
From Lustre to Graphical
Dataflow Programs

Lena Grimm

Master’s Thesis
May 2019

Real-Time and Embedded Systems Group
Prof. Dr. Reinhard von Hanxleden
Department of Computer Science

Kiel University

Advised by
M.Sc. Alexander Schulz-Rosengarten

Selbstständigkeitserklärung

Hiermit erkläre ich, dass ich die vorliegende Arbeit selbstständig verfasst und keine anderen als die
angegebenen Quellen und Hilfsmittel verwendet habe.

Kiel,

iii

Abstract

Safety-critical applications often make use of a model-based approach for defining the behavior of
components. This approach can be enhanced by the use of graphical languages. The Safety Critical
Application Development Environment (SCADE) Suite is a tool that adopts the model-based approach
and offers a graphical language to the user. Visual components can be placed, moved and connected
to other components. However, the compiler of SCADE uses a textual language internally that is similar
to the academic, synchronous language Lustre. Additionally, it is verified with different standards
which makes SCADE well-suited for industry.

A different modeling approach is used in the KIELER project. The textual language is preserved for
modeling, but a visual representation is generated from the textual one automatically. This approach
combines the advantages of graphical modeling and textual modeling.

This thesis aims at preserving the graphical semantic known from SCADE but offering a textual
entry to it using the synchronous language Lustre. The Sequentially Constructive Charts (SCCharts)
dataflow language is compared to the SCADE language to prove that their visual representation is
sufficiently similar and to investigate their semantical equivalence.

SCADE offers an entry to modeling at the visual dataflow level and compiles with Lustre which is
based on a textual dataflow. This thesis aims at applying the modeling approach chosen in KIELER to
Lustre. The textual language can be used for editing and the visual representation is generated automat-
ically. Therefore, a transformation from Lustre programs to SCCharts dataflow programs is implemented.
Nevertheless, Lustre offers features such as clocking that are not natively supported in SCCharts. An
appropriate representation for these features is extracted in the process of the transformation.

Lastly, the implemented transformation is evaluated. The behavior of the original Lustre program
and the transformed SCCharts program is compared in order to show that they behave the same.
Furthermore, the underlying Lustre program of a SCADE example is extracted and transformed. The
resulting visual dataflow is then compared to the SCADE dataflow.

v

Acknowledgements

First, I would like to thank my advisor Alexander Schulz-Rosengarten and my professor Prof. Dr.
Reinhard von Hanxleden for the inspiring thoughts and talks during process of this thesis. SCCharts

dataflow raise interesting questions that this thesis cannot cover alone and this topic gave me the
opportunity to take part in the process of its development.

Moreover, I want to thank Steven Smyth for his work on the SCCharts dataflow synthesis. The
dataflow visualizations are used frequently and thanks to his work and ideas they are improved and
prettified.

vi

Contents

1 Introduction 1
1.1 Synchronous Languages . 1
1.2 Lustre and SCADE . 2
1.3 SCCharts and KIELER . 5
1.4 Problem Statement . 5
1.5 Outline . 6

2 Related Work 7
2.1 Dataflow Languages . 7
2.2 Transient Views . 9
2.3 Graphical Dataflow . 10

2.3.1 SCADE Suite . 10
2.3.2 Ptolemy II, Simulink and LabView . 10

2.4 Diagram and Code Synthesis from Models . 11
2.4.1 Visual Paradigm . 11
2.4.2 Safe State Machines to Esterel . 12
2.4.3 Other Syntheses and Transformations . 13

3 Preliminaries 15
3.1 Lustre . 15

3.1.1 Operators . 16
3.1.2 Node References . 18
3.1.3 State Extension . 18

3.2 SCCharts . 19
3.2.1 Controlflow . 20
3.2.2 Dataflow . 20
3.2.3 Semantics of SCCharts Dataflow . 22

3.3 Used Technology . 25
3.3.1 SCADE Suite . 26
3.3.2 Lustre V6 Compiler . 26
3.3.3 Eclipse . 27
3.3.4 EMF . 27
3.3.5 Xtext . 27
3.3.6 KIELER . 27

4 Concept 31
4.1 SCADE vs. SCCharts . 31

4.1.1 Sequentially Constructive Extension of Lustre . 32
4.1.2 Transformation Objective . 34
4.1.3 Visualization . 35

4.2 Transformation . 38
4.2.1 Constants . 38

vii

Contents

4.2.2 Node Declarations . 40
4.2.3 Node Behavior . 40
4.2.4 Handling Clocks . 42

4.3 Sequentially Constructive Dataflow Synthesis . 47
4.3.1 Memory Operator . 48
4.3.2 Incarnation for Variable Values . 48
4.3.3 Conclusion . 49

5 Implementation 51
5.1 Lustre Grammar . 51

5.1.1 Validator . 53
5.1.2 ScopeProvider . 53

5.2 Lustre to SCCharts Transformation . 54
5.2.1 Assertions in SCCharts . 57
5.2.2 Revised: Lustre to SCCharts Controlflow . 57

5.3 Lustre Simulation . 58
5.3.1 Lustre V6 Simulation Compile Chain . 58
5.3.2 Lustre to SCCharts to C Simulation Compile Chain 61

5.4 Automatic Tests . 61
5.4.1 Parser Test . 62
5.4.2 Transformation Test . 63

6 Evaluation 65
6.1 Automatic Behavior Tests . 65

6.1.1 Models Repository . 65
6.1.2 Simulation Tests . 66

6.2 SCADE Models . 67
6.3 Limitations . 71

7 Conclusion 73
7.1 Summary . 73
7.2 Future Work . 74

7.2.1 Lustre Feature Extensions . 74
7.2.2 Transformation SCCharts to Lustre . 75
7.2.3 Improve Lustre to SCCharts Controlflow . 75
7.2.4 Sequential Variable Access Visualization . 77
7.2.5 Optimize Usage of Pre . 77

8 Acronyms 79

viii

List of Listings

1.1 A counter in Lustre . 3
1.2 A counter in Lustre that contains a causal cycle . 3
2.1 Edge detection in Lustre . 8
2.2 Edge detection in Lucid Synchrone . 8
2.3 Zélus program defining a sawtooth-like output . 8
2.4 Equations representing a counter in SCADE . 10
2.5 ABRO program in Esterel . 12
2.6 C code for calculating the fibonacci sequence . 13
2.7 Lustre program used for the transformation to controlflow SCChart 14
3.1 Lustre program used for reference feature . 17
3.2 Lustre program using the reference feature . 17
3.3 Example for a Lustre program using the reference mechanism 17
3.4 A Lustre program using the state machine extension . 18
3.5 Textual Syntax for an SCCharts using the extends feature 19
3.6 Textual Syntax for a controlflow SCCharts . 21
3.7 Textual Syntax for a dataflow SCCharts . 21
3.8 SCChart using the reference mechanism . 22
3.9 SCChart used as a reference . 22
3.10 A textual dataflow SCChart with concurrent assignments 23
3.11 The SCL version of the dataflow SCChart . 23
3.12 A textual controlflow SCChart with sequentially ordered assignments 23
3.13 The SCL version of the controlflow SCChart . 23
4.1 A dataflow Sequentially Constructive Chart (SCChart) with a read followed by a write . 32
4.2 A Lustre program with a read followed by a write . 32
4.3 A dataflow SCChart with an initialization, an update and a read of the variable X 34
4.4 The Lustre program with initialization, update and read transformed with SSA 34
4.5 A Lustre program with an initialization, an update and a read of the variable X 34
4.6 A Lustre program with a reference call that returns two outputs 42
4.7 A dataflow SCChart with a reference to an SCChart with two outputs 42
4.8 A Lustre program using the automata extension . 43
4.9 A Lustre program using the when and current operation 44
4.10 The transformed SCChart from a Lustre program using the when expression 44
4.11 A Lustre program with hierarchical clocks . 44
4.12 A Lustre program using clocks ans the pre operator . 46
4.13 A dataflow SCChart containing a cycle due to a read and a sequential write of a variable 47
4.14 A dataflow SCChart containing a cycle due to a variable with an initialization, an update

and a read . 47
4.15 A dataflow SCChart using two updates with the same operator 49
5.1 Lustre grammar rules for boolean expressions . 52
5.2 Lustre grammar rules for valued expressions . 52
5.3 A Lustre program that uses clocks, copied from Figure 4.8a 56
5.4 A Lustre program that uses clocks, copied from Figure 4.8a 56

ix

List of Listings

5.5 A Lustre program with nested expressions . 58
5.6 Template file for the main execution loop for Lustre programs used for the simulation 59
5.7 Template file used during the setup for the simulation 59
5.8 Example for the template main file injected with code for the simulation of a Lustre

program . 60
5.9 Example main with completed injections . 60
6.1 Extracted Lustre code from the SCADE RollRateCalculate example 69
6.2 Extracted Lustre code from the SCADE RollRateCalculate example 69
6.3 Equations from SCADE that represent the RollRateCalculate model 70
6.4 Equations from SCADE that represent the AdverseYaw model 70
6.5 Equations from SCADE that represent the LimiterSymmetrical model 70
7.1 A counter in SCCharts using sequentially constructive properties 77

x

List of Figures

1.1 Discrete execution of a tick within the context of its environment [MHH13] 2
1.2 The SCADE product family[Est16] . 3
1.3 The SCADE Suite User Interface . 4

2.1 Example for a block diagram using hierarchical and flat transitions 7
2.2 Programs implementing edge detection in Lustre and Lucid Synchrone 8
2.3 Zélus example program with a sawtooth like output . 8
2.4 Examples for transient views supporting workflow used by Schneider et al. [SSH12] . . 9
2.5 A counter in SCADE . 10
2.6 Examples for dataflow in Simulink, LabView and Ptolemy II 11
2.7 The ABRO program as Safe State Machine and in Esterel 12
2.8 Program computing the fibonacci sequence in C and as visualization [SLH16] 13
2.9 Example for a transformation to a controlflow SCChart from Lustre 14

3.1 Structure of a Lustre program . 15
3.3 A Lustre program using the state machine extension introduced by Colaço et al. [CPP05] 18
3.4 An SCChart calculating the circumference of a cycle with the usage of an imported

constant from another model . 19
3.5 An SCCharts modeling the ABRO exampling using controlflow regions 21
3.6 An SCCharts with a dataflow region . 21
3.7 An SCCharts with a dataflow region and a reference implementing the boolean function

implies . 22
3.8 A dataflow and a controlflow SCCharts in textual form, in the SCChart visualization using

only controlflow and the resulting SCL . 23
3.9 Counter modeled in SCADE with a causal cycle for the local variable c 25
3.10 Results of the Check option for the counter with a causal cycle 25
3.11 KIELER user interface in the modeling perspective . 28
3.12 Overview of the core SCCharts feature in the upper region and the extended features in

the lower region [HDM+14] . 29
3.13 The compilation chain for SCCharts to C code . 29

4.1 An SCChart performing read sequentially followed by a write of the same variable
and the equivalent but invalid Lustre and Safety Critical Application Development
Environment (SCADE) programs . 32

4.2 The variable access sequence in the Lustre and the sequentially constructive MoC 33
4.3 An SCChart performing an initialization, an update and a read on a variable, the equiva-

lent but invalid Lustre and SCADE programs, and an equivalent Lustre program with
SSA . 34

4.4 The mapping created through the transformation from valid and invalid Lustre pro-
grams to SCCharts . 34

4.5 Overview of the transformation order going from Lustre to SCCharts 40
4.6 A Lustre program using hierarchical clocks and the resulting transformed SCChart . . . 42

xi

List of Figures

4.7 A Lustre program and the resulting SCChart using the state extension for Lustre 43
4.8 A Lustre program and the resulting SCChart using the operations when and current . . . 44
4.9 A Lustre program using hierarchical clocks and the resulting transformed SCChart . . . 44
4.10 SCChart using the pre operation and the result after the compilation of the pre processor 46
4.11 A Lustre program using pre combined with clocks and the resulting transformed SCChart 46
4.12 A dataflow SCChart containing a cycle due to a read and a sequential write of a variable 47
4.13 A dataflow SCChart containing a cycle due to a variable with an initialization, an update

and a read . 47
4.14 SCChart example from Figure 4.12 and 4.13 using the memory operator to break the

visual cycle . 48
4.15 SCChart example from Figure 4.12 and 4.13 using the incarnation strategy to break the

visual cycle . 49
4.16 A dataflow SCChart using two updates with the same operator and an idea for its

visualization . 49

5.1 Simplified grammar rules for a Lustre node in Kiel Integrated Environment for Layout
Eclipse Rich Client (KIELER) . 52

5.2 Lustre grammar rules for expressions . 52
5.3 Part of the class diagram showing the inheritance of the new transformation processors

and the abstract transformation class . 55
5.4 A Lustre program using clocks and the transformed SCCharts showing the usage of a

conditional and a during action . 56
5.5 A Lustre program using clocks and the transformed SCCharts showing both variants to

transform a when expression . 56
5.6 A Lustre program with nested expressions and the transformed SCChart using the

controlflow approach . 58
5.7 Lustre V6 compile and simulation chain . 58
5.9 Lustre to SCChart compile and simulation chain . 61
5.10 Overview of the test system . 62

6.2 The RollRateCalculate example from SCADE and all referenced models 67
6.3 Transformed RollRateCalculate example in SCCharts with expanded, collapsed and

inlined referenced models . 68
6.4 SCADE equations that are generated from the diagram . 70
6.5 The SCADE LimiterSymmetrical example in SCADE and transformed to SCCharts 72

7.1 Composition and decomposition with structures in SCADE 74
7.2 The map and the fold operation in SCADE . 74
7.3 Different strategies to handle expressions for the Lustre to SCCharts controlflow transfor-

mation proposed by Pascutto . 76
7.4 A counter in SCCharts using sequentially constructive properties and the new visualiza-

tion proposed by Smyth . 77

xii

List of Tables

3.1 Numerical and boolean data operators in Lustre . 16
3.2 Example for clock sampling and projecting using when and current 17
3.3 Language scope of SCCharts in comparison to Lustre . 24

4.1 Boolean and condition operators in comparison for Lustre, SCADE and SCCharts 36
4.2 Numerical operators in comparison for Lustre, SCADE and SCCharts 37
4.3 Compare operators in comparison for Lustre, SCADE and SCCharts 38
4.4 Sequences operators in comparison for Lustre, SCADE and SCCharts 39
4.5 The merge operator . 39
4.6 Hierarchical clocks in Lustre and gray values illustrating variable values 43
4.7 Streams with a pre operation as it is supposed to work in Lustre in the last two lines

and the equivalent using variables . 45

5.1 Methods in the LustreValidator that check on the general problems with the model . . 54

xiii

Chapter 1

Introduction

Safety-critical applications are inevitable in the avionics and automotive industry. A non-functioning
altitude control unit may cause the plane to crash and hundreds of lives would be in danger. Hence,
these systems need to be developed with more caution than ordinary software. However, combining
these safety requirements with standard programming paradigms such as concurrency, this becomes a
tedious task. Systems usually require information from several sensors in order to react properly. Race
conditions may occur and those can lead to unexpected behavior and nondeterministic errors.

This raises the need for a way to specify deterministic concurrency. In 1991 the Proceedings

of the IEEE dedicated a special section to the three synchronous languages Esterel [BD91], Signal
[LGL+91] and Lustre [HCR+91; BB91]. Their goal was to overcome this exact problem. Time is
divided into discrete ticks and within each tick the possible operations are restricted in a way that
each value of a variable can be determined uniquely without speculations. This usually requires a
change in the programming perspective but offers a possibility to overcome concurrency problems.
Moreover, properties of the systems can be proven due to the deterministic behavior. The possibility
for verification is especially interesting for the safety-critical domain but also in other domains a
deterministic concurrency facilitates the designing process.

Until today synchronous languages have emerged greatly. They are the language of choice when it
comes to specifying, designing and verifying complex critical systems [BCE+03]. However, the tools
supporting these semantics often use a graphical entry to the user. The Safety Critical Application
Development Environment (SCADE) is an example for a modeling tool that is used in avionics. It is
verified against several standards and its backbone is made from Lustre, a textual dataflow language.

Combining the benefits of textual editing and graphical reviewing for Lustre and SCADE respectively
is the goal of this thesis. However, the Sequentially Constructive Charts (SCCharts) language is used as
the visualization for Lustre. It has similar semantics and offers the possibility to define dataflow regions.
Moreover, it is embedded in KIELER, an open-source tool for modeling. The automatic generation of
a visualization from the textual version needs automatic layout generation and this is also a part of
KIELER.

1.1 Synchronous Languages

Synchronous languages were developed to overcome the problems originating from concurrency and
grounding deterministic semantics to reliably design safety-critical applications on a high abstraction
level. Behind these promising properties lays a Sound computation model that defines how these
languages work.

The main difference to languages like C or Java is determined by the Synchrony Hypothesis. It states
that all computations are atomic and take no time, inputs arrive at the same time as outputs are
produced. This property can only be achieved on a conceptual level because computations do not
actually take no time. Thus, time is divided into ticks. Each tick represents a time unit that receives
inputs and produces outputs. In Figure 1.1 this cyclic and discrete execution is visualized. One tick

1

1. Introduction

An Instant / Tick (zero duration)

Read Input
Compute
Reaction Write Output

Reactive System

Environment

Input Event Output Event

Figure 1.1. Discrete execution of a tick within the context of its environment [MHH13]

includes the reading of inputs, the computation of the reaction and the writing of the output. The
outputs are given to the environment and in return the next tick receives new inputs.

Variables in the programs are usually referred to as signals and within a tick, each signal can either
be present or absent. It follows that sequential access such as x = 1; x = 0; does not work in classical
synchronous languages if the assignments are all executed in the same tick. The value of the signal x
must be unambiguously defined and a program that offers a fixed point value for each variable is
considered to be constructive.

The situation introduced above already introduces some of the disadvantages of synchronous
languages. The work flow differs from what programmers are usually used to. Even for non-concurrent
regions sequential variables access is restricted. Von Hanxleden et al. relaxed these requirements of
the Synchronous Model of Computation (MoC) [HDM+14]. The Sequentially Constructive Model of
Computation (SC MoC) is introduced and it accepts a strictly larger class of programs. Moreover, it
offers a more intuitive approach to programming whereas the situation stated above would be a valid
sequence of operations. Therefore, we do not refer to variables as signals. They may change their
value during execution, thus the term of a variable remains. The semantics of the language SCCharts

are founded on this SC MoC [HDM+13] and the modeling environment KIELER uses SCCharts as main
programming language.

1.2 Lustre and SCADE

One of the first established synchronous programming languages is Lustre [HCR+91]. It was designed
for programming reactive systems and describing hardware. It offers a dataflow syntax and provides
concurrency with a deterministic semantics through the traditional synchronous MoC. Additionally,
the language itself is well-suited for expressing specification properties of a program and thus, they
can be directly integrated in the program for verification. This offers the great possibility to combine
programming and verification in one model.

A Lustre program consists of nodes. Each node defines its inputs, outputs and optionally it may
specify internal variables. In addition, a node has equations that are executed each tick. These equations
are interpreted in a mathematical sense and may not be taken as assignments.

2

1.2. Lustre and SCADE

1 node counter(a:bool) returns (y:int);

2 var c: int;

3 let

4 c = 0 -> if a then pre(c) + 1 else pre(c);

5 y = c;

6 tel

Listing 1.1. A counter in Lustre

1 node counter(a:bool) returns (y:int);

2 var c: int;

3 let

4 c = 0 -> if a then c + 1 else c;

5 y = c;

6 tel

Listing 1.2. A counter in Lustre that contains a
causal cycle

In Figure 1.1 a simple Lustre program is shown. This program takes a boolean a as input and
returns an integer y. The program has one internal variable c of type integer. The lines 4 to 5 in
between the let and tel keywords define the behavior of the program, thus the equations. In this
example the internal variable is initialized by 0 in the first tick. In all subsequent ticks it is incremented
by one if the input is true. Otherwise, the internal variable is assigned its value from the previous tick.
In line 5 the output is set to the value of the internal variable. Altogether, this program is a counter
that only reacts when the input is true.

In contrast, Figure 1.2 shows the same program without the pre. Since pre refers to the value of the
variable in the previous tick, this breaks potential causal cycles for the value of the variable c. Not
including the pre results in the value of c for the current tick to depend on the value of c in the current
tick. This obviously yields a cycle.

SCADE is a modeling environment for safety-critical embedded software and its backbone language
is founded on Lustre. 1 SCADE was started in the 1990’s by the research laboratory VERIMAG and the
software editor VERILOG. Since 2000 it is developed by ANSYS/Esterel-Technologies [Dor08]. Up
until today, its code generation is qualified with the highest standards for safety-critical applications.

1http://www.esterel-technologies.com/products/scade-suite/

Figure 1.2. The SCADE product family[Est16]

3

1. Introduction

Thus, requirements of various domains like avionic, automotive or transportation can be met using
this tool.

The SCADE product family includes different environments for system design that serve specific
purposes. In Figure 1.2 the different systems are visualized. Not only does it offer tools for the design
of control systems, embedded systems and Human Machine Interface (HMI) systems, also a testing
suite and a life cycle management is included. For the scope of this thesis we only look at the SCADE

Suite, so the tool for designing control software.

