CHRISTIAN-ALBRECHTS-UNIVERSITAT zZU KIEL

Diploma Thesis

Esterel Compiler for a Synchronous
Reactive Processor

Marian Boldt
2007-12-18
Department of Computer Science

Real-Time and Embedded Systems Group

Advised by:
Prof. Dr. Reinhard von Hanxleden
Dipl.-Inf. Claus Traulsen

ii

Eidesstattliche Erklarung

Hiermit erklare ich an Eides statt, dass ich die vorliegende Arbeit selbststéndig
verfasst und keine anderen als die angegebenen Hilfsmittel verwendet habe.

Kiel,

v

Abstract

The synchronous language Esterel is well-suited for programming control-dominated
reactive systems. It provides non-traditional control structures, in particular con-
currency and various forms of preemption, which allow to concisely express reactive
behavior. As these control structures cannot be mapped easily onto traditional, se-
quential processors, an alternative approach that has emerged recently makes use of
special-purpose reactive processors.

The Kiel Esterel Processor (KEP) is a synchronous reactive processor. It sup-
ports exception handling and provides context-dependent preemption handling in-
structions.

This thesis presents a compiler from Esterel to KEP assembler (strl2kasm). The
translation of most Esterel statements into KEP assembler is straightforward, espe-
cially preemption constructs can be mapped directly. However, it is not trivial to
implement the concurrency of Esterel. Concurrency is mapped to multiple threads,
yet the compiler must ensure that all data and control dependencies are fulfilled. A
priority assignment approach is presented that makes use of an intermediate graph
structure, namely the Concurrent KEP Assembler Graph (CKAG), that is used to
represent the control flow behavior of the KEP assembler program. It is also used
to compute and store the concurrent program dependencies that are needed for the
priority assignment. The complexity of the assignment algorithm for most programs
is linear in the program size. Unlike earlier Esterel compilation schemes, this ap-
proach avoids unnecessary context switches by considering actual execution state at
run time for each thread. Furthermore, it avoids code replication present in other
approaches by implementing consequently the Write Things Once (WTO) principle.

vi

Contents

(L _Introductionl

2 Basics and Related Work

2.1 The Esterel Language|
[2.2 The Kiel Esterel Processor (KEP)[.

[3 Preprocessing: Esterel Dismantling]
[3.1 Module/Run Dismantling]
[3.2 Dismantling of Temporal and Finite Loops|. .
[3.3 Priority Dismantlingl
3.4 Simplification of Complex Signal Expressions|
13.4.1 Case Expressions|
[3.4.2 Boolean Signal Expressions|
{4 The Concurrent KEP Assembler Graph (CKAG)
4.1 Nodes and Edges|
4.2 KBEP Thread-Id Treel
4.3 Symbol Scopes|
[5 Constructing the CKAG|
b.1 Compiling Complex Statements|
5.2 Handling Expressions|.
b.2.1 Compiling Signal Expressions|
b.2.2 Compiling Data Expressions|.
|6 Priority Assighment|
6.1 Signal Dependencies|
6.2 Priority Constraints|
6.3 Assignment Algorithm|
[6.4 Realizing the Priority Assignment|.
{7 Compiler Optimizations|

(7.2 KEP Collapsing|.
7.3 Priority Assignment Modification|

7.4 Minimizing Dependency Count|
[7.5 'Thread-Id Value Assignment|.

(@)

15
15
17
17
21
25
26

27
28
33
38

41
44
47
48
o1

53
95
o8
62
63

65
65
66
69
69
70

vil

Contents

[7.5.1 Thread-Id Value Assignment Algorithm| 75

[7.5.2 Weighted Propagated Thread Dependencies| 78

[(53 Thread-Id Reusel 80

[8 Experimental Results| 83
[9 Implementation| 87
9.1 Compiler Modules| 87
9.2 Data Structures and their Visitor Classes| 90
(10 Conclusions and Further Work| 95
99
103

viii

List of Figures

P2

Abort Kernel Statement Representationl

2.3 The Esterel ABRO Example]

2.4 The Kiel Esterel Processorl

PG

KEP Instruction Set: Intertace and Computational Expressions| . . .

3.1 Dismantling ot Esterel Statements: Temporal and Finite Loops| . . .
[3.2 Priority Dismantling Example]
[3.3 The Edwards Example (shortened)|
3.4 Dismantling of the ABRO example|
13.5 Dismantling of Boolean Operations in Abort Statements|
[3.6 Dismantling of Case Statements|.
4.1 Nodes and Edges of the Concurrent KEP Assembler Graph (CKAG)|

4.3 Name Scopes of Variable Symbols|.
b.1 Building the CKAG|
b.2 Building Exit Preemption Successors of Concurrent Trap Bodies|

b.3 Compiling Boolean Signal Expressions ot Conditionals|

6.1 Signal Dependencies|, .
6.2 Priority Assignment Algorithm|
[6.3 Priority Instruction Insertion Algorithm|
6.4 Priority Assignment Examplel
[7.1 KEP Collapsing|. 0.
7.2 Collapsing the ABRO Examplef
7.3 Thread-Id Optimization Example|
7.4 Thread-Id Optimization Algorithm|
[7.5 Propagated Thread Dependency Optimization Example]
7.6 Cluster Assignment|.
(7.7 'Thread-Id Reuse Algorithm|
8.1 KEFP Fvaluation Platforml

O© N 93

10
13

16
18
19
22
23
24

28
36
39

43

48
49

55
60
60
61

67
68
71
73
73
75
79

83

X

List of Figures

9.1 Compiler Overview| e 88
9.2 Compiler Structure] o 88
9.3 CKAG Dot Representation| 91
A1l CKAGoftheTeintl 104
[A2 Thread-Id Tree of Tcintl 105
[A.3 Optimized Thread-Id Tree of Tcint| 105
A4 CKAG of the Mca200l 106
[A.5 Optimized Thread-Id Tree of Tcint| 107

1 Introduction

Embedded systems get more and more popular and today appear in most electrical
devices. Thus, it has become an important task to create reliable software for these
systems. Since their control flow is often non-standard, languages and processors
were designed to implement their behavior explicitly. The properties of such systems
and their differences to common applications are now discussed. Therefore, systems
in general are considered, which can be divided into three main categories [5]:

e Transformational Systems: Computation of an output result from a given in-
put argument, e.g., numerical computations or interpreter/compiler. These
systems are also denoted as standard control flow applications.

e Interactive Systems: The environmental interaction is triggered by the system
itself, i. e., the response time affects not the result, e. g., databases and operat-
ing systems.

e Reactive Systems: These react continuously to inputs from the environment by
generating corresponding outputs timely. The result depends on the response
time.

Most systems and their programs consist of sub-systems and program parts that
belong to different categories. Many embedded systems belong to the class of reactive
systems. A further definition for reactive systems is given by Edwards et al. [1§]:

e Criticality: They are highly critical, e. g., time-critical, safety-critical.

e Parallelism: Distributed components operate often in parallel to achieve the
desired behavior.

e Determinism: This is obviously desired for critical systems.

To ensure short response times in time-critical systems, it is recommended to support
preemptive control flow.

The implementation of reactive systems with all the above requirements is no
easy task, because the programming paradigms of standard programming languages,
like C/C++, are designed to address standard control flow, applicable to implement
transformational systems. In particular, a timing model is not a standard language
construct and therefore, it has to be implemented by hand. This is a significant
obstacle for the implementation of time-critical systems. This leads to a higher
complexity on the implementation side, which makes it more difficult. Concurrency

1 Introduction

is as well hard to express, it is often implemented in a non-deterministic or non-
efficient way.

To address these difficulties, the reactive and synchronous languages, like Sig-
nal [25], Lustre [26] and Esterel [9], [7], have been developed. They are designed
to express reactive control directly in its syntax. These provide a discrete and ab-
stract time model that orders the execution into a chain of ticks. The execution at
these ticks is assumed to be instantaneous [I0]. Here we consider the synchronous
language Esterel, that is both parallel and deterministic. It has a formal mathemat-
ical semantics that imposes a strong deterministic program behavior and allows the
programmers to develop critical software faster and better.

There exist different strategies to implement an Esterel program. The hardware
approach generates combinational circuits from Esterel, e. g., expressed in the hard-
ware description languages VHDL or Verilog [4]. The implementation results in an
efficient implementation, but is not flexible because a change in the Esterel source
requires a complete re-synthesis. The software approach translates Esterel to a non-
synchronous language like C to be executed on standard COTS hardware [10, [16].
This solution is flexible, but the generated code might be slow because standard
hardware is not designed to match reactive control flow. Both principles can be
combined to a hybrid approach—the hardware-software co-design [3].

Another alternative for synthesizing Esterel has emerged, the reactive processing
approach. The Esterel program is running on a processor, here the Kiel Esterel
Processor (KEP) [27], that has been developed specifically for reactive systems. The
instruction set of these reactive processors closely resembles the constructs found in
Esterel, such as waiting for occurrence of a signal or abortion. Reactive processors
provide direct hardware support for reactive control flow, which keeps executables
fast and compact and results in lower power consumption compared to traditional
architectures.

Apart from efficiency and determinism concerns, another advantage of reactive pro-
cessors is that due to their comparatively simple structure, i. e., no caches and no pipe
lining, and their direct implementation of reactive control flow constructs, it becomes
feasible to precisely characterize their timing behavior [39]. In conjunction with the
synchronous model of computation, which discretizes time into logical ticks, it is thus
possible to derive exact, tight bounds on its Worst Case Reaction Time (WCRT) [11],
which tells how much time it takes the system to react to the environment. This
is important for time-critical reactive systems. The KEP is equipped with a Tick
Manager that can provide a constant logical tick rate and also detects internal tim-
ing overruns. This can serve to detect hardware failures, reduce jitter, and provides
another safeguard—in addition to static analysis—that real-time deadlines are met.

This thesis presents the Esterel to KEP assembler (strl2kasm) compiler. The
strl2kasm bridges the gap between Esterel and the KEP assembler. This makes it
possible to write programs in Esterel and execute them on the KEP. It is also used
for a variant of the HW/SW co-design approach that uses the KEP [22] 21], where
the software part is KEP assembler generated by the strl2kasm. The compiler is em-
bedded within the Columbia Esterel Compiler (CEC) compiler [I5] and uses the CEC

as front-end to parse Esterel. This is easily possible due to the modular architecture
of the CEC. The CEC uses an intermediate data structure, the GRaph Code (GRC),
to split the Esterel statements into their basic parts using common language con-
structs. The strl2kasm uses its own representation, the Concurrent KEP Assem-
bler Graph (CKAG) to express the control flow of KEP assembler instructions. This
different internal intermediate data structures is needed due to the different compi-
lation targets. The CEC generates common soft- and hardware code, whereas the
strl2kasm match the reactive parts of Esterel directly onto the KEP assembler. This
is possible because the KEP Instruction Set Architecture (ISA) closely resembles the
Esterel language, i. e., many Esterel statements can be translated straightforward to
the KEP ISA.

A compilation approach for sequential Esterel programs and its WCRT were pre-
sented [29] that uses the KEP Assembler Graph (KAG), a forerunner of the CKAG,
that supported only sequential Esterel programs. The strl2kasm now supports con-
current Esterel programs by using the multi-threaded features of the KEP, making
further compilation steps necessary, in particular the priority assignment.

The KEP supports concurrency by implementing a priority based multi-threading
concept. The threads are created by so called PAR instructions that define which
instructions belong to the thread in conjunction with the initial thread priority.
The PAR instructions match the Esterel concurrency operator, where the concurrent
Esterel bodies correspond to the instructions of a thread. Due to the semantics
of Esterel, the thread instructions are not independent from each other and have
to be executed in some order. E.g., an EMIT S instruction is executed before an
according PRESENT S. The execution order is influenced by the threads priorities.
The instructions of the thread with the highest priority are executed. Therefore the
KEP ISA provides the PRIO instructions. These have an integer argument, a priority,
to that its thread is changed to within the KEP scheduling.

The main purpose for the strl2kasm is to set these priorities in a way that the
instructions are always executed in the right order. Note that the ordering has to be
ensured for all possible signal statuses from the input side. Therefore the strl2kasm
compiler can set the initial priorities in the PAR instructions as well as insert PRIO
instructions. This goal is achieved by the earlier mentioned priority assignment. Its
basic idea is to assign each instruction a priority by which the instruction has to be
executed, thereby a higher priority is assigned to an EMIT S than to an according
PRESENT S. This is called a dependency constraint, any such must be fulfilled. Other
constraints belong to the normal control flow, which induces that thread priorities
can never grow instantaneously, because an instantaneous priority increase does not
guarantee that a thread with a higher priority has not already been executed. The
fulfillment of all constraints is the priority assignment. The priority assignment
computation is based on a Depth First Search (DFS) algorithm that traverses only
the instantaneously reachable successors of an instruction. After the assignment,
the threads are initialized accordingly, and wherever the assigned priority between
instructions differ, a PRIO instruction is inserted.

1 Introduction

The strl2kasm supports several optimization techniques. Some are common with
other compilers like dead code elimination and constant propagation. Other tar-
get the KEP scheduling principle to solve dependency constraints with appropriate
thread identifiers when possible.

The strl2kasm generates efficient assembler code by making use of the KEP schedul-
ing principles and the optimizations resulting from these.

In addition to this introduction chapter, this thesis is organized as follows:

o Chapter [2] describes the synchronous language Esterel and its compilation, as
well as the KEP and its instruction set architecture.

e In Chapter [3|the Esterel dismantling is presented. This is a pre-processing step
that reduces the amount of Esterel syntax without weakening the expressive-
ness of Esterel.

e Chapter [4] introduces the CKAG, an intermediate graph structure that is
needed during the compilation.

e The creation of the CKAG is described in Chapter [5] This is the first main
compilation step.

e The Esterel concurrency is implemented by the priority assignment explained
in Chapter [6] If necessary, PRIO instructions are inserted.

e Chapter [7] presents several compiler optimizations that are implemented in the
strl2kasm.

e The strl2kasm is discussed and validated in Chapter [8| on the basis of the est-
bench, a set of standard Esterel programs.

e The strl2kasm implementation and usage is described in Chapter [9}

e The conclusions of this thesis are presented in Chapter [L0] along with possible
further work.

e The Appendix shows some bigger CKAG and thread-id tree examples.

