7.1]

23 }

24 }

Listing 2.4. Example of UCAs in the DSL.

2.3 Context Tables

Context tables, introduced by Thomas [Tho13], are used as a more systematic approach to conducting
step three of STPA. Thus, they serve to identify the set of all UCAs from the control structure of the
system to be analyzed. Each context table analyzes one control action together with a type, either
“provided” or “not provided”, under all possible contexts. A context, as explained in Section 2.2.5,
consists of the action’s context variables in the control structure. In each row, the set of variables
is initialized with a unique set of values, until all combinations have been listed. For each row, the
person conducting the analysis needs to decide if the control action should be considered unsafe. This

9

2. Foundations

is the case if a listed hazard is a realistic consequence of the behavior displayed in the context table
row, assuming the list of hazards created in the first STPA step is complete. If so, a new UCA has been
identified and needs to be added to the set of UCAs. For instance, in the second row of Table 2.1, it
needs to be determined if “Door open command not provided” is hazardous under the context that the
train has stopped but is not aligned with a platform, there are no people standing in the doorway and
there is no emergency. In this case, no hazardous consequences could be detected, so there is no UCA

to be defined.

Table 2.1. Excerpt of an example context table [Tho13].

Control Action Train
Motion Emergency Train Position Door State

Hazardous if not
provided in this
context?

Door open com-
mand not pro-
vided

Train is
stopped

No emer-
gency

Aligned with
platform

Person not
in doorway No

Door open com-
mand not pro-
vided

Train is
stopped

No emer-
gency

Not aligned
with platform

Person not
in doorway No

Door open com-
mand not pro-
vided

Train is
stopped

No emer-
gency

Aligned with
platform

Person in
doorway Yes

A context table is constructed using the following method: First, a column for the control action is
created. This is done by selecting a controller or controlled process from the control structure, looking
at their control actions and picking one. Next, the type of the control action needs to be determined.
Usually, only the two base types, “provided” and “not provided”, are regarded in different tables,
meaning there are two tables per action. The chosen type is to be mentioned along with the control
action, as can be seen in the first column in Table 2.1 where the chosen control action is “Door open

command” and the type “not provided”.

Moving on, the context variables for the action need to be assembled. Since context variables are
directly defined as a controller’s property, all the for the chosen action relevant ones are found as
one of its executor’s properties. The set of variables is assembled after the control action column as
one more column each, with the variable as its name. For instance, in Table 2.1, the variables relevant
for “Door open command” are “Train Motion”, “Emergency”, “Train Position” and “Door State”. The
columns’ cells below the header are to be filled with the values the variables can take, one per cell
each. In each new row created, the set of values must be different to all prior rows created. If there are
no more combinations to add, no more new rows must be added.

Lastly, a result column labeled “Hazardous?” or similar is to be added to the table. This column is
reserved for the results of the table analysis and is filled using the method described in this section’s
first paragraph, meaning for each of the tables rows, the described behavior is analyzed with the help
of the available list of hazards. If one of the hazards is a realistic potential consequence, the behavior
is to be considered unsafe, and a new UCA should be added to the list of UCAs.

There is, however, an alternative, more systematic procedure to this method called the rule-based
approach. This procedure will be discussed in the following section.

10

2.4. Rules

2.4 Rules

In the prior section’s introduced approach to filling context tables, each row of the hazardous-column
needs to be processed manually by the person conducting the analysis. As explained in Section 1.1,
this procedure can easily become too complex and, therefore, error-prone.

The rule-approach to filling the hazardous-column constitutes an algorithmic alternative. Here,
so-called rules are defined for control actions with type as to which context constitutes determining
it as unsafe [GHB15]. Rules were first suggested by Thomas, and following this, a proper approach
to finding UCAs based on rules was introduced by Gurgel et al. in 2015. In their approach, rules are
defined directly before creating the context tables. Much like the latter mentioned, they are defined in
one table per control action with base type (“provided” or “not provided”) each. One example of this
can be seen in Table 2.2, for a control action called “Door open command” with type “provided”. Two
rules are indexed in the table: “R1” holds if the train is not aligned with a platform and there is no
emergency and “R2” if the train is moving and there is no emergency. A variable gets assigned with
the expression “ANY” if its value assignment does not influence the validity of the rule. For instance,
“R1” holds no matter the train motion.

Table 2.2. Example rule table “Open door command provided“ modeled after Gurgel et al.

Index Train Position Train Motion Emergency

R1 not aligned with platform ANY no emergency
R2 ANY moving no emergency

Once the rules have been defined, the context tables are created using the method introduced in
Section 2.3. However, instead of checking each table row with each of the hazard list’s entries, the
rule tables are used to systematically confirm the affected rows as hazardous while the remaining
ones are not hazardous [GHB15]. For example, with “R1”, all rows of the context table for “Door open

command provided” where “Train Position” is set to “not aligned with platform” and “Emergency” to
“no emergency” are judged as hazardous.