Figure 1.3. The SCADE Suite User Interface

SCADE Suite itself is a visual modeling environment. The user may specify the interface of compo-
nents and then model the behavior via drag-and-drop. In Figure 1.3 the user interface is shown. It is
divided into three main parts. On the left side, as Area 1, the project structure is shown. Self-defined
operators and the package structures are listed here.

The Area 2 is preserved for modeling. One specific operator from the project structure may be
selected and shown here. The behavior is modeled using components and connectors, whereas the
user may choose from a dataflow or a controlflow approach. In the figure, both approaches are shown.
The dotted lines titled chrono, display and clk include control-flow mechanisms. The user may define
states and transitions. These states may then again choose between containing control-flow or data-flow.
Below these dotted areas there are dataflow constructs.

The Area 3 lists the possible basic operators provided by SCADE Suite. They make up the predefined
set of operations that may be performed. Moreover, these operators have an interface, too. After
positioning an operator it is the user that needs to connect the ports of the operator’s interface to the
correct wires.

4

1.3. SCCharts and KIELER

As already mentioned, the backbone of SCADE Suite is built from the Lustre language. SCADE is
often referred to as a visual representation for Lustre. The semantics of both are still the same except
for SCADE adding some more operators as syntactic sugar to improve the user experience. In fact,
SCADE offers the possibility to convert an operator with a graphical diagram to a textual version. This
textual version corresponds to the equations included in Lustre.

1.3 SCCharts and KIELER

The Kiel Integrated Environment for Layout Eclipse Rich Client (KIELER) is a research project that
was started by the Real-Time and Embedded Systems group at Kiel University. It was designed to
enhance the graphical model-based design of complex systems. Moreover, the idea is to automatically
generate visual representations from a program as a transient view [FH10]. This allows the user to
take advantage from the visual model which may provide an overview of the program structure and
give a faster understanding of the interconnection of components. Additionally, the benefits from a
textual editor are still preserved. Fast copy-pasting, commenting program parts, putting them back
and the fact that typing in general offers the user the possibility to build models faster [GKR+14] are
just some of the advantages that this approach allows to keep.

Besides implementing the concept of transient views, the KIELER project also introduced a new
synchronous language. The SCCharts are a visual and textual synchronous language. It was designed
for specifying safety-critical systems with a deterministic semantic. Its notion is similar to Harel
Statecharts [Har87] but, similar to SCADE, the user may also define data-flow regions. However, these
dataflow regions are transformed to controlflow in order to generate code. This is different to SCADE,
which uses a language that naturally supports dataflow.

However, the restrictions implied by synchronous languages are relaxed. As already mentioned,
the semantics of SCCharts are based on the SC MoC. These sequentially constructive semantics are
conservative in the traditional sense, so constructive programs are still accepted and behave the same.
However, programs that would be traditionally rejected as not constructive might yield acceptance
under the SC MoC. This conservative extension of the synchronous MoC allows to express programs in
languages like Lustre in the SCCharts language.

1.4 Problem Statement

In traditional modeling tools the designing is usually done on the graphical level using a pallette.
Components can be added, moved and connected to other components. This provides a fast overview
and helps understanding new models or new components and their relation to each other quickly.
Therefore, this modeling strategy has been the common case in established tools such as SCADE.
However, textual modeling is al lot quicker and offers useful features such as refactoring, tracing and
copy-pasting.

In Section 1.3 KIELER is introduced as a tool that combines the advantages of textual and graphical
modeling. SCADE however, is based on graphical modeling with the backbone made of the Lustre
language.

The goal of this thesis is the preservation of the language Lustre as the entry point to modeling
combined with the automatic transformation to a visual representation. As visual representation
the language SCCharts is used. It provides a conservative extension to the synchronous MoC, thus
the expressiveness needed for designing Lustre programs is given. Additionally, the SCCharts have a
dataflow extension so its visual representation is already close to the one provided in SCADE.

5

1. Introduction

Hence, the first step of this thesis is the comparison of SCADE Suite and SCCharts in KIELER. Their
semantics and appearances are analysed with the goal for Lustre programs, transformed to SCCharts

programs, to look familiar to those that worked with SCADE.
The second step is the transformation from Lustre to SCCharts itself. Lustre is a dataflow language

and there are certain properties that are not transformed easily into a controlflow language like
SCCharts. There have been approaches transforming Lustre to SCChart using only its controlflow features
but with the extension of dataflow the generated models are closer related to the original model. This
facilitates for the user to trace the written model within the generated SCCharts model.

1.5 Outline

The remaining chapters of this thesis are organized as follows. Chapter 2 introduces related work to
the topic presented here. In the context of KIELER there exist quite some transformations for automatic
layout generation of different languages. Also imperatives languages like C can benefit from a visual
representation.

In Chapter 3 the prerequisites for this thesis are given. The used technologies are introduced and
more specific properties of SCCharts and Lustre are given.

Chapter 4 introduces the conceptual results of this thesis. It starts with the comparison of SCADE and
KIELER and the drawn consequences for the scope of this thesis. The second step is the transformation
from Lustre to SCCharts itself.

Moreover, in Chapter 5 more implementation-dependent details are given. The embedding of the
concepts into KIELER is explained and the interaction of the newly introduced components with the
overall program is described.

Chapter 6 evaluates the results. The behavior of different Lustre programs is compared to the
behavior of the transformed SCCharts programs.

Lastly, in Chapter 7 the results of this thesis are summarized and thoughts about potential future
work are given.

6

Chapter 2

Related Work

The design process of model-based programs can be handled differently. In tools well-known in
industry like SCADE1 or Simulink 2 a graphical design process is chosen. However, a textual design
process is possible as well and for the tool KIELER this approach is chosen.

In the first section of this chapter, synchronous dataflow languages are introduced. Lustre itself
is a synchronous dataflow language and thus other languages and their characteristics are further
explained.

The rationale for a textual approach and ideas on enhancing this process are presented in the
second section. As already mentioned, the common design flow in model-based applications is realized
through the user moving around components. These visual components are still helpful combined
with a textual modeling approach. These visualizations do not need to be created by hand. However,
this requires automatic layout.

In the third section some examples for graphical dataflow are given. These visualizations are useful
in order to determine a sound basis for a visual dataflow. Transforming Lustre to SCCharts dataflow
should provide a user experience that feels familiar to those that already know visual modeling tools.

Finally, the fourth section presents work on model-to-model transformations. This includes trans-
formations with Lustre in general and model-to-model transformations with different languages.
These transformations are not all reasoned on the need to generate an actual visual representation
from text. The Lustre V3 compiler uses a controlflow transformation for efficient compilation.

2.1 Dataflow Languages

Lustre is one of the first synchronous languages. Unlike Esterel, it uses a dataflow approach for
programming. The language Signal was also developed around the same time [GGB+91]. It is a

1http://www.esterel-technologies.com/products/scade-suite/
2https://de.mathworks.com/products/simulink.html

Figure 2.1. Example for a block diagram using hierarchical and flat transitions

7

2. Related Work

1 node edge (c : bool) returns (e : bool);

2 let

3 e = c and not (false fby c);

4 tel

(a) Lustre

1 let node edge c = c & not (false fby c)

(b) Lucid Synchrone

Figure 2.2. Programs implementing edge detection in Lustre and Lucid Synchrone

1 let hybrid sawtooth() = x where

2 rec der x = 1.0 init 0.0

3 reset up(last x -. 1.0) -> 0.0

(a) Zélus program (b) The output in a coordinate system

Figure 2.3. Zélus example program with a sawtooth like output

dataflow language but it was specifically designed for systems. Other than programs, systems may be
modified by adding, deleting or changing components at any time without the need to change the
rest of the specification. They are specified as block diagrams. In Figure 2.1 an example for a block
diagram is given. Components A a to E are connected and partially organized in a hierarchical manner.
In Signal each block has its own clock so the environment and the system can be specified to run in
different time instances.

Resulting from the three basic synchronous languages Lustre, Estrel and Signal, other dialects
and variants have emerged. The language Lucid Synchrone is a functional extension of Lustre, also
providing some features of ML languages [CP99]. This functional extension reduces the overall amount
of code needed due to its functional structure. In Figure 2.2 a program detecting a rising edge is
implemented in Lustre and in Lucid Synchrone. Lustre needs an explicid interface whereas Lucid
Synchrone derives the input and outputs and their associated type through the defined function. The
output variable does not need an explicit name in this case and therefore is simply defined through
the right side of the equation.

The language Zélus is another example of a Lustre variant [BP13]. It is a rather new language, being
developed in the last decade. The idea was to mix discrete logical time with a continuous time behavior.
This is achieved by mixing the features of Lustre with Ordinary Differential Equationss (ODEs). In
Figure 2.3a an example program in Zélus is presented. It takes no input, indicated by the () in line 1
after sawtooth. The output has the value of x, whereas x is defined by the derivative 1 with the initial
value 0, indicated by der x = 1 init 0 in line 2. So up to this point the value of x is defined by a linear
function starting at 0 with the slope 1. However, the value is reset each time that the last value of x
minus 1 crosses zero from negative to positive. This is the meaning of the statements reset up(last

x -. 1.0) -> 0.0. Moreover, the value of x is defined through continuous time but also discrete time
equations can be defined just like Lustre. Altogether, the program defines x to hold a sawtooth-like
value. In Figure 2.3b the value of x is presented over time.

8

2.2. Transient Views

(a) Transient view generation as a state machine (b) Transient view generation showing the class
hierarchy

Figure 2.4. Examples for transient views supporting workflow used by Schneider et al. [SSH12]

2.2 Transient Views

Designing a new system using visual models has the potential to consume a lot of time. Nodes and
edges must be connected manually and the need for new components firstly creates the need to
manually make room for new components.

Fuhrmann and von Hanxleden addressed the problems arising from graphical models [FH10].
Creating, maintaining or browsing visual models becomes time consuming and tedious. Additionally,
Schneider et al. introduced the concept of a transient view [SSH12]. The idea is to synthesize a
graphical view from an existing model automatically or on demand. This avoids the time consuming
side effects of graphical modeling and combines them with the advantages. However, in order to
provide transient views, automatic layout is needed.

The concept of transient views can be applied for various problem domains. An example that
is applicable not only for synchronous languages is mentioned in Schneider et al. [SSH12]. During
the process of programming the user might be given the option to show a visualization of the class
hierarchy. Schneider et al. proposed the transient views in Figure 2.4 as a possible approach. This way
the programming process is enhanced with the visual information about the class hierarchies, thus the
user does not need to draw it themselves.

The concept of transient views was implemented in the context of KIELER. The language SCCharts

has a visual and a textual semantics [HDM+14]. Designing a model allows textual editing and the
visual representation of the model is generated automatically. This way the user is always offered
both approaches. This thesis uses this concept to combine Lustre with the visual semantics of SCCharts

dataflow.

For the scope of the thesis, thus the focus is on the language Lustre. Is defines the basis for SCADE

and it is possible to express all Lustre feature with SCCharts.

9

2. Related Work

(a) Visual

1 L1 = count;

2 value = L7;

3 L2 = 1;

4 L3 = pre L7;

5 L4 = L2 + L3;

6 L5 = if L1 then (L4) else (L3);

7 L6 = 0;

8 L7 = (L6) -> (L5);

(b) Textual

Figure 2.5. A counter in SCADE

2.3 Graphical Dataflow

The synchronous language Lustre is a dataflow language is based on a textual syntax. In order for
Lustre to be visualized, a graphical representation of the dataflow is needed. However, there are
several tools that use a graphical dataflow language. This section introduces theses tools and their
approaches on how to visualize dataflow.

2.3.1 SCADE Suite

The SCADE Suite is a modeling environment using graphical components to express behavior [CPP17].
It has a compiler that is verified with several standards for avionics and automotive needs and holds
sound semantics. Particularly, these semantics are based on the dataflow language Lustre. This visual
representation defines a good outline for the visual representation that the transformation should
achieve. It is frequently used and has a synchronous basis.

Each wire connecting components in SCADE is expressed as one equation in Lustre. Additionally, a
new variable is introduced that holds the value of the wire. Each component receiving the wire as
input uses the newly introduces variable in the equation. In Figure 2.5 a counter modeled in SCADE

is shown. There is the visual model on the left side and the right side shows the conversion to the
textual format with the resulting equations.

2.3.2 Ptolemy II, Simulink and LabView

Besides SCADE there are several other tools using visual dataflow for modeling. Ptolemy II3, Simulink4

and LabView5 are some examples we consider here, and they are all actor-oriented just like SCADE.
All component entities are defined as actors and those can be predefined operators or self-defined
operators that can be placed and connected. Nevertheless, they all work with different MoCs. Ptolemy II
uses directors that can be added to the model. In Figure 2.6b the director is defined by the SDF Director
component. This director determines the used MoC, for example dataflow, continuous time or discrete
events. In the figure it is synchronous dataflow. In Simulink graphical blocks are used to visualize
a component and a predefined set of basic blocks is available that are either discrete or continuous.
In Figure 2.6a an example for a continuously designed function is given. Lastly, in LabView the MoC

is based on availability. A component or actor executes when all its inputs are available. Multiple

3http://ptolemy.berkeley.edu/ptolemyII/
4https://de.mathworks.com/products/simulink.html
5http://www.ni.com/getting-started/labview-basics/

10

2.4. Diagram and Code Synthesis from Models

(a) Simulink: Calculating distance of a car from start point with gas pedal indicator

(b) Ptolemy II: model using the synchronous
dataflow director

(c) LabView: model calculating the Pythagorean theorem

Figure 2.6. Examples for dataflow in Simulink, LabView and Ptolemy II

nodes might get their inputs available at the same time and this allows actors to execute inherently in
parallel. In Figure 2.6c the addition operator for example only executes when both square operations
yielded a result.

2.4 Diagram and Code Synthesis from Models

Visualizing Lustre requires a synthesis from the Lustre code to a model that is actually visualized. This
type of synthesis from textual to visual is rather uncommon because it requires an automatic layout for
the visualization. Tools like SCADE, Simulink, Ptolemy or LabView use the graphical model to extract
or synthesize a textual form. The direction textual to textual is rather common for transformations
within one model language. The Esterel language uses model-to-model transformation to take care of
extended features [Ber02]. A set of kernel features is defined and other more complex features are just
syntactic sugar and are simplified through transformations into kernel statements.

2.4.1 Visual Paradigm

The Unified Modeling Language (UML) tool Visual Paradigm6 was developed by Visual Paradigm
International. It can be used to model software from different perspectives. Detailed class diagrams,
component diagrams or sequence diagrams are just some examples. The idea is to start the design
process on an abstract level and think about the connection of different components. Similar to
Simulink, LabView or SCADE the user uses a palette combined with drag-and-drop to build the model.
There is also an automatic layout generation button for the model, but the connections of components
must be done manually before that.

Moreover, this tool also includes model synthesizing options. The user has the option to generate
code from the previously designed diagram. This code builds the stubs for the program fitting the

6https://www.visual-paradigm.com/

11

2. Related Work

(a) Safe State Machine

1 module ABRO:

2 input A, B, R;

3 output O;

4 loop

5 [await A || await B];

6 emit O;

7 each R

8 end module

(b) Esterel

Figure 2.7. The ABRO program as Safe State Machine and in Esterel

designed software. This code generation process also works the other way around. The user may open
their code and chose a diagram to be generated. Note that these techniques do not work with every
diagram since not every diagram can be generated statically.

2.4.2 Safe State Machines to Esterel

The language Esterel was one of the first three synchronous languages [BC84]. It is an imperative
language and there is a graphical language, SyncCharts, that is semantically equivalent [And96].
Therefore, each Esterel program can be transformed into a SyncChart and every SyncChart can be
translated into an Esterel program and they all have the same behavior. SyncCharts are the academic
version of Safe State Machines (SSMs) but instead the the term SSM is often used.

Prochnow et al. presented their ideas on an automatic Esterel to SSM transformation [PTH06]. The
motivation is similar to transforming Lustre to SCCharts, the benefits of both modeling approaches are
combined. They introduce two steps to the transformation. First, the Esterel program is translated to
an equivalent SSM. Second, this SSM is further optimized in order to create a more readable model.

In Figure 2.7 the ABRO program is shown in Esterel and as a SSM. The model has three inputs A, B
and R and one output O. The model waits for A and B to be set, and then the output is emitted, too.
The input R resets the model so it starts waiting for A and B. In Figure 2.7a the state machine is shown.
The grey I states indicate the initial state. A state with a double-circled outline is a final state. Within
the AB state, the inputs A and B need to be emitted for it to terminate. The strong abort on ABO with R

causes the model reset. In Figure 2.7b the equivalent Esterel program is shown. The parallel statement
of the two await corresponds to the AB state and the loop ... each R corresponds to the strong abort
with the R as a trigger.

12

2.4. Diagram and Code Synthesis from Models

1 int fibonacci(int n) {

2 int lastno = 0;

3 int currentno = 1;

4 if (n<=1) {

5 currentno = n;

6 } else {

7 for (int i=2; i<=n; i=i+1) {

8 int tmp = currentno;

9 currentno = currentno + lastno;

10 lastno = tmp;

11 }

12 }

13 return currentno;

14 }

(a) C code

fibonacci
input int n
int lastno
int currentno
output int return
lastno = 0

 currentno = 1

if

 currentno = n

for
int i
int tmp
 i = 2

tmp = currentno
 currentno = currentno + lastno
 lastno = tmp
 i = i + 1

1: i <= n

2: [-]

1: n <= 1

2:

[-]

 return = currentno

[-]

(b) Visualization gained through transformation

Figure 2.8. Program computing the fibonacci sequence in C and as visualization [SLH16]

2.4.3 Other Syntheses and Transformations

Transforming models is not only relevant for the creation of diagrams. Also compiler can take
advantage of transformations and user stories can be facilitated. In this subsection some other
transformations and their rationales are introduced.

The language Lustre was already supported prior to this thesis. There was a transformation taking
a Lustre program and transforming it to SCChart control flow developed by Clement Pascutto [Pas17].
Each expression was realized as two states with a transition connecting them. However, sometimes
this approach does not give a good insight because this controlflow perspective does not always
improve readability. Especially with highly nested expressions the level of hierarchy grows and thus
the complexity. Figure 2.9 shows an example for the result of this transformation. The expression is
evaluated hierarchically and then rebuilt using the associated variables. This SCChart represents the
Lustre code but the abstraction from the dataflow to the controlflow comes at the cost more complex
model in comparison to the original model.

The rationale for the Lustre to SCChart dataflow transformation introduced is not only applicable for
the language Lustre. There has been work on a visualization from C code [SLH16]. The greater goal is
to get a visual insight on C code projects so the review of legacy code is facilitated. Also the maintaining
can be enhanced by this feature because interconnection of components and the complexity can be
extracted without further steps needed. In Figure 2.8 an example for this transformation is shown.
The fibonacci sequence is implemented in C code in Figure 2.8a and in Figure 2.8b the corresponding
visualization is shown. The conditional execution is shown by two transitions, one with a trigger, and
the for-loop is hierarchically bundled.

The classical Lustre compilation approach constructs a finite state automaton from the dataflow
code. This automaton uses the clocks in Lustre to determine the flow of control. Berry and Sethi
introduced an efficient algorithm that is used to extract this automaton from the dataflow [BS86].
However, the new Lustre compiler [BBD+17] now uses a clock-directed approach [BCH+08]. This
approach causes the code to be less efficient, however it produces a lot less code. In practice, the
controlflow approach tends to cause the generated code to explode.

KIELER has a compiler using model-to-model transformations, and implementing new transfor-
mations is greatly facilitated through the modular transformation processor architecture [SSH18]. A

13

2. Related Work

1 node bool_add(A: bool; B:bool) returns (Z

: int);

2 let

3 Z = (if A then 1 else 0)

4 +

5 (if B then 1 else 0);

6 tel

(a) Lustre (b) SCChart result

Figure 2.9. Example for a transformation to a controlflow SCChart from Lustre

transformation can simply be defined as a processor taking the one model as input and producing a
model of the target type. Thus, many transformations are already implemented for different purposes.

14

Chapter 3

Preliminaries

The comparison of Lustre and SCCharts requires some basic knowledge about the languages themselves
as well as theoretical aspects of synchronous languages are needed. Additionally, some tools and
compilers are used and reused that are relevant for implementation and evaluation. This chapter gives
a more detailed insight into the two languages Lustre and SCCharts and furthermore it introduces the
technologies used.

3.1 Lustre

Besides basic operations, Lustre offers many extended features like array iterators, parametric nodes
and user-defined types. However, for the scope of this thesis we limit the supported features of the
Lustre language to a basic set. The relevant language feature are introduced in this section.

In Section 1.2 a Lustre program was already outlined. It was mentioned that it is made from nodes
that consist of an interface, local variables and equations. In Figure 3.1 these different program parts
are highlighted. Additionally, constants may be defined outside of nodes. An example for a constant
declaration and initialization is also given in the Figure 3.1.