Several aspects of the work documented in this thesis were already presented else-
where. A sequential version of the KEP and its WCRT, based on the KAG, were
presented at CASES’05 [29]. The priority assignment used by the strl2kasm was pre-
sented at ASPLOS’06 |28]. The strl2kasm was also used for an approach of HW /SW
co-design using the KEP [22]. The computation of the WCRT has also been im-
plemented in the strl2kasm as a student research project [II], and was presented at
SLA-++P’07 [12].

2 Basics and Related Work

The specifies of each compiler depend heavily on its source and target language.
For the Esterel to KEP assembler (strl2kasm) compiler presented here, this is the
synchronous language Esterel and the instruction set of the KEP. Before discussing
the design issues that depend on these languages, first, some general compiler im-
plementation topics are treated that affect several performance criteria, see Aho et
al. [1] for a detailed overview on compilers. Many of these regard both the compiler
implementation and the properties of the resulting target code.

e Compiler Speed: On the one side, the speed of the compilation process is im-
portant to generate code in an acceptable amount of time. Therefore the used
algorithms are of low complexity or at least have a linear runtime in practice.
On the other side, the speed of the target code is even more relevant. Since
many Esterel statements are compiled straightforward and efficiently to the
KEP assembler, this goal is achieved, see Chapter [§]

e Code Quality: The implementation is split into several modules to handle the
complexity of the problem. The implementation on the low level is made as ro-
bust and readable as possible. Regarding the target code, several optimization
techniques are applied to generate efficient code (see Chapter [7)).

e FError Diagnostics: The compiler itself is designed to document the whole com-
pilation process. This makes it easier to find bugs. The quality of the KEP
assembler programs is verified by their execution of testcase scenarios that are
generated from the according Esterel source (see Chapter. The output traces
are compared to the output of an Esterel reference implementation, in this case
EsterelStudio. A different output indicates an error.

e Portability: The portability criterion can be divided into retargetability and
rehostability. The retargetability is hard to achieve, because the KEP instruc-
tion set is focused on Esterel. However, the strl2kasm is constructed of several
modules, see Chapter [9] which allows a high flexibility. The strl2kasm is written
in C++, which is a standard and well established programming language with
existing compilers on several architectures. It uses only the standard library
and depends on software that is already available for several operating systems.
Therefore the rehostability should easily possible. Currently it is running under
the Linux operating system as well as Windows using Cygwin.

e Maintainability: The implementation language C++ is an object-oriented pro-
gramming language that allows easy inheritance and data hiding through class

2 Basics and Related Work

’ Esterel Source Description
H Sequence operator
[| Parallel operator
pause The control pauses and restarts
in the next instant.
emit S Signal S is emitted and becomes
present in the current instant.
present S then If signal S is present the then
p body p is executed otherwise the
else else body q.
q
end present
loop The body p is infinitely often re-
p peated if not stopped from an
end loop outer preemption. Therefore the
loop body p has to be non-
instantaneous.
suspend The body p is suspended when
p signal S occurs.
when S
nothing Empty statement
signal S in A new local signal S is defined
p with program body p as scope.
end signal All global signals of name S are
overridden in p. Note that a
global S might be present, but
the new S will always be absent
until an emit S occurs inside p.
trap T in The exit T statement terminates,
- if called, the entire trap body.
exit T
end trap

Figure 2.1: Esterel Kernel Statements

data structures. Since the strl2kasm implementation is built of classes with well
defined interfaces, these can be replaced by sub-classes for further properties
as well as the internal rewrite of class methods.

Next the Esterel language and semantics as well as its compilation are described
in detail.

2.1 The Esterel Language

The Esterel programming language [9] belongs to the synchronous languages. Its ex-
ecution is divided into logical instants, also called ticks. The communication between
the environment, different programs and within or across threads occurs via signals.
Each Esterel program provides a signal interface of input and output signals; local

trap T in
[
suspend
p
when S;
exit T

when S

abort]

loop
pause;

~Lker

exit T

end loop

]

end trap

present S then

end present

(a) abort in kernel statements

weak abort

P
when S

2.1 The Esterel Language

trap T in
[
p;
exit T
I
loop
pause;
present S then
exit T
end present
end loop

]

end trap

~ker

(b) weak abort in kernel statements

Figure 2.2: Abort Kernel Statement Representation

module abro:

input A,B,R;

output O;

loop
abort

[

await A

I
await B
I
emit O;
halt
when R
end loop

end module

oW >

A
In: B R

INPUT A,B,R
OUTPUT O

[LO1] AO:

[L02] ABORT RAl
[L03] PAR 1,A2,1
[Lo4] PAR 1,A32
[LO5] PARE A4,1
[Lo6] A2:

[L07] AWAIT A
[LO8] A3:

[LO9] AWAIT B
[L10] A4:

[L11] JOIN

[L12] EMITO
[L13] HALT
[L14] AL:

[L15] GOTO A0

—

Out: 0 tick

(a) Esterel code and sam-
ple trace

(b) KEP assembler

% KEP Execution Trace
— Tick 1 —
% In:
% Out:
% RT: 7
ABORT |,
PAR,; PAR, PARE,;
AWAIT o AWAIT,
JOIN, 1,
— Tick 2 —
% In: AB
% Out: O
% RT: 5
AWAIT, o AWAIT,; JOIN,;;
EMIT,;, HALT 15
— Tick 3 —
% In: R
% Out:
% RT: 9
HALT,;; GOTO,;5 ABORT,
PAR,; PAR,, PARE,s
AWAIT,, AWAIT, ;
JOIN, 11
— Tick 4 —
% In: ABR
% Out:
% RT: 11
AWAIT, o AWAIT,; JOIN,;;
GOTO_ ;5 ABORT,
PAR,; PAR,, PARE,;
AWAIT, s AWAIT,; JOIN,;

(c) KEP trace

Figure 2.3: The Esterel ABRO example.

2 Basics and Related Work

signals are declared by the signal statement. At each tick, a signal status is either
present (emitted) or absent (not emitted); the status may not change within a tick.

Esterel statements are either instantaneous (also called transient), in which case
they do not consume logical time, which is referred to as synchrony hypothesis [10]);
or they are delayed, in which case they finish the execution for the current tick. Most
statements are transient including, for example, emit, loop, present, or the preemption
operators. Delayed statements include pause, (non-immediate) await, and every.

The Esterel parallelism is expressed by the concurrency operator, denoted by ||,
that groups statements in concurrently executed threads. The parallel terminates
when all its branches have terminated. Wether concurrent threads are transient or
delayed depends on the thread bodies and the signal environment during execution.

Esterel offers two types of abort preemption constructs. An abortion kills its
body when an abortion trigger occurs. The strong abortion statement kills its body
immediately (at the beginning of a tick), while weak abortion lets its body receive
control for a last time (abortion at the end of the tick). A suspension freezes the
state of a body in each instant when the trigger event occurs.

Consider the standard ABRO example in Figure (a). It is an example that
is minimal by using all the Esterel’s reactive features. The program body consists
of a loop that encloses an abort over a parallel. The await statements are waiting
concurrently for signals A and B. Each await terminates when the specific signal
occur. If both signals A and B have occurred then the parallel terminates and the
output signal O is emitted. The signal R resets the loop body and this reactive
computation starts again.

Esterel also offers an exception handling mechanism via the trap/exit statements.
An exception is declared with a trap scope, and is thrown with an exit statement.
An exit T statement terminates immediately the corresponding trap T statement and
weakly aborts the trap body. However, there are complications when traps are nested
or when the trap scope includes concurrency. The following rules apply: if one thread
raises an exception and the corresponding trap scope includes multiple threads, then
all the threads are weakly aborted; if concurrent threads execute multiple exit state-
ments in the same tick, the outermost trap takes priority. The execution of multiple
exit statements belonging to the same trap is equivalent to a single exit statement.

All Esterel statements can be translated into a small set of kernel statements. In
Figure 2.} an overview of the Esterel kernel statements is given. These statements
have the full semantically expressiveness as Esterel and are minimal in this behavior.
This Esterel sub-set is used to define the semantics of Esterel [6].

The abort statements are not part of the kernel statements. They can be translated
to kernel statements as described in Figure 2.2 Their behavior is matched by a trap
containing a present test that is executed each instant concurrently to the abort body.
If the signal is present then the trap is terminated by an exit; the strong abort is
additionally enclosed by a suspend statement to match the immediate stop. However,
the number of kernel statements that is needed to represent the abort statements is
huge compared to one (abort). Therefore, to be efficient, the KEP ISA supports them
directly by the ABORT instruction.

2.1 The Esterel Language

Kiel Esterel Processor

Thread Block ‘
(<> Reactive ¢
OscClk —»| subPC > Block
Regi Thread

iy Controller

File ontro

| [

— 1 ’—1
¢ ﬁ Y Input/output
Reset —3» [I ‘_‘Signals
| Interface >
Tick) 2
Manager Decgder J_" ALU block
Controller MUX
" =

1 l \A] | 2%

Address Instruction g &

Multiplexer Fetch =2 e |

|
A v

< Instruction Memory > Tick, Tzi;:kWarn
InstrClk

Figure 2.4: The Kiel Esterel Processor

The KEP supports a superset of the kernel statements directly. However, there
remain other Esterel statements that are not handled directly, but have to be trans-
formed into equivalent statements that are supported. This is made as a pre-
processing step denoted as esterel dismantling (see Chapter |3)).

Due to the mixture of preemption and concurrency, it is not trivial to deter-
mine whether an Esterel program is correct. The usual criteria its constructive-
ness [5]. It can be determined by a translation to combinational circuits to perform
ternary logic [31] analysis on it. Here, we assume that the source programs are
acyclic and this implies that they are constructive. However, the strl2kasm does not
make a constructiveness check.

There exist multiple compilers to translate Esterel to VHDL and C. The compila-
tion to standard architectures relies either on the simulation of netlists, or a static
schedule is determined and the code is sequentialized accordingly. The Estudio im-
plementation as well as the Columbia Esterel Compiler (CEC) [I5] are such Esterel
compilers. They use an intermediate graph structure, the GRC [34], that splits the
Esterel statements into its basic parts. Due to the architecture of the KEP, this is
not done in the strl2kasm compilation. This is also the reason why we use a different
intermediate format, namely the CKAG that can represent the control flow of all
KEP instructions.

Next, the KEP and its Instruction Set Architecture (ISA) is introduced.

2 Basics and Related Work

Esterel Source

KEP Assembler

Notes

emit S [(val)]

EMIT S [, {#data|reg}]

Emit (valued) signal S.

present S then
P
else

q
end present

PRESENT S, elseAddr
P

GOTO endAddr
elseAddr:

Q

endAddr:

Jump to elseAddr if S is absent.
No GOTO instruction is inserted
when the else body is empty.

[weak] abort

p
when [immediate, n] S

[LOAD _COUNT,n]
[W]ABORT]I] S, endAddr
P

endAddr:

suspend

when [immediate, n] S

[LOAD _COUNT,n]
SUSPEND]I] S, endAddr

endAddr:

To delay a preemption for
n ticks is done by setting the
built-in variable COUNT.

trap T in startAddr: Exit from a trap,
.. o startAddr/exitAddr specifies
exit T EXIT exitAddr startAddr trap scope. Unlike GOTO,
.. e check for concurrent EXITs and

end trap exitAddr: terminate enclosing ||.

pause PAUSE Await for a signal. AWAIT

await [immediate, n] S | [LOAD _COUNT, n] TICK is equivalent to PAUSE.

AWAIT [I] S

sustain S [(val)]

SUSTAIN S [, (#val|reg)]

Sustain (valued) signal S.

halt HALT Halt the program.
nothing NOTHING No operation. Sometimes
needed to distinguish address
labels.
loop addr: Jump to addr.
The loop body has to be non-
end loop GOTO addr instantaneous.
PAR prioy, startAddry, idq For each thread, one PAR is
[needed to define the start ad-
p1 PAR prioy,, startAddr,, idy dress, thread id and initial pri-
1 PARE endAddr ority. The end of a thread is de-
. startAddr : fined by the start address of the
: Py next thread, except for the last
I startAddry: thread, whose end is defined via
Pn . PARE.
1 : Behind the endAddr label, the
startAddry: corresponding join node occurs,
Pn which is executed at the end of
endAddr: each instant the parallel is ac-
JOIN tive. A JOIN instruction is ex-
ecuted a second time when it is
part of a nested parallel.
PRIO prio The current thread priority is set

to prio. This instruction has no
direct Esterel counterpart.

Figure 2.5: Overview of the Esterel syntax and how these Esterel statements are
compiled to the KEP instruction set.

10

2.2 The Kiel Esterel Processor (KEP)

2.2 The Kiel Esterel Processor (KEP)

The Kiel Esterel Processor (KEP) [38] is a reactive processor. It was designed by
Xin Li [27], therefore we follow his description:

Neither traditional processors nor classical programming languages have struc-
tures or statements/instructions to handle corresponding Esterel statements effi-
ciently. Hence, the implementation of the Esterel semantics on commercial off-the-
shelf (COTS) processors is problematic since it must be simulated. Therefore, an
Esterel-based design proves its efficiency on model description and validation, but
can hardly enhance the implementation performance or reduce resource usage.