In comparison to the manual method, the rule-based approach is a noticeably more time-efficient
and adaptable to changes [GHB15], feasibly shifting the focus of the UCA identification process from
analyzing each context for each control action to simply adding and removing rules.

11

Chapter 3

Related Work

As mentioned in Section 2.2, other existing tools supporting STPA were considered during the creation
of the DSL. In this chapter, three of these tools are introduced with focus on how they integrate context
tables to identify UCAs. Each of these tools provide different approaches, which will be analyzed and
evaluated concerning the use of context tables in Petzold’s DSL.

3.1 XSTAMPP

The Extensible STAMP Platform (XSTAMPP)1 is an open-source program written by Abdulkhaleq et al.
and based on the Eclipse Plug-in-Development Environment (PDE)2 and the Rich Client Platform (RCP)3

[AW16].
XSTAMPP offers a variety of different plugins to the user, allowing them to flexibly assemble their

user interface fitting to the application area of the analysis they conduct. One of the plugins offered
is its predecessor, A-STPA, which only provides support for basic STPA. Another important one is
called XSTPA, which extends the program with support for context tables and other improvements for
STPA suggested by Thomas [Tho13]. XSTPA automatically generates context tables from the process
model found in the user-defined control structure. Once hazardous combinations have been defined
by analyzing the tables, the user can let the program generate UCAs with a built-in algorithm. The set
of UCAs are defined as Linear Temporal Logic (LTL) specifications, which, in the context of XSTAMPP,
can directly be used for model checking and testing.

In conclusion, XSTAMPP offers support for context tables, and can effectively generate a set of UCAs,
which additionally can be used for other features of the program. However, analysts need to manually
analyze and complete the context tables. While the tables make the UCAs identification process more
time-efficient, there is still room for improvement in the context of simplification. By implementing
rules, XSTPA could provide a tool that lets users determine sets of rows as hazardous at once, instead
of needing to define each row individually.

3.2 WebSTAMP

WebSTAMP is a web application based on System-Theoretic Accident Model and Processes (STAMP) that
partially supports STPA [SPP+19]. More specifically, the program focuses on identifying UCAs and loss
scenarios. As control structure construction is not a feature of the application, this needs to be done
externally. Once the necessary process model variables are provided, context tables will automatically
be created, an example of which can be seen in Figure 3.1. A context table offers various categories
such as the base options “provided” and “not provided”, “Wrong order of Control Action” and many

1https://github.com/SE-Stuttgart/XSTAMPP
2https://www.eclipse.org/pde/
3https://wiki.eclipse.org/Rich_Client_Platform

13

https://github.com/SE-Stuttgart/XSTAMPP
https://www.eclipse.org/pde/
https://wiki.eclipse.org/Rich_Client_Platform

3. Related Work

more. After the generation of a context table, each of the cells of the hazard category columns will
display a “?”, signifying the cell is not analyzed yet.

Figure 3.1. The first four rows of a context table for the control action “Pumping Insulin” in WebSTAMP [SPP+19].

If a cell is identified as hazardous, the analyst can select the cell to display Hazardous, as can be
seen in the Control Action provided column in Figure 3.1. Once a cell has been marked as hazardous,
the application will automatically ask to add the hazardous combination as a UCA, an example of
which can be seen in Figure 3.2, corresponding to the first row in Figure 3.1. Otherwise, if a cell is
identified as not hazardous, a blank space (“ ”) can be displayed.

Figure 3.2. Confirmation request displayed by the tool [SPP+19].

Additionally, rules are supported. With the user interface shown in Figure 3.3, new rules can
be created by first choosing one of the UCA categories and values for at least one of the process
model variables and then clicking on the “Add new rule” button. After going back to the context table
interface, the new rules are displayed in a column to the left of the hazard category columns if they
apply. In Figure 3.1, the in Figure 3.3 created rule called R1 applies to all four rows.

Figure 3.3. Creating rule R1 [SPP+19].

As an alternative to using the context tables, a user can manually identify UCAs (see Figure 3.4).
Similar to rules, the user needs to define the category and at least one of the process model variable.
A text for the new UCA is automatically generated by the tool along with a fitting constraint. Unlike
defining UCAs with the context tables, process model variables can be left unassigned if their values do
not influence the validity of the UCA.

14

3.3. An STPA Tool

Figure 3.4. Manually determining a UCA [SPP+19].

WebSTAMP’s user interfaces are easy to comprehend and provide many alternatives to make the
process of identifying UCAs time-effective and manageable. The user can decide how to combine the
different approaches on the basis of how effective they are in analyzing the provided control structure.
As a result, it maintains flexibility with various levels of control structure complexity. However, since it
only supports the creation of UCAs and loss scenarios, other aspects of STPA such as losses and hazards
can not be included. Therefore, hazards cannot be referenced in the created UCAs, which means they
remain partially incomplete. An inclusion of these missing aspects could help bring more clarity over
the conducted STPA process.