Figure 3.1. Structure of a Lustre program

With Lustre being a synchronous language, it abstracts time to be divided into discrete ticks.
Variables in Lustre are called streams. They are infinite sequences of values with each value defining
the variable for a tick. A variable x = (x1, x2, x3, . . .) has the value x1 in the first tick, x2 in the second
tick and so on. Each value of the variable is defined through an equation, thus the value of a variable
in tick n is the value of the respective equation in tick n.

15

3. Preliminaries

Table 3.1. Numerical and boolean data operators in Lustre

Syntax Semantics

- x Sign

x + y Addition
x - y Subtraction
x * y Multiplication
x / y Division
x div y Integer Division
x mod y Modulo
x > y Greater
x < y Less
x >= y Greater or Equal
x <= y Less or Equal
x <> y Unequal
x = y Equal

if a then x else y Conditional

Syntax Semantics

not a Not

a <> b Unequal
a = b Equal
a or b Or
a and b And
a xor b Exclusive Or
a => b Implies

if c then a else b Conditional

#(a, b, ...) At most one
nor(a, b, ...) None of

3.1.1 Operators

The operators available in Lustre can be divided into two categories, the data operators and the sequence
operators. The data operators can be unary, binary or n-ary operators. They work on each tick instance
of a variable, so for two variables x = (x1, x2, x3, . . .) and y = (y1, y2, y3, . . .), an arbitrary binary data
operation � is defined through

x � y = (x1 � y1, x2 � y2, x3 � y2, . . .).

In Figure 3.1 the supported data operators are listed. They are divided into numerical operators
working with integer or real numbers and boolean operators. The respective syntax of the operations
and their definitions are listed as well. The separating lines in between the table structure the operators
into groups of the same arity.

Besides the data operators, there are four sequence operators. They can be used to work on and
manipulate streams, thus the sequence of a variable’s values.

The first sequence operator is pre. It can be used to refer to the previous value of a variable,
usually the value in the previous tick. In the first tick the value of pre is not defined, indicated by nil.
Altogether, the pre operator for a variable x = (x1, x2, x3, . . .) is defined through

pre(x) = (nil, x1, x2, x3, . . .).

As already mentioned, this introduces an undefined value at the first tick. For this cause the
initialization operator is introduced. It takes the value of the left side in the first tick and the value of
the right side in all following ticks. So for two variables x = (x1, x2, x3, . . .) and y = (y1, y2, y3, . . .) the
initialization is defined through x -> y = (x1, y2, y3, . . .).

The pre and the initialization are often used together. Therefore, in Lustre there is a convenient
language addition that facilitates the combination of both operators. It is called the followed by operator,
used with fby. For two variables x = (x1, x2, x3, . . .) and y = (y1, y2, y3, . . .) the followed by is defined
through x fby y = x -> pre(y) = (x1, y1, y2, . . .).

16

3.1. Lustre

Table 3.2. Example for clock sampling and projecting using when and current

Name Stream of values

clk true false true true false true false false true

b true false false true true false false true true

b1 = b when clk true false true false true

x 0 1 2 3 4 5 6 7 8

x1 = x when b1 0 3 8

x2 = current x1 0 0 3 3 8

x3 = current x2 0 0 0 3 3 3 3 3 8

The last two sequence operators are for sampling and projecting of streams. Each stream has an
associated clock. For simple streams this is the base clock, so the clock with the highest frequency.
However, other frequencies can be specified that cause the value of the variable to only be computed in
certain time instances given through the clock. The when operator can be used to sample a stream. The
expression x when b with b being a boolean variable only holds a value in those ticks where b is true.
The value is defined by the value of x in that tick. Table 3.2 illustrates an example for the sampling. In
the third row the expression b is sampled to the clock clk. Note that the expression b when clk does not
define a value in the ticks where b is f alse. Likewise, row five samples the expression x to the clock b1.

The opposed operation, the projection, is defined by the current operator. For an expression
b when clk, the operation current(b when clk) is defined to run on the clock of clk and project the
value of b when clk to all tick instances that need to be filled. In Table 3.2 there are some examples on
how the current operator works. In line 6 the expression x1 = x when b1 is projected. Because b1 runs
on the clock clk the operation current(x when b1) is defined to run on the clock of b1, thus clk. In line
7 this result is again projected. Because clk is on the base clock, this causes the values to be projected
into all missing tick instances.

1 node AND (a:bool; b:bool) returns

2 (o:bool);

3 let

4 o = a and b;

5 tel

6

7 node ORXOR (a:bool; b:bool) returns

8 (resultOr:bool; resultXor:bool);

9 let

10 resultOr = a or b;

11 resultXor = a xor b;

12 tel

(a) Nodes of the Lustre program that are referenced

10 node ANDOR (a:bool; b:bool) returns

11 (resultAnd:bool; resultOr:bool; resultXor:

bool);

12 let

13 (resultOr, resultXor) = ORXOR(a, b);

14 resultAnd = AND(a, b);

15 tel

(b) Lustre node referencing other nodes

Listing 3.3. Example for a Lustre program using the reference mechanism

17

3. Preliminaries

(a) Visualization as state machine

10 node chrono (StSt:bool; Rst:bool)

11 returns (disp_1:int; disp_2:int);

12 let

13 automaton

14 CHRONO ->

15 automaton

16 STOP ->

17 s = 0 -> last s

18 m = 0 -> last m

19 run = false

20 unless StSt continue START

21 | START ->

22 d = 0 -> (pre d + 1) mod 100

23 s = if d < pre d

24 then (last s + 1) mod 60

25 else last s

26 m = if s < last s

27 then (last m + 1) mod 60

28 else last m

29 run = true

30 unless StSt continue STOP

31 end

32 until Rst and not run then CHRONO;

33 automaton

34 TIME ->

35 disp_1 = s

36 disp_2 = m

37 until Rst and run then LAP

38 | LAP ->

39 until Rst then TIME;

40 tel

(b) Lustre Program

Figure 3.3. A Lustre program using the state machine extension introduced by Colaço et al. [CPP05]

3.1.2 Node References

Besides the operators introduced above, Lustre also allows to call already defined nodes. In Figure 3.1
the general program structure is outlined but besides the one defined node, multiple nodes may be
defined within one file. These nodes can then call the others assuming their call tree is acyclic. This
allows to modularize the functionality and behavior into nodes. The inputs are provided to the called
node through the braces.

In Figure 3.3 an example for the usage of a reference call is shown. The node AND only has one
output, so it can be simply referenced on the right side of the equation. For the node ORXOR there needs
to be a tuple on the left side of the equation because it has two outputs.

3.1.3 State Extension

In 2005 Colaço et al. introduced a conservative extension to the classical Lustre/ Lucid Synchrone.
They added state machines as an alternative way to express the program behavior besides dataflow

18

3.2. SCCharts

1 scchart CircleCircumference extends Constants

{

2 input float radius

3 output float circumference

4

5 dataflow {

6 circumference = 2.0 * PI * radius

7 }

8 }

9

10 scchart Constants {

11 const float PI = 3.14159

12 }

(a) Textual (b) Visual

Figure 3.4. An SCChart calculating the circumference of a cycle with the usage of an imported constant from
another model

[CPP05]. This extension is conservative in the way that all programs in the basic language still work
and behave the same. The basis for this extension is the usage of clocks. In dataflow they offer a way
to express conditional execution and are often seen as the counter part to controlflow. Allowing the
specification of state machines combines both possible modeling approaches. In SCADE this extension
is also used, allowing the user to chose between the modeling perspectives.

Figure 3.3 shows an example for a Lustre program using the state machine extension. It is taken
from Colaço et al. except for the program being in Lustre and not in Lucid Synchrone. It simulates
a stopwatch with a start and a reset button. The outputs disp_1 and disp_2 show the seconds and
minutes since the start.

In general the automaton extension can be used at the same place equations qould be defined.
Instead of specifying an equations in between the let and tel keywords, one can also define an
automaton with the keyword automaton. Following the keyword, a state can be defined and optionally
equations follow that shall be executed within the state. The transitions have two different variations
for defining their kind. The first option defines the stop behavior. An unless introduces a strong abort,
thus when the condition is met, the transition is taken immediately. However, the until defines a weak
abort. The second option defines how the target state is entered. It is differentiated between then and
continue. The continue starts the target state in the state it was before leaving, it defines a history
transition. The then keyword does not save the state of the target state.

3.2 SCCharts

SCCharts are a synchronous language extending the classical synchronous MoC with sequential con-
structiveness [HDM+14]. They use a StateChart notation based on the Harel StateCharts [Har87] and
additionally allow the specification of dataflow. The syntax is given on a textual and a visual level.

The entry to a program is defined through a root SCChart, a state that contains all the modeled
behaviors. It is possible to specify another SCChart and import it through the extends feature. This
feature is oriented on the inheritance in object-oriented languages and provides a possibility for
importing declarations, regions or actions. For this thesis we only need this features for importing
declarations. In Figure 3.4 an example for the usage of the extends feature is given. The constant PI

19

3. Preliminaries

in the model Constants can be imported in this calculation of the circumference but it would also be
possible to additionally import it in other models. This renders the constant variable PI visible in the
scope of the CircleCircumference.

Within a root state of an SCChart different regions can be defined and they all run in parallel. These
regions can be defined as either a controlflow region or a dataflow region. In the following we take a
look into both features because the controlflow regions are interesting for the state extension of Lustre.
The dataflow regions however, offer a good representation for the classical Lustre.

Concurrent regions using the same variables may induce data dependencies. In classical syn-
chronous languages this problem is faced by allowing one value for each signal or stream value for
each tick. However, the SCCharts use sequential constructiveness. Instead of signals or streams we
use variables. Those may hold different values during one tick and this value persists beyond tick
boundaries. This requires a regulation for variables being modified concurrently.

Within the scope of SCCharts this problem is solved by introducing the initialize - update - read
protocol [HDM+14]. This protocol defines the ordering of variable access in concurrent regions. The
first operation performed is therefore the initialization of a variable. All assignments that are not
classified as update are considered to be an initialization. Following initialization, updates on the
variable are performed. These are defined through a commutative function f in an assignment of the
form x = f (x, e) whereas e does not reference x. Lastly, the reads for a variable are scheduled. This
ensures that the variable has reached its final value, without considering sequential modification after
the read.

3.2.1 Controlflow

The controlflow regions of SCCharts use state machines for defining the program. The states can be
specified as initial, final or regular states. Initial states are used as starting point for the execution and
final states mark the termination of execution for that region.

In Figure 3.5 the ABRO example introduced in Figure 2.7 is implemented in SCCharts using
controlflow. It takes three boolean inputs A, B and R. It waits for A and B to be set to true and as soon as
this happens, the boolean output O is also set to true. In case that the input R is set, the behavior is reset.
The states wA, wB, WaitAB and ABO define initial states, and dA and dB are final states. The remaining
state done is a regular state.

Transitions also have different types. They can be immediate or delayed, where immediate transi-
tions react without implying a tick boundary. Additionally, they can specify a weak abort, a strong
abort or a termination transition. Weak and strong abort define whether the source state of the
transition is allowed to perform an action when this transition triggers. The weak transition is for
example used as transition from wA to dA. The strong abort transition is used at the self transition
on ABO that triggers with R. In contrast to a weak abort, the strong aborts prevents the source state
to execute its inner behavior. Lastly, the transition from WaitAB to done is a termination transition. It
ensures that the source state has terminated, so all its inner behavior has reached a final state.

3.2.2 Dataflow

The Lustre language is a dataflow language, so the possibility to specify dataflow in SCCharts is
especially interesting. As already mentioned, one can define a region as dataflow and then equations
are provided instead of states and transitions. In Figure 3.6 an example for an SCCharts using dataflow
is illustrated. The inputs and outputs are specified just like in the controlflow example. However, the

20

3.2. SCCharts

1 scchart ABRO {

2 input bool A, B, R

3 output bool O

4

5 initial state ABO {

6 entry do O = false

7

8 initial state WaitAB {

9

10 region {

11 initial state wA

12 if A go to dA

13

14 final state dA

15 }

16

17 region {

18 initial state wB

19 go to dB if B

20

21 final state dB

22 }

23 }

24 join to done do O = true

25

26 state done

27 }

28 abort to ABO if R

29 }

(a) Textual (b) Visual

Figure 3.5. An SCCharts modeling the ABRO exampling using controlflow regions

1 scchart df {

2

3 input int I

4 output int O, O2, O3

5

6 dataflow {

7 O = I * 2

8 O2 = I * 2

9 O3 = O + O2

10 }

11 }

(a) Textual (b) Visual

Figure 3.6. An SCCharts with a dataflow region

21

3. Preliminaries

1 scchart dfReference {

2 input bool a

3 input bool b

4 input bool c

5 output bool d

6 ref implies AB

7 ref implies AC

8

9 dataflow {

10 AB.a1 = a

11 AB.b1 = b

12 AC.a1 = a

13 AC.b1 = c

14 d = AB.c1 && AC.c1

15 }

16 }

(a) Root SCChart

1 scchart implies {

2 input bool a1

3 input bool b1

4 output bool c1

5

6 dataflow {

7 c1 = !a1 || b1

8 }

9 }

(b) Referenced SCChart (c) Visual

Figure 3.7. An SCCharts with a dataflow region and a reference implementing the boolean function implies

dataflow keyword introduces a new region using dataflow. Equations can now be defined and in the
visualization in Figure 3.6b these equations are synthesized into a network of components and wires.

Besides predefined operators, also already defined SCCharts can be used as operator. Figure 3.7
illustrates an example program that references another SCChart. The boolean function implies is realized
in a separate SCChart using the equivalence rule A ñ B ô A_ B. This function is referenced in the
main program two times. The inputs and outputs of the referenced SCCharts need to be connected
to values or variables through equations. In lines 10 to and 13 the proper values are bound to the
operator as input. The output is forwarded to the output d of the main model as the conjunction of
both outputs. In the visual representation the referenced node can be expanded as shown in the Figure
3.7c for the first reference, AB, or it can be collapsed to hide the implementation details as shown for
the second reference, AC.

3.2.3 Semantics of SCCharts Dataflow

The implemented transformation focuses on the usage of dataflow SCCharts and thus their semantics
are important in order to properly understand the generated models. Dataflow SCCharts can be defined
through a dataflow-typed region that includes an arbitrary number of equations. Those equations are
treated as concurrent assignments that are executed each tick. Each assignment is transformed to its own
region that only handles the execution of the designated assignment. Figure 3.8a shows a dataflow
SCChart with two concurrent assignments y = x and x = 1. In Figure 3.8b this SCChart is illustrated
with a concurrent regions for each assignment. The assignments y = x and x = 1 are included in the
dataflow region, thus there are two concurrent regions in the SCChart that perform the corresponding
assignment once per tick.

This concurrent realization of the assignments in a dataflow region in SCCharts differs from the
controlflow approach. Figure 3.8 show examples of dataflow and controlflow SCCharts and their visual-
ization using controlflow constructs. Additionally, in both approaches the Sequentially Constructive
Language (SCL) is shown that is generated from these SCCharts. This SCL is a textual imperative language
that is used during the compilation process as a minimal basis to express concurrency. Assignments

22

3.2. SCCharts

1 scchart DataflowSCChart {

2 output int x = 0

3 output int y

4

5 dataflow {

6 y = x

7 x = 1

8 }

9 }

(a) A dataflow SCChart with concurrent
assignments

(b) Resulting concurrent regions from the dataflow
SCChart

1 module P2

2 int x, y;

3 {

4 x = 0;

5 fork

6 one:

7 x = 1;

8 pause;

9 goto one

10 par

11 two:

12 y = x;

13 pause;

14 goto two

15 join;

16 }

(c) The SCL
version of
the dataflow
program

1 scchart ControlflowSCChart {

2 output int x = 0

3 output int y

4

5 region {

6 initial final state A

7 immediate do y = x; x = 1 go to B

8

9 state B

10 go to A

11 }

12 }

(d) A controlflow SCChart with sequen-
tially ordered assignments

(e) A visual controlflow SCChart with two sequen-
tially ordered assignments

1 module P1

2 int x, y;

3 {

4 x = 0;

5 tick:

6 y = x;

7 x = 1;

8 pause;

9 goto tick

10 }

(f) The SCL ver-
sion of the con-
trolflow program

Figure 3.8. A dataflow and a controlflow SCCharts in textual form, in the SCChart visualization using only con-
trolflow and the resulting SCL

23

3. Preliminaries

Table 3.3. Language scope of SCCharts in comparison to Lustre

Lustre SCCharts Dataflow Lustre Equivalent

x = pre(x)+ 1 ok ok

x = x + 1 invalid ok

x = pre(x)+ 1

OR

x = M(x)+ 1

x = 1

x = x + 1
invalid ok

x0 = 1

x = x0 + 1

x = 1

x = x + 1

y = x

invalid ok

x0 = 1

x = x0 + 1

y = x

on transitions or actions result in sequentially ordered assignments in the SCL. The syntax of those
sequential assignments in SCL looks similar to those assignments that can be included in the dataflow
region of SCCharts.

Comparing the Figures 3.8a and 3.8f shows that both variants include the two assignments y = x

and x = 1. In the SCL these assignments are treated like assignments in imperative languages. First, y
is set to x and then x is set to 1. This results in y with the value 0 and x with the value 1 after the first
tick.

However, the assignments in dataflow regions are treated differently. They are defined to execute
concurrently, thus they do not imply sequential ordering but each assignment is calculated concurrently.
Therefore, changing the order of the assignments does not result in a different behavior for the model.
SCL realizes this concurrency through the fork ...par ...join construct as shown in Figure 3.8c.

Nevertheless, the two concurrent regions in the dataflow example in Figure 3.8b and 3.8c introduce
data dependencies for the variable x. Concurrent variable access in SCCharts is ordered through the
protocol initialize-update-read. Therefore, no matter the syntactic ordering, the initialization x = 1 is
done before the read of x in the assignment y = x is performed. Therefore, after the first tick, the
variable y holds the value 1 and x holds the value 1.

This protocol for concurrent variable access and the usage of variables instead of streams is the
main difference of SCCharts dataflow and Lustre. In Table 3.3 some examples are shown that contrast
the SCCharts dataflow and Lustre. The first line shows a regular pre operation. Those are supported in
both languages and they also behave the same. In the second line an update is performed. Updates
define the value of a variable relative to its current value. These assignments are not allowed in Lustre.
Each assignment is an actual equation, thus the left and the right side of the equation are defined to
be equal. Updates, however, define the value of a variable in relation to its current value. Equations
like x = x + 1 do not yield equivalence and are thus not supported.

However, SCCharts use variables and the read value for x is either pre(x) or the value of x that
is created in the current tick, indicated through the M(x). The third line executes two equations
concurrently. In SCCharts this concurrent access is ordered through the initialize-update-read protocol.
However, in Lustre this protocol does not exist, thus there are two writes to the same variable which
results in an error. Using Static Single Assignment (SSA) with an extension for concurrent regions
can help to create versions for variables so that their concurrent access conforms with the Lustre
semantics again. These versions of the variables are created such that each variable is only assigned to
once. The corresponding SSA version for the third line is shown in the column Lustre Equivalent of the

24

3.3. Used Technology

Figure 3.9. Counter modeled in SCADE with a causal cycle for the local variable c

Figure 3.10. Results of the Check option for the counter with a causal cycle

corresponding line. The fourth line extends the usage of the initialize-update-read protocol by a read in
the assignment of y. Just like the line above, these assignments are valid in SCCharts but not in Lustre.
The Lustre equivalent now reads from the last variable version that is assigned. In this example it is
variable x1.

In conclusion, SCCharts dataflow extends the Lustre semantics. Regular dataflow assignments just
like those in Lustre can be expressed. However, also sequentially constructive features can be used in
SCCharts dataflow assignments. Those could be transformed back to Lustre using SSA-like principles.
Sequential variable access and concurrent access through the initialize-update-read protocol is included
in the sequentially constructive feature scope. Lastly, the persistence of variable values beyond tick
boundaries allows for implicit pre operations. Therefore, SCCharts dataflow is a combination of Lustre,
the initialize-update-read protocol and an automatic pre achieved through variables persistence.

3.3 Used Technology

The first goal of this thesis is the comparison between the SCADE Suite and KIELER. Both are designed
to build synchronous models using visual components. Moreover, KIELER is an Eclipse project, though
there are also variants using web based technologies [Ren18; Dom18]. In order to compare KIELER and
SCADE properly, they are first introduced on a more detailed level.

25

3. Preliminaries

3.3.1 SCADE Suite

The Safety Critical Application Development Environment (SCADE) Suite is a tool that is designed
to handle large projects using a model-based perspective. For the scope of this thesis we used the
SCADE Suite 19.2 combined with the SCADE compiler KCG 6.6. The user may choose between capturing
dataflow or controlflow and a basic set of predefined operators is provided. For further needs there
are also optional SCADE Suite libraries. They need to be imported explicitly and offer more advanced
features such as temporal operators needed for verification.