The KEP is designed to handle Esterel statements directly and efficiently, i.e.,
it is an Application Specific Instruction-set Processor (ASIP) that targets Esterel
programs. Notable features of the KEP include the following:

e The KEP is the first reactive processor which employs a multi-threaded ar-
chitecture for directly handling concurrency. This strategy uses resources effi-
ciently and easily scales up to very high degrees of concurrency.

e The KEP contains a full-custom reactive core, whose instruction set and data
path have been tailored exclusively for the processing of Esterel code. Hence,
all types of Esterel preemption, delays, and exceptions, can be handled by KEP
very efficiently.

e The KEP also includes an interface block for handling Esterel input, output and
local types of pure and valued signals. Furthermore, testing the presence and
values of signals across logical instants (corresponding to Esterel’s pre operator)
are also directly supported.

e Throughout the development of the KEP, scalability has been considered,
hence the allowed number of signals, the maximum thread number, the nesting
depth of preemption primitives, and other design parameters are fully config-
urable.

e Unlike other reactive processing approaches, the KEP ISA is complete in that
it allows a direct mapping of all Esterel statements onto KEP assembler. All
the Esterel kernel statements, including delay, preemption, concurrency and
exception handling, are implemented directly and semantically accurately by
the KEP, and they can be freely combined and nested as defined by the Esterel
semantics. However, it can also make unrefined processing approaches fairly
costly. The KEP ISA therefore not only supports common Esterel statements
directly, but also takes into consideration the statement context. Providing
such a refined ISA further minimizes hardware usage while preserving the gen-
erality of the language.

Advantages of the KEP compared with traditional processors include:

11

2 Basics and Related Work

Performance As the instruction set and data path have been developed specifically
for Esterel execution, the Esterel module can be executed fairly fast on KEP.
This benefits two key aspects of system performance, i. e., the Worst Case Re-
action Time (WCRT) and Average Case Reaction Time (ACRT).

Memory Because most typical Esterel statements can be expressed directly with
just a single KEP instruction, an Esterel program executed on the KEP has
very low instruction and data memory usage.

Power Usage For controller programming, the main goal of Esterel, the control
signals tend to be more often absent than present [7]. Due to the architecture
of the KEP, very few instruction cycles are needed for executing a blank event,
which corresponds to the condition of all signals being absent.

Logic Area The KEP offers a novel light-weight thread model, i. e., the multi-threaded
architecture, to implement Esterel concurrency efficiently. This characteristic
significantly reduces its logic resource usage for implementing a practical (in-
dustry scale) Esterel module.

Predictability The KEP is not designed to optimize (average) performance for gen-
eral purpose computations, and hence does not have a hierarchy of caches,
pipelines, branch predictors, etc. This leads to a simpler design and execution
behavior and further implies that control-flow is preserved while compiling Es-
terel into machine code, and that the execution platform has a very predictable
timing behavior.

In summary, the KEP is an efficient reactive processor for handing practical Esterel
modules, and appears to be very competitive with other implementations.

Figures 2.5 and [2.0] give an overview over the KEP ISA. The KEP ISA resembles
the Esterel syntax, therefore many Esterel statements are transformed straightfor-
ward to their KEP counterparts. Nevertheless, not all Esterel statements are directly
supported within the KEP syntax. Therefore, the next chapter describes how these
are handled.

12

Esterel Source

‘ KEP Assembler

Notes

input / [: type]
output O [: type]

INPUT[V] /
OUTPUT[V] O

type € {integer, boolean}
I/O-statements are part of the
interface: no instruction cycles
are needed

var x : type in

VAR X

type € {integer, boolean}

The VAR instructions are also
part of the interface, even if the
Esterel var can occur anywhere.
Temporary registers needed for
computations are also declared
by VAR.

signal S in ...end

SIGNAL S

Initialize a local signal S.

sigdecl S := val : type

SETV S, (#val | reg)

The signal value of S is set
(sigdecl € {input,output,signal}).

x:=x4+1 ADD X,#1 Other supported register opera-
x:=x-1 SUB X,#1 tions are ORR,ANDR,XORR.
X = x*2 MUL X,#2
if x > y then CMP XY Jump to elseAddr if the JW com-
p JW G, elseAddr pare for G fails. No GOTO
else P statement when the else body is
q GOTO endAddr empty. Other compare opera-
end if elseAddr: tions are GE,L,LE,EE,NE match-
Q ing greater equal, lower (equal),
endAddr: equal and unequal.
x := £(5,y) LOAD TMPO,#5 The arguments are loaded to

LOAD _TMP1Y
CALL F
LOAD X, TMPO

F:

function interface registers -
TMPi, as after the CALL the re-
sult. To address label F the func-

tion body of F' is compiled.

RETURN

CLRC Clear the carry bit.

SETC Set the carry bit to ’1’.

SR[C] Shift right. Use also the carry bit
by SRC.

SL[C] Shift left.

NOTR Bit inversion.

Figure 2.6: KEP Instruction Set: Interface and Computational Expressions

2.2 The Kiel Esterel Processor (KEP)

13

2 Basics and Related Work

14

3 Preprocessing: Esterel Dismantling

This chapter describes an Esterel to Esterel transformation, called Esterel disman-
tling, which is very similar to the transformation of Esterel statements to kernel
statements in the Esterel Primer [7]. The Esterel programs p are translated to se-
mantically equivalent Esterel programs p’, whereby p’ is part of a syntactical subset
of Esterel:

p ~dis P whereby [p] = [p'].

This subset has the same expressiveness as Esterel, but uses less and simpler state-
ments. Although many statements are dismantled into their kernel statements, the
strl2kasm dismantles to a Esterel subset that is a superset of the Esterel kernel state-
ments, because the KEP assembler syntax directly supports some non kernel state-
ments like abort.

This transformation allows the integration of Esterel statements that are not di-
rectly supported by the KEP, like the every statement or complex variations of the
await, and reduces hereby the amount of syntactical constructs that have to be han-
dled by the compiler in later compilation steps.

The dismantling technique makes the strl2kasm flexible in the use of the input Es-
terel syntax, it obtains the downward compatibility of older Esterel programs with
outdated syntax like the do watching statement, which is replaced by an abort as
described in the Esterel Language Primer [7]. It might provide also the upward com-
patibility to future syntax extensions, provided that the CEC parser is also updated
and an appropriate Esterel translation exists, so that the following compilation steps
are not affected. However, possible new language constructs that expand the expres-
siveness of Esterel cannot be handled by dismantling and therefore would effect all
compilation steps.

Note that the dismantling is a recursive process, on the one hand the bodies of
complex statements are also dismantled, on the other hand some dismantled state-
ments might be dismantled again, until they reach an atomic statement level.

3.1 Module/Run Dismantling

Esterel programs consists of modules. A module can be instantiated within another
module by using the run statement. Recursive or mutually recursive module instan-
tiation is forbidden [7] so it is possible to replace each run statement by its module
body to get a program with only one module, the main module. This module ex-
panding technique is implemented within the CEC [I5] and the strl2kasm will make
use of it as the first action after parsing.

15

3 Preprocessing: Esterel Dismantling

loop
loop
loop do ab:.rt
P ~> di p N ;
eachs| “7| uptos " wl:lear:tS
end loop end loop
(a) loop each dismantling
dOp abort
watching S p
timeout ~>qis | when S do
q q
end timeout end abort

(c) dismantling do watching

do

p
upto S

~dis

abort

p;
halt
when S

(e) dismantling do up to

every S do

P ~dis
end every

await S;

await S;
loop

each S

loop
abort
~dis E; It
a
when S

end loop

(b) every dismantling

every immediate S do

p
end every

~dis

await immediate S;
loop
abort
P;
halt
when S
end loop

(d) every immediate dismantling

var R COUNT : integer in

repeat n times

P
end repeat

~dis

R COUNT :=n;
trap REPEAT in
loop
if (R COUNT < 0) then
exit REPEAT
end if;

°H
R COUNT := R COUNT-1
end loop
end trap
end var

(f) repeat dismantling

Figure 3.1: The dismantling in (c) and (e) describes how the outdated statements do
watching and do up to are handled respectively. The other figures describe
the dismantling of the temporal loops loop each and every and the finite
loop repeat. Note that the signal expression in loop each has to be non-
immediate. All these Esterel loop variants are described in the Esterel
Primer [7].

16

3.2 Dismantling of Temporal and Finite Loops

Note that a module that is not instantiated by a run statement will not be ex-
panded. So it is possible in a program of multiple modules that there are still
multiple modules even though the module expanding is performed, in such a case
the unused modules will be ignored. Nevertheless the following compilation steps of
the strl2kasm expect a single module program.

3.2 Dismantling of Temporal and Finite Loops

The loop each statement is a temporal loop, its body is started initially and restarts
when the loop each signal expression occurs. After the termination of its body the loop
halts waiting for the signal expression. This behavior is matched by a combination
of a simple loop and a do up to over the loop each body, see Figure (c).

The delay cannot be immediate, otherwise the abort would be instantaneous and
infinitely often restarted by the loop. Such an instantaneous loop is not allowed in
Esterel. The strl2kasm throws an error message when the loop each signal expression
has the immediate attribute.

As described in the Primer [7], the every statement is the second type of temporal
loop. The difference to the loop each is that its signal expression is initially awaited
before its body is started.

It is also possible that the delay is immediate, in that case the await placed in front
is also immediate, but for the following loop each the immediate has to be removed,
otherwise the loop body would be instantaneous, as described before.

Unlike loop and temporal loops the repeat statement executes its body only for
a finite number of times, but the body nevertheless has to be non-instantaneous.
How often the repeat body is executed is specified by an integer expression. If this
expression is lower or equal to zero, the repeat statement terminates instantaneously.
Determining the positiveness is in general hard to compute and might be statically
not possible, so it is not allowed to have the repeat as loop body.

The basic idea of the repeat dismantling is to put the repeat body into a loop. To
make this possible the repeat body has to be non-instantaneous. A counter register of
name R_COUNT is initialized before the loop starts. At the beginning of the loop it
is tested whether the count is lower or equal to zero and if true, the loop terminates.
This is realized by putting the loop within a simple trap. At the end of the loop the
counter is incremented by one. In Figure (f) the repeat dismantling is described.
The dismantling of nested repeat statements uses variables R_COUNT i with ¢ € Ny
to distinguish the different variable counts.

3.3 Priority Dismantling
Under some circumstances it is necessary to dismantle the Esterel statements halt

and await, even though they are directly supported by the KEP. Due to the KEP
concurrency model, which uses multi-threading via priorities to ensure the correct

17

3 Preprocessing: Esterel Dismantling

3

‘A loop 5

o | o |2
end loop [(P2]..] [(PyGoOTOAO]

(a) assignment (b) dismantling halt (c) scheduling possible via PRIO instructions
cannot be realized

P2 ..

Figure 3.2: This example explains why the priority dismantling is necessary to ensure
the KEP multi-threading via priorities. In (a) the HALT instruction has
a priority assignment of [P1/2], which means that it should have priority
of one and in the next instant its priority must be increased to two, but
only if signal A occurs, otherwise its priority has to be one again. This
cannot be realized via PRIO instructions, as explained in the text. So we
dismantle the halt, see (b), and we can insert PRIO instructions to get the
correct behavior, see (c).

execution order according to the semantics of Esterel, the so called priority assign-
ment is performed, see Chapter [6] which tries to fulfill all signal dependencies. After
the assignment, appropriate PRIO instructions are inserted to realize the priority
assignment.

Not all statements are executed instantaneously, some might be active for several
instants. These statements are called delayed statements. During these instants,
such a statement might have different priorities, depending on the current signal
environment, but once assigned, the HALT and AWAIT would hold their priority for
all following instants. It is only possible to have two priorities for an instruction
at maximum, the first is for the current instant and the second, possibly higher
priority, if necessary, for all following instants. The priority assignment takes this
into account by assigning an additional priority for the next instant called prio next,
which becomes valid after the current instant is executed and the next one is started.
Only the PAUSE instruction allows to implement this behavior as explained in the
following. So the solution is to dismantle all delayed statements onto a level, where
the only delayed statements are PAUSE instructions.

Figure illustrates the problem. The priority assignment might have computed
for the delayed instruction HALT a priority of one and a next priority of two, denoted
by [P1/2]. The next value depends on the signal A: only when A occurs and the HALT
is aborted, the next instruction, which must have for some reason a priority of two,
is executed and so the HALT must have a priority of at least two. So the priorities

18

module Example:

input |;
output O;

signal A, R in
[

weak abort
sustain R

when immediate A;

emit O

Il
await R;
emit A

]

end signal

end module

(a) Esterel source

module: Example

PAR*

/A)
i
N

Jol

HALT

(b) priority cycle

3.3 Priority Dismantling

loop
emit R;
pause

end loop

(c) dismantling sustain

module: Example

PAR*

WABORTI A,A3

HALT

(d) no priority cycle

Figure 3.3: This example shows a priority cycle caused by a sustain statement. Note
that in (b) the AWAIT instruction is normally dismantled, but to make the
dependency cycle easier to illustrate, it is retained. This cycle is solved
by dismantling the sustain, so it possible to insert PRIO instructions in
between the writer and reader part to run them in different priorities.

19

3 Preprocessing: Esterel Dismantling

of the HALT should be always one, except the last instant, when it is aborted, but
this point of time might vary and depend on the signal content. Nevertheless, as
mentioned, the execution of the PRIO 2 before the HALT would result in a higher
priority of two for all the following instants, violating the assignment. If PRIO 2 is
not executed, the HALT will always have the priority of one, which also violates the
assignment. It is in general not possible to schedule a KEP assembler program with
non-PAUSE delayed instructions via PRIO instructions. By dismantling the halt to
its kernel statements (b), as described in the Esterel Primer [7], the resulting KEP
program can be scheduled. As seen in (c), the insertion of a PRIO 1 and PRIO 2
instruction can now ensure the desired behavior.

Note that if a delayed statement has to be executed after compiling with the same
priority for all instants, the dismantling is not necessary. This can be ensured for
statements that are part of the main thread. The strl2kasm uses an optimization
technique, called collapsing (see Section , to use yet again the HALT, AWAIT
and SUSTAIN instructions if possible. If no PRIO instructions were inserted within a
dismantled instruction, then this instruction runs always with the same priority and
the collapsing will undo the dismantling.