3.3 An STPA Tool

An STPA Tool was developed by Suo and Thomas at the Massachusetts Institute of Technology (MIT)
[ST14]. It focuses on specifying hazards, drawing the safety control structure and identifying UCAs.
For identifying UCAs, the tool provides support for context tables and the rule-based approach. The
tables are automatically generated from the control structure drawn by the user.

An example of a context table generated by the tool can be seen in Figure 3.5, where it can be
assumed that the control actions open and close refer to train doors. Unlike the previously discussed
WebSTAMP, the context tables of An STPA Tool include a column to display the control action in each
row. Furthermore, while WebSTAMP offered “provided” and “not provided” as categories next to “too
early”, “too late” and more, An STPA Tool uses them as types in an additional Type column right next to
the Control Action column. Two columns are dedicated to the analysis of the rows, allowing users to
identify rows as generally hazardous and hazardous specifically when the control action is executed
too early or too late. Since hazards are a feature of the tool, if a hazardous combination is identified in
a row, the row’s hazard column cells directly reference the hazards by ID after they have been entered
into the cell. Otherwise, if the row is identified to be not hazardous, both columns are simply left
blank.

The last two columns of the table bind in the rule-based approach, with one column for referencing
rules if they apply, and the other for potential rule conflicts. Rules are defined by clicking the Rule

definition button shown near the upper right corner of Figure 3.5, which opens the user interface
shown in Figure 3.6. Here, the user can define new rules with the help of given parameters. In order to
create a new rule, the user needs to select the type as either Provided or Not provided, apply a value
to at least one of the process model variables, and finally choose the hazards the rule should refer to.
The new rules are listed in a box below the rule definition parameters for more clarity. Below that, an

15

3. Related Work

And/Or table can be found displaying a control algorithm for the current control action by listing the
rule conditions in one column per rule, so that the user can determine possible safety requirements for
the execution of the control action.

Figure 3.5. A context table for the control action “open” in An STPA Tool [ST14].

An STPA Tool provides comprehensible context tables, especially by additionally listing the control
action and type in the table’s first two columns. Because of this, a row’s context can simply be read by
going through the columns from left to right. After the generation of a context table, all rows are first
assumed to not contain hazardous combinations until otherwise defined by the user. This improves
the tables’ time-efficiency, as the user does not need to work through each of a table’s cells for it to be
completely analyzed. Moreover, rules can easily be defined and included with the provided interface
and the various rule features it offers to the user. Especially the ability to detect rule conflicts and the
And/Or table ensure effective options to keep the current rule status assessable, although the And/Or
table could benefit in clarity from the implementation of column descriptors.

However, including the Type column in the table instead of having “provided” and “not provided”
as two more hazard categories, like WebSTAMP does, generates tables that have double the row count
in comparison. While this approach remains relatively inconsequential with smaller tables, with more
complex ones it may lead to a significant decrease in time-efficiency. Furthermore, this approach to
types and hazard categories also persists in the rule definitions, where a user can only bind in the
types “provided” and “not provided”. On the other hand, they cannot differentiate between generally
hazardous behavior or hazardous behavior only if the action is executed too early or too late, even
though the distinction can be made in the two hazard columns of the context table. Displaying the type
as two more hazard categories could be an effective alternative in the context of An STPA Tool, since the
tables work on the basis of a row not being hazardous until found otherwise, meaning the time-effort

16

3.3. An STPA Tool

Figure 3.6. Defining rules in An STPA Tool [ST14].

of analyzing a context table would remain largely unchanged. Furthermore, since there currently are
only two existing hazard categories, increasing the number of hazard columns to four would not
make the table too incomprehensible, assuming WebSTAMP’s seven categories were accounted as not
making the table too complex.

17

Chapter 4

The Context Table Web-View

This thesis focuses on implementing context tables for Petzold’s DSL. A challenge to overcome with
this is to find an approach that suits the functionality of the DSL’s already existing components. The
DSL includes both textual and graphical elements for various steps of STPA, as both approaches offer
advantages concerning efficiency while being able to balance out disadvantages of the respective other
approach. For instance, as can be seen in Section 2.2.4, the user writes a system’s control structure
as a text adhering to the DSL’s grammar, and has the option of opening up a diagram view (see
Section 2.2.1) depicting the structure as a graph. Here, the advantage of the graphical component lies
in the overview it gives users regarding their current progress. However, having to manually construct
a well-structured layout of the graph with methods such as drag-and-drop and pop-ups would be
tedious and time-inefficient [GKR+14]. The DSL circumvents this by having the user define the control
structure textually with a concise grammar. As a diagram based on the structure’s definition can be
displayed, the graphical overview advantage is not lost.

The context table implementation should follow the same approach: The tables should be automat-
ically generated out of a chosen component of the control structure. They should then be available in
a graphical view which can be accessed similarly to the diagram view. However, while the majority
of the table’s content is automatically generated, the “Hazardous” column still needs to be filled out
manually by the user. Instead of filling out the table’s columns directly in the graphical view, the
tables’ hazard columns should instead be edited textually by extending the language’s grammar with
a new aspect: Rules (see Section 2.4). As they have been developed to systematize the analysis of
context tables, rules are a fitting tool to implement the desired approach. Once the user has defined
rules for a system, the table view should update to include them in the evaluation of the “Hazard”
column. Implementing rules gives users an iterative method of identifying UCAs while the graphical
view offers an updated overview over the current status with each conducted iteration.