In Section 1.2 the SCADE user interface was already introduced. As already mentioned, the actual
behavior is modeled in Area 2 of Figure 1.3. However, SCADE has a synchronous backbone. Therefore
it is possible to design models that do not conform with the requirements. As an example we take the
counter in Lustre from Listing 1.2 and model it in SCADE. In Figure 3.9 this counter is illustrated. There
is a causal cycle within the definition of c. It is initialized with 0 and after the initialization it depends
on the value of itself. SCADE offers the possibility to check operators for possible problems. This can
be done by right-clicking on the operator and choosing the Check entry. For the given examples this
yields the result shown in 3.10. A causality error was found regarding the flow definitions.

3.3.2 Lustre V6 Compiler

The Lustre language is the backbone of SCADE but it received adjustments and extensions for some
functionalities so the SCADE compiler is specific to the SCADE/ Lustre dialect. Therefore, the compiler
for the classical Lustre language is needed for testing and evaluating pure Lustre. We use the academic
Lustre V6 compiler offered by the research center at Verimag1. The language scope of Lustre V6 is
described in the Lustre reference manual [JRH16].

The compiler is named lv6. For the purpose of evaluating, comparing and simulating programs
we want to compile Lustre to C code. This can be achieved using the options -2c and -n followed
by the name of the node that is treated as main node. The -n can be omitted if the main node is
name the same as the file name. So assuming we have a program file program.lus with a defined node
node, we can compile it to C code using lv6 program.lus -2c -n node. The compiler now generates
the following files:

� lustre_types.h

� lustre_consts.h

� lustre_consts.c

� filename_node.h

� filename_node.c

� filename_node_loop.c

� node.sh

The files lustre_types.h, lustre_consts.h and lustre_consts.c are generated for including user
defined types and constants. They are always generated no matter the content of the user-defined
file. The filename_node.h and filename_node.c contain the actual behavior of the node. In case of the
node having an internal state, there is a step function and a reset function. Additionally a struct is
needed as parameter that saves the memory of the node. In case the node does not have an internal
state, the generated files also contain only one function with the same inputs and outputs the node/
function defines. Lastly the filename_node_loop.c defines a simple console simulation, initializing the
structures if needed and parses system in and out. The node.sh is for convenient compiling of the
filename_node_loop.c file.

1http://www-verimag.imag.fr/DIST-TOOLS/SYNCHRONE/lustre-v6/

26

3.3. Used Technology

These files and their purposes are important for the embedding of the Lustre compiler into the
context of KIELER. C files can be compiled and simulated but the inputs must be provided properly
and the outputs need to be passed on.

3.3.3 Eclipse

Eclipse2 is an open-source Integrated Development Environment (IDE). Initially it was developed
for Java support but there is also support for many other languages such as C, C++ and Ada. It is
made up from plug-ins that are based on Equinox3, an implementation of the Open Service Gateway
initiative (OSGi) core framework specification. The goal is to provide a modular, extensible and loosely
coupled system. Functionality is encapsulated in plug-ins and they may provide or extend so called
extension points. This opens up the possibility for a plug-in to contribute something to another plug-in.
A simple example is an extension of the ui menu bar with additional buttons.

A minimal set of plug-ins needed for an application is bundled in the Eclipse Rich Client Platform
(RCP). Combining this basic set with self-defined plug-ins offers the possibility to define a specialized
domain-specific development environment. There exist many other Eclipse projects that further
facilitate the creation of such an IDE. KIELER is built up from this RCP in combination with frameworks
like the Eclipse Modeling Framework (EMF) and Xtext to offer model-based design features and
language support for SCCharts.

3.3.4 EMF

The Eclipse Modeling Framework (EMF)4 is an Eclipse project offering basic features for structured
data models. The models are defined in XML and EMF provides tools and runtime support to generate
a set of Java classes from these models. Additionally adapter classes are built that enable viewing the
model, provide a basic editor and a command-based editing of the model.

In KIELER these EMF models are for example used as a meta model for the supported languages
such as SCCharts and Esterel.

3.3.5 Xtext

Xtext5 is an Eclipse project that offers a grammar languages that greatly facilitates the development of
domain-specific languages. A parser, a linker for cross-references, a typechecker, and editing support
like code-completion or syntax-highlighting go along with the definition of a language in Xtext.
Model-based data structures are extracted from the grammar that specify the meta-model using the
EMF framework.

All textual languages in KIELER use Xtext for their implementation. Also the textual SCCharts have a
corresponding Xtext grammar.

3.3.6 KIELER

KIELER6 is an open-source research project focusing on enhancing the graphical model-based design. It
implements the RCP and used EMF and Xtext for the implementation of domain-specific languages such

2https://www.eclipse.org/
3https://www.eclipse.org/equinox/
4https://www.eclipse.org/modeling/emf/
5https://www.eclipse.org/Xtext/
6https://rtsys.informatik.uni-kiel.de/confluence/display/KIELER/Home

27

3. Preliminaries

Figure 3.11. KIELER user interface in the modeling perspective

as SCCharts or Esterel. The idea of the project is to improve comprehensibility of diagrams, development
time, maintenance time and the analysis of dynamic behavior.

In Figure 3.11 the user interface of KIELER is shown. An SCCharts model is opened in a textual
editor in Area 1 and the visual representation is shown in the diagram view in Area 2. It is generated
automatically every time the textual model is changed. The visual representation may be modified by
the user using the options side bar in Area 3. Area 4 shows the compile chain.

KiCo

Besides the automatic layout generation, KIELER offers a special kind of compiler implementation,
called KIELER Compiler (KiCo) [SSH18]. In Figure 3.11 in Area 4, the visual parts of the selected compiler
are already shown. The general idea is for a model to be compiled in small steps and providing the
intermediate result of each step to the user. The different components in the Area 4 represent one of
these small steps, called processors.

A processor marks the smallest compilation unit in KiCo. They can perform different tasks such as
transformations, optimizations or analysis and therefore offer a great range of functionality. A list
of processors forms a process system. The connected components in Area 4 of Figure 3.11 show the
selected process system. It is a compilation system that transforms step-by-step the SCChart model to C
code. Each processor may include intermediate results, shown by clicking on the blue rectangle within
the component. This offers the possibility to manually trace the effect of the different processors.

In SCCharts there are certain features that are called extended features. In Figure 3.12 the different
features and their classification as extended or core feature is shown. The compilation chain from
SCCharts to C code includes processors that expand these extended features to core features. This
compilation chain is shown in Figure 3.13.

28

3.3. Used Technology

Interface

declaration

Final state

Connector

Initial state

Root state

Named

simple state

Transition

trigger/effect

Region ID

Transition

priority

Conditional

termination

Anonymous

simple state

History transition

Entry/During/Exit

actions

Termination

Superstate

Signal

Immediate

transition

Suspension

Strong abort

Local declaration

Weak abort

Deferred transition

Count Delay

Pre-Operator

Initialization

Complex final

state

Figure 3.12. Overview of the core SCCharts feature in the upper region and the extended features in the lower
region [HDM+14]

Figure 3.13. The compilation chain for SCCharts to C code

29

3. Preliminaries

In KIELER this compiler framework is also used for model-to-model transformations. A lot of
languages are supported in the KIELER project and often transformations to SCCharts are provided.
These SCCharts can then use other existing systems to compile to for example C code.

30

Chapter 4

Concept

The languages Lustre and SCADE are equivalent in their expressiveness with only one-way conversion
provided. Lustre is based on a textual syntax and SCADE defines a visual syntax. The goal of this thesis
is the transformation from Lustre to SCCharts dataflow to enhance the modeling process. This requires
the languages Lustre and SCCharts to be sufficiently equivalent.

This chapter introduces the conceptual ideas towards this transformation. First, the languages
SCCharts and Lustre and their corresponding computation models are compared in order to define
a formal foundation for the transformation. Moreover, the visual syntax of SCADE and SCCharts is
contrasted to show that SCCharts serve as a good visual representation for Lustre.

Next, the concept of a transformation from Lustre to SCCharts is introduced. There are certain
aspects in both languages such as streams and variables that differ and might cause the program to
behave differently in the transformed language if not considered carefully. The differences and the
approaches to overcome those differences are introduced.

The transformation sometimes allows to convert non-valid Lustre programs to SCCharts and the
sequentially constructive MoC may cause the program to have a defined and valid behavior in SCCharts.
However, this sometimes causes the dataflow visualization to contain cycles within the usage of a
variable, which is not permitted in dataflow diagrams. The last section introduces this problem and
ideas for possible visualization strategies.

4.1 SCADE vs. SCCharts

The SCADE visual language has a textual foundation that is a Lustre dialect. In this section the MoCs of
the languages Lustre/SCADE and SCCharts are compared. The transformation from Lustre to SCCharts

does not only create a visualization for the Lustre program. The original program behavior shall be
preserved during the transformation to SCCharts.

The sequentially constructive semantics of SCCharts defines a conservative extension to the classical
MoC of synchronous languages. Thus, languages using the classical MoC such as Lustre can be expressed
using SCCharts. Additionally, some of the concepts in Lustre dataflow are the same for SCCharts dataflow.

The first similarity of SCCharts dataflow and Lustre is the definition of the program behavior through
equations. These equations have an output or a local variable on the left side and the corresponding
expression on the right. They define both sides to be equal in each tick. However, this is just partially
true for SCCharts. It is possible that equations define both sides to be equal but also equations like x

= x + 1 are valid due to the sequentially constructive MoC. Thus, Lustre actually defines equations
and in SCCharts they are actually assignments. Therefore, there is a potential equality of the left and
the right side of the equation but it is no defining property for all dataflow SCCharts. Nevertheless,
the description for the behavior of the program in Lustre already defines a structure that can be
transferred to SCCharts.

Next, we further look at the execution semantics of those equations. In Lustre they are defined to
run in parallel. The sequential order of the equations in the program is not relevant for the behavior of

31

4. Concept

1 scchart SeqReadWrite {

2 bool O = false

3

4 dataflow {

5 O = O? false : true

6 }

7 }

(a) SCCharts

1 node SeqReadWrite ()

2 returns ();

3 var O:bool;

4

5 let

6 O = if O

7 then false

8 else true;

9 tel

(b) Lustre (c) SCADE

Figure 4.1. An SCChart performing read sequentially followed by a write of the same variable and the equivalent
but invalid Lustre and SCADE programs

the node. This concept also holds for SCCharts equations. They are assumed to be executed concurrently.
It follows that also the semantics of the equations in the program is defined the same. Thus, an
equation in Lustre is generally equivalent to an equation in SCCharts.

The last similarity concerns the nature of those equations. In Lustre it is necessary that each variable
or output must be defined by exactly one equation. Therefore, each value for a variable or output can
be extracted from exactly one equation. This is an important difference to controlflow languages. They
usually define different condition branches and in each of those branches arbitrary assignments can be
executed. However, in Lustre all possible values for a variable are defined by a single equation and
this equation is executed each tick. This is partially true in SCCharts, too. Variables and outputs that are
defined by a single equation in Lustre can be defined by a single equation in SCCharts. Nevertheless,
SCCharts allows for multiple equations for an output or a variable as long as the concurrent access can
be scheduled sequentially or concurrently following the ordering initialize-update-read.

In conclusion, there are more models that result in a valid SCCharts than there are valid models for
Lustre. For the transformation this implies that all valid Lustre programs can be transformed to an
SCChart.

4.1.1 Sequentially Constructive Extension of Lustre

The SCCharts MoC extends the MoC used by Lustre. Therefore, all valid Lustre program can be trans-
formed to SCCharts. Also the approach for defining the dataflow is similar in both languages. However,
there are concepts in SCCharts that cannot be expressed in Lustre.

In SCCharts the classical MoC is extended by sequential reads and writes as well as a protocol for
ordering concurrent variable access. The idea is to prevent race conditions without unnecessarily
restricting the expressiveness. These concepts can be applied to Lustre, too. They allow to define
sequentially constructive semantics for Lustre programs that would otherwise be considered invalid. In
the following, we take a look at how these concepts are expressed in SCCharts and what the equivalent
Lustre/ SCADE program would look like.

Sequential Read and Write

One extension the sequentially constructive MoC introduces are sequential reads and writes. The
variable access is ordered in its equation but in the Lustre MoC this would be forbidden. The equations
are defined to imply actual equality of the left and the right side and this is violated.

32

4.1. SCADE vs. SCCharts

(a) Lustre MoC (b) Sequentially Constructive MoC

Figure 4.2. The variable access sequence in the Lustre and the sequentially constructive MoC

In Figure 4.1a is an example for an SCCharts program that sequentially reads and then writes the
variable O. The value of O alternates between false and true. The dataflow can be modeled in Lustre,
too. In Figure 4.1b the same program structure is applied to Lustre. The Lustre compiler would reject
this program because the value of the variable O depends on itself. However, in the sequentially
constructive MoC it has a defined behavior. In order to illustrate the dataflow of this program, in
Figure 4.1c the SCADE equivalent to this dataflow is given. This SCADE program is rejected due to the
instantaneous loop implied by O.

Initialize-Update-Read Protocol

The next concept that is introduced in the sequentially constructive MoC is the ordering of concurrent
variable access following the protocol initialize-update-read. In the Lustre MoC the variable access is
only ordered by write-before-read. This is due to the fact that each variable has only one value during
each tick defined through exactly one equation. Therefore, this one value is written to the variable
and afterwards it can be read without the risk of it being modified again. In Figure 4.2a this variable
access is visualized. The writing is done first and the reading of a variable follows. In the sequentially
constructive MoC, however, the writing is split up into initialization and updates as introduced in
Section 3.2. This is illustrated in Figure 4.2b. This allows to have more than one value for a variable
within one tick. However, all updates need to be confluent in order for program to be schedulable.

In conclusion, all programs that include an initialization and an update on a variable are considered
not valid in the Lustre MoC. Moreover, an update on a variable is defined to set the value according
to its current value. The equations could not be considered to illustrate equality but a sequential
ordering can be concluded. Thus, all updates are considered invalid in the Lustre MoC. However, the
sequentially constructive MoC accepts those programs.

The possibility for an initialization and multiple updates for a variable also removes the requirement
to have only one defining equation for a variable. Initializations and updates can also be perfomed
concurrently and thus multiple equations are possible in the dataflow.

Figure 4.3 shows an SCCharts program, a Lustre program and a SCADE program that perform an
initialization, an update and a read on a variable. The Lustre and the SCADE program are rejected in
the classical MoC. Nevertheless, the sequentially constructive MoC translates them to behave equivalent
to the illustrated SCChart. Each tick the variable OLocal is initialized with 5 and then updated by adding

33

4. Concept

1 scchart IUR {

2 output int O

3 int X

4

5 dataflow {

6 X = 5

7 X = X + 2

8 O = X

9 }

10 }

(a) SCCharts (b) SCADE

1 node IUR () returns (O: int);

2 var X1,X2:int;

3

4 let

5 X1 = 5;

6 X2 = X1 + 2;

7 O = X2;

8 tel

(c) SSA Lustre

1 node IUR () returns (O: int);

2 var X:int;

3

4 let

5 X = 5;

6 X = X + 2;

7 O = X;

8 tel

(d) Lustre

Figure 4.3. An SCChart performing an initialization, an update and a read on a variable, the equivalent but invalid
Lustre and SCADE programs, and an equivalent Lustre program with SSA

Figure 4.4. The mapping created through the transformation from valid and invalid Lustre programs to SCCharts

2. The value of this variable is then read and written to the output variable O creating the value 7 for it
in each tick.

4.1.2 Transformation Objective

SCCharts and Lustre are both founded on a synchronous MoC. However, as proposed before, SCCharts

offer an extension to the MoC of Lustre. The goal for the transformation is to create a bijective mapping.
The idea of this mapping is visualized in Figure 4.4. Valid Lustre programs are transformed to SCCharts

34

4.1. SCADE vs. SCCharts

that only use features of the classical MoC. However, also non-valid Lustre programs can be transformed
and might either reside in the sequentially constructive set of programs or the transformation yields
an error. This gives a first approach towards extending the language scope of Lustre with sequential
constructiveness just like the MoC of Esterel was extended by sequential constructiveness in Sequentially
Constructive Esterel (SCEst) [SMR+17]. The dotted lines give an idea for a transformation from SCCharts

back to Lustre. Programs using sequentially constructive features need to use SSA in order to conform
with the Lustre MoC. However, this transformation is not considered in the scope of this thesis.

This transformation approach ensures that the MoC is not extended if it is not needed. However,
programs in the sequentially constructive MoC could be transformed back to the Lustre MoC using
methods like SSA [Sch16]. It creates new variables for each variable value in a tick in order to reestablish
the clearly defined value for each variable. In Figure 4.3c is an example for a Lustre program that
is created from the Lustre program in Figure 4.3d using ssc! (ssc!). Nevertheless, preserving the MoC

during the transformation creates a more exact definition of the program. A valid Lustre program can
be transformed to SCChart and back to Lustre and most of the program properties are preserved and
not recreated artificially.

4.1.3 Visualization

The SCCharts dataflow and Lustre are both dataflow languages and SCCharts is chosen to act as the visual
representation of Lustre code for this thesis. We already know that the semantics match sufficiently
to transform Lustre programs to SCCharts programs. However, we now take a look at the graphical
syntax of dataflow in SCADE and KIELER in order to ensure that SCCharts dataflow is able to conveniently
represent the Lustre programs.

The main aspect of this comparison is the visualization of expressions. In Section 3.1 we introduced
the data operators for Lustre. In Table 4.1, 4.2 and 4.3 these data operators are contrasted to the SCADE

and the SCCharts visualization. In general they look very similar. They all use boxes to express operators
and connect inputs and outputs with operators using wires. However, SCADE prefers the hardware style
for the logic operators whereas in SCCharts dataflow the operator syntax is mostly used as description
for the operator itself. The condition operator in Lustre is expressed using a hardware alike switch.
The numerical operators are all almost identical. One difference is the division operator. In SCCharts the
integer division is performed when the types result in an integer. Therefore, a non-integer division is
performed when the type of the operation remains at a real level. Therefore, in SCCharts there is no
explicit operator for integer division because there is no explicit type system.

Both tools offer options for filtering. Filtering describes the interactive process of dynamically
choosing the level of detail for the visualization. The type of the wire can be omitted in SCADE and
other information can be displayed such as the name of the wire. In the SCCharts column the description
of the wire after the operator can be omitted, too.

As a result of the comparison, the dataflow of SCCharts seems visually suited to express Lustre
because it is very similar to SCADE. However, there are some Lustre operators that do not have a
designated operator in either SCADE or SCCharts yet. The implies operator => is not implemented but
can easily be reworked using logical equivalences. Additionally, the n-ary operators at most one of used
as #(a, b, ...) and none of used as nor(a, b, ...) cannot be expressed with a visual component
either. In SCADE these can easily be remodeled using map and fold constructs but we do not focus on
implementing those in SCCharts so we also use logical equivalence to express these operators.

The next category of operators to look at are the sequence operators. In SCCharts not all of the
sequence operators are necessary and thus they are not available. The pre and init are supported
by a dedicated operator. The followed by operator is not available as a single operator, but it can be

35

4. Concept

Table 4.1. Boolean and condition operators in comparison for Lustre, SCADE and SCCharts

Lustre SCADE SCCharts

not A

A <> B

A = B

A or B

A and B

A xor B

if A then X

else Y

36

4.1. SCADE vs. SCCharts

Table 4.2. Numerical operators in comparison for Lustre, SCADE and SCCharts

Lustre SCADE SCCharts

- X

X + Y

X - Y

X * Y

X / Y

X mod Y

easily remodeled using pre and init. In Figure 4.4 the particular statement and the SCADE operator in
comparison to the SCCharts operator are listed. In SCADE the followed by operator allows to specify an
integer number for how many ticks the first value shall be used before the previous value of the second
argument is used. We do not further consider this aspect because in SCCharts there is no corresponding
followed by operator and Lustre does not support this either. In SCCharts a reference could be added as a
macro operator that realized the combination of pre and init in order to express this behavior.

However, the when and the current operators are not available in SCCharts because the concept of
clocks is rather simple as just the base clock is assumed apart from extensions such as dynamic ticks
[HBG17]. The visualization in SCADE for the when operator is simple. One wire defines the boolean
stream that defines whether the second stream shall be forwarded or not. Nevertheless, this introduces
some complexity because the result wire does not hold a value every tick. The entire wire is clocked at
a different clock than the base clock and this is not distinguishable at first sight.

The current operator is not available in SCADE either. Instead the merge operator is used. In Table 4.5
is an example of how the merge operator works. It takes a clock A, so a boolean stream, and merges
the two incoming streams X and Y. On a clock value true the value of the first stream is used and
otherwise the value of the second stream. This requires the incoming streams to have complementary
clocks. However, this is not part of the selected set of Lustre features for this thesis. Moreover, in

37

4. Concept

Table 4.3. Compare operators in comparison for Lustre, SCADE and SCCharts

Lustre SCADE SCCharts

X > Y

X < Y

X >= Y

X <= Y

SCCharts we chose a different way for visualizing clocks. The idea behind this and the reasons for this
approach are introduced in the following section.