For the same reason as halt and await, the sustain has to be dismantled, because this
statement is also delayed and can be active for several instants, whose number may
vary. But there is yet another reason, why the sustain must be dismantled, namely
to eliminate potential dependency cycles. Even if the problem described before is
solved by enlarging the KEP assembler syntax to allow delayed statements to run in
different priorities without being dismantled, the sustain has still to be dismantled.
The SUSTAIN S instruction influences the status of signal S (is a writer of S) and
must be executed before instructions that depend on S’s status are executed, e. g.,
the PRESENT S instruction is a reader of S. In this behavior the SUSTAIN is a writer,
but it can also be a reader to another signal, when occurring within an according
strong ABORT scope to that signal, because of the delayed control flow. Being a
writer and a reader at the same time, whereby writers must have potentially high
and readers low priorities, can result in a dependency cycle. In Figure (b) the
SUSTAIN R instruction/node is a writer to the AWAIT R and a reader of the EMIT A,
because the SUSTAIN R occur in the scope of the WABORT A,A3. The writer-reader
relation is denoted by dotted lines in the graph. The priority of a writer has to be
greater than the of its reader, so the SUSTAIN R priority must be greater than the of
AWAIT R and on the other hand the priority of EMIT A has to be greater than the of
SUSTAIN R. Since priorities cannot increase instantaneously within a thread (see the
control flow constraints in Section , the following inequation has to be solved in
order to assign a schedule:

prio(SUSTAIN R) < prio(EMIT A) < prio(AWAIT R) < prio(SUSTAIN R).

Because prio(SUSTAIN R) £ prio(SUSTAIN R) holds true, it is not possible to solve
the inequation, a so called program cycle is found.

By dismantling the sustain statement, none of the resulting statements will be
reader and writer at the same time. The writing part corresponds to the EMIT

20

3.4 Simplification of Complex Signal Expressions

instruction and the reading part to the PAUSE. Within their execution order the
EMIT comes first, so it is possible to avoid the potentially dependency cycle, by
inserting PRIO instructions in between. The writer instruction can now run with
a greater priority than the reader instruction, which was not possible when these
instructions were bounded together within the SUSTAIN.

In the example in Figure (d) the resulting priority constraints become:
prio(PAUSE) < prio(EMIT A) < prio(AWAIT R) < prio(EMIT R).

This inequation can be solved, because prio(PAUSE) < prio(EMIT R) is possible and
is realized by a PRIO instruction, which lowers the priority. Note that the second
PRIO instruction, which increases the priority, takes effect in the next instant, where
the EMIT R instruction must have its higher priority again.

Another example of a writer-reader statement is the valued emit of a non-literal
value, because the value might be a reader, e. g., an emit S,?T statement is a writer
to S and a reader to T. The basic idea to solve this problem is to split the writing
and reading parts, as done in the sustain case. The writing part is the signal emission
and the reading part the assignment of the signal’s value, so the dismantled result
would look like emit S; “S := ?T". However such an Esterel statement, which assigns
a signal value without emitting this signal at the same time does not exist, at least
not in Esterel v5. But the KEP assembler instruction set has such an instruction,
the SETV instruction, so the separation of writer and reader is performed during the
compilation on the KEP level, see Section into EMIT S followed by SETV S,7T.

3.4 Simplification of Complex Signal Expressions

The Esterel signal expressions, which occur in present, await, abort and suspend state-
ments, can have several non-simple forms. In the following three different types of
non-simple expressions are presented.

The signal expressions of await, abort and suspend could be delayed by a preceding
positive integer expression, called the delay. The specific statement is delayed by
that factor, waiting that its signal expression is active accordingly often, before it
continues. Note that the simple case is equivalent to a delay of one, whereby a ’delay
of zero’ is called immediate and is inverse to a delay; such an immediate expressions
is not per se dismantled, because these are directly supported by the KEP assembler
instruction set. The present has no delayed expressions, due to the fact that it is
always executed instantaneously.

Another type of signal expression are the Boolean operations, which are part of
the first order predicate calculus, consisting of the binary and and or operations and
the unary not operation with signals as atomic expressions.

These kind of expressions can be combined, a short overview of the signal expres-

21

3 Preprocessing: Esterel Dismantling

module abro:

input A,B,R;
output O;

loop

[

await A

await B
I;
emit O;
each R

end module

(a) original
ABRO program

~dis

module abro:

input A B,R;
output O;

loop
abort

[

await A
Il
await B
I
emit O;
halt
when R
end loop

end module

(b) after disman-
tling loop each

~dis

module abro:

input A B,R;
output O;

loop
abort
[
abort
halt
when A
Il
abort
halt
when B
I
emit O;
loop
pause
end loop
when R
end loop

end module

(c) after disman-
tling the await and
halt statements

~dis

module abro:

input A,B,R;
output O;

loop
abort
[
abort
loop
pause
end loop
when A
I
abort
loop
pause
end loop
when B
I;
emit O;
loop
pause
end loop
when R
end loop

end module

(d) dismantling
completed

Figure 3.4: The dismantling of the ABRO example. First the loop each is disman-
tled, then the await statements and the first halt, after that the two halt
statements resulting from the await dismantling are again dismantled.
Then the dismantling is completed, because no more dismantling rules
are applicable.

22

3.4 Simplification of Complex Signal Expressions

signal SIG_ABORT in
abort

[

loop
present sig then

signal SIG_ABORT in
weak abort
[
loop
present sig then
emit SIG_ABORT

emit SIG_ ABORT end present;
abort = abort
end present; pause
P .| dis pause P . | dis end loop
when n sig end loop when immediate sig I
[l suspend
P p
] when SIG_ABORT
when n SIG_ABORT |
end signal when SIG_ABORT
end signal

(a) delayed abort signal expression
(b) immediate abort signal expression

Figure 3.5: The dismantling of Boolean Operations in abort signal expressions is
shown, first if the signal expression is delayed by integer n and second
when it is immediate.

sion grammar:

Si|S2| ... |A| B ...
S | not sig | (sig or sig) | (sig and sig)

atomic signals: S
Boolean operation: sig =

[delayed| signal expression: dsig = sig | n sig where n € N.

The next complex form of signal expression is the case expression, which are enu-
merations of signal expressions The signal expressions in turn are no case expressions,
but might be Boolean operations and/or delayed, if the relevant statement allow de-
lays. The cases are considered in the order they appear in the program. The present,
abort and await statements allow case expressions, the suspend does not.

Not all combinations are allowed in each Esterel statement, e.g., the present case
expression consists only of sig expression and not dsig, because it is always executed
instantaneously and therefore cannot be combined. On the other hand dsig expres-
sions are allowed in await case and abort case statements. For more details about the
Esterel grammar, especially about the Esterel signal expressions, see [9].

The signal delay is compiled into the KEPregister operation LOAD _COUNT,n to
initialize the KEPdelay count COUNT with the specific delay n, see Section
for further details. Case Expressions might contain an unlimited number of cases
and Boolean operations could be arbitrarily nested, therefore an assembler syntax of
fixed bit size cannot match such expressions in general.

The complex Esterel expressions are dismantled to appropriate statements with
atomic expressions, if necessary, as described in the following.

23

3 Preprocessing: Esterel Dismantling

trap AWAIT CASE in
trap AC; in

trap AC, in
trap AC,, in

% % immediate signal tests

present s;

exit ACJ'
end present;
abort
loop
abort abort await pause;
p p present s; then
when when s,, do case s; [do p;] exit ACy
case s; do p; ~> dis pn ~dis end present;
end abort case immediate s; [do pj] B
case s, do pj,, present s,, then
end abort when s; do end await exit AC,
p1 end present;
end abort end loop
end trap;
(a) dismantling abort case Pn
exit AWAIT CASE
end trap
Pn—1;

exit AWAIT CASE

end trap;

P1
end trap

(b) dismantling await case

present S; then

P1
else
"'eiiZZ S, do else
1 P1 present S,, then
’\/)dis Pn
case S,, do p,, else
else q
end present q
end present

end present

end present

(c) dismantling present case

Figure 3.6: The dismantling of Esterel statements with case expressions. (a): The
abort cases are nested and held the preemption order of the signal expres-
sions s;. (b): The await cases are tested each instant in a loop, which
exits according to nested traps. (¢): The present case results in the nesting
of several simple present statements, the if case is analog dismantled to
simple ifs.

24

3.4 Simplification of Complex Signal Expressions

3.4.1 Case Expressions

Case expressions occur in conditional statements, namely present and if, and in await
and abort constructs. In the following the dismantling of all case statements is de-
scribed in detail.

The present case is semantically equivalent to an else if like expression:

present ... else present ... else present ... end,

and is accordingly dismantled into nested non-case present statements, see Figure[3.6](c).

According to the Esterel semantics the present case expressions are tested in se-
quence from first to last as long as an expression is fulfilled, then the according
bodies are executed or the next statement in sequence to the present case if no body
exists. This behavior is matched by n statements for n cases, whereby each present
statement is the else body of the previous present statement, except for the first,
which has no predecessor. The last and most inner else body is the default body of
the present case statement, see Figure (c). If a one case of a present case expression
has no body, it is dismantled to a present-else statement with no then body, the else
body remains as previously explained.

The single case version of the present case is not dismantled, because it is equivalent
to the present ... then ... [else ...] end version of the present. So the dismantling takes only
place for the multiple cases. Note that the simple present statement is represented
in the Abstract Syntax Tree (AST), after being parsed, as a single case present case
statement. Therefore the dismantling process, which replaces a (multiple) present
case through several nested simple presents, will result in nested single case present
case statements.

The if case statement is very similar to the present case, they distinguish in the type
of conditional expression, the if case tests for a standard Boolean expression instead
of the Boolean signal expression as explained above. Apart from this, its dismantling
works the same way and needs no further explanation.

The await case statement waits simultaneously with all its signal expressions till
one occurs, then it stops and executes at least one do body. That one of the first
active signal expression is executed, if it has no do body, no do body is executed at
all for this await case. The dismantling will take this into account. The await case
could be dismantled to an abort case with a halt as body, but for performance issues,
it is separately dismantled.

The await case behavior is matched by a loop with a pause statement as body and
several signal testing via present statements to this loop, see Figure (b). The
loop is exited by several exit statements of related trap statements, which are placed
around the loop, one trap for each case. They are nested from outer to inner according
to their case sequence from first to last. Their symbol names are named with AC
followed by an integer for distinction. The case bodies are placed behind their specific
trap statements. An additional trap of name AWAIT CASE[1] is positioned around
the whole dismantle expression to exit the expression after the execution of a case
body has taken place. If no body is specified for a given case, no trap label is needed

25

3 Preprocessing: Esterel Dismantling

to jump for, the control flow can start directly at the next statement, so an exit
statement is created to the most outer trap label AWAIT CASE[] and no own trap
AC_j is created for it. So it does not matter whether the cases have do bodies or
not, this additional trap is always needed. The number of used traps statements is
bounded to be at most the number of cases plus one, if each case has a body, and to
be at least one if there are no case bodies at all.

The abort case prioritizes the various signal expressions according to their sequence
within its case expression. The nesting of abort also allows prioritizing of signal
expressions, the outer more an abort the higher the preemption. Thus the disman-
tling process converts the abort case into multiple nested abort statements, see Fig-

ure (a).

3.4.2 Boolean Signal Expressions

Boolean signal expressions occur in the signal reading statements: await, abort, sus-
pend and present. The Boolean signal expressions of the non-instantaneous statements
await, abort and suspend can also be delayed or immediate. The present is instanta-
neously executed and therefore has no delay. The KEP does not support Boolean
signal expressions directly in its instruction set architecture, so they have to be
simplified to simple atomic expressions.

The present statement cannot be dismantled in general without duplicating one
of its bodies, thus violating the Write Things Once (WTO) principle. The nesting
of a present-or expression leads to a duplication of the then body, the present-and to
a duplication of the else body. This may increase the code size exponentially for
accordingly nested Boolean signal expressions of the present. Therefore expressions
in present statements are handled later during the creation of the KEP assembler
instructions and not at the Esterel level (see Section and Figure .

The await statements that contain Boolean signal expression are handled the same
way as the simple await with atomic signal expressions, they are dismantled to an
abort statement of the same Boolean signal expression with a halt statement as body.
This is done both for the delayed or immediate expressions.

The dismantling of abort statements with Boolean signal expressions is split in
two cases, the non-zero and the zero delay case, both can be seen in Figure
In both cases a new local signal SIG ABORT is created to replace the original
signal expression sig of the abort. If sig occurs, signal SIG ABORT should be
present to abort the body p, this is realized by a parallel extension of p, where each
instant is tested, whether sig is present, and if present, signal SIG ABORT is
emitted. A delay n of sig is transferred to SIG ABORT without the need for
further modifications.

In case of an immediate sig, the abort is made weak to allow the immediate abortion
from within the (now) weak abort statement. The semantic of a weak abort recommends
that all instantaneously executable statements are executed, especially p, even if
SIG_ABORT is present, which would violate the former behavior of an strong abor-
tion. This problem is fixed by putting p into a suspend with trigger SIG ABORT.

26

4 The Concurrent KEP Assembler
Graph (CKAG)

During the compilation from Esterel to KEP assembler, an intermediate graph struc-
ture is used that represents the control flow of the resulting KEP assembler. This
structure, called the Concurrent KEP Assembler Graph (CKAG), is a directed graph
with KEP assembler instructions as nodes and several edge types to match the nor-
mal composition of instructions, denoted by control flow edges, as well as preemptive
control flow, denoted by preemption edges.

The graph structure is named concurrent, because it allows the representation of
concurrent control flow by using so called fork nodes. This is an advancement in com-
parison to its predecessor version, the KAG [29], which was designed for sequential
programs only. The CKAG additionally provides join nodes to join again the control
after being forked, whereby the fork nodes and join nodes represent the PAR/PARE
and JOIN instructions of the according KEP assembler program, respectively.

The CKAG is required to realize the priority assignment [28], needed to ensure the
parallel semantics of Esterel, as well as for the Worst Case Reaction Time (WCRT)
analysis [12]. The optimizations performed by the compiler like dead code elimination
and the instruction collapsing, (see Chapter 7)) are realized on the CKAG structure,
too. It would be possible to implement these computations directly on the KEP
assembler instructions, which are a list. However, it would be much less efficient to
find the label addresses of, e.g., GOTO, PRESENT and ABORT instructions, because
the next instruction in the control flow is in general not its successor in the instruction
list. This is even worse for the preemptive control flow. In the CKAG the control
flow successors are directly and efficiently accessible. Nevertheless the KEP assembler
instructions and its CKAG are closely related and a change in the CKAG implies a
change in the KEP assembler and vice versa. E.g., if a node in the CKAG is removed,
the according instruction has to be removed from the KEP instructions.