Therefore, the goal of this thesis is the implementation of context tables into the DSL which have a
visualization component that generates a table view out of the DSL’s textual control structure aspect,
and rules as a textual component with which the tables’ hazard columns are edited.

The following sections discuss the concepts for the implementation: Section 4.1 explains the view
concept for the context tables and how it should be integrated into the DSL, followed by Section 4.2,
which discusses the concepts for the context tables. Finally, Section 4.3 specifies the concepts for rules
and how they are defined in the DSL’s grammar.

19

4. The Context Table Web-View

4.1 The View

The view displaying the context tables should be made accessible similarly to the diagram view
introduced in Section 2.2.1: A button for the table view must be implemented to be positioned on the
same bar as the diagram view button. Clicking on the button will open the context table view, splitting
VS Code’s workspace screen into two parts, the one on the left showing the current STPA file, and the
one on the right displaying the table view.

Since the context table view needs data from hazards, the control structure and rules to generate
tables, the DSL must send the mentioned information to the view. This should be done by the extension
sending notifications and receiving the necessary data back. As the DSL must maintain multiple STPA

documents’ data, the context table view, knowing which document it belongs to, should provide a
document identifier to the extension. Following this, the extension notifies the DSL of this identifier
and receives the needed context table data as a response.

The inclusion of rules (see Section 2.4) makes working with context tables an iterative process:
First, rules are defined, and then the progress is inspected for correctness. Following this, the process
begins anew with the adaptation of the existing rules, definition of new rules or deletion of old rules,
until the analysis has been completed. In regard to the DSL, context tables are meant to be a visual
component helping with keeping an overview over the created progress. For each inspection done in
the mentioned iterative process, the analyst needs updated context tables. Therefore, whenever the
user updates their current STPA file, meaning i.e. that they save changes, the context table view must
update as well.

In order to keep the table view as manageable as possible, only one context table is displayed at a
time. This context table is associated with a certain control action and a type (see Section 2.2.5 and
Section 4.2), both mentioned in the table. In order to switch between context tables, selection elements
for both control action and type must be implemented into the view. When changing the selected
control action or type with these elements, the view component immediately updates and replaces the
now old table with a new one fitting to the currently selected options.

4.2 Context Tables

There are a variety of design choices to be made when creating a context table. However, the final
concept made for the DSL’ context tables mostly leans on their original definition and introduction by
Thomas [Tho13].

As discussed in Section 4.1, one table is displayed in the view at a time. Inspired by the types used
by An STPA Tool, the generated table is associated with a certain control action paired with one of the
following types: “provided”, “not provided” or “both”. However, instead of depicting all types in one
table, the user selects a type to be paired with the control action. The selection of both the control
action and type can be changed anytime.

The selected type determines how the hazard evaluation column is structured. As can be seen
in Figure 4.1, type “provided” has three different hazard categories: “anytime”, “too early / too
late” and “stopped too soon / applied too long”. These hazard categories reference the ones used
to compartmentalize UCAs in the DSL (see Listing 2.4), with “anytime” being used in place of UCA

category “providing”. On the contrary, when type “not providing” is selected, the hazard column has
no subcategories, as the scenario of a control action being not present makes them redundant. The
last type, “both” exists to depict both the “provided” and the “not provided” option in one table. In
this case, the table is structured like the one for the “provided” type visible in Figure 4.1, with the

20

4.3. Rules

only difference being that the “not provided” type is represented with an additional fourth hazard
subcategory called “never”.

In summary, the selectable types “providing” or “not providing” introduce context tables with
fewer columns than a table that contains both types as hazard subcategories. These tables are therefore
easier to manage and well suited for smaller screens such as laptop screens. However, if a user wants
a bigger table containing both “providing” and “not providing” as hazard subcategories, they can
select type “both” and view columns “anytime” and “never” respectively.

Figure 4.1. The context table concept for the control action “Manual Braking” with type “provided”.

The control action and type are written in all cells of the first column of the table, the “Control
Action” column, to make the context table easier to read. For instance, in Figure 4.1 the context table is
generated for “Manual Braking provided”, since the selected control action is “Manual Braking” and
the type “provided”. For type “both”, the control action will also be listed as provided, whereas for
“not provided”, it will be listed as not provided.