4.2 Transformation

In this section the actual behavior of the transformation is introduced. In Figure 4.5 the different
transformation steps are outlined. In the following, each of these steps is explained in more detail.
Moreover, it is explained why they are designed this way. Note that the transformation structure
is also reasoned on the grammar implemented for the Lustre language. The definition of constants
and node declarations for example are introduced in the same grammar rule and thus they are
transformed sequentially. Moreover, constants might be used in nodes so they should be transformed
first. Nevertheless, other conceptual implementation-independent thoughts are introduced, too.

4.2.1 Constants

A Lustre program may contain global constants outside of the declaration of a node as described in
Section 3.1. These are translated first. The idea is for those to be available in all nodes within this
program file, so they all need to be known in all SCCharts representing a specific node. In Section 3.2
we also introduced SCCharts and the concept of the extends keyword. This functionality is useful for
the use case introduced here. We introduce a new SCChart containing only the constants defined in the
program. All SCCharts representing a node within this program file then extend this constants SCChart

and therefore have access to the values of those. This offers an abstraction of the constants themselves
and they do not need to be included manually in all nodes within that file. Note that inheritance

38

4.2. Transformation

Table 4.4. Sequences operators in comparison for Lustre, SCADE and SCCharts

Lustre SCADE SCCharts

pre(X)

X -> Y

X fby Y

X when A none

if A then X

else Y
none

Table 4.5. The merge operator

Name Stream of values

clk true false true true false true false false true
x x1 x2 x3 x4 x5 x6 x7 x8 x9
y y1 y2 y3 y4 y5 y6 y7 y8 y9

a = x when clk x1 x3 x4 x6 x9
b = y when not clk y2 y5 y7 y8

merge clk a b x1 y2 x3 x4 y5 x6 y7 y8 x9

39

4. Concept

Figure 4.5. Overview of the transformation order going from Lustre to SCCharts

is not designed to be used for this kind of scenario. The new SCChart is not a constants SCChart, the
inheritance just offers a convenient way to handle this.

4.2.2 Node Declarations

The next step is the parsing of the nodes interfaces and their constants and variables. This step needs
to be separated from the transformation of the behavior because of possible node references. Inputs
and outputs as well as the transformed name of the SCChart are available after this step and can be
properly bound.

In general, for each node a new SCChart is created. The inputs and outputs of the node are added to
the SCChart as inputs and outputs. The variables and local constants are also added this way.

4.2.3 Node Behavior

For the node behavior the equations, automata and assertions within the let and tel statements
are transformed. Each of these three types are handled differently whereas the equations make up
the main part of the behavior of the node. The automata result from the state extension for Lustre
introduced in 3.1.3 and the assertions are just a proof of concept that use the currently worked on
model checking for SCCharts [Sta19].

Equations

The equations in a Lustre program define the actual behavior of a node. In Section 4.1.3 it is already
shown that most operations have an equivalent operation in SCCharts.

The data operations are mostly supported through SCCharts constructs. However, some of the
sequence operators are for clock manipulation whereas the concept of clocks is not available in SCCharts.
The operators pre, initialization and followed by are easily transformed using the equivalent SCCharts

operator or simple extensions. However, for when and current simple SCCharts language properties
are not sufficient. In Section 4.2.4 problems that may result from clock usage are illustrated and the
approach for the transformation of when and current is outlined.

40

4.2. Transformation

Nevertheless, some operations like the implies operator are currently not supported through a
dedicated operator in SCCharts. It can be translated using the following equivalence rule

A ñ B ô A_ B.

The n-ary operation nor does not have a corresponding operator in SCCharts. It describes the negation
of the disjunction. Therefore, the following equivalence rule is sufficient for the transformation

nor(A1, A2, . . .) = (A1 _ A2 _ . . .).

Lastly, the nary operation at most one of needs a more complex transformation. It checks for an
arbitrary number of parameters that either all of them are false or at most one of the parameter is true.
For an operation with n parameters, we need n + 1 clauses to cover all possible cases. As an example
for the expression #(A1, A2, A3) there are four cases that need to be checked:

1. None of the three is true

2. A1 is true and the other two are false

3. A2 is true and the other two are false

4. A3 is true and the other two are false

So in conclusion we can construct the logically equivalent formula

#(A1, A2, A3)ô (A1 _ A2 _ A3)

_ (A1 ^ (A2 _ A3)

_ (A2 ^ (A1 _ A3)

_ (A3 ^ (A1 _ A2).

This idea can be applied to an arbitrary number of parameters and is used as the transformation from
Lustre to SCCharts dataflow.

The last feature that may be used in Lustre equations instead of the operators introduced above
are node references. In 3.1.2 it is explained how they may be used and how they work. The SCCharts

dataflow also supports references in a similar way. However, references may return more than one
output value and tuples at the left side of equations are not possible yet. Therefore, for each output
and each input there is an equation that links the outputs and inputs correctly. In Figure 4.6b a Lustre
program using a reference of a node with two outputs is illustrated. Beside in Figure 4.6c and 4.6a
the resulting transformed SCChart is shown. The reference to the other node is achieved through a
reference variable refandOrNode. With an object-oriented-alike notation the inputs or outputs of the
node can be accessed and linked.

Automata

The syntax and semantics of the automata in Lustre are already introduced in Section 3.1.3. For each of
these constructs, there is an equivalent element in SCCharts. Therefore, the transformation for automata
to Lustre can be applied one-to-one on the model elements and the semantics are preserved. The weak
and strong transitions are available as such and history and normal transitions are possible, too. States
may contain hierarchy but do not need to. Moreover, they are also allowed to contain dataflow regions
again so all needed elements in the Lustre state extension are available in SCCharts.

In Figure 4.7 is an example for an automata in Lustre that is transformed to SCChart. It uses all
possible transformation types and has two concurrent regions. The output O is initialized with zero

41

4. Concept

(a) SCCharts visual

1 node lustreNode(a:bool; b:bool)

2 returns (y:bool; x:bool);

3

4 let

5 (x,y) = andOrNode(a, b);

6 tel.

7

8 node andOrNode(a:bool; b:bool)

9 returns (c:bool; d:bool);

10 let

11 c = a and b;

12 d = a or b;

13 tel.

(b) Lustre

1 scchart lustreNode {

2 input bool a

3 input bool b

4 output bool y

5 output bool x

6 ref andOrNode refandOrNode

7

8 dataflow dflustreNode {

9 refandOrNode.a = a

10 refandOrNode.b = b

11 x = refandOrNode.c

12 y = refandOrNode.d

13 }

14 }

15 scchart andOrNode {

16 input bool a

17 input bool b

18 output bool c

19 output bool d

20

21 dataflow dfandOrNode {

22 c = a && b

23 d = a || b

24 }

25 }

(c) SCCharts textual

Figure 4.6. A Lustre program using hierarchical clocks and the resulting transformed SCChart

and incremented if the input A is set and decremented otherwise. Setting the input R cause the output
to be reset to zero.

4.2.4 Handling Clocks

The operators when and current are not available for SCCharts because the concept of clocks is not
needed. However, for the transformation from Lustre to SCCharts we need to find a representation of
clocks in SCCharts dataflow that behaves the same. In the following we elaborate how clocks can be
expressed using variables.

The assignment X = E when C only evaluates E in those cases that hold true for C. Moreover, X
holds a value only in those cases. So clocking introduces two main ideas: absence of stream values and
conditioned evaluation of expressions. The concept of clocks establish the idea of control in dataflow.
However, the absence of the values is not the relevant aspect because there is no check on the presence
or absence of a value in Lustre, just its designated clock. This absence results from the dataflow
interpretation of control.

In SCCharts variables are used instead of streams or signals and they hold the value from the
previous tick if not further modified. We already stated that the actual absence of values is not the
main aspect about clocks but the conditioned evaluation. Therefore, variables can be fitted to be used

42

4.2. Transformation

1 node small (A:bool; R:bool) returns (O:int);

2 var sub:bool;

3 let

4 automaton

5 NOSIGN ->

6 sub = false;

7 until A then SIGN;

8 |

9 SIGN ->

10 sub = true;

11 until not A then NOSIGN;

12 end;

13 automaton

14 ZERO ->

15 O = 0;

16 until A continue DO;

17 |

18 DO ->

19 O = if sub then pre(O)-1 else pre(O)+1;

20 unless R then ZERO;

21 end;

22 tel

(a) Lustre (b) SCCharts

Figure 4.7. A Lustre program and the resulting SCChart using the state extension for Lustre

Table 4.6. Hierarchical clocks in Lustre and gray values illustrating variable values

Name Stream of values

clk true false true false true true false false true

x true false false true true false false false true

y true false false true false false true true false

xClk = x when clk true true false false true false false false true

yXClk = y when xClk true false false false false false false false false

for expressing streams. They hold the value of the previous tick so they implicitly apply current up
until the base clock is reached. Additionally, this idea makes a transformation for current obsolete.

A conditioned updating of a variable with an expression can be created using an if...then...else...

statement with the else branch containing the value of the previous tick. Both branches are evaluated
every tick but only the one corresponding to the clock value is forwarded to the variable.

In Figure 4.8 is an example for the transformation of the when and the current operation. The SCCharts

components illustrating the when operation are the condition and the pre. As already mentioned, the
current operation does not require a transformation. The value of the clocked variable is simply read
and written to the target of the current operation.

This approach works for flat clocks. However, clocks may be hierarchical so a clocked boolean
stream can be used as a clock for another stream. In Table 4.6 is an example for hierarchical clocks.
The stream yClk is sampled to the clock xClk which has the clock clk. The black values show the
stream and when they actually hold a value. The gray values show the behavior if instead of streams,

43

4. Concept

1 node whenNode(z:int; clk:bool) returns (o:int);

2 var x : int when clk;

3

4 let

5 x = z when clk;

6 o = current x;

7 tel.

(a) Lustre

1 scchart whenNode {

2 input int z

3 input bool clk

4 output int o

5 int x

6

7 dataflow dfwhenNode {

8 x = clk ? z : pre(x)

9 o = x

10 }

11 }

(b) SCChart textual
(c) SCChart

Figure 4.8. A Lustre program and the resulting SCChart using the operations when and current

1 node clocks(clk:bool; x,y:bool) returns ();

2

3 var xClk : bool when clk;

4 yXClk : bool when xClk;

5 let

6 yXClk = y when xClk;

7 tel.

(a) Lustre (b) SCCharts

Figure 4.9. A Lustre program using hierarchical clocks and the resulting transformed SCChart

variables are used with the above defined behavior. The problem occurring is in the second column
of the last line. The value of y would be set to yXClk because the clock xClk still holds the value true.
This is because it is a variable and it contains the value of the previous tick. This illustrates that the
transformation introduced above is not sufficient to take care of clocks.

In order to solve the problem, we need to make sure that all clocks hierarchically above the current
clocks are also true. This can be done by creating a conjunction of all hierarchical clocks and using
this conjunction as the trigger for the conditional if statement. Looking at Table 4.6 we see that the
problem is solved because the value of yXClk would not be updated because of clk not being set in the

44

4.2. Transformation

Table 4.7. Streams with a pre operation as it is supposed to work in Lustre in the last two lines and the equivalent
using variables

Name Stream of values

x 1 2 3 4 5 6 7 8 9

clk true false false true true false true false true

x1 = x when clk 1 1 1 4 5 5 7 7 9

Lustre pre(x1) nil 1 4 5 7

pre(pre(x1)) nil nil 1 4 5

SCCharts (old) pre(x1) nil 1 1 1 4 5 5 7 7

pre(pre(x1)) nil nil 1 1 1 4 5 5 7

SCCharts (new) pre(x1) nil nil nil 1 4 4 5 5 7

pre(pre(x1)) nil nil nil nil 1 1 4 4 5

second tick. In Figure 4.9 the Lustre code and the corresponding SCChart that illustrates the described
scenario with the solution using a conjunction are shown.

Pre and Clocks

Some of the sequence operators in Lustre are available as such in KIELER. The pre operator for example
is part of the operators in KIELER, too. However, in KIELER this operator is part of the extended features
for SCCharts. It is sufficient to make use of the persistent values of variables beyond ticks. In Figure
4.10 the behavior of the pre transformation in KIELER is shown. Two new variables are introduced. The
variable _reg_x holds the value of the variable at the end of the current tick and _pre_x holds the value
of the variable at the end of the previous tick. The variable _pre_x can thus be used for accessing the
previous value for the variable. Due to the during action, the updating of those variables occurs each
tick, so each tick the variable containing the previous value is updated.

In contrast, the Lustre pre operation depends on the clock of the variable it is applied to. In Table
4.7 a stream x1 is created that is the sampled version of the stream x to the clock clk. In line 4 of this
table the Lustre version of the previous value of the clocked stream x1 is calculated. This definition of
the pre operation is different to the SCCharts realization when considering clocked streams. The clocked
version of the pre references the value of the variable in the tick when the corresponding clock of the
variable was last set. In the Lustre world the stream x1 does not hold a value but in those tick when
the clock is true, thus this is the only accessible last value for the Lustre approach. In SCCharts we have
variables. Therefore, in those tick instances without the clock being set the variable x1 just holds its
value. For a single pre operation however, the SCCharts and the Lustre version of the pre still produce
the same values as the table shows in line 4 and 6.

In line 5 of the table, the pre operation is applied twice following the Lustre definition. This yields
the value of the second to last tick that the corresponding clock of the variable was set. However, for
the SCCharts transformation the streams are converted to variables and thus the stream is implicitly
sampled up to the base clock. In lines 6 and 7 of the table, the pre operations on variables are shown.
The tick instances that the clock is not set are filled to hold the last known value. These pre operations
define the previous value on the base clock. Therefore, the previous value is updated every tick and
for example in tick 4, the second to last value is 1 and not nil as it is defined in Lustre. This problem
also occurs in tick 7 and 9.

45

4. Concept

(a) Original SCChart (b) Transformed SCChart

Figure 4.10. SCChart using the pre operation and the result after the compilation of the pre processor

1 node equations(x:int; clk:bool) returns (o:

bool);

2 var x1:int when clk;

3 let

4 x1 = x when clk;

5 o = current(0 -> pre(x1));

6 tel.

(a) Lustre (b) SCCharts

Figure 4.11. A Lustre program using pre combined with clocks and the resulting transformed SCChart

In order to overcome this problem, the transformation for the pre operation must be modified. The
behavior of the transformation was explained above. The during action that is introduced for realizing
the pre operation updates the variables each tick. In order to properly reflect the pre operation as
defined in Lustre, this update needs to be executed only if the clock is set. Therefore, we extend the pre
processor in KIELER to optionally accept a second argument. This second argument acts as the trigger
for the during action. We can now extract the clock from the variable the pre operator is applied to and
add it as second argument to the pre operation. This causes the previous value to only get updated if
the corresponding clock is set, too. In Figure 4.11 is an example for a Lustre program that applies the
pre operation on a clocked stream. The stream x1 is clocked by clk and for the value of o the pre of x1
is calculated. The transformation now adds the clock of x1 to the pre expression and the SCChart shown
in Figure 4.11b adds this clock to the bottom of the pre operator.

In Table 4.7 the lines 8 and 9 illustrate the behavior following this new transformation. The previous
variables are only updated if the clock is set, thus the correct values are produced.

46

4.3. Sequentially Constructive Dataflow Synthesis

1 scchart Loop {

2 output int O

3

4 dataflow {

5 O = O + 1

6 }

7 }

(a) Textual (b) Visual

Figure 4.12. A dataflow SCChart containing a cycle due to a read and a sequential write of a variable

1 scchart LoopConcurrent {

2 output int O

3 int X

4

5 dataflow {

6 X = 5

7 X = X + 1

8 O = X

9 }

10 }

(a) Textual (b) Visual

Figure 4.13. A dataflow SCChart containing a cycle due to a variable with an initialization, an update and a read

4.3 Sequentially Constructive Dataflow Synthesis

Lustre and SCADE share the same semantics, where SCADE illustrates a visual syntax for Lustre. Both
are dataflow languages and also SCCharts offer a dataflow modeling approach. However, the MoC of
SCCharts extends the classical one by allowing multiple values for a variable if the behavior is still
deterministic. This MoC can be used to accept Lustre programs that are not valid in the classical world
but in the sequentially constructive MoC. However, especially the concurrent modification of a variable
using initialization and updates is not trivial to be illustrated in the dataflow.

In Figure 4.12 is an example for a dataflow SCChart that performs a sequential read followed by a
write. The output wire of the addition is again served as input into the addition. This visualization is
created due to the fact that this wire represents the variable O. This variable is used as input and as
output for the addition and thus this wire is used in all cases. Without deeper knowledge about the
MoC in SCCharts this visualization does hardly give enough insight into the actual flow of the data for it
to be a helpful representation. Moreover, the synchronous world divides time into discrete ticks and
this model does not imply a tick boundary on the visual level, thus it could be considered to contain
an instantaneous cycle.

This effect can also be visualized using an example that makes use of the initialize-update-read
protocol. In Figure 4.13 is a dataflow SCChart that concurrently initializes, updates and reads the
variable X. All those operations are performed on the same variable and thus the visualization creates
one wire for it. Nevertheless, the wire creates a cycle from the output of the addition to its input.
Just like the example above, this visualization does not properly reflect the ordering of the variable
reads and writes. Moreover, this example connects two wires that both write onto the wire. The

47

4. Concept

(a) Sequential read and write (b) Initialization, update and read

Figure 4.14. SCChart example from Figure 4.12 and 4.13 using the memory operator to break the visual cycle

addition creates an output value for the wire and the initialization connects the value 5 to the wire.
This situation cannot be solved without further knowing the ordering of the variable access.

During the scope of this thesis different conceptual approaches have been considered in order to
improve this visualization. In the following, two of the approaches are introduced.

4.3.1 Memory Operator

The first idea for improving the visualization is the introduction of an operator that internally performs
the initialize-update-read protocol and sequentializes variable access. The goal is for it to act like a
memory that is accessed. The writing memory access is an input to the operator and reading access is
the output.

In Figure 4.14 is an example for how this operator could look like. In Figure 4.14a the sequential
read followed by the write is ordered by the internals of the memory operator. The implicit initialization
is indicated through the first output of the memory operator and subsequently feed back into the
addition update. The final read is received through the second output of the operator. Moreover, in
Figure 4.14b the initialization and the update are included as input to the memory operator. The update
depends on a read output of the operator because it updates the currently held value after initialization.
Lastly final output returns the value that is considered the read for this variable consecutively.

4.3.2 Incarnation for Variable Values

This approach tries to visualize the actual variable modification more accurately. Sequential reads
and writes such as the initialize-update-read protocol define an ordering of the variable access and this
ordering is used to create different incarnations of that variable. This idea follows the concept of Static
Single Assignment (SSA). Each modified variable value creates a new incarnation for that variable that
illustrates a new wire. This approach allows to visualize the actual flow of the data that is defined
through the iur protocol. Especially for users that are used to the synchronous modeling approach,
this stategy gives a more intuitive design of the program flow.

In Figure 4.15 is an example for how this incarnation could look like. The actual ordering of the
variable access is determined and the dataflow is created corresponding to this ordering. The iur
protocol is reflected directly by first initializing the variable, then updating it and lastly reading it.

A combination of this approach with multiple updates using the same operator could also be
simplified into one operator. This would not require SSA to create incarnation for the variable after
each update but only before and after the updates. In Figure 4.16a is an example SCChart that illustrates
the idea. The two updates through an addition on the variable X can be simplified using only one
addition operator with three ports. In Figure 4.16b the idea for the visualization is shown.

48

4.3. Sequentially Constructive Dataflow Synthesis

(a) Sequential read and write (b) Initialization, update and read

Figure 4.15. SCChart example from Figure 4.12 and 4.13 using the incarnation strategy to break the visual cycle

1 scchart Incarnation {

2 output int O

3 int X

4

5 dataflow {

6 X = 5

7 X = X + 1

8 X = X + 2

9 O = X

10 }

11 }

(a) Textual (b) Visualization

Figure 4.16. A dataflow SCChart using two updates with the same operator and an idea for its visualization

4.3.3 Conclusion

Both visualizations both from Section 4.3.1 and 4.3.2 have the advantage that they break the visual cycle
introduced by the sequential constructiveness. However, they both have advantages and disadvantages.

In the first approach, using the memory operator, the complexity of the SCCharts internals is
abstracted into the memory operator. However, no information about the actual ordering of the
initialize and the update is given on the visual level. Moreover, the update reads from the output line
of the memory operator and writes back into it as input. This is still a cycle that is only defined to be
solved through the memory operator.

The second approach helps to identify the ordering of the variable access. The different variable
variants can be ordered by initialization first, followed by the updates and last the read occurs. Note
that the ordering of the update is not important because in order for them to be valid, they need to be
confluent. This approach also has the advantage that the cycle is not only defined to be broken, but it
is actual sequentialized.

However, both approaches have disadvantages, too. The newly defined visualization approaches
should be purely visual. The user should not need to specifically define inputs and outputs for
visualized wires or new operators. The code should remain the same with the visualization synthesized
from the code. In order to properly reflect the dependency edges within the dataflow region of the
program, an actual dependency analysis would be needed. Moreover, the strategy for incarnating the
variable values requires SSA in order to determine the different needed incarnations. Both requirements
need compilation-related computations and might overload the synthesis that is supposed to create a

49

4. Concept

visualization without noticeable delay. A compiler does not imply those timing constraints, the time
needed to compile a model may be larger than the time needed to synthesize a visualization. Therefore,
approximations to these strategies could be a viable option in order to realize an implementation for
KIELER.