Each time PAR/PARE instructions are created the control flow is split into several
sub-threads. As this can happen recursively, the resulting thread structure might
be complex. To easily identify semantically dependent statements that might be
executed concurrently, the subthread hierarchy induced by the fork nodes is made
abstract as a tree structure (see Section [4.2). This structure can also be used to
optimize the use of the thread-id values defined by PAR (see Section .

Before describing the graph building process from Esterel source, the CKAG with
all related structures is defined and explained in detail. First are all node and edge
types of the CKAG presented, followed by the according thread-id tree and some
conditions about the scopes of all KEP signal, register and address names.

27

4 The Concurrent KEP Assembler Graph (CKAG)

EMITS @

\
lSUC_C suc_c suc_c %Jcc fuc_e
suc ¢ suc s suc w suc € \|

(a) transient (b) label (c) delay (d) fork (e) join

Figure 4.1: Nodes and edges of the Concurrent KEP Assembler Graph (CKAG).

We define the CKAG structure as a directed graph with nodes N and different
types of edges E and P:

Definition 4.1 (Concurrent KEP Assembler Graph (CKAG)). A CKAG C of a
KEP program p is given by

C=C(p)=(N,E,P)

with node set N, edge set E C N x N and preemption edges P. Fach preemption
edge is a tuple of preemption type k € K := {s,w, e} and signal symbol s € S, where
S is defined as the set of signal symbols. The preemption type indicates whether the
preemption results from strong abort, weak abort or an exit, and the signal symbol
by which signal the preemption s triggered.

P C Nx (K x8S)xN.

Note that an exit preemption never occurs for signals, but for trap labels, which
are handled like signals in the graph.

The CKAG represents the control flow of a KEP program, it is required to have a
control flow source node, from which the program starts. This node is called the root
of a CKAG and represents all INPUT/OUTPUT instructions and all other instructions
executed at program start, like the initialization of the valued signal _TICKLEN.

It is —at least initially— required that there is only one node without a parent,
the root node. In addition to this a CKAG should be coherent, excluding solitary
join nodes, which are still needed. If one of these two properties are not met, it can
be enforced by removing all nodes and edges that are not reachable from the root
node. Such a generated CKAG remains semantically equivalent, because the deleted
nodes corresponded to unreachable KEP instructions.

4.1 Nodes and Edges

The CKAG distinguishes transient nodes and label nodes, which represent instanta-
neous execution, delay nodes, which represent instructions that may hold for more
than one tick, and fork and join nodes, which represent concurrency (see Figure .
An overview about all CKAG node types and the according KEP instructions they
represent:

28

4.1 Nodes and Edges

Definition 4.2 (CKAG Nodes).

T': Transient Nodes. This includes EMIT, conditional PRESENT /JW, all variations
of ABORT, SUSPEND, and computational ADD, instructions, shown as a box.

L: Label Nodes are like transient nodes, except that they only hold address labels
and no real KEP instructions. they are displayed in an oval form.

D: Delay Nodes (octagons), which correspond to delayed KEP instructions (PAUSE,
AWAIT, HALT, SUSTAIN).

F: Fork Nodes (triangles), corresponding to PAR/PARE instructions. At least two
PAR instructions and always one PARE are associated with a fork node.

<

: Join Nodes (inverted triangles). They contain JOIN instructions only.
IN: The set of all nodes N is partitioned into the five different type of nodes:

N :=DUTULUFU.J.

Each fork node f has exactly one corresponding join node j and the other way
round, which can referred by f.join and j.fork respectively:

fjoin:=j and j.fork := f.

This property is ensured during the creation of each fork-join pair, see the parallel
creation Figure (e). A simple conclusion is that the sets of fork and join nodes
always have the same cardinality: |F| = |J|.

The KEP assembler instructions of each node n € N are referred by n.stmt re-
spective n.stmts to indicate that n contains multiple instructions. As convention
the KEP instructions are used to further specify the nodes beyond the node types,
e.g., is n called [weak| abort node or goto node, if n.stmt equals a [W]JABORT or
GOTO instruction respectively. The delay and label nodes are thereof not excluded:
a delay node d is called pause node if d.stmt = PAUSE and a label node [is named
trap label if the address [.stmt is an EXIT address.

Each abort and suspend node n, i.e., n.stmt = [L|T][W]ABORT][I]/SUSPENDII], de-
fines an instruction scope from n.stmt to an address label addr within the KEP pro-
gram. We define n.end € L as the label node containing the abort label addr, i.e.,
n.end.stmt = addr, and n.scope C N as the nodes containing all instructions of
the scope: n.scope := {n.stmt, ... n.end.stmt}.

For a (weak) abort node n and each node d € DNn.scope, there exists a preemption
edge from d to n.end, i.e., (d,n.end)(,/s,s), where S is the according abort signal
of n.stmt. The node n.end is called a preemption successor of d. The CKAG edge
sets F and P implicate this and other types of node successors as described in the
following.

29

4 The Concurrent KEP Assembler Graph (CKAG)

Definition 4.3 (Node Successors). Given a node n, we define n.suc. C N as the
set its of successors in E or the image of E under n, named control flow successors
of n:

n.suc, := E[n] = {m| (n,m) € E}.

The preemption successors as successors in P are analogously defined for all pre-
emption types k € {s,w, e}:

n.suck = Pn]gy == {meV |[Is€S:(n,m)qu € P}.
Furthermore all successors n.suc of n € N are defined by:
n.suc = FEln] U P[n].

Successors reached via preemption edges are n.suc, for strong aborts, n.suc,, for
weak aborts, and n.suc, for exit exceptions. These edges are represented as dashed
edges, in contrast to solid edges of the control flow successors, marked with small tail
labels s, w and e, respectively. See Figure for an overview about all edge types
respective successors. Note that according to the semantics of Esterel preemption
edges occur only from delay nodes, because a preemption either takes place at the
beginning or the end of an execution, when a pause is reached. In contrast, all
transient and label nodes have control flow successors only. Furthermore, the control
successors exclude those reached via a preemption (n.suc,, n.sucs), unless n is an
immediate strong abortion node, in which case n.end € n.suc,.

Given d € D, the weak abort successors d.suc,, and the exit successors d.suc. are
the nodes to which control can be transferred immediately, that is, when entering d
at the end of a tick, from d to via an abort or trap start node.

The strong abort successors d.sucs are the nodes to which control can be trans-
ferred after a delay, that is, when restarting d at the beginning of a tick, from d to
via an abort node. If d € D and d € n.scope for some strong abort node n, it is
n.end € d.sucs. Note that this is not a delayed abort in the sense that an abort
signal in one tick triggers the preemption in the next tick. Instead, this means that
first a delay has to elapse, and the abort signal must be present at the next tick
(relative to the tick when d is entered) for the preemption to take place.

For f € F, f.suc. includes the nodes corresponding to the beginnings of the forked
threads. If n is the last node of a concurrent thread, n.suc, might include the join
node for the corresponding JOIN instruction.

As in Esterel, where no instantaneous loops are allowed, we forbid the existence of
an instantaneous cycle in the CKAG. To determine whether Esterel statements are
instantaneously executed is explained in detail by Tardieu and de Simone [36]. They
also point out that an exact analysis of instantaneous reachability has NP complexity,
this holds true for the CKAG respective KEP, so we make an conservative approach
of a cycle. First the sequential case is defined:

30

4.1 Nodes and Edges

Definition 4.4 (Sequential Instantaneous Successors). Given a noden € N\(FUJ),
its instantaneous successors are defined by:

UG 7.8UC, :neT UL

RISt T sucy Un.suce 1 n € D

A node vector p = (po,...,pi—1),ni € N\ (FUJ),l € N is called sequential
instantaneous path of length I, if they form an instantaneous successor chain:

p sequential instantaneous path = Vp;, 1 =0,...,01—2: N1 € N;.SUCinst-

Note that transient nodes/label nodes have no preemption successors and its con-
trol flow successors are always instantaneous. The instantaneous successors of delay
nodes are never control flow successors, but all preemption successors (n.suc, U
n.suce C P[n]), as the preemption edges of types w and e are instantaneously exe-
cuted.

Given a sequential instantaneous path p, if p contain a node n more than once,
then p forms a sequential instantaneous cycle and is called itself (sequential) cycle.
Such a cycle can easily detected by a so called instantaneous DFS over the CKAG.
This is a DFS algorithm that uses only instantaneous successors for its traversal.
The algorithm starts its DFS at the root node and at all delay nodes, so are the
control flow successors of delay nodes not traversed until the DFS starts at them.
The WCRT analysis [12] is such an algorithm, which cannot be computed or would
be infinite, if an instantaneous cycle occur within the CKAG.

A non-trivial task of the CKAG structure is to properly define the different types
of possible control flow for non-sequential nodes, i.e., fork and join nodes, since it
depends on their sub-thread bodies, whether they are instantaneous or not, or both.
This applies also for their node successors, if a fork-join (f,j) is instantaneously
executed, then the nodes j.suc. are instantaneous successors of (f, j). Given a strong
abort node n, if (f,j) is part of the abort scope n.scope, all delay nodes d within the
(f,7) scope lead to an abortion of it. The according non-instantaneous successors
d.suc. of d are in consequence also non-instantaneous successors of (f, 7). The weak
abort case leads also to successors of a fork-join, but it might be again varies, whether
they are instantaneous or not.

The possible control flow successors of a KEP parallel construct respective their
fork and join nodes are defined hereafter.

Definition 4.5 (Fork-Join Successors). Given a fork node f € F, j := f.join, with
the according fork scopes defined as f.sub C N and f.sub; C N containing all nodes
of (f,J) and the sub-thread i respectively.

The parallel abort preemption successors are derived from the preemption edges of
the delay nodes in scope f.sub, whose control flow continues outside of this scope:

VEk € {s,w}: j.sucy := U d.sucy \ f.sub
de f.sub

31

4 The Concurrent KEP Assembler Graph (CKAG)

All parallel successors, instantaneous and non-instantaneous, are noted with (f, j).suc:

(f,7).suc := j.suceU j.sucs U j.sucy, U j.suce

A fork-join successor n of (f,j) is called instantaneous, if n is instantaneously
reachable from f. This is the case, when it is instantaneously reachable by all its
sub-threads over normal control flow edges or an exit or weak abort preemption
is instantaneously reachable, and therefore terminates (f,7) instantaneously. It is
called delayed, if n is a strong abort successor of j or a preemption successor, whose
preemption might take place after a delay. If a delay node exists in the scope of (f, j),
then are additionally the control successors of j be delayed. See the definition:

Definition 4.6 (Instantaneous/Delayed Fork-Join Successors). Given a fork-join
pair (f,7), the set (f,j).sucinst C (f,7).suc of instantaneous fork-join successors of
(f,J) are defined as follows:

n € (f,j).sucinst = (n € j.suce N Vn; € f.suc. inst. path from n; to j) V
(n € j.sucy, A 3d € D Finst. path from f to d:n € d.sucy,) V
(n € j.suce A In' € N Jinst. path from f ton' :n'.stmt = EXITAn € n'.suce)

The delayed fork-join successors (f,j).SuCdelayed (f,J).suc:

n € (f,J)-SUCdelayed = N € j.SUCs v
(n € j.suce A 3d € f.subND) V
(n € j.sucy A Id € D Idelayed path from f to d:n € d.sucy) V
(n € j.suce A In' € N Idelayed path from f ton' :n'.stmt = EXITAn € n'.suce)

In general these sets are not distinct:

(f,7)-sucinst N (f,7)-5uCdetayea # O (general case).

Note that these definitions are conservative, i.e., an instantaneously successor
might be instantaneously reachable, but could also be executed delayed and the other
way round. Only if a successor is exclusively in (f,j).sucins and (f, j).suCdelayed
it will, when executed, be executed instantaneously and delayed according to f
respectively.

The definition above is recursive, because the occurring paths might again contain
a fork-join pair. If so, those must also be instantaneous and delayed, that means
they have an instantaneous and delayed successor respectively. In this meaning these
paths are called parallel instantaneous path and parallel delayed path.

As already mentioned, we assume that the given program does not have cycles. In
the notion of parallel paths, a CKAG is not allowed to have an instantaneous parallel
path that forms a cycle, e.g., an instantaneous fork-join (f,j) and the existence of
an instantaneous path from j to f would lead to an irregular CKAG with an infinite
and therefore invalid WCRT.

32

4.2 KEP Thread-1Id Tree

4.2 KEP Thread-Id Tree

This section introduces the KEP thread-id, a data structure that is used to hold all
information of a KEP thread and its relations to other threads within a CKAG. The
set of all KEP thread-ids form a tree. Each node n in a CKAG has a KEP thread-id,
which is referenced by n.threadid. All KEP thread-ids of a CKAG C are denoted
with T and T¢, respectively.

The KEP threads are identified by an integer value, which has to be unique at
runtime to ensure a correct KEP multi-threading. To match the KEP thread-id to
the KEP threads, we define the KEP thread-id value, which is referenced by t.id for
each thread ¢t. The .id operation projects the CKAG thread structure to the KEP
assembler, i.e., threads are identified by the KEP as integer id values without the
need to know the exact hierarchy of the threads. Note that two different threads can
have the same id value, if they are never executed at the same time, so in general:
t1.id = ta.id & t1 = to. Therefore the .id function is not injective and we cannot use
the thread id values instead of the KEP thread id. This behavior will later be used
to minimize the use of thread-id values, see Section [7.5.3]

Each KEP thread-id has a position within the KEP thread-id hierarchy, which
is defined by its parents and children. The parent KEP thread-id is referenced by
.parent and exists for all thread-ids except the main thread, which is the root of the
thread-id structure. We denote the main thread’s parent thread with the standard
bottom symbol L to handle undefined expressions.