The context variables (see Section 2.3) are collected and displayed in the “Context Variables”
column as sub-columns. The “Hazardous?” column and its potential subcategories forms the last part
of the context table. As can be seen in Figure 4.1, each subcategory is represented in one sub-column.
The hazard columns’ cells are filled out textually by defining rules instead of directly editing the
table’s cells in the view, adapting them to the DSL’s existing approach to STPA. If no rules are defined
in the current STPA file, all cells of the “Hazardous?” columns will display “No”. Otherwise, if the
view component received rule data (see Section 4.3), each of the affected cells of the “Hazardous?”
column will be filled with the list of hazards the corresponding rule references. For instance, in row 6
of Figure 4.1, a rule which references hazard H7 holds when “Manual Braking” is provided and the
“aircraftPosition” is set to “taxiing” and “BSCUMode” to “no”. The rules should be traceable from the
hazard references displayed in the “Hazard” column’s cells. Furthermore, neighboring “No” entries
in a context table row’s cells will be combined to one cell for better readability. The same will not be
done for neighboring matching hazard references as they might be caused by different rules.

4.3 Rules

Rules are an essential part of the conceptual context tables’ functionality, as they are used to modify
the “Hazardous?” column’s cells. They must be integrated into the DSL’s grammar introduced in
Section 2.2.2, so that they can be defined in STPA files and subsequently used by the context table view
component.

21

4. The Context Table Web-View

Listing 4.1 shows the concept developed for the rule implementation. This concept translates the
rule approach discussed by Gurgel et al. (see Section 2.4) into a grammatical rule close to the ones
used for the DSL’s Langium grammar definition (see Listing 2.1). It also references multiple definitions
already in use in the Langium file, more specifically “ID”, “Command”, “Variable” and “HazardList”.

1 Rule:

2 name = ID, ’{’

3 ’Control Action: ’, action = [Command]

4 ’Type: ’, type = Type

5 ’Context: ’, ’{’

6 vars += [Variable], {’, ’, vars += [Variable]}*
7 ’}’

8 ’}’

9 hazards += HazardList

Listing 4.1. The Rule concept.

Rules will be implemented as an additional aspect, next to “Losses”, “Hazards”, “ControlStructure”
and more. As can be seen, to fully define a rule, it must receive a String type ID. Furthermore, it must
reference an existing control action, defined as “Command” and at least one context variable. While the
concept keeps the Context references short for the sake of readability, both the name and value of each
variable should be listed in the implementation. Additionally, the rule must have a type, which, just
like the rules, still must be added to the grammar file. The type can be defined as one of the four
following: “anytime”, “too early / too late”, “stopped too soon / applied too long” or “never”. This
way, control action types and hazard subcategories are bound into the rule definition. For example, a
rule which has received type “never” will only potentially affect cells in the “Never” column when
control action type “both” is selected, or in the “Hazardous?” column if control action type “not
provided” is selected. Lastly, the rule also references a “HazardList”, which, in the DSL’s grammar file,
is defined as a non-empty list of existing Hazard items, meaning the rule must refer to at least one
Hazard.

With this Rule definition, the context table view is able to adapt to the DSL’s grammar structure. In
addition, the context table view is able to get all rule data necessary to update the table’s “Hazardous?”
column. This, according to the concept presented in Figure 4.1, encompasses the control action, its
type or a hazard subcategory, context variables with assigned values and the referenced hazards. In
conclusion, it is a concept fitting for both integration into the DSL and use for the context tables.

22

Chapter 5

Implementation

The context table implementation encompasses the following parts: the context table view, view content
assembly, language server communication and Rules, which are discussed in this chapter. Section 5.1
explains the new view for context tables and its integration into the DSL. Following this, Section 5.2
describes the process of constructing the view’s visual components. Section 5.3 deals with the com-
munication between the view and language server, which is needed to exchange the data necessary
to build the context tables. Finally, Section 5.4 focuses on the rules, their integration into the DSL’s
grammar and their functionality in the extension.

5.1 Context Table View

The context tables are displayed in a new view closely following the concept discussed in Section 4.1.
The view has been integrated into the DSL by extending its startup files in the extension folder with a
command that makes the view available once the extension has been activated. In order to display the
context table view, the user presses a newly added button located next to the one starting the diagram
view introduced in Section 2.2.1.

Once the button has been pressed, the command for the context table view triggers the activation
of “ContextTablePanel.ts”, which defines the general behavior of the context table view. This includes
the restriction to only one table view being able to exist at a time, as well as it being opened up in a
new panel right next to the current STPA file, as can be seen in Figure 5.1. Furthermore, it provides
update functions ensuring that the context tables are updated every time the user saves changes in the
current STPA file.

5.2 Assembling the View’s Content

The view possesses three main visual components, as can be seen in Figure 5.1: two selection elements
and a context table. Additionally, text has been added to clarify the use of the components. Both
selection elements allow the user to choose the context table to display. The upper selection element
provides all available control actions listed with their respective controllers as options. Choosing a
different control action will cause the view to update itself and display the context table for the now
selected control action. On the contrary, the selection element below allows the user to switch between
three types to be paired with the current control action in the context table: “provided”, “not provided”
and “both”. All three types function as described in Section 4.2.