50

Chapter 5

Implementation

The goal for this thesis is the generation of visual dataflow from a Lustre program. We use the KIELER

tool as the framework providing this feature because it supports the SCCharts language, which appears
to offer a good representation for Lustre. Moreover, it implements the concept of transient views that
built the foundation for the rationale of this thesis. Support for other languages can be added easily
and the KiCo compiler architecture allows for a simple integration of transformations for different
languages.

5.1 Lustre Grammar

The first step towards the Lustre language support in KIELER is the implementation of the Lustre
grammar. Prior to this thesis, there already was a grammar for Lustre programs. However, this grammar
implemented expressions itself and was not suited to support the syntactical usage of features like
constants, or packages. Therefore, it was renewed in order to reuse the expressions defined through
KExpressions. This grammar is the basis for most languages in KIELER. Also SCCharts expressions are
based on this grammar. This redirection to KExpressions later on facilitates the transformation process
because at some point both models work with the same type of objects. Moreover, the grammar should
syntactically support a broad range of Lustre features. We use the Lustre V6 Reference Manual as the
basis for this grammar [JRH16]. However, not all parts of this grammar are supported semantically or
through the transformation. For example include statements or structuring of multiple Lustre files in
packages or modules is only supported on a syntactical level. The parser can recognize those programs
but the resulting behavior is not further considered. The grammar described here and the following
transformations all resides in the plug-in de.cau.cs.kieler.lustre.

In general the main part of the Lustre program is in the PackBody. It may contain an arbitrary
amount of constant declarations, type declarations, external node declarations and regular node
declarations. However, type declarations cannot be transformed to SCCharts because it does not support
arbitrary type definitions. Therefore, those are not further considered for the transformation. The
external nodes can be used to specify external functions that do not contain a body. This feature is
also not considered for the transformation.

Figure 5.1 shows a simplified version of the grammar for a Lustre node implemented in KIELER.
The bold blue labels indicate that this is a terminal and the rectangles redirect to another rule. The first
line in the graph defines the interface of the node. It is specified whether it is a node with an internal
state or a function. Additionally inputs and outputs are specified. In the second line constants or
variables may be defined. Lastly, the body of the node starts. Either equations, assertions or automata
are defined. At some point all of them need expressions. Equations contain an expression on its right
side, assertions are expressions with the keyword assert before it and automata may contain equations
again and those need expressions.

51

5. Implementation

Figure 5.1. Simplified grammar rules for a Lustre node in KIELER

1 BoolExpression

2 +InitExpression

3 +TernaryOperation

4 +ImpliesExpression

5 +LogicalXorExpression

6 LogicalOrExpression

7 LogicalAndExpression

8 -BitwiseOrExpression

9 -BitwiseXorExpression

10 -BitwiseAndExpression

11 +CompareOperation

12 +NotOrValuedExpression

13 +ValuedExpression

14 +NotExpression

15 -BitwiseNotExpression

16 AtomicExpression

17 BoolValue

18 ValuedObjectTestExpression

19 ValuedObjectReference

20 ReferenceCall

21 -FunctionCall

22 -RandomCall

23 -RandomizeCall

24 -TextExpression

25 +NorAtMostOneExpression

26 BoolExpression

(a) Boolean expressions as rules in the Lustre gram-
mar

1 ValuedExpression

2 -ShiftExpression

3 SumExpression

4 ProductExpression

5 +IntDiv

6 NegExpression

7 -TernaryOperation

8 FBYExpression

9 +WhenExpression

10 +CurrentExpression

11 +PreExpression

12 AtomicValuedExpression

13 IntValue

14 FloatValue

15 StringValue

16 VectorValue

17 AtomicExpression

18 ValuedExpression

(b) Valued expressions as rules in the Lustre gram-
mar

Figure 5.2. Lustre grammar rules for expressions

52

5.1. Lustre Grammar

However, the Kexpressions also define the precedence and there are some operations in Lustre that
are not included. Therefore, we need to override some rules to create a fitting structure. In Figure
5.2 the resulting structure of the expressions rules for Lustre is shown. It is based on the structure
of the KExpressions with some adjustments. A bold line starting with a + indicates that this rule was
added or moved and a green line starting with - shows that this rule is removed. The precedence can
be extracted by reading this tree bottom up, so the PreExpression has a higher precedence than the
NegExpression.

This grammar is implemented using Xtext. It allows for a notation that is similar to the extended
Backus–Naur form and provides many features for auto generation of code. The model for the Lustre
program for example is generated automatically from the grammar. Moreover, other useful classes
are generated that can be further extended to provide more specialized features. We introduce the
Validator and the ScopeProvider in the following.

5.1.1 Validator

The LustreValidator is a class that extends the automatically generated class AbstractLustreValidator

and allows the specification of custom validation rules. Some methods within this class are annotated
with @Check indicating that they shall be invoked when validation takes place. The parameter define
on what type of objects this check is performed on.

For the Lustre validation there are two types of validation. The first is an error indicating that the
used feature is not supported. This error is shown for all of the following features:
� ModelDeclaration
� PackageDeclaration
� PackageEquation
� ExternalNodeDeclaration
� TypeDeclaration
� StaticParam
� NodeReference

Furthermore, there are checks that enhance the design process. This includes information about
duplicate variables or nodes or undefined outputs. In Table 5.1 the different methods of the validation
class are listed and their behavior is outlined.

5.1.2 ScopeProvider

The content assist can help to show possible input alternatives at the cursor position. For specialized
language constructs this content assist needs to know the scope for variables and nodes for the current
position in the program. In Xtext this can be manually refined using the ScopeProvider.

For the LustreScopeProvider there are two cases that need to be covered. First, nodes can be
referenced in other nodes. Therefore, the LustreScopeProvider needs to extract all available nodes and
provide them in the scope.

Second, all inputs, outputs, variables and constants within a node are within the scope of that
node. They need to be extracted and passed on. Furthermore, the constants outside of nodes need to
be included, too.

53

5. Implementation

Table 5.1. Methods in the LustreValidator that check on the general problems with the model

Method Name Description

checkDuplicateVariable

Global and local constants, input and output vari-
ables as well as regular variables must differ in
their names. A warning is displayed if this does not
hold.

checkDuplicateNodeName
Node names must differ. A warning is added if this
is violated.

checkWhenExpressionVariableClockDefinition

The when operation can only be used for variables
that are defined with the same clock in the variable
definition. An error is displayed if this is violated.

checkCallReferenceReturnCardinalities

A node reference may return multiple values. The
left side of an equations must contain as many
variables as the node returns. An error is displayed
if this is violated.

checkOutputDefined

Each output of a node must be defined through
exactly one equation. A warning is displayed if
either there is no equation or there are too many
equations for the output.

5.2 Lustre to SCCharts Transformation

In KIELER the compilation system KiCo allows for a generic usage and extension of existing function-
alities. The transformation from Lustre to SCChart is implemented using the processor infrastructure.
It has a generic definition that allows to define the source and the target for the transformation. In
our case the transformation takes a LustreProgram as source and an SCCharts as target and the entire
system only consists of this one processor.

In contrast to previous approaches, the focus of our thesis is the implementation of a transformation
that primarily uses dataflow in SCCharts. There are already approaches that transform the dataflow to
controlflow and therefore perform their transformation differently. However, both approaches need
to transform the basic structure of a Lustre program to a basic structure of SCCharts and transform
expressions fitting to the provided language scopes. Therefore, an abstract class is introduced that
handles those basic parts of the transformation.

In Figure 5.3 is a simplified class diagram that shows the relation of the transformations and the
abstract class. This abstract class is called CoreLustreToSCC. It is a Processor with the specified source
and target. Basic functionality like the transformation of the package body, the node interface and
variable or constant declarations are handled here. The class LustreToSCCharts then handles the aspects
that depend on the transformation strategy for transforming dataflow to dataflow and controlflow
to controlflow. The LustreToSCCControlFlowAproach realizes the strategy for using SCCharts controlflow
for the visualization of the Lustre code.

The abstract class already handles the creation of a new SCChart for each node in the Lustre program.
Constants outside of nodes also create an SCChart containing only those constant declarations. These
constants are imported in all SCCharts representing a node using the extends feature as described in
Section 4.2.1. The inputs, outputs and variables of a node are added to the SCChart as such.

54

5.2. Lustre to SCCharts Transformation

Figure 5.3. Part of the class diagram showing the inheritance of the new transformation processors and the
abstract transformation class

Next, the contents of the node body are transformed. The body may contain equations, automata
or assertions. The transformation of equations is delegated to extending classes through the abstract
method processEquation. Automata, however, are transformed to equivalent SCChart controlflow au-
tomata. The different transition types are all available in SCChart, therefore it is just a one-to-one
mapping to the SCCharts side. The assertions are transformed to an annotation to the root SCChart. More
details on this transformation and how those model checking properties are handled in SCCharts is
explained in Section 5.2.1. If the implemented behavior in the abstract class does not describe the
desired behavior, the extending classes may always override the corresponding method implementing
a different handling of those elements.

The general transformation of expressions in Lustre to expressions in SCCharts is done through
dedicated methods in the class CoreLustreToSCC. The idea is that different approaches only differ in
the way they express the behavior, which is given through the equations. The actual transformation
for each expression was already described in Section 4.2.

Moreover, the abstract processor has two boolean properties that can be used to influence the trans-
formation behavior. The first is de.cau.cs.kieler.lustre.processors.lustreToSCC.useDuringActions-

ForWhen. If this property variable is set to true, the when transformation is not realized using the
conditional but instead a during action is created with the corresponding clocks as trigger. Figure 5.4
shows the effect of this property. The Lustre program in Figure 5.4a is transformed to SCCharts with
and without during actions. The clock clk is added as a trigger to the during action in case during

55

5. Implementation

1 node whenNode(z:int; clk:bool)

returns (o:int);

2 var x : int when clk;

3

4 let

5 x = z when clk;

6 o = current x;

7 tel.

(a) Original Lustre, copied from
Figure 4.8a

(b) Transformation without dur-
ing actions

(c) Transformation with during ac-
tions

Figure 5.4. A Lustre program using clocks and the transformed SCCharts showing the usage of a conditional and a
during action

1 node whenNode(z:int; clk:bool)

returns (o:int);

2 var x : int when clk;

3

4 let

5 x = z when clk;

6 o = current x;

7 tel.

(a) Original Lustre, copied from
Figure 4.8a

(b) Transformation without pre
operator

(c) Transformation with pre oper-
ator

Figure 5.5. A Lustre program using clocks and the transformed SCCharts showing both variants to transform a
when expression

actions are used. This approach has the advantage that we do not explicitly need to specify what
happens if the clock is not set. However, we do not get to visualize the dataflow that results from the
when statement. Therefore, this property is turned off by default.

The second property is de.cau.cs.kieler.lustre.processors.lustreToSCC.noPreInWhenTransforma-

tion. This might be interesting for optimizations. In SCCharts the sequential constructiveness is realized
which allows to sequentially read and write a variable. For the transformation of the when statement
using a conditional, this can be used. The pre expression for the else-branch is not needed since
the variable can be read and then written to sequentially. Setting this property to true causes when
statements to be transformed with no pre when using the conditional. This simplifies the transformation
process because no variables and parallel regions need to be introduced in order to remove the pre.
Note that this property causes Lustre programs to be transformed to SCCharts that are not constructive
in the classical sense any more. Therefore, this property is turned off by default, too.

It was already mentioned that the class LustreToSCCharts implements the basic transformation
using dataflow for dataflow and controlflow for controlflow. Basic methods needed by the Processor

are implemented and additionally the method processEquation is defined to specifically fit this
transformation for the dataflow approach. It creates a dataflow region containing an Assignment for

56

5.2. Lustre to SCCharts Transformation

each equation in the program and parses the expression of the right side of the equation using the
CoreLustreToSCC implementations.

5.2.1 Assertions in SCCharts

The transformation of assertions is already handled in the abstract class. They do not introduce model
functionality but are relevant for model checking with the lesar model checker [Ray08]. This model
checker lesar uses the principle of a synchronous observer for verification. A new node instantiates the
to-be-checked node. It has one output that is true as long as the program behaves as expected. The
expected behavior is defined through logical connections of the inputs and outputs of the to-be-checked
node. The lesar model checker then assures that the output of the observer remains true for all possible
paths.

The assertions in Lustre are used to specify that certain paths in the evaluation tree do not need to
be checked. As an example it may be given that two inputs are never true at the same time. This can
be specified using an assertion and during model checking the paths with both inputs set to true are
removed.

Model checking for SCChart is currently in development. Stange works on integrating different
model checkers into the KIELER environment [Sta19]. The properties that are checked can be specified
above the SCChart using annotations but instead of properties, also invariants can be defined. These
invariants are used to cut paths in the evaluation tree and thus are well suited for the transformation
of assertions from Lustre to SCCharts. For each assertion an annotation starting with @Assume is added
above the textual SCChart. Afterwards the Lustre assertion expression is translated to the SCCharts

expression and concatenated to the annotation. This way we transform the meaning of the assert in
Lustre to the SCCharts model.

As an example, the assertion assert not(a and b) in Lustre defines for boolean two inputs a

and b that they never occur at the same time. On the SCCharts side this property is added above
the corresponding textual SCChart as an annotation @Assume "!(a && b)". During model checking this
property can be loaded and checked for the behavior of the corresponding SCChart.

5.2.2 Revised: Lustre to SCCharts Controlflow

A transformation from Lustre to SCCharts using the controlflow feature of SCCharts was already im-
plemented prior to this thesis. However, during the process of this thesis, the grammar for Lustre
was restructured and founded on KExpressions. This facilitates writing new transformations, but the
existing transformations need to be reworked.

The abstract class CoreLustreToSCC helps to achieve this revision of the transformation. Basic func-
tionality is already provided and only the specific behavior for an equations needs to be implemented.

In general the previous behavior is preserved. We added a boolean option to the transforma-
tion named de.cau.cs.kieler.lustre.processors.lustreToSCC.controlFlow.useDuringActions. If this
property is set to true, the transformation uses during actions to express the right side of the equation
if there are no complex operations included. The previous transformation by Pascutto defined initial-
ization and conditional as complex operations [Pas17]. The during action does not have a trigger and
executes the transformed expression each tick.

If the property de.cau.cs.kieler.lustre.processors.lustreToSCC.controlFlow.useDuringActions

is not set, expressions are also illustrated in the controlflow. The idea is to create a hierarchically state
representing the expression tree. The leaves of the expression tree are the most nested expressions
and they are within the highest hierarchy level of the model. In Figure 5.6 this idea is illustrated.

57

5. Implementation

1 node equations(a:bool; b:bool) returns (o:bool

);

2

3 let

4 o = (a and b) = (a or b);

5 tel.

(a) Lustre (b) SCCharts

Figure 5.6. A Lustre program with nested expressions and the transformed SCChart using the controlflow approach

Figure 5.7. Lustre V6 compile and simulation chain

The leaves are the logical operations and and or. They are calculated in parallel and a new variable is
introduced that holds the value. On a higher level, these newly created variables are reused for the
equals operation.

This transformation approach is interesting because it uses only controlflow in the target model.
Moreover, expressions can be evaluated in parallel and this might save time. However, the expression
complexity is usually not as high as this would make an actual difference. Additionally, the complexity
of the introduced hierarchy and the contrast of dataflow in the original Lustre model and controlflow
in the target model might hinder it to be a visual representation for the Lustre program.

5.3 Lustre Simulation

In KIELER there is also the possibility to simulate a model. For SCCharts this is achieved through the
transformation to C code and its compilation. Communication from the compiled model inputs and
outputs to the user interface is handled through Json. However, also other compilers can be integrated.
For example in Esterel the Inria Esterel Compiler is integrated in KIELER. This offers the possibility
to use the defined simulation interface with the provided Json communication and already existing
compilers.

5.3.1 Lustre V6 Simulation Compile Chain

In Section 3.3 the Lustre V6 compiler was introduced. It can be used to compile Lustre models to C
code and execute this C code. This compiler is integrated into the KIELER infrastructure.

58

5.3. Lustre Simulation

1 <#include "/templates/injection.ftl">

2

3 <@inject position="header" />

4 #include "${tickdata_name}.h"

5

6 <@inject position="global-decl" /><#nt>

7

8 <@inject position="body" />

9

10 int main(int argc, const char* argv[]) {

11 <@inject position="local-decl" /><#nt>

12

13 <@inject position="init" /><#nt>

14

15 // Tick loop

16 int run = 1;

17 do {

18 <@inject position="start-loop" /><#nt>

19

20 // Read inputs

21 <@inject position="input" /><#nt>

22

23 <@inject position="pre-tick" /><#nt>

24

25 // Reaction of model

26 ${tickdata_name}_step(<@inject position="step-parameter"/><#nt>);

27

28 <@inject position="post-tick" /><#nt>

29

30 // Send outputs

31 <@inject position="output" /><#nt>

32

33 <@inject position="end-loop" /><#nt>

34 } while(run);

35

36 <@inject position="end-main" /><#nt>

37 }

Listing 5.7. Template file used during the setup for the simulation

In Figure 5.7 the new compile chain is shown. The first processor, the V6 Lustre Compiler, implements
the compilation with the V6 compiler to C code. The processor itself is contained in the plug-
in de.cau.cs.kieler.lustre and it uses the binaries located in de.cau.cs.kieler.lustre.compiler

through the LustreV6Compiler. The binaries themselves are only available for Linux systems. After the
compilation of this processor, the files listed for the Lustre V6 compiler in Section 3.3 are generated.

The next processor, the Project Setup, copies some files into the directory of the compiled files. One
of those files is the c-main.ftl. Listing 5.7 shows this file. It defines the structure of the main loop
for the simulation. It is a C code file except for the <@inject .../><#nt> statements. Those statements
define injections points for later addition of code to this file. This allows for a dynamic extension
of this file. Other than the injection points in the c-main.ftl there is a main method containing a
while-loop for the execution of the model.

59

5. Implementation

1 #include "lib/ticktime.h"

2 #include <stdio.h>

3 #include <unistd.h>

4 #include "lib/cJSON.h"

5 #include "equations_equations.h"

6

7 double _ticktime;

8 // Output variable declaration

9 int _SIM_VAR_0o;

10 // Input variable declaration

11 int _SIM_VAR_0a;

12 int _SIM_VAR_1x;

13 int _SIM_VAR_2y;

14

15 // METHODS FOR SIMULATION COMMUNICATION LEFT OUT HERE

16 // ...

17

18 int main(int argc, const char* argv[]) {

19 // Init lustre

20 equations_equations_ctx_type* ctx = equations_equations_ctx_new_ctx(NULL);

21 notifyInterfaceVariables();

22

23 // Tick loop

24 int run = 1;

25 do {

26

27 // Read inputs

28 receiveVariables();

29 resetticktime();

30

31 // Reaction of model

32 equations_equations_step(_SIM_VAR_0a, _SIM_VAR_1x, _SIM_VAR_2y, &_SIM_VAR_0o, ctx);

33

34 _ticktime = getticktime();

35

36 // Send outputs

37 sendVariables();

38

39 } while(run);

40 }

Listing 5.9. Example main with completed injections

60

5.4. Automatic Tests

Figure 5.9. Lustre to SCChart compile and simulation chain

Listing 5.9 shows a main-file that was generated for an example program. All the injections needed
for the simulation are added to the template file. In the first lines, the needed include statements for
the simulation, general system in and out controlling and Lustre-specific files are included. In line 11
to 14 the inputs and outputs that the model works with are added. They are positioned at the injection
global-decl in line 6 of the main.ftl. As already mentioned, the simulation communicates with the
compiled files using Json. Therefore, methods are implemented that convert the system in and out to
Json objects. Those methods are located after the interface declarations starting at line 16. They are
called in the main routine in line 22, 29, and 38.

In the introduction to the Lustre V6 compiler in Section 3.3 it was mentioned that the generated
step function of the compiled files for a model requires a struct in case that the node actually requires
memory. During the execution of the V6 compiler, the output of the compiler is scanned and a variable
is set that indicates whether the model has a state nor not. The example used for the creation of the
main file in C format had an internal state. Therefore in line 21, the corresponding structure is created.
In addition, the step function in line 33 passes this structure as an argument. If the compiled model
is stateless, the structure is not generated and it also not added to the list of parameter for the tick
function.

The next step is the execution of the GNU C compiler on the main file that is processed by the
template engine by injecting all required code. A file named simulation.exe is generated and with the
last processor, the Simulation Builder, the simulation in KIELER of the selected model can be started.

5.3.2 Lustre to SCCharts to C Simulation Compile Chain

In Section 5.2 we introduced the processor for the transformation of Lustre models to SCCharts models.
For SCCharts models there exists a compilation chain that starts the simulation and in Figure 3.13 this
compilation chain was shown.