Given a KEP thread-id ¢, its children are denoted by t.children. These children
were all created within ¢, i. e., their exists for each a PAR instruction respective fork
node were it is derived from that has the thread-id ¢. In general there are several fork
nodes in t, so two children could originate from different PAR* constructs respective
fork nodes. We denote the children’s fork nodes as t.forks. The children of a
thread-id can now be described as the union of all the thread-id children of the fork
nodes:

t.children = Ufetf N f.subthreads.

The information from which fork node a thread-id is derived is important to define
the two KEP thread-id relations concurrent and sequence. But first we define the
notion of a thread-id path or thread path, which is used to define the sub-thread
relation.

Definition 4.7 (KEP Thread-Id Path). A vector of KEP thread-ids p = (po, ..., DPn—1)
1s called KEP thread-id path, short thread path, if they form a chain via the parent
relation:

Vi=1,...,n—1:p; = pj_1.parent.

The set of all thread paths (of a given CKAG C) is denoted with P and P¢, respec-
tively, and the length of a thread path p with |p|.

To make meaningful statements about the KEP thread-ids, we define two axioms:
a thread-id is never its own child, and paths have a finite length, i. e., they have no

33

4 The Concurrent KEP Assembler Graph (CKAG)

cycle. It could be proven by taking the Esterel syntax into account, but at this point,
they are independent of Esterel and therefore axioms.

Axiom 4.8 (KEP Thread-Id Axioms).

(child-parent irreflexivity) YVt € T,c € t.children:c#t
(cycle free) VteT,peP: p=(t...,t) = |p|=1

Next the thread relations beginning with the sub-thread relation are defined, fol-
lowed by conclusions and theorems about them.

Definition 4.9 (Sub-Thread Relation). t¢; is a sub-thread of ta, denoted t; < to
(or ta > t1), if a path of threads exist from ty to ta:

t1 <ty & Ipo,...,pn—1) EP: po=t1 A pp_1 =to.

A derived relation is the real sub-thread relation that additionally demands that the
threads are different:
th <ty & t1 <ty N t1#t

The definition of the sub-thread relation allows now a more elegant definition of
the previous defined fork scopes, also called sub-graphs, for f € F"

fsub = {né€N|n.threadid < f.threadid},
fsub; = {né€N|n.threadid < f.child;.threadid}.

Some properties that follow directly from the basic definition are given now:

Lemma 4.10 (Conclusions from the Sub-Thread Definition). Some simple charac-
teristics of the (real) sub-tread relation:

(Z) \V/tl, to € T: t1.parent =t9 = t1 < t2

(i) Vp=(poy.--yPn—1) EP:py < ... < pp_1
(ZZZ) th,tg ET:t1 <ty = t1 <ty

Proof. (i) Given thread ¢; with its parent ¢, the vector (¢1,t2) is a thread path.
Threads t1 and to are different, because of the first thread axiom.
(ii) Each path consists of child-parent pairs, with (i) follows the proposition.
(iii) Trivial.
O

Theorem 4.11 (Partial Sub-Thread Order). The sub-thread relation is partial or-
der, i.e., the following three properties must hold for all t1,ts,t3 in T:

(reflezivity) t1 <ty
(antisymmetry) th <tg ANta<t] = t1 =19
(tmnsitimty) t1 <tg AN to <ty = t1 < t3

34

4.2 KEP Thread-1Id Tree

Proof. (reflexivity): Given thread ¢;, the l-dimensional vector (¢1) is trivially a
thread path from ¢ to t; according to the sub-thread definition.

(antisymmetry): Given sub-threads ¢i,to with ¢; <ty and t; < t9, so accord-
ing to the definition exist thread paths p = (t1 = po,...,pn—1 = t2) and ¢ =
(ta = qoy---,qm—1 = t1). This combined results in a path from ¢; over to to t;
again, whose length is one, because of the cycle-free axiom. The equality of t; and
to follows.

(transitivity): Given sub-threads t¢i,to,t3 with t; <ty and to < t3, so accord-
ing to the definition exist thread paths p = (t1 = po,...,pn—1 = t2) and ¢ =

(2 = qo, ..., qm—1 = t3). The interconnected thread path (t; = po,...,t2,...,¢m-1 = t3)

of p and ¢ forms a chain from ¢; to t3 according to the sub-thread definition. O

Definition 4.12 (Concurrent Relation). Two threads t1 and ty are concurrent,
denoted t1 || ta, if they can be executed in parallel:

t1 || t2 & 3ty > t1,t; > to If € ForkNodes : t;,t; € f.children.threadid Nt; # t;
The sub-thread relation is not total, because concurrent threads are incomparable:
Vi, to € T:ty H to = —\<t1 <ty A tg < tl).

Therefore the sub-thread relation is in general no order, only if no concurrent threads
exist, I.e., the underlying Esterel program is sequential, it is an order, but in that
case only the main thread exists.

Theorem 4.13 (Concurrent Sub-thread Monotony). The concurrent relation is
monotone as to the sub-thread relation:

Vti,tj,tl,tQGT: t; H ty Nt <t N tg Stj = 11 H ta.

Proof. Given concurrent threads ¢; and ¢; with sub-threads t; < ¢; and t < t;. Per
definition there exist threads t; > t;, t; > t; and a fork node f with t{,t’ € f.sub —
threads. Because of the transitivity of the sub-thread relation follows ¢; < ¢, and

to < t;-, so they are concurrent according to the definition (same f). O

Definition 4.14 (Least Common Fork). Given two concurrent threads t; and ta,
a common fork of them is a fork node f, whose id is higher within the sub-thread
hierarchy:

tl,tQ S f.threadid

Their least common fork f' is defined as the common fork with the least thread-id
according to the sub-thread relation:

Vf € CommonForkNodes, ,) : f' threadid < f.threadid

The least common fork exists for all concurrent thread-id pairs, because the main
thread is always a common fork. The least common fork is well defined thus unique
and equal to the fork node f in the definition of the concurrent relation.

35

4 The Concurrent KEP Assembler Graph (CKAG)

% example
... %10

-~ Shdh m AT

SISIOION I

... %T6 : :
| . : :
... %T0 v v v v

<§ % (3 () 1 e ou 2

(a) Esterel source, KEP thread-id tree and sub-thread relation (b) t1 || t2 (c) t1 ; t2 sequence
concurrent relation
relation

Figure 4.2: The KEP thread-id relations: An example KEP thread-id tree and
its sub-thread relation is shown in (a). The according Esterel source
is schematically presented with accordingly annotated thread-id values.
The graphical representations of the concurrent and sequence relation can
be seen in (b) and (c) respectively, whereby the dotted lines represent
the sub-thread relation.

Definition 4.15 (Sequence Relation). Two threads t; and to are called to be in
sequence to each other, if they are in no sub-thread relation and not concurrent:

tisty e 2t <ty Vtg <ty Vb t2)

Note that this relation is derived from the sub-thread and the concurrent relation
defined before.

If KEP thread-ids that are neither in sub-thread nor in concurrent relation, they
are called to be in sequence. That means they are derived by different fork nodes,
see Figure (c), and therefore cannot be scheduled at the same time. The sub-
threads of sequentially defined parallel statements are in sequence relation to each
other, but they are also in sequence if the sub-threads are part of conditionally
different PRESENT or JW body scopes. The meaning can be described by being not
instantaneously active during the KEP thread scheduling.

See Figure for an overview about all KEP thread-id relations. There is a
schematically described Esterel source, whose three KEP thread-id relations of the
resulting KEP thread-id tree are all non-empty. The sub-thread relation is never

36

4.2 KEP Thread-1Id Tree

empty, because the main thread exists always and the sub-thread relation is reflexive.

The sub-thread relation of the example is graphically presented in Figure (a)

without its reflexive and transitive edges, just the parent-child edges are shown.
This principle can be generalized:

Theorem 4.16 (Reflexive-Transitive Hull Equivalence). Given KEP thread-ids T
that are coherent by the parent-child relation. If T is non-trivial, i.e., |T| > 1, then
1s the reflexive-transitive hull of its parent-child relation identical with the according
sub-thread relation.

Proof. C: With Conclusion [£.10] (i) and (iii) is the parent-child relation part of the
sub-thread relation and the sub-thread relation is reflexive and transitive as proven
in Theorem [£.11]

D: Given sub-threads t1 < to, t1 # to, according to the sub-thread definition ex-
ists thread path p € P composed of parent-child pairs, so is (t1,t2) element of the
transitive hull. If ¢; = to, then (¢1,t2) is part of the reflexive hull, because each
thread has a child or a parent, when T consists of more than the main thread and is
coherent. O

In Figure (b) and (c) are the general definitions of the KEP thread-id concur-
rent and sequence relation shown, respectively. They differ by the fork nodes, where
the KEP thread-ids are derived from: the concurrent relation requests the existence
of a common fork node and the sequence relation of two different fork nodes.

The according relations of the example are:

({71} x {12, 73,T4}) U{(T3,T4)} U {(15,T5)}
= {(T1,72),(T1,T3), (TL,T4), (T3, T4), (15,T6)} and
= {T1,72,T3,T4} x {15, T6}
= {(T1,75), (T1,T6), (T2, T5), (T2, T6), (T3, T5), (13, T6), (T4, T5), (T4, T6) }.

| ‘ example

» example

As mentioned in Theorem is the concurrent relation inherited to its children,
so is the complete sub-tree of T2 concurrent to 71. A similar statement can be
made about the sequence relation: the sub-threads of sequential fork nodes are all
in sequence to each other at a time with two different forks. In the example are
two forks defined within the main thread 70, their sub-threads are 71,712,713, T4 and
15,76 respectively, their cross product as a result is part of the sequence relation and
failing of additional sequentially defined fork nodes it is the full sequence relation.

The id values in the example are denoted by 7(id) and are made unambiguous
for reasons of simplifications, but in general it is allowed for sequential thread-ids
to have the same thread-id value. For the sub-thread and the concurrent relation
rules exist that the KEP thread-id values must fulfill to lead to a correct KEP
assembler program. These are aggregated by the notion of the KEP thread-id tree
and are defined in the following, Note that the example described before is already
a KEP thread-id tree.

37

4 The Concurrent KEP Assembler Graph (CKAG)

Definition 4.17 (KEP Thread-Id Tree). A set of KEP thread-ids T form a KEP thread-
id tree, if he following properties hold:

(i)a There is exactly one main thread m:
dm e T: m.parent = 1,

whereby L indicates that the main thread has no parent, which therefore is
undefined.

b T is be coherent (and cycle-free).

(1) Concurrent threads have different thread-id values:

th,tg ceT: H to = t1.2d 7é to.id.

(i1i) Real sub-threads have greater thread-id values than their parents threads:
Vi1, to € T:t1 < tg = ty1.id > to.id

It follows that the main thread has the lowest thread-id value and this is zero,
and the other threads have all thread-id values greater zero.

(iv) The id value hierarchy of concurrent KEP thread-ids inherits to their sub-trees:

Vit te ty € Totiid < tjad :ty <t ANty <t = tpad < tj.id

These properties are necessary to match to the KEP thread structure and to ensure
the schedulability of KEP assembler programs. Therefore it is recommended that all
KEP thread-ids T of a CKAG are KEP thread-id trees. The first properties (ia) and
(ib) ensure together with the cycle-free axiom that T forms a tree of KEP thread-ids.
Property (ii) is needed to distinguish active threads during the scheduling, because
if they are concurrent they might be concurrently active. Note that (ii) can not be
fulfilled if T contains a cycle. Property (iii) guarantees that all sub-threads block their
parent threads during the scheduling, although they might have the same priority,
because parent threads have to wait until all their sub-threads have finished. This
and the tree property (iv) are later explained in more detail in the priority assignment
Chapter [6] There are the scheduling problems discussed and it is illustrated how the
priority assignment solves them with the help of the tree properties.

4.3 Symbol Scopes

The KEP assembler instructions use several kinds of name strings in their syntax:
signal names, variable names and address names. Signal names are used for KEP
signals that are defined by INPUT, OUTPUT and SIGNAL instructions and are used in
EMIT instructions and several other signal instructions. Variable names are needed

38

4.3 Symbol Scopes

VAR XX 0
[PAR 1,A0,1
var X :=1: <type> in VAR X var X :=1: <type> in ﬁngl,,AAzl,f
end; LOAD V,#1 end,; AQ: LOAD X,#1
var X := 2 : <type> in LOAD V,#2 var X := 2 : <type> in Al
end; HALT end; LOAD X_0.72
! e
. . A2:
(a) sequential variable scope JOIN
HALT

(b) parallel variable scope

Figure 4.3: Variable Names could be reused, if they occur in distinct thread bodies
of non-concurrent thread-ids, in (a) name X is reused. If concurrent,
another name is used, see (b), where the additionally new name X occur.
This renaming avoids easily the problem of registers used by threads in
parallel.

to represent KEP registers in KEP register instructions, e.g., the valued EMIT or
data operations like ADD and MUL. They are globally defined by VAR instructions at
program start, even though in there Esterel exist local variables. Each KEP address
has an unique address name, defined by the name followed by a colon. They are
used as target label by GOTO instructions and to mark the scopes/bodies of ABORT
and PAR.

The KEP is case-insensitive. This has to be respected during the creation of new
names as well as when using the names resulting from the Esterel source program.
As convention the strl2kasm uses internally names only with capital letters, these
letter names are the representatives of the string relation equality modulo letter
case. Esterel is on the other hand case-sensitive, so different names in Esterel could
be equal by the KEP:

"name" #ggterel "Name" vs. "name" =ggp "NAME" =ggp "Name",

whereby =ggterel and =ggp are defined as the case-sensitive Esterel and the case-
insensitive KEP string comparison, respectively. To distinguish them by the KEP,
one name has to be renamed, e.g., from "NAME" to "NAME 0", resulting in two
different KEP symbol names:

"NAME" #ggp "NAME 0"

This could lead to the unpleasant situation that input or output signals are renamed,
which results in a changed interface on the KEP side. The strl2kasm will throw a
warning each time an interface name is changed.