The displayed context table is structured into three main column types: “Control Action”, “Context
Variables” and “Hazard” columns. The “Control Action” column displays the currently selected control
action and the paired type. Following this, the “Context Variables” column lists all context variables
(see Section 2.3) as sub-columns. In these sub-columns cells, the respective variables are assigned
values. Each row of the context table contains a different combination of assigned context variable

23

5. Implementation

Figure 5.1. The context table view in the STPA DSL extension.

values, creating the environments to analyze the control action in. Finally, the “Hazard” column
structure varies depending on the currently selected type, as discussed in Section 4.2.

In order to build the view’s visualization components, “ContextTablePanel.ts” constructs a plain
Hypertext Markup Language (HTML) structure fitted to the view’s frame and integrates a script called
“Main.ts” to add the desired components as HTML sub-elements. The mentioned script lies within a
new folder called “context-table” and receives the necessary data (control actions, context variables
and rules) to build the visual components from a message sent by “ContextTablePanel.ts”.

After the data has been received, the selectors are created as HTML selection elements. While the
control action selector uses the items of the obtained list of control actions as its options, the type
selector uses a predefined list to build its options. If the message from “ContextTablePanel.ts” was sent
because of saved changes in the STPA file, “Main.ts” remembers and maintains the selectors’ currently
chosen options on updating the view. Furthermore, both selectors attain a listener each that triggers
when a different option is selected. These listeners are responsible for re-initializing the displayed
context table with the selected options.

After the selectors have been fully assembled, the context table is created. This is done by first
collecting the data to assign to the table, namely the current control action, its controller and context
variables, and the current type. In the STPA file’s control structure, context variables are controller
attributes. “Main.ts” receives them as a list containing context variable lists, one for every controller
each. Since the control action selector displays the actions coupled with the controller they belong to,
its current option for the controller is checked, then the list of context variables belonging to it is taken.

After gathering the necessary data, the table’s rows are created. First, the upper header row
marking the three main column types is created. Then, the second header row containing the context
variables and, depending on the selected type, sub-columns for the “Hazard” column, is added. Finally,
the regular rows are created: First, a value combination of the collected context variables is constructed,
which is then used to create a row. This is done by first adding the control action paired with the type

24

5.3. Language Server Communication

to the “Control Action” column, then the given values to their respective context variable.
Lastly, it is checked if Rules apply to the row. An iteration through the received list of Rules is

done, comparing each of their data to the row’s control action, context and type. The iterative process
lasts until either a fitting rule is found or all rules have been checked. If no rule applies to the row, all
the “Hazard” column’s cells are combined and filled with a “No”, as can be seen in the first row of
Figure 5.1. On the contrary, if a rule applies, its referenced hazards are written into the affected cell,
which, in addition, gains a flag displaying the rule ID when the user hovers the mouse cursor above
the cell.

Once rows for all possible value combinations have been created, the table has been fully con-
structed. In order to make the visual components more user-friendly, Cascading Style Sheets (CSS)
is used for styling the context table. The colors were chosen to be mellow and working with both
VS Code’s light and dark color themes.

5.3 Language Server Communication

In order to build the context tables, the view requires certain data from the current STPA file, namely
the controllers’ control actions and context variables, as well as the rules. As all STPA files’ data is main-
tained by the language server implemented in the “language-server” folder, “context-dataProvider.ts”
has been added to it, which gathers the needed data when prompted.

The context table view communicates with this class by sending and receiving back notifications
(see Figure 5.2). First, the activation of the context table view triggers the sending of the current STPA

file’s Uniform Resource Identifier (URI), which acts as the file’s resource ID within the extension. This
URI notification is also sent every time changes in the current STPA file are saved while the context table
view is active. In addition to this, the extension creates a listener waiting for a return notification. The
language server catches the URI notification and collects the required context table data from the STPA

document found with the received URI. Since components outside the language server cannot work
with types such as Rule and Hazard, the attributes of those types, all of which have the String type,
are collected instead and put into lists.

After gathering the String data for the context tables, the language server sends a notification
containing the data back to the extension, which consequently delegates over to “ContextTablePanel.ts”.
The latter checks the data for completeness and validity, then sends it in a message to “Main.ts”. If
“ContextTablePanel.ts” evaluates the received data as incomplete or invalid, a notification about this
error is sent to VS Code’s debug console.

5.4 Rules

As discussed in Section 4.3, rules are used to fill out the context tables’ “Hazard” columns with
hazard references when they apply. Therefore, the DSL’s Langium grammar has been extended with
the Rule aspect. This implementation is shown in Listing 5.1: The language model gained an additional
component called “Rules”, in which a list of Rule type language elements can be defined.

The Rule type is defined directly below: Each new rule must first receive an ID, after which the
behavior of the rule must be defined in a block marked by braces. In order to completely define a Rule,
a control action, a type and a context needs to be given. The controlAction is written with syntax
“<Controller>.<Action>” (see Listing 5.2), with the controller being defined as the Node type and the
control action as the Command type in the grammar. Knowing the controller to every control action is

25

5. Implementation

Figure 5.2. The communication between the DSL components when the user starts the context table view.

important for creating the context tables, as the controller defines the context variables that apply to
the action.