The Lustre to SC DF processor now allows to define a compilation chain that reuses the SCCharts

compilation chain. The Lustre model is translated to an SCCharts model and then this SCCharts model
is compiled and executed. It basically consists of the processor chain in the Figure 3.13 except for
the newly defined processor being chained in front of all the other processors. In Figure 5.9 this new
compilation chain is shown. The component labeled Netlist-based Simulation is a container that includes
the basic SCCharts compilation chain.

In contrast to the Lustre V6 simulation, this approach simulates the transformed SCChart. Therefore,
the created behavior results from the transformation itself. This is useful for the comparison of the
original model and the transformed model. They should both produce the same outputs. In Chapter 6
these two approaches are used to evaluate that the transformation works properly.

5.4 Automatic Tests

KIELER provides a continuous integration that creates a build job if changes are committed. This
build job also executes a set of automatic tests. Figure 5.10 illustrates this test system. The idea is
to have a repository containing various amounts of example files for all different languages and

61

5. Implementation

Figure 5.10. Overview of the test system

optionally files that contain execution traces to the specific model. Additionally, there are different
tests extending AbstractXTextModelRepositoryTest that can fulfill different use cases. The abstract class
AbstractXTextModelRepositoryTest already provides the needed functionality for loading the models
from the repository, filtering them and running a compile chain on them.

For the Lustre scenario those automatic test classes are all located in the plug-in de.cau.cs.-

kieler.lustre.test. They define a subset of the programs in the models repository that they work
with. For example the parsing of the files can be checked to ensure that there are only errors and
warnings to a model if those were expected. Transformations can be checked, too. The transforma-
tion is performed and no errors should occur. Lastly, there is a special type of test. They extend
the AbstractSimulationTest that itself extends AbstractXTextModelRepositoryTest. This abstract class
AbstractSimulationTest adds features that are needed for comparing simulation behavior. These
simulation tests look for an associated file containing traces for the model. The model is simulated
with the inputs provided in the traces and the outputs are compared to the outputs in the traces. This
allows to test if the models behave the way they used to or the way they should. These tests are later
explained in more detail for evaluating the Lustre features in KIELER. In this section we focus on the
parser and the transformation tests.

5.4.1 Parser Test

The first test performed on the Lustre models is a parser test. The LustreParserTest checks each model
on possible errors or warnings. In general, the files in the models repository are divided into those
programs that are valid and those that are expected to cause an error or a warning. There are 11 tests
to cover inspection of the error messages, each test covering a specific use case. As an example, there
should be a warning if an output is not defined or if a node is defined twice and there should be an
error if not supported features are used or clocks are used inconsistently within the program.

Only those files that should create an error or warning pass the test if an error occurs, all other
models would fail. Additionally, the grammar is checked to work with the provided models. All files
provided should be accepted by the grammar and changes that affect the set of accepted programs
lead to a failure in this test.

62

5.4. Automatic Tests

5.4.2 Transformation Test

The next test compiles the models with the dataflow transformation. This should not lead to an error
or an invalid model. In case something does not work, the test would fail and return the model that it
failed on.

63

Chapter 6

Evaluation

In the previous chapters we introduced a transformation from Lustre to SCCharts dataflow. This
transformation is now reviewed together with the initial motivation for this topic. The transformation
can convert a Lustre program to an SCCharts program. However, the behavior of those two models
should remain the same. The first section of this chapter introduces automatic tests that are added
for testing the behavior of the models. They ensure that the transformation preserves the input and
output behavior of the original models.

In the second section the motivation for the topic of this thesis is examined. The idea was to create
an SCCharts model from Lustre code just like SCADE represents Lustre in a visual way. Larger SCADE

models are looked into, the Lustre code is extracted and transformed to SCChart and both visual models
are compared.

6.1 Automatic Behavior Tests

Section 5.4 introduced the automatic test system in the KIELER continuous integration. For ensuring
that the Lustre transformation works properly, simulation tests are added. They use a compile chain
combined with the KIELER simulation and make sure that the behavior corresponds to the behavior
defined in so called trace files. Those files save inputs to a model for each tick and the expected
outputs. Each of these trace files belongs to a program within the models repository.

6.1.1 Models Repository

As already mentioned, the automatic tests system uses the models from the models repository as
input. The amount and the complexity of the models contained in the repository determines how
precise the different simulation tests can evaluate the transformation. Therefore, the first step towards
implementing meaningful tests is the integration of various models into the models repository.

The model files that are valid and supported Lustre programs are partially created manually. Every
operation supported in Lustre has an associated model file that contains only this operation. This
includes simple data operations, sequence operations or references. Moreover, some of the operators
work with multiple inputs or can be cascaded. Those special cases using three operands are also added
manually. In order to add models with multiple equations, there are also files that combine all operator
tests into one file. Also the corner cases for when and pre introduced in 4.2.4 are added as a test. The
state extension is not supported in the Lustre V6 compiler but for the transformations those model
files are interesting because they can be converted to SCCharts and then simulated. An example for an
automata included in the repository is shown in Figure 3.3. Additionally, there is a simplified version
of it and an even simpler automata that illustrates the basic concepts of automata in Lustre. Lastly,
the repository1 provided by Jahier is integrated into the models repository. It is a public repository
that contains various Lustre models. However, not all of the models can be supported because many

1https://github.com/jahierwan

65

6. Evaluation

Figure 6.1. SCADE RollControl model

different features are used. Nevertheless, interesting models are included for the automatic tests
because especially larger real-world models are included. The largest model is the heater control that
contains 126 lines of Lustre code and within the entire models repository there are about 150 Lustre
model files.

For most of these model files, a trace file is created and put into the repository that covers all
possible behavior. These trace files are created using the Luste V6 Simulation in KIELER. This ensures
that the actual behavior of the model is extracted on the Lustre side.

6.1.2 Simulation Tests

The AbstractSimulationTest was already mentioned in Section 5.4. Extending this class allows for
basic functionality that is needed to create automatic tests for the simulation of the models behavior.
This type of tests is especially interesting for the evaluation. Trace files can be provided and those are
loaded during the simulation of the corresponding program.

These files now offer a way to compare the behavior of different models to be equivalent.
For this case we added three test classes: LustreV6SimulationTest, LustreSccSimulationTest and
LustreSccControlFlowApproachSimulationTest. The first class, LustreV6SimulationTest, takes the Lus-
tre V6 compilation chain and simulates the model with the trace files. This should always pass because
the traces are created using this compilation chain.

The LustreSccSimulationTest first transforms the Lustre program to an SCCharts program. This is
then compiled and simulated like a regular SCChart. The behavior of this model is then compared to
the traces saved. There are certain features that are expressed differently through the transformation,
especially clocks. However, as long as the outputs match, the behavior is considered to be the same.
This test ensures that the dataflow transformation creates an SCChart that behaves like the original
Lustre program.

Lastly, the LustreSccControlFlowApproachSimulationTest checks the behavior of the program after
the transformation from Lustre to SCCharts dataflow just like the LustreSccSimulationTest works
for the dataflow to dataflow approach. The difference is in the used compilation system. In the
LustreSccControlFlowApproachSimulationTest the controlflow approach is used for the transformation.

66

6.2. SCADE Models

(a) SCADE RollRateCalculate model

(b) SCADE AdverseYaw model

(c) SCADE LimiterSymmetrical model

Figure 6.2. The RollRateCalculate example from SCADE and all referenced models

This might cause the model to look very different from the original model but this test preserves that
the behavior is the same.

There are 56 tests that are executed through the LustreSccSimulationTest. All those tests pass with
the result that the models have the same behavior in SCCharts as they had in the original model. The
LustreSccControlFlowApproachSimulationTest can only handle fewer models because not the same
scope of features is supported. References for example are not included in the current implementation
for the controlflow transformation approach. However, all tests checking the behavior of the created
controlflow SCChart also pass. In conclusion, the two transformation approaches appear to work
properly and the creation of an SCChart from Lustre with the same behavior is accomplished.

6.2 SCADE Models

The motivation for the topic of this thesis is based on the equivalence of SCADE and Lustre. The
idea is to improve the design process by allowing textual editing of Lustre models with a SCADE-like
visualization that is generated automatically. In this section we evaluate SCADE models in comparison
to the generated SCCharts dataflow model for this purpose.

67

6. Evaluation

(a) Collapsed Regions

(b) Expanded Regions

(c) Inlined Regions

Figure 6.3. Transformed RollRateCalculate example in SCCharts with expanded, collapsed and inlined referenced
models

68

6.2. SCADE Models

1 node RollRateCalculate(joystickCmd, leftAdverseYaw, rightAdverseYaw: real) returns (rollRate: real);

2 let

3 rollRate = LimiterSymmetrical((joystickCmd - AdverseYaw(leftAdverseYaw, rightAdverseYaw)) * 0.25,

4 0.0,

5 25.0);

6 tel.

7

8 node AdverseYaw (leftAdverseYaw, rightAdverseYaw: real) returns (rollCoupling: real);

9 let

10 rollCoupling = (leftAdverseYaw - rightAdverseYaw) * 0.1;

11

12 tel.

13

14 node LimiterSymmetrical(LS_Input, BandOrigin, Tolerance: real) returns (LS_Output: real);

15 var Upper_Limit, Lower_Limit : real;

16 let

17 Upper_Limit = Tolerance + BandOrigin;

18 Lower_Limit = BandOrigin - Tolerance;

19 LS_Output = if (LS_Input >= Upper_Limit)

20 then (Upper_Limit)

21 else (if (LS_Input <= Lower_Limit)

22 then Lower_Limit

23 else (LS_Input));

24 tel.

Listing 6.2. Extracted Lustre code from the SCADE RollRateCalculate example

In SCADE there is an amount of example programs integrated into the tool that illustrate the usage
of SCADE. Moreover, there are larger models for certain tasks such as a digital stopwatch. However,
the introduced Lustre transformation cannot handle type definitions and self-defined types are a
frequently used functionality in the provided SCADE examples. In order to compare a SCADE model to
a transformed SCChart model, an example is used that does not use type definitions. Additionally, this
model should contain some complexity so the effect on the visualization can be reviewed.

We selected the operator RollRateCalculate in the example RollControl. In Figure 6.1 is the
diagram for this parent model. It calculates the roll rate depending on the joystick command and the
left and right adverse yaw. If a button is pressed the roll mode toggled from on to off. During the
activated roll mode, the mode failsoft is activated if the rate is extends a threshold. This resulting roll
mode is also an output of the model. In addition, warnings are displayed if the roll rate is larger than
an upper or lower limit.

Within this model, there are entities that are abstracted to calculate a specific part of this operation.
One of these operators is the RollRateCalculate that calculates the roll rate depending on the adverse
yaw of the left and the right side as well as the joystick command. The SCADE model for this operator
is shown in Figure 6.2a. Inside of this model, there are two references to operators called AdverseYaw

and LimiterSymmetrical. Those two models are also shown in Figure 6.2b and 6.2c.
SCADE offers the possibility to extract the Lustre equations for an operator. In order for the

transformation to work, we need these Lustre equations combined with a manually added interface.
The equations for the corresponding model parts extracted from SCADE are shown in Figure 6.4.
Moreover, we optimized the equations manually so there is not an equation for each wire but for each
output. An exception is the node LimiterSymmetrical. There are two wires that are names explicitly,

69

6. Evaluation

1 L8 = joystickCmd;

2 L7 = leftAdverseYaw;

3 L6 = rightAdverseYaw;

4 L5 = AdverseYaw(L7, L6);

5 L4 = L8 - L5;

6 L3 = L4 * L2;

7 L2 = 0.25;

8 rollRate = L1;

9 L1 = pwlinear::

LimiterSymmetrical(L3,

0.0, 25.0);

(a) RollRateCalculate

1 L1 = leftAdverseYaw;

2 L2 = rightAdverseYaw;

3 rollCoupling = L4;

4 L3 = L1 - L2;

5 L4 = L3 * L5;

6 L5 = 0.1;

(b) AdverseYaw

1 L1 = L6 >= Upper_limit;

2 L3 = L6 <= Lower_limit;

3 Lower_limit = L7 - L2;

4 Upper_limit = L2 + L7;

5 L4 = if L1

6 then (Upper_limit)

7 else (L5);

8 L5 = if L3

9 then (Lower_limit)

10 else (L6);

11 L6 = LS_Input;

12 LS_Output = L4;

13 L7 = BandOrigin;

14 L2 = Tolerance;

(c) LimiterSymmetrical

Figure 6.4. SCADE equations that are generated from the diagram

so those are handled as a variable and are not left out for optimization. So resulting from the SCADE

model, we get the Lustre code presented in Listing 6.2. This Lustre code is then transformed to SCCharts.
Figure 6.3a shows the transformed SCChart resulting from this Lustre code. The referenced models

are transformed, too. However, in KIELER it is possible to expand referenced models instead of opening
them in a separate file. In Figure 6.3b is the transformed SCChart with expanded reference models.
Moreover, those referenced models can be inlined, connecting inputs and outputs directly. Figure 6.3c
shows this model with inlined references.

Comparing this SCCharts model to the SCADE models shows that they both have a similar appearance.
Operators are illustrated using actors and inputs and outputs are connected to operators through
wires. Moreover, the flow of the data is visualized going from left to right with the overall inputs and
outputs of the model positioned at these ends.

An advantage of SCCharts is, however, that the interface of the node and local variables are included
in the visualization. Additionally, the node LimiterSymmetrical has two hidden variables in the SCADE

version. Their value can be set in the properties when clicking on that node reference, but there
is no need to add a dedicated wire with a constant on it. In the diagram, those hidden variables
are indicated by the O and the T at the bottom of the corresponding node in Figure 6.2a. Those
are translated to parameters in the Lustre version and thus are also translated to inputs for the
SCCharts diagram. Moreover, the SCADE version uses a specific designed reference operator for the
LimiterSymmetrical. Those operator styles, however, can be created for SCCharts, too. This creation
is not part of the automatic transformation since it uses Lustre code which does not provide any
information about the operator style in SCADE but it can be modified after the transformation.

The selected flow of the data, however, is illustrated similarly in both models. The SCADE model
needs manual layouting so this is taken as a template for how the user would want this layout to look
like. The automatic layout in SCCharts also managed to visualize the flow in a very similar way.

The model LimiterSymmetrical has two variables. In SCADE those variables are visualized in the
model by naming the wire. Therefore, the influence of variables on the visualization is small. In
SCCharts however, the variables are visualized explicitly if they are added to the state. Variables can
also be added to regions and for the dataflow regions this would cause them to not be visualized
explicitly. However, this wire is currently not labeled with the variable name and so both approaches
either suppress the variable entirely or create extra nodes for the variables.

70

6.3. Limitations

In conclusion the goal for the transformation to create a visualization that looks like the one
provided by SCADE is achieved. The benefits of using SCADE are transferred to the SCCharts visualization.
The dataflow and the different actors connecting variable and values with operators is almost identical.
However, in order to further evaluate the usability of the visualization in comparison to SCADE, type
declarations should be supported. This would allow to compare larger models and the process of
selecting a SCADE model for the comparison is more variable.

6.3 Limitations

The above evaluations show that the introduced transformation preserved the model behavior for the
set of Lustre programs in the models repository. Moreover, the visualization achieves a SCADE like
appearance except for minor differences. Nevertheless, there are also limitations for this transformation.

In SCADE the visualization is created manually. Therefore, it is an intuitive decision to reuse already
calculated results for further calculations. In Figure 6.2c the result of the subtraction of BandOrigin
and Tolerance is saved in the variable Lower_limit and the wire for this variable is reused in the
comparison and the conditional without duplicating the subtraction operation.

For the transformation from Lustre to SCCharts, however, it is essential that calculations that shall be
reused and not duplicated for each occurrence are defined as a variable. In Figure 6.5b is an example
for the LimiterSymmetrical in SCCharts with the explicit definition of the variables Upper_Limit and
Lower_Limit. Those variables are used for the comparison operators and the condition. This causes the
dataflow to connect the input of those operators to the result of the addition and subtraction, thus the
value of the variable.

In contrast in Figure 6.5c the calculations are duplicated in the code instead of using a variable.
This causes the visualization to also duplicate those operators. Instead of one subtraction and one
addition, it includes two additions and two subtractions.

However, in the version using variables, the nodes for the variables are included in the diagram.
In order to prevent these nodes, the variables can be added to the dataflow region instead of the
state. In Figure 6.5d the version declaring the variable in the region is shown. This causes the explicit
integration of the variable node in the diagram to be suppressed. This version is closest to the SCADE

visualization and is used as the default strategy in the transformation.
In conclusion, the usage and the position of variable declarations in SCCharts have an impact on

the created model. In order to achieve a good visualization, computations that are made more than
once should be declared for a variable. This process can already occur on the Lustre level. However,
the label for the variable is not visualized by an explicit component in the SCCharts visualization. This
preserves the similarity to SCADE that local variables are just named wires and no explicit components
are used for the visualization.

71

6. Evaluation

(a) SCADE LimiterSymmetrical model (copied from Figure 6.2c)

(b) With variables Upper_Limit and Lower_Limit (c) Without variables Upper_Limit and Lower_Limit

(d) With variables Upper_Limit and Lower_Limit defined in region

Figure 6.5. The SCADE LimiterSymmetrical example in SCADE and transformed to SCCharts

72

Chapter 7

Conclusion

This chapter summarizes the achieved goals for the transformation from Lustre to SCCharts dataflow in
the context of the initial motivation for this topic. Moreover, ideas for improvements and extensions
are proposed.

7.1 Summary

The motivation for this thesis is the equivalence of Lustre and SCADE and the concept of transient
views that is one of the leading principles for the tool KIELER. The design process of SCADE/ Lustre
programs can be enhanced by allowing textual modification and implementation combined with an
automatically generated visual component. This new design approach for Lustre is implemented in
KIELER. The synchronous language SCCharts is used to illustrate the dataflow using a components and
wires just like SCADE does.

In order to create this visual component for Lustre, the first step is the comparison of Lustre/
SCADE and SCCharts. Both languages use a synchronous MoC whereas the SCChart MoC is a conservative
extension to the Lustre MoC. Moreover, the visual components of SCADE and SCChart are compared.
Both use components and wires to express the dataflow and those operators are all designed similarly.

The next step is the implementation of a transformation from Lustre to SCCharts. In SCCharts the
concept of clocks is not part of the language scope and instead of streams, variables are used. Therefore,
the transformation takes care of these special languages features in order to transform them to plain
SCCharts with the same behavior the Lustre program has. The simple data operations in Lustre are
already equivalent to those in SCChart.

The last step is the evaluation of the introduced transformation. About 150 Lustre programs are
used to express a broad range of the feature scope and program dimensions. Automatic tests are
implemented that are executed on these programs in the models repository. They test the output of the
program prior and after the transformation given the same inputs. This ensures that the transformation
preserves the behavior for all test programs. Lastly, a SCADE program is transformed to Lustre and
then to SCChart in order to compare them on the visual level. The result is that the dataflow uses
similar components and wires like the original model. Except for details concerning visual nature
of the components, the diagrams illustrate the same model. However, the position of the variable
declarations in the SCCharts have a great impact on the design and this may result in slightly different
variants of the diagrams. Also since clocking is not part of SCCharts those features are not visualized in
a similar manner using a single component.

73

7. Conclusion

Figure 7.1. Composition and decomposition with structures in SCADE

(a) map operation (b) fold operation

Figure 7.2. The map and the fold operation in SCADE

7.2 Future Work

This thesis introduces a transformation that creates an SCChart for the dataflow in Lustre programs.
However, there are also possible improvements for this transformation and other topics that originated
during the development process.

7.2.1 Lustre Feature Extensions

In Section 3.1 a set of supported Lustre features is introduced. However, there are some language
constructs that would increase the design comfort for Lustre in KIELER.

As already mentioned, type declarations are not supported yet. However, this features is used in
many example programs in SCADE and Lustre. Supporting this feature would allow evaluating the
results of the transformation for larger programs. Especially the visualization of those self-defined
types is an interesting aspect for the comparison.

As an example in the RollControl model in SCADE different modes can be expressed by defining
enumerations that represent the corresponding mode. The mode itself is a new type and a wire can
have the type of modes. Moreover, values for the left and right yaw of an airplane are encapsulated
in a structure representing the yaw. This structure definition introduces two new operators. The first
operator takes the parts of the structure and creates a new structure with the output wire typed
with the structure. The second operator takes a structure and decomposes the components from the
structure. In Figure 7.1 those two operators are shown for the example of a structure containing left
and right yaws. The label TRealLeftRight is the name of the created structure, thus the type of the
wire after the first component is TRealLeftRight.

Extending the transformation by the concept of type declarations would greatly enhance the
program design and allows for more possible comparisons with larger SCADE models.

In SCCharts references to other SCCharts can be skinned with an arbitrary .kgt-image. All operators
and labels in KIELER are designed in this format internally but also users may define .kgt-files in
order to define a custom skin for referenced SCCharts. The SCChart itself or the reference declaration
may contain an annotation like @figure "skinpath.kgt" that specifies the design for this SCChart. This

74

7.2. Future Work

custom operator design could be lifted to the Lustre level. References could be annotated and then the
transformation annotates the SCChart in order to preserve the defined operator design.