39

4 The Concurrent KEP Assembler Graph (CKAG)

The use of a new name for each new local signal and variable declared in an Esterel
source program would be very inefficient in general, because the body scopes might
be only a small fraction of the program and are unused in the rest of the program.
The solution is to reuse the names and the according signals and registers when the
scopes are distinct, i.e., they do not overlap each other. The signals and variables
remain different, even though they will use the same name, the strl2kasm therefore
uses unique KEP symbols. The KEP signals are matched by signal symbols and
KEP registers by variable symbols. Each symbol s has a name s.name that might
be used by another symbol of the same type. So it is possible to distinguish different
symbols of the same name to not e. g., create falsely a dependency between an EMIT
S instruction of one signal scope and a PRESENT S of another different scope. For
global signals, namely INPUT and OUTPUT signals, such a problem never occurs.

In addition to distinct bodies as mentioned before, it is demanded that bodies of
the same name should not be concurrent. Otherwise it would be possible that despite
of distinct bodies, the same signal or variable name is in use for different signals and
variables respectively. This leads to the notion of namespace to avoid this problem:

Definition 4.18 (Symbol Namespace). The namespace of a symbol name n is a set
of KEP thread-ids T,, C T, that contains no concurrent KEP thread-ids:

Vi, to € Ty, 0 —(t1 || t2).

Figure[d.3|explains the reuse (a) and the renaming (b) of the variable symbol name
X respectively. In (a) the Esterel statement bodies are distinct and part of the same
thread, in particular are their KEP thread-ids not concurrent, so name X could be
reused. The KEP thread-ids are concurrent in (b) and instead of X is the next free
name of type X;, namely Xg, used for the second thread. Note that the two different
KEP variable symbols remain different, independent of whether they use the same
name or not.

Internal registers and signals do not need to be extra defined, they are built-in
and therefore there symbols are called built-in symbols. Example built-in registers
are COUNT and TICKLEN to define delays and the KEP ticklength respectively.
The Esterel tick signal is matched by the built-in signal TICK. The names of built-in
symbols are keywords, the other symbols are not allowed to carry such names and
must be renamed. This problem does not occur for register built-in symbols, because
their names start always with an underline and Esterel names have to start with a
letter.

The names of Esterel statements, like emit, are keywords in Esterel and therefore
cannot be used as signal or variable names in Esterel, as well as by the KEP, because
it has a similar syntax, e. g., name EMIT is part of the KEP syntax. But note that the
names {Emit, eMit, emlIt, emiT, EMit, eMIt, ..., eMIT, EMIT}, 15 in number, are all
allowed in Esterel, but equals EMIT in KEP as mentioned earlier and therefore must
be renamed, e. g., to EMIT 0 if yet free. Other KEP keywords that are not directly
based on Esterel syntax, as CMP, JW, ADD are also renamed, if used as symbol name.

40

5 Constructing the CKAG

The CKAG is built from Esterel source via a structural translation by traversing
recursively over its AST, which is generated by the CEC [I5]. While the Esterel
statements are compiled to KEP Assembler (KASM) instructions, the corresponding
CKAG is built by creating a node for each instruction, which will be inserted into
the graph. The kind of the node depends on the kind of the instruction: for instan-
taneously executed instructions a transient node, for address labels a label node,
for non-instantaneous executed instructions a delay node and for concurrency a fork
node respectively join node.

A node typically contains exactly one instruction, except label nodes containing
only address labels and fork nodes containing one PAR instruction for each child
thread initialization and a PARE instruction. While the instructions form an instruc-
tion list, which constitutes the later assembler program, their control flow behavior
is matched by the nodes in the CKAG.

When a delay node is created, additional preemption edges are added according
to the (weak) abortion/exception context. E.g., in Figure (c) a preemption edge
from a PAUSE delay node to a label node of a strong abort is added because the
delay node is to be within the body of this strong abort. The delay nodes con-
tain mostly PAUSE instructions, since more complex potentially non-instantaneous
instructions like AWAIT, SUSTAIN and HALT are —at least initially— dismantled into
kernel statements. This is described further in Section [3.3l The creation of the con-
currency nodes fork and join is shown in Figure (e) and described later in more
detail.

The graph building transformation starts at the AST root, which correspond to
the Esterel modules. Due to the Esterel dismantling, described in Chapter [3| the
number of modules is one, holding the main module only with the program as body.
If there are after all more than one module, the first is taken as main module. This
might be the case when there is an unused module in the program, which cannot be
expanded, or the module expanding was not performed at all leading to a compilation
error, if a run statement is called. In the following, we assume a correct AST with
only one module.

Before the program body is transformed, the Esterel 1/O interface is compiled to
KEP instruction. This is represented by the root node C.root of the resulting CKAG
C, which at this early building stage consists of this node with only empty edge sets.
An Esterel input/output statement is easily transformed into a KEP INPUT/OUTPUT
instruction, whereby the according signal symbols are created and renamed if nec-
essary as mentioned in the previous section. Other Esterel interface statements,
like sensor, are not supported by the KEP and have to be replaced by input/output

41

5 Constructing the CKAG

statements. See Figure (a) to have an overview about how the graph building
starts.

Valued I/0O signals are defined by an additional V for “valued”, namely with IN-
PUTV/OUTPUTV instructions. The according signal value initializations are made by
SETV instructions and, if no initialization value is specified, a default value of zero
is assigned together with a warning that a variable is not initialized. It might be
correct to have no initialization value, when the according signal value is never used
until the signal value has been emitted. If the value is accessed yet before set, caused
by a wrong Esterel program, the default initialization ensures at least a deterministic
program behavior instead of a sudden break of the execution. Thus adding default
values leads to a more robust assembler code.

If the module body, i. e., the Esterel program, starts with the declaration of local
signals, which therefore are in fact global, their transformed SIGNAL[V] counterparts
can be added as an optimization to the KEP interface and then be executed before
the program starts. This technique might lower the WCRT of the final KEP program.

To terminate the program correctly (see Figure (a)), a delay node with a HALT
instruction is added at the end of the transformation. The Esterel halt statements
are all dismantled as described in Section [3.3] so no HALT instructions exists in the
KEP assembler, at least before performing the collapse optimization of Section [7:2]
An exception is the HALT at the of the program, which never will make any priority
related problems during the scheduling: its control flow will never aborted and can
remain at a constant priority, and in any case it is part of the main thread. The
extra termination node might be superfluous, if the program already terminates for
all possible input traces. That might be the case, when e. g., the whole program is
enclosed by a loop or is a parallel statement list, where a sub-thread on its part never
terminates. In such a case the HALT is not added, the ABRO program is an example
for that.

Each definition of variables by var statements in Esterel results in VAR instructions,
which do not remain local, instead they are globally defined like the INPUT/OUTPUT
instructions and therefore belong also to the interface respective root node. As
mentioned in the previous section, the variable names might be reused, if the current
scope is not concurrent to another one, in which the specific name is already used.

Although the Esterel modules of the AST have a body of Esterel statements, a
module is not counted as a complex statement, because it cannot be nested. Ie., the
bodies contain on their part no module statement, since the modules are handled
only once at the beginning. Nevertheless, seen from a parser perspective, the body
of the main module is in no way different from the bodies of complex statements.

Esterel distinguishes two different types of statement relations, the Esterel se-
quence and parallel, denoted by ; and ||. The sequential statement list is compiled
by transforming the statements from the first to the last into a KEP instruction
sequence respective CKAG node sequence. This is shown in Figure (b). If a
statement does not terminate, its statement successors are ignored. Such statements
are loop and exit, this way the CKAG remains coherent.

Figure (e) depicts the use of KEP concurrency. If threads are defined to be

42

module name:
module: name INPUT |
input | OUTPUT O emit R;
output O
L emit S;
(5 emit T
HALT
HALT
end module
(a) module
[W]ABORT A,AQ
loop ! AO0: [weak] abort
pause
end loop \ GOTO A0 when A; -
A
!
GOTO A0 '
(c) loop @
(d) abort
PAR 1,A0,id
PAR* PAR 1,Al,id>
[PAR 1,A,1,idy,
PO 1 1 PARE A,,1
Il AOQ: trap T in
@ An-1 PO e
Al: exit T
I end trap
Pn—1 PO Pn-1 .
] Anfl
Pn—l
An:
JOIN JOIN

present S then
P
else

q
end present

(e) parallel

PRESENT S A0
t O\

EMIT R

EMIT S

EMIT T

(b) sequence

A0

PRESENT S,A0

GO

GOTO Al

/
(a2)

) present

P
Q
o |
(g

[WJABORT A,A0
PAUSE

AO0:

AO:

EXIT T,A0

Figure 5.1: CKAG Building (Esterel source, CKAG, KEP assembler)

43

5 Constructing the CKAG

in parallel by Esterel, then for each of them a default KEP thread-id value and a
start address is assigned via PAR instructions. Each thread gets the initial priority 1
during creation, which might be changed during priority assignment [28] described
in Chapter [6] Determining the end of the whole parallel, the PARE defines an end
address. Within the CKAG the PAR and the PARE instructions are encapsulated by
their fork node. Compiling an Esterel parallel changes also the current KEP thread-
id tree by creating a new sub-thread each time the statement list of an Esterel sub-
thread gets transformed. This newly created thread-id is now used for the following
creation of nodes. The KEP thread-id structure is not changed by the transformation
of all other statements, except for the start, where the main thread with id zero is
created.

The children respective control successors of a fork node are the start labels defined
by PAR instructions. The label defined by PARE indicates the end of the last sub-
thread scope, but is never a jump address to execute KEP instructions, so no label
node is created for this address. The insertion of a PARE label node would violate
the property that a CKAG should have only one root, since it has no parent.

Many Esterel statements are, at least in its simple forms, directly transformed to
their KEP counterparts. E.g., is emit transformed to EMIT, nothing to NOTHING and
pause to PAUSE. If they were not be dismantled, then halt, await and sustain would
be translated to HALT, AWAIT and SUSTAIN respectively. The translation of more
complex statements that have statement bodies, loop, abort, suspend, trap, present and
if, is explained in the next section.

5.1 Compiling Complex Statements

The building process of complex statements is made recursively, i. e., their bodies are
transformed to a sub-graph according to the current environment. The environment
persists of preemption successors that are added and erased by starting and ending
the build process of the bodies of the preemption statements (weak) abort and trap.
Also a body is always built according to the current KEP thread-id ¢, i. e., a newly
created node n belongs to t: n.threadid := t, whereby the current KEP thread-id
changes when parallel statement list occur as mentioned earlier. Nevertheless when
the body building is completed, the former environment is restored, especially is no
potential sub-thread id is used for the continuing building. Next is the compilation
of each complex type of statement discussed in detail.

The compilation of the Esterel loop statement and its body is shown in Fig-
ure (b). The loop body is translated recursively, ahead of the loop a start
address A0 and at the end the corresponding GOTO A0 instruction are inserted. In
the CKAG the behavior of restarting the loop body is reflected by the edge between
the GOTO node and address label. The potentially following statements of the cur-
rent sequential statement list will be ignored and not transformed, anyhow might
building go further through preemption, as explained next.

The building of a (weak) abort statement is presented in Figure (d). After the

44

5.1 Compiling Complex Statements

[W]JABORT instruction is created and inserted into the CKAG, the abort body is
handled recursively. This generates preemption edges from all occurring delay nodes
to the abort end. This is done for all the preemption statements, namely abort, weak
abort and trap. For all of these instructions a preemption edge with the according
type and symbol is added. In this example (Figure[5.1](d)) at least one edge for each
delay node is added with preemption type s respective w and signal symbol A. How
many other edges are added depends on the current environment, i.e., how deeply
the different preemption instructions are nested into each other .

If the (weak) abort is immediate, then a [W]JABORTI instruction is created instead
and in case of the strong abort the abort node is additionally connected with the
abort label by a control flow edge. Note that the ABORTI instruction depends on
its abort signal, each instruction that emits this signal instantaneously has to be
executed previously, the abort node has become a reader to its abort signal.

The abort statement might contain a so called do body, i.e., when the abortion
takes place, this body has to be executed first. This is realized by inserting the KEP
instructions respective the body sub-graph at the abort label. In case that the abort
signal does not occur, an additional GOTO is created, which points to an address
after the do body.

The Esterel trap transformation is described in Figure (f). All according exit
statements within the trap scope are translated to EXIT instructions with a control
flow edge to its trap label node in the CKAG. Additionally to the trap label a start
trap label is created, here named with A0, which is used by the EXIT instruction to
determine the trap start in order to decide whether different EXIT instructions are
nested or concurrent.

If an EXIT instruction is part of a sub-thread, which itself is part of the according
trap scope (and not vice versa), then concurrent threads are also terminated when
called. All sub-thread instructions that are instantaneously executable are executed.
The control flow stops at the end of the according thread or at a PAUSE instruction,
followed by the according JOIN instructions. According to this, exit preemption
edges are created for all PAUSE instructions leading to specific join nodes, as shown
in Figure [5.2] The join nodes are executed from inner to outer, also represented as
exit preemption edges, this time between join nodes. All delayed instructions derived
from the trap body depend on the according EXIT instructions. This will be relevant
for the priority assignment explained in the next Chapter [6]

Similar to the do body of the abort statement, the trap could have a handle, which
is likewise managed by creating according instructions and nodes at the trap la-
bel (node).

Esterel distinguishes two types of conditionals, present for signal and if for standard
Boolean expressions. Both contain up to two bodies, a then and an else body. Which
one is executed will be determined by the accordingly created PRESENT respective
CMP and JW instructions. Figure (g) pictures the creation of the PRESENT.
The conditional jump of the PRESENT is matched by two control flow edges in the
CKAG, annotated with ¢ and f depending on whether the condition was true or
false. The edge to the else address, defined by PRESENT, here A0, is labeled with

45

5 Constructing the CKAG

AO:

! PAR 1,A;,.id
trap T in PARF ..
; PAR 1,A; id
[v ’ PARE A;,
¢ " Lo
PAR* Aig:
PAR 1,Ajo,id

.. , @ PAR 1,Aj;_,id
exit T .@ [EXITTA0] I PARE Aj
- ;i / . Jk

T T AjO'
] ' |
X | EXIT T,A0
JOIN | o
. & N [Ajk :
I; T JOIN
N
end trap JOIN A
JOIN
(a) trap over concur- d‘r ..
rent Esterel statements T:
(b) exit preemption edge (c) according KEP as-
hierarchy sembler instructions

Figure 5.2: If an EXIT terminates concurrent KEP instructions, this is displayed by
exit preemption edges directed to the according join nodes, that form on
their own a join preemption hierarchy ended by the most outer join node
having an exit preemption edge to the trap label.

f, and therefore the else body is built at this label. The then body is transformed
directly after the PRESENT node. Behind the else instructions is a GOTO inserted to
skip the following else body instructions. This might be unnecessary, when no else
body exists at all, or the control of the then case remains in a loop. If no then body
is specified (present ... else ... end), the true edge leads directly from the PRESENT to
the else body skipping GOTO.