The Type (see Section 4.3) is introduced as another new language type, which is defined as a Sting

element. Technically, any String can be used for the definition of a Rule. However, to have a Rule apply
to the context tables, the given String must adhere to the following norms:

1. For type “provided”, the Strings “provided” or “anytime” can be used.

2. For type “not provided”, the Strings “not provided” or “never” can be used.

3. For type “too early / late”, the Strings “too early” or “too late” can be used.

4. For type “stopped too soon / applied too long”, the Strings “stopped too soon” or “applied too

long” can be used.

5. Any uppercase letter variants of the above-mentioned Strings apply as well. For instance, the
Strings “Provided” and “anyTime” will also be evaluated as type “provided”.

The context must contain at least one context variable belonging to the defined control action’s
controller, therefore written with syntax “<Controller>.<Variable> = <Value>”. These variables must
have a value assigned to them each. As can be seen in Listing 5.1, this can technically be any String.
However, in order to have the Rule apply to a context table, the value must be one of the values defined
for the respective variable defined in the control structure. Furthermore, after completing the Rule

block, a list of hazards referencing at least one Hazard element needs to be defined for the rule.

26

5.4. Rules

1 grammar Stpa

2

3 entry Model

4 (’Losses’ losses+=Loss*)?

5 (’Hazards’ hazards+=Hazard*)?

6 (’SystemConstraints’ systemLevelConstraints+=SystemConstraint*)?

7 (’ControlStructure’ controlStructure=Graph)?

8 (’Responsibilities’ responsibilities+=Resps*)?

9 (’UCAs’ allUCAs+=ActionUCAs*)?

10 (’ControllerConstraints’ controllerConstraints+= ContConstraint*)?

11 (’LossScenarios’ scenarios+=LossScenario*)?

12 (’SafetyRequirements’ safetyCons+=SafetyConstraint*)?

13 (’Rules’ rules+=Rule*)?;

14

15 Rule:

16 name=ID ’{’

17 ’controlAction:’ system=[Node] ’.’ action=[Command]

18 ’type:’ type=Type

19 ’context:’ ’{’

20 system=[Node] ’.’ vars+=[Variable] ’=’ values+=STRING

21 (’,’ system=[Node] ’.’ vars+=[Variable] ’=’ values+=STRING)*
22 ’}’

23 ’}’

24 list=HazardList;

25

26 Type:

27 value=STRING;

Listing 5.1. The DSL’s grammar updated with Rules.

1 RL12 {

2 controlAction: FlightCrew.powerOn

3 type: "anytime"

4 context: {

5 FlightCrew.BCSUmode = "off",

6 FlightCrew.aircraftPosition = "takeoff"

7 }

8 } [H7.3]

9 RL13 {

10 controlAction: FlightCrew.mc

11 type: "not provided"

12 context: {

13 FlightCrew.BCSUmode = "off"

14 }

15 } [H3]

Listing 5.2. Rules in the STPA DSL extension.

27

5. Implementation

Listing 5.2 depicts how defined rules look in the STPA file. Since rules, just like the control structure,
are defined by a variety of attributes, their definition was designed to look similar to the definition of
said structure (see Figure 2.2). This way, the rules fit in with the DSL’s other aspects.

28

Chapter 6

Conclusion

This chapter concludes the thesis with Section 6.1, which gives a summary of the thesis. Finally,
Section 6.2 will give an outlook on future work that can be done to improve the context tables.

6.1 Summary

In this thesis, context tables have been implemented into the STPA DSL built by Petzold in order to
make the identification of UCAs more manageable and time-efficient for users. The implementation
consists of a textual and a visual component: The context tables are integrated into the extension as a
new view similar in function to the DSL’s diagram view. This table view can be displayed next to the
current STPA file and helps the user to conduct a complete UCA analysis of the control structure. On
the contrary, rules have been added to the DSL’s grammar as a textual component the user can define
in the STPA file. Defined rules reference hazards and apply them to context table rows they affect.

As the implementation creates context tables for all controllers’ control actions with all possible
contexts, it offers a method that guarantees a complete analysis of the control structure with the aim
to identify all possible UCAs. However, instead of filling out the context tables manually, this is done
solely by textually defining rules. Rules have the ability to affect multiple table rows depending on
its defined context, therefore making the process of filling out the context tables more time-efficient.
Once rules have been defined and the changes to the STPA file have been saved, the tables update
automatically and adapt to any additions or changes made to the rules and control structure. Thus,
the user can keep a consistent overview over the made progress regarding identified UCA. As soon as
rules apply to the tables, the user can read UCAs from their respective rows and manually write them
into the STPA’s UCA section.

In conclusion, the context table implementation provides options to make the UCA identification
process more user-friendly, manageable and time-efficient. Therefore, the STPA tools viability has
been increased. Nonetheless, improvements to the context table can be made such as the automatic
generation of UCAs from the context tables.