Arrays are currently not supported during the transformation whereas SCCharts already has array
support. Extending the allowed features for the transformation by arrays would also allow to think
of a transformation that realizes the map and fold operations that are available in Lustre and SCADE.
They facilitate array usage and operations with them. They can ease the visual complexity because
operations on all array elements can be expressed with only one operator.

The map operation allows to perform an n-ary operation on n arrays of the same size, combining
them to a single array of the same size. As an example the operation map «+; 3»([1,0,2], [3,6,-1])

applies the + operation index-wise on the two arrays in the parameters. It yields the result [4, 6, 1].
If the operation for the map has more than one output, the result is a list of all array outputs whereas
in each array one output from the node is saved.

In SCADE this operation is visualized by a hierarchical component that contains the operation
component within. In Figure 7.2a the visualization of the component is shown. The number of inputs
and outputs for the map component depends on the number of inputs and outputs of the included
operation.

The fold operation allows to reduce an array sequentially to a scalar using a node as operation.
The prerequisite is that the node must have a single output, a first input of the same type and at least
another input. It is called fold in SCADE and red in Lustre. As an example, the operation red «+; 3»(0,

[1,2,3]) adds the initial value 0 with the first value of the array and this result serves as the new first
argument when adding the second array element until all elements are included. Thus, the result for
this example is 6.

In SCADE this operation is also visualized by a hierarchical component. In Figure 7.2b this com-
ponent is shown. The number of inputs depends on the included operation but there is always one
single output.

7.2.2 Transformation SCCharts to Lustre

This thesis introduces a transformation from Lustre to SCCharts. However, also a transformation from
SCChart to Lustre is reasonable. This would allow to compare the models initially and after a roundtrip
to SCChart and back. Moreover, it might be possible to adapt sequentially constructive ideas to the
Lustre language in order to design a sequentially constructive version of Lustre.

7.2.3 Improve Lustre to SCCharts Controlflow

The transformation from Lustre to SCCharts using controlflow was re-implemented after the modi-
fications of the Lustre grammar. The general concept is to hierarchically construct expressions in
controlflow. However, also other approaches might be reasonable. The level of hierarchy could be
given as option so also fully flat SCCharts or highly hierarchical SCCharts are possible.

Pascutto already proposed these three different visualization strategies. In Figure 7.3 all three
approaches are shown for a program that includes only the equation Z = (if A then 1 else 0) + (if

B then 1 else 0). The current transformation implements the partially hierarchical strategy but all
strategies could be implemented and chosen through options for the transformation in the future.

All the approaches have advantages and disadvantages. The flat or the partially hierarchical
approach can be used as an alternative visualization of the Lustre code. The mixing of the programming
paradigms dataflow and controlflow could lead to a different understanding of the code than the
textual Lustre code. Moreover, ideas for improving this approach could also be relevant for improving

75

7. Conclusion

(a) Flat expressions (b) Partially hierarchical expressions

(c) Highly hierarchical expressions

Figure 7.3. Different strategies to handle expressions for the Lustre to SCCharts controlflow transformation
proposed by Pascutto

76

7.2. Future Work

(a) Visual

1 scchart Ramp {

2 int count = 0

3

4 dataflow:

5 count = count + 1

6 }

(b) Textual

Figure 7.4. A counter in SCCharts using sequentially constructive properties and the new visualization proposed
by Smyth

the SCCharts dataflow to controlflow transformation. This transformation is used during the compilation
process of SCCharts programs so the controlflow compilation chain is reused instead of creating a new
dataflow compilation chain. The general idea is to prove that dataflow and controlflow is essentially
the same.

Moreover, the highly hierarchical strategy could be interesting for allowing a concurrent evaluation
of expression. This could lead to a better execution time of certain programs. However, it may also
introduce an overhead due to the concurrency so the potential benefit needs to be evaluated.

7.2.4 Sequential Variable Access Visualization

In Section 4.3 the challenges and ideas for the dataflow synthesis with sequentially constructive
programs are outlined. There are also ideas for the visualization that might improve the dataflow in
the diagrams. However, there is yet no clear answer for how this should visualization look like. Due
to the concurrent modification of variables and possible sequential reads and writes, visualizing the
modification order of variables is not trivial. A dependency analysis would provide the most options
for visualizing the variable usage but it might overload the dataflow synthesis.

Smyth already works on an approach that creates different instances of the variables depending on
their position in the operation. Equations containing a sequential read with a write such as count =

count + 1 create two labels for the count variable. One label is the one that is read for the addition
and the other label is the target for the addition, thus it is written to. In Figure 7.4 is an example for
how this instantiation looks like. Since the count variable is read and written to within one equation,
there are two labels for this variable. However, currently this only works for sequential access. The
visualization of concurrent modification of variables in dataflow is not yet covered.

These improvements for the visualization are interesting and important for the illustration of the
sequentially constructive behavior of SCCharts. Variables can be modified multiple times within a tick
and the classical visualization of dataflow in tools like SCADE or LabView imply only one value for a
wire in a tick. It follows that the sequential constructiveness implies cycles on the visual level. Without
knowledge about the sequential constructiveness, those cycles look like instantaneous loops. This
could give the user a wrong intuition about the model and cause confusion.

7.2.5 Optimize Usage of Pre

In Section 4.2 the different transformation strategies for the different Lustre features are introduced.
The when operation is transformed using a conditional whereas the else-branch holds the pre value
of the output. This pre is introduced in order to preserve the program class during transformation.

77

7. Conclusion

However, the behavior would be the same if this pre is omitted because in SCCharts there are variables
instead of streams. Those variables already keep their value beyond tick boundaries.

Situations like the one just described occur in various models. Often the usage of a pre is not
necessary and due to the transformation a lot of overhead such as other parallel regions and new
variables are introduced unnecessarily. The pre expressions could be optimized through a new processor.
In situations when the pre is not relevant for breaking instantaneous cycles or for referencing the actual
pre value of a variable they can be optimized and removed for improving the compilation process.
Variables and concurrent regions introduced in the transformation of the pre are not needed and the
transformed model remains simpler.

78

Chapter 8

Acronyms

EMF Eclipse Modeling Framework

HMI Human Machine Interface

IDE Integrated Development Environment

KiCo KIELER Compiler

KIELER Kiel Integrated Environment for Layout Eclipse Rich Client

MoC Model of Computation

RCP Rich Client Platform

ODE Ordinary Differential Equations

OSGi Open Service Gateway initiative

SC MoC Sequentially Constructive Model of Computation

SSM Safe State Machine

SCADE Safety Critical Application Development Environment

SCChart Sequentially Constructive Chart

SCEst Sequentially Constructive Esterel

SCL Sequentially Constructive Language

SSA Static Single Assignment

UML Unified Modeling Language

79

Bibliography

[And96] Charles André. SyncCharts: A visual representation of reactive behaviors. Tech. rep. RR 95–52,
rev. RR 96–56. Sophia-Antipolis, France: I3S, Apr. 1996.

[BB91] Albert Benveniste and Gérard Berry. “The synchronous approach to reactive and real-time
systems”. In: Proceedings of the IEEE 79.9 (Sept. 1991), pp. 1270–1282.

[BBD+17] Timothy Bourke, Lélio Brun, Pierre-Évariste Dagand, Xavier Leroy, Marc Pouzet, and
Lionel Rieg. “A formally verified compiler for lustre”. In: Proceedings of the 38th ACM
SIGPLAN Conference on Programming Language Design and Implementation. PLDI 2017.
Barcelona, Spain: ACM, 2017, pp. 586–601. isbn: 978-1-4503-4988-8. doi: 10.1145/3062341.3062358.
url: http://doi.acm.org/10.1145/3062341.3062358.

[BC84] Gérard Berry and Laurent Cosserat. “The ESTEREL Synchronous Programming Language
and its Mathematical Semantics”. In: Seminar on Concurrency, Carnegie-Mellon University.
Vol. 197. LNCS. Springer-Verlag, 1984, pp. 389–448. isbn: 3-540-15670-4.

[BCE+03] Albert Benveniste, Paul Caspi, Stephen A. Edwards, Nicolas Halbwachs, Paul Le Guernic,
and Robert de Simone. “The Synchronous Languages Twelve Years Later”. In: Proc. IEEE,
Special Issue on Embedded Systems. Vol. 91. Piscataway, NJ, USA: IEEE, Jan. 2003, pp. 64–83.

[BCH+08] Dariusz Biernacki, Jean-Louis Colaço, Gregoire Hamon, and Marc Pouzet. “Clock-directed
modular code generation for synchronous data-flow languages”. In: Proceedings of the
2008 ACM SIGPLAN-SIGBED Conference on Languages, Compilers, and Tools for Embedded
Systems. LCTES ’08. Tucson, AZ, USA: ACM, 2008, pp. 121–130. isbn: 978-1-60558-104-0.
doi: 10.1145/1375657.1375674. url: http://doi.acm.org/10.1145/1375657.1375674.

[BD91] Frédéric Boussinot and Robert De Simone. “The Esterel language”. In: Proceedings of the
IEEE 79.9 (Sept. 1991), pp. 1293–1304.

[Ber02] Gérard Berry. The constructive semantics of pure Esterel. Centre de Mathématiques Ap-
pliqées, Ecole des Mines de Paris and INRIA, 2004 route des Lucioles, 06902 Sophia-
Antipolis CDX, France: Draft Book, Version 3.0, Dec. 2002.

[BP13] Timothy Bourke and Marc Pouzet. “Zélus: a synchronous language with ODEs”. In:
Proceedings of the 16th International Conference on Hybrid Systems: Computation and Control.
HSCC ’13. Philadelphia, Pennsylvania, USA: ACM, 2013, pp. 113–118. isbn: 978-1-4503-
1567-8. doi: 10.1145/2461328.2461348. url: http://doi.acm.org/10.1145/2461328.2461348.

[BS86] Gerard Berry and Ravi Sethi. “From regular expressions to deterministic automata”. In:
Theoretical Computer Science 48 (1986), pp. 117–126. issn: 0304-3975. doi: https://doi.org/10.

1016/0304-3975(86)90088-5. url: http://www.sciencedirect.com/science/article/pii/0304397586900885.

[CP99] Paul Caspi and Marc Pouzet. “Lucid Synchrone: une extension fonctionnelle de Lustre”.
In: Journées Francophones des Langages Applicatifs (JFLA). Avoriaz, France: INRIA, Feb. 1999.
url: https://hal.archives-ouvertes.fr/hal-01574464.

[CPP05] Jean-Louis Colaço, Bruno Pagano, and Marc Pouzet. “A conservative extension of syn-
chronous data-flow with State Machines”. In: ACM International Conference on Embedded
Software (EMSOFT’05). (Jersey City, NJ, USA). Jersey City, NJ, USA: ACM, Sept. 2005,
pp. 173–182.

81

https://doi.org/10.1145/3062341.3062358
http://doi.acm.org/10.1145/3062341.3062358
https://doi.org/10.1145/1375657.1375674
http://doi.acm.org/10.1145/1375657.1375674
https://doi.org/10.1145/2461328.2461348
http://doi.acm.org/10.1145/2461328.2461348
https://doi.org/https://doi.org/10.1016/0304-3975(86)90088-5
https://doi.org/https://doi.org/10.1016/0304-3975(86)90088-5
http://www.sciencedirect.com/science/article/pii/0304397586900885
https://hal.archives-ouvertes.fr/hal-01574464

Bibliography

[CPP17] Jean-Louis Colaço, Bruno Pagano, and Marc Pouzet. “SCADE 6: A formal language for
embedded critical software development (invited paper)”. In: 11th International Symposium
on Theoretical Aspects of Software Engineering TASE. Sophia Antipolis, France, Sept. 2017,
pp. 1–11.

[Dom18] Sören Domrös. “Moving Model Driven Engineering from Eclipse to Web Technologies”.
https://rtsys.informatik.uni- kiel.de/~biblio/downloads/theses/sdo- mt.pdf. Master thesis. Kiel
University, Department of Computer Science, Nov. 2018.

[Dor08] Francois-Xavier Dormoy. “Scade 6: a model based solution for safety critical software
development”. In: Proceedings of the 4th European Congress on Embedded Real Time Software
(ERTS’08). 2008, pp. 1–9.

[Est16] Esterel Technologies, Inc. SCADE Suite: Control and Logic Application Development. http:

//www.esterel-technologies.com/products/scade-suite/. last visited 03/2016.

[FH10] Hauke Fuhrmann and Reinhard von Hanxleden. “Taming graphical modeling”. In:
Proceedings of the ACM/IEEE 13th International Conference on Model Driven Engineering
Languages and Systems (MoDELS ’10). Vol. 6394. LNCS. Springer, Oct. 2010, pp. 196–210.
doi: 10.1007/978-3-642-16145-2.

[GGB+91] Paul Le Guernic, Thierry Goutier, Michel Le Borgne, and Claude Le Maire. “Programming
real time applications with SIGNAL”. In: Proceedings of the IEEE 79.9 (Sept. 1991), pp. 1321–
1336.

[GKR+14] Hans Grönniger, Holger Krahn, Bernhard Rumpe, Martin Schindler, and Steven Völkel.
“Textbased modeling”. In: CoRR abs/1409.6623 (2014). arXiv: 1409.6623. url: http://arxiv.org/
abs/1409.6623.

[Har87] David Harel. “Statecharts: A visual formalism for complex systems”. In: Science of
Computer Programming 8.3 (June 1987), pp. 231–274.

[HBG17] Reinhard von Hanxleden, Timothy Bourke, and Alain Girault. “Real-time ticks for
synchronous programming”. In: Proc. Forum on Specification and Design Languages (FDL
’17). Verona, Italy, Sept. 2017.

[HCR+91] Nicolas Halbwachs, Paul Caspi, Pascal Raymond, and Daniel Pilaud. “The synchronous
data-flow programming language LUSTRE”. In: Proceedings of the IEEE 79.9 (Sept. 1991),
pp. 1305–1320.

[HDM+13] Reinhard von Hanxleden, Björn Duderstadt, Christian Motika, Steven Smyth, Michael
Mendler, Joaquín Aguado, Stephen Mercer, and Owen O’Brien. SCCharts: Sequentially
Constructive Statecharts. Presentation at Synchronous Programming (SYNCHRON ’13),
Schloss Dagstuhl, Germany. Nov. 2013.

[HDM+14] Reinhard von Hanxleden, Björn Duderstadt, Christian Motika, Steven Smyth, Michael
Mendler, Joaquín Aguado, Stephen Mercer, and Owen O’Brien. “SCCharts: Sequen-
tially Constructive Statecharts for safety-critical applications”. In: Proc. ACM SIGPLAN
Conference on Programming Language Design and Implementation (PLDI’14). Long version:
Technical Report 1311, Christian-Albrechts-Universität zu Kiel, Department of Computer
Science, December 2013, ISSN 2192-6274. Edinburgh, UK: ACM, June 2014.

[JRH16] Erwan Jahier, Pascal Raymond, and Nicolas Halbwachs. “The Lustre V6 reference man-
ual”. In: Verimag, Grenoble, Dec (2016).

82

https://rtsys.informatik.uni-kiel.de/~biblio/downloads/theses/sdo-mt.pdf
http://www.esterel-technologies.com/products/scade-suite/
http://www.esterel-technologies.com/products/scade-suite/
https://doi.org/10.1007/978-3-642-16145-2
http://arxiv.org/abs/1409.6623
http://arxiv.org/abs/1409.6623
http://arxiv.org/abs/1409.6623

Bibliography

[LGL+91] Paul LeGuernic, Thierry Gautier, Michel Le Borgne, and Claude Le Maire. “Programming
real-time applications with Signal”. In: Proceedings of the IEEE 79.9 (Sept. 1991), pp. 1321–
1336.

[MHH13] Christian Motika, Reinhard von Hanxleden, and Mirko Heinold. “Programming deter-
ministice reactive systems with Synchronous Java (invited paper)”. In: Proceedings of the
9th Workshop on Software Technologies for Future Embedded and Ubiquitous Systems (SEUS
2013). IEEE Proceedings. Paderborn, Germany, 17/18 6 2013.

[Pas17] Clément Pascutto. Mixing programming paradigms in synchronous languages – a compilation
from lustre to sccharts. Internship Report. July 2017.

[PTH06] Steffen Prochnow, Claus Traulsen, and Reinhard von Hanxleden. “Synthesizing Safe
State Machines from Esterel”. In: Proceedings of ACM SIGPLAN/SIGBED Conference on
Languages, Compilers, and Tools for Embedded Systems (LCTES ’06). Ottawa, Canada, June
2006.

[Ray08] Pascal Raymond. “Synchronous program verification with Lustre/Lesar”. In: Modeling
and Verification of Real-Time Systems (2008), p. 7.

[Ren18] Niklas Rentz. “Moving Transient Views from Eclipse to Web Technologies”. https://

rtsys.informatik.uni-kiel.de/~biblio/downloads/theses/nir-mt.pdf. Master thesis. Kiel University,
Department of Computer Science, Nov. 2018.

[Sch16] Alexander Schulz-Rosengarten. “Strict sequential constructiveness”. http://rtsys.informatik.
uni-kiel.de/~biblio/downloads/theses/als-mt.pdf. Master thesis. Kiel University, Department of
Computer Science, Sept. 2016.

[SLH16] Steven Smyth, Stephan Lenga, and Reinhard von Hanxleden. “Model extraction for
legacy C programs with SCCharts”. In: Proceedings of the 7th International Symposium on
Leveraging Applications of Formal Methods, Verification and Validation (ISoLA ’16), Doctoral
Symposium. Vol. 74. Electronic Communications of the EASST. With accompanying poster.
Corfu, Greece, Oct. 2016.

[SMR+17] Steven Smyth, Christian Motika, Karsten Rathlev, Reinhard von Hanxleden, and Michael
Mendler. “SCEst: Sequentially Constructive Esterel”. In: ACM Transactions on Embedded
Computing Systems (TECS)—Special Issue on MEMOCODE 2015 17.2 (Dec. 2017), 33:1–33:26.
issn: 1539-9087.

[SSH12] Christian Schneider, Miro Spönemann, and Reinhard von Hanxleden. “Transient view
generation in Eclipse”. In: Proceedings of the First Workshop on Academics Modeling with
Eclipse. Kgs. Lyngby, Denmark, July 2012.

[SSH18] Steven Smyth, Alexander Schulz-Rosengarten, and Reinhard von Hanxleden. Watch your
compiler work — Compiler models and environments. Technical Report 1806. ISSN 2192-6247.
Christian-Albrechts-Universität zu Kiel, Department of Computer Science, July 2018.

[Sta19] Andreas Stange. “Model checking SCCharts”. Master thesis. Kiel University, Department
of Computer Science, May 2019.

83

https://rtsys.informatik.uni-kiel.de/~biblio/downloads/theses/nir-mt.pdf
https://rtsys.informatik.uni-kiel.de/~biblio/downloads/theses/nir-mt.pdf
http://rtsys.informatik.uni-kiel.de/~biblio/downloads/theses/als-mt.pdf
http://rtsys.informatik.uni-kiel.de/~biblio/downloads/theses/als-mt.pdf
http://rtsys.informatik.uni-kiel.de/~biblio/downloads/papers/isola16-poster.pdf

	Introduction
	Synchronous Languages
	Lustre and SCADE
	SCCharts and KIELER
	Problem Statement
	Outline

	Related Work
	Dataflow Languages
	Transient Views
	Graphical Dataflow
	SCADE Suite
	Ptolemy II, Simulink and LabView

	Diagram and Code Synthesis from Models
	Visual Paradigm
	Safe State Machines to Esterel
	Other Syntheses and Transformations

	Preliminaries
	Lustre
	Operators
	Node References
	State Extension

	SCCharts
	Controlflow
	Dataflow
	Semantics of SCCharts Dataflow

	Used Technology
	SCADE Suite
	Lustre V6 Compiler
	Eclipse
	EMF
	Xtext
	KIELER

	Concept
	SCADE vs. SCCharts
	Sequentially Constructive Extension of Lustre
	Transformation Objective
	Visualization

	Transformation
	Constants
	Node Declarations
	Node Behavior
	Handling Clocks

	Sequentially Constructive Dataflow Synthesis
	Memory Operator
	Incarnation for Variable Values
	Conclusion

	Implementation
	Lustre Grammar
	Validator
	ScopeProvider

	Lustre to SCCharts Transformation
	Assertions in SCCharts
	Revised: Lustre to SCCharts Controlflow

	Lustre Simulation
	Lustre V6 Simulation Compile Chain
	Lustre to SCCharts to C Simulation Compile Chain

	Automatic Tests
	Parser Test
	Transformation Test

	Evaluation
	Automatic Behavior Tests
	Models Repository
	Simulation Tests

	SCADE Models
	Limitations

	Conclusion
	Summary
	Future Work
	Lustre Feature Extensions
	Transformation SCCharts to Lustre
	Improve Lustre to SCCharts Controlflow
	Sequential Variable Access Visualization
	Optimize Usage of Pre

	Acronyms
	Bibliography