6.2 Future Work

The context table implementation can be improved by a variety of features. As discussed in Section 6.1,
with the current context table implementation, while the tables are automatically generated and
defined rules immediately apply to them, the user still needs to manually read the UCAs from the
tables and write them into the STPA file. However, since the context table view already contains all
necessary data (controller, control actions, type, context, hazards) to construct UCAs, a feature that lets
the user directly generate UCAs from the tables can be implemented. This feature would reduce the
manual work for the user to identifying rules, with everything else being generated automatically as
soon as the control structure and rules are defined.

29

6. Conclusion

It is possible for multiple Rules to apply to one hazard cell in a table’s “Hazard” column. Currently,
the view will take the first one it finds and then stop the search, therefore ignoring potential other
Rules that also apply to the cell. In order to give users an opportunity to analyze these Rule conflicts, a
feature that marks conflicting Rules with a warning in the STPA file can be implemented. Furthermore,
while Rule types applying to the context tables are predefined by norms described in Section 5.4, the
DSL does not make the user aware of these type limitations. Another warning feature could be added
to the Rule type, which informs the user if an invalid type has been chosen for a Rule.

The context tables can still be made more assessable to users by implementing an option which
simplifies them. Figure 6.1 shows the general idea of the simplification in the first three rows: Context
variable “Train Position” has two known values, but its value assignment does not affect the result
of the “Hazard” column in those rows. Consequently, these originally six rows were combined to
three rows, making the context table more manageable without any context being lost. This can be
especially valuable for context tables with a great amount of context variables. However, since in
the DSL context tables are initialized with all “Hazard” column cells displaying “No” if no rules are
defined, this simplification method will always reduce the tables to one row in those cases. Therefore,
it is best implemented as an option for the user to choose when it best suits them.

Figure 6.1. Example of a simplified context table [Tho13].

Finally, an additional feature can be implemented that, when the user clicks on a hazard reference
in a table’s “Hazard” column, the STPA file jumps to the definition of this hazard. This way, the
readability of the context tables can be increased, and the resulting UCAs can be logically connected to
the rest of the conducted STPA even before they are written down.

30

Bibliography

[AW16] Asim Abdulkhaleq and Stefan Wagner. “XSTAMPP 2.0: New Improvements to XSTAMPP
Including CAST Accident Analysis and an Extended Approach to STPA”. In: MIT (2016).

[GHB15] Danilo Lopes Gurgel, Celso Massaki Hirata, and Juliana De M. Bezarra. “A Rule Based
Approach for Safety Analysis Using STAMP/STPA”. In: IEEE/AIAA 34th Digital Avionics
Systems Conference (DASC) (2015).

[GKR+14] Hans Grönninger, Holger Krahn, Bernhard Rumpe, Martin Schindler, and Steven Völkel.
“Textbased Modeling”. In: arXiv preprint arXiv:1409.6623 (2014).

[ISO96] ISO. “Iso/iec 14977:1996(e), Information technology — Syntactic metalanguage — Ex-
tended BNF”. In: International Organization for Standardization (1996).

[LT18] Nancy G. Leveson and John Thomas. “STPA Handbook”. In: MIT Partnership for Systems
Approaches to Safety and Security (PSASS) (2018).

[Pet22] Jette Petzold. “A Textual Domain Specific Language for System-Theoretic Process Analy-
sis”. MA thesis. Kiel University, 2022.

[SPP+19] Fellipe G. R. Souza, Daniel P. Pereira, Rodrigo M. Pagliares, Simin NadjmTehrani, and
Celso M. Hirata. “WebSTAMP: a Web Application for STPA and STPA-Sec”. In: MATEC
Web of Conferences (2019).

[ST14] Dajiang Suo and John Thomas. “An STPA Tool”. In: STAMP 2014 Conference at MIT (2014).

[Tho13] John Thomas. “Extending and Automating a Systems-Theoretic Hazard Analysis for Re-
quirements Generation and Analysis”. PhD thesis. Massachusetts Institute of Technology,
2013.

31

List of Abbreviations

DSL Domain Specific Language

STPA System-Theoretic Process Analysis

UCA Unsafe Control Action

VS Code Visual Studio Code

HTML Hypertext Markup Language

CSS Cascading Style Sheets

IDE Integrated Development Environment

EBNF Extended Backus-Naur Form

XSTAMPP Extensible STAMP Platform

STAMP System-Theoretic Accident Model and Processes

MIT Massachusetts Institute of Technology

LTL Linear Temporal Logic

PDE Eclipse Plug-in-Development Environment

RCP Rich Client Platform

URI Uniform Resource Identifier

33

	Introduction
	Problem Statement
	Outline

	Foundations
	STPA
	The STPA DSL
	Extension
	Language Server
	Hazards
	Control Structure
	Unsafe Control Actions

	Context Tables
	Rules

	Related Work
	XSTAMPP
	WebSTAMP
	An STPA Tool

	The Context Table Web-View
	The View
	Context Tables
	Rules

	Implementation
	Context Table View
	Assembling the View's Content
	Language Server Communication
	Rules

	Conclusion
	Summary
	Future Work

	Bibliography
	List of Abbreviations