The compilation of the if uses the JW instruction, instead of PRESENT. The register
operation CMP is previously performed to test one of the following criteria by JW:
L, LE, G, GE, EE and NE. These are the KEP pendants of lower/greater (equal) and
equal/unequal, see Section E.g., the if expression (X > 5), which tests whether
the register X has a value greater five, is translated to CMP X ,#5 to compare X with
five, followed by JW G,(else,ddr), to test the compare onto greater by G and jump
accordingly.

Both, the present and if, might contain arbitrarily nested Boolean expressions.
These result in a more complicated testing procedure and are explained in the next
section and Figure [5.3]

The Esterel local signal declaration by signal contains a body, but the KEP provides

46

5.2 Handling Expressions

no constructs to limit the scope of a local KEP signal. Instead this is handled by
the compiler by freeing the signal name for further use after the signal body has
been transformed. In contrast to the VAR instructions, which are always added to
the interface, the newly created SIGNAL[V] instructions are inserted into the KEP
assembler respective CKAG. The signal name has to be a free, respecting the scope
rules of Section E.3]

5.2 Handling Expressions

Esterel expressions appear in several Esterel statements of several types: integer
expressions in computations or as a delay of a signal expression, signal expressions
in abort and present, expressions of type Boolean in if statements. Since the KEP
cannot handle complex expressions in statements by its instruction set architecture,
the strl2kasm compiler has to make the computations explicit.

The Esterel expressions are pre-processed to so called KEP expressions and then
inserted into the according KEP assembler instruction. If the expression is not a
literal or atomic, and therefore does not comply with the KEP assembler syntax,
it is further processed to an instruction that contains only atomic expressions. In
this sense the KEP expressions are used as low-level intermediate data structure. To
denote the KEP expressions, we use capital letters and, if applicable, the according
register operation names. In addition to this the polish notation is applied, e. g., the
Esterel expression (X + 5) is transformed to the KEP expression (ADD X 5).

As first step, the compiler replaces all constants specified in the Esterel program
by its literal values. Therefore they must all be defined in the Esterel source. If not,
the compiler will throw an error message and stop. Simultaneously the binary Esterel
operations that are associative are made flat, therefore the KEP expression structure
supports over beyond unary and binary operations of an associative operation, e. g.,
the expression (2 + (X +5)) is flattened to (ADD 2 X 5).

Next, if possible, the occurring literal values are aggregated according to their spe-
cific operation. E.g., the KEP expression (ADD #2 X #5) is computed to (ADD 7 X).
This step is known as constant propagation [2]. This is a recursive process beginning
from more operations by a DFS algorithm to the higher ones. Sub-operations might
be in this way replaced by a literal allowing a further evaluation. E.g., the KEP
expression (ADD #1 X (MUL #2 #3)) is first reduced to (ADD #1 X #6), which
makes the application of ADD possible and results in (ADD #7 X).

A further evaluation of KEP expressions could take advantage of the behavior of
neutral and dominant elements. Given a binary operation op, e is a neutral element
of op if it leaves all other operands x unchanged: (e op x) = x. So we can skip these
elements in KEP expressions. The data operations ADD and MUL and the Boolean
operations AND and OR have the neutral elements #1 and #O0 respective true and
false, whereby true/false are represented by #1 and #0. The AND polymorphically
used in signal operations has also a neutral element, namely the TICK signal. For
example, the expression (ADD 7V #0 X) can be reduced to (ADD 7V X).

47

5 Constructing the CKAG

PRESENT S,A0 PRESENT S;,E
PRESENT (NOT S)E| ~sp,ig| GOTOE PRESENT (AND Sy ... S1).E | ~opuiral -
AO: PRESENT S, ,E
(a) NOT expressions (b) AND expressions
PRESENT S;,E;
GOTO A0
Eq:
E, o:
PRESENT (OR S1 ... Su).E | ~spuitd PRESENT S, 1 E. s
En1:
GOTO A0
PRESENT S, .E
AO:

(c) OR expressions

Figure 5.3: The compilation of all three possible Boolean operations that could occur
in PRESENT instructions. Note that the signals 5; might be itself again
a Boolean expression.

A dominant literal d is the opposite of an neutral element. If applied the result
is always d, independent of other operands: (d op) = d. The MUL operation has
the dominant value #0, the Boolean AND/OR have #0 respective #1, and the TICK
signal dominates the OR signal operation. E.g., (MUL 7V #0 X) can be reduced to
#0. Note that not for all operations a neutral or dominant value exists, e. g., ADD
has no dominant integer value.

5.2.1 Compiling Signal Expressions

Signal expressions are used in signal statements when occurring in abort and suspend
they could be delayed or immediate, in present only Boolean operations are allowed.
The KEP syntax directly supports immediate instructions, marked by an additional I.
Therefore KEP expressions are never immediate, but the assembler instructions are.
The same for delays of signal expressions, they are directly transformed to a LOAD
register operation to initialize the built-in signal COUNT with the delay expression.
The delay expression might be a complex operation that might be compiled to several
other register instructions, see the next Section

Boolean signal operations do not exist in abort statements, at least at this compi-
lation step, because the Esterel dismantling procedure of Chapter [3 handles them.
So if there is a Boolean abort signal expression in the original program, it is now
present in a present statement together with an atomic expression in the abort, see
Figure (3.5 How Boolean present operations are handled is explained next, whereby
these expressions are processed to possibly associative KEP expressions as explained
before.

48

emit S(3) |~ | EMIT S#3 | [emit SCT) [~y g

(a) literal

emit S(?T+3) 2 huild

module emit__example:
input A;

output V1 : integer;
output V2 : integer ;

[emit V1(?V2)
I

present V1 then
emit V2(3)
end present

]

end module

5.2 Handling Expressions

EMIT S EMIT

SETV S,7T | “build

LOAD REGO,?T
SETV S,REGO

(b) signal value

[L06,T1,P2] ~AO:

EMIT S
EMIT S LOAD REGO,?T
SETV S,(ADD ?T #3) | “build | ADD REGO,#3
SETV S,REGO
(c) data operation
[L1] SETV V140
[L2] SETV V240
[L5] PAR*
INPUT A @ @
OUTPUTV V1,V2
VAR REGO
L7 EMIT V1
EMIT _TICKLEN,#14
[LO1,TO,P2] SETV V1,#0
[L02,T0,P2] SETV V2,#0
[L03,T0,P2] PAR 2,A0,1 [L8] PRIO 1
[L04,T0,P2] PAR 1,A1,2
[L05,TO,P2/2] PARE A2,2

[L07,T1,P2] EMIT V1 :
[Los.T1] PRIO 1
[L09,T1,P1] LOAD REGO,?V2
[L10,T1,P1] SETV V1,REGO
[L11T2.P1] AL [[L10] SETV VL,REGO| |[L15] NOTHING |
[L12,T2,P1] PRESENT V1,A3
[L13,T2,P1] EMIT V2,#3
[L14,T2,P1] A3: 17 ToIN
[L15,T2,P1] NOTHING [L17]
[L16,TO,P2] A2:
[L17,TO,P1] JOIN
[L18,TO,P1/1] HALT

[L18] HALT

(d) Priority Dismantling on KEP level

Figure 5.4: Several valued EMIT transformations: An EMIT with a literal value re-
mains unchanged (a), as a signal value has to be stored in a register in
order to use its value (b) and in (¢) is a computational expression split
into register operations before its result can be stored and emitted. In
(d) is an example program shown, where the break between emitting and

value setting parts avoid a program cycle.

49

5 Constructing the CKAG

Three types of Boolean signal expression operations are distinguished by the Es-
terel present statement, the not, and and or, corresponding to the KEP NOT, AND and
OR operations. Hence the KEP assembler syntax only supports atomic signals. These
operations are further simplified to even atomic PRESENT instructions, as shown in
Figure The NOT can easily consumed by switching then then and else body dur-
ing the building process. However, if it is not at the top of the signal operation, the
switching is realized by a GOTO as seen in Fig. [5.3| (a). In Fig.|5.3| (b) the PRESENT
AND operation is shown. This is simply translated to a chain of PRESENTS instruc-
tions of the operands S;, all leading to the same else label E, when the PRESENT
test fails. The OR operation, explained in Fig. (¢), needs more instructions, since
for the first n—1 operands each time a GOTO instruction is created. These lead all
to the then case body at a newly created label, here A0, after the last PRESENT test.
The else labels E;, i = 0,...,n—1, all lead to the next PRESENT test. When the last
one also fails, the overall else label F is reached and the else body executed.

Although the signal expressions of emit are always atomic, according to the Es-
terel semantics, there could be a complex data operation value when the emit signal is
valued. The emitting of a simple literal value can be applied by adding the value di-
rectly after the signal of the EMIT instruction (Figure[5.4)). Such a literal value might
originate from a data expression by performing the pre-processing steps described
before, especially from evaluation.

A KEP data expression might contain the signal values of other valued signals, the
computation therefore depend on these signals. We call those valued signal readers
to such signals. The other way round the EMIT instruction must always be executed,
before the corresponding PRESENT instructions are called, so it is always a writer
to its signal. Other computations might also need the emitted signal value. This
property of a valued EMIT of being writer and reader at the same time might lead
to priority scheduling problems, as described in Section [3.3]in case of the SUSTAIN.

The same solution is possible for the valued EMIT. The writing part is separated to
a simple non-valued EMIT followed by a SETV instruction, containing the EMIT value
expression, which is the reading part, to set the signal value accordingly. This can
be seen as a priority dismantling on KEP level. This principle is used when emitting
e. g., another signal value, see Figure (b), or computation, see (c). In both cases
the reading part, here 7V, is following the EMIT. Nevertheless is the SETV a writer
to the signal value and other statements might depend on it.

A more complex example is shown in Figure (d). Two valued emissions of
valued signals V1 and V2 occur, V1 emits the signal value of V2 and V2 emits a
value of #3 when V1 is active. So the emissions depend on each other: V1 must be
active to emit the correct signal value of V2, and to emit V1, signal V2 has already
been active. After the EMIT V1, ?V2 is split as described before. The conflict is
solved, hence the EMIT V1 runs with a higher priority as the SETV assignment part.
See also the according CKAG: a PRIO instruction is inserted in between, lowering
the priority behind the EMIT. The resulting execution trace is as follows: when the
threads were created, T'1 has the higher priority of 2 and therefore executes the
EMIT V1 and PRIO 1 instructions. So V1 is now active and the control switches

50

5.2 Handling Expressions

to thread T2, which has a higher thread-id value. The then body of PRESENT V1,
namely EMIT V2, #3, gets executed. After T2 has finished, thread T1 is again
executed and the signal value of V1 is set to 7V 2.

5.2.2 Compiling Data Expressions

Data expressions are of type integer or Boolean and can occur as the delay of a
signal expression, in variable/register assignments and in if comparisons. The KEP
currently does not support floating point operations, but the compilation scheme
described here in the following would be the same. This section presents the compi-
lation of data operations. The atomic data expressions, namely literals, signal values
and registers, remain unchanged.

The building of a computation is made according to some result register. Given
a KEP operation op, its first argument is loaded by the KEP LOAD register instruc-
tion. For each remaining operand an op register instruction is created to perform the
operand on the result register. E.g., the KEP expression (ADD X #2 Y) is trans-
formed to instruction LOAD REGO, X followed by ADD REGO, #2 and ADD REGO, Y.
The register REGO is a temporary result register that is freed after use. In general
these registers are REGi, ¢ € setIN, and have to respect the symbol namespace de-
scribed in Section Such an expression might be used as a value of a valued
signal, see Figure (c). Before being freed the REGO register is used to set the
signal value.

A special case is a register assignment, where the result register is part of the
computation. Then no temporary register is needed and the result register has not
to be initialized. E.g., the Esterel statement z := z + 1 is translated to ADD X, #1.

The data expressions might be arbitrarily nested. Building these is done like the
evaluation step, namely via DFS. Consider the KEP expression (ADD (MUL #2 X)
(MUL #3 ?V)): first the sub-expression (MUL #2 X) is built by instructions LOAD REGO,
#2 and MUL REGO, X, and then replaced by REGO, resulting in (ADD REGO (MUL #3 ?V)).
Likewise (MUL #3 ?V) is built and replaced by REGL. In the last step expression
(ADD REGO REG1) is realized with result REGO by building instruction ADD REGO,REGI,
hereafter the name REGL1 is freed. Note that REGO is not initialized at the end, because
LOAD was already applied as the previous MUL were built.

Esterel supports the use of external functions written in a host language. The
strl2kasm compiler supports these functions, if their code is already transferred to
KEP assembler, with the CALL instruction. The arguments of a function call are
loaded to the so called function interface registers TMPi by LOAD instructions.
After CALL is executed, the result again is hold by these registers. Note that the
_ TMPi registers are built-in registers like COUNT.

The if statement is very similar to the present, but contains Boolean (data) ex-
pressions, instead of signal expressions, with all kind of comparative operations:
greater /lower (equal) and (in)equality tests. The basic comparison is already ex-
plained in the previous Section with the focus of building the then and else
bodies.

ol

5 Constructing the CKAG

The building of Boolean signal expressions is shown in Figure [5.3] It works as
for if statements, except that now are three instructions needed instead of one
PRESENT: the first to initialize a temporary register REGO by the specific value,
which then is compared to true by CMP REGO,#1 before the conditional jump is built
by JW EE,(else,ddr). The comparative expressions are integrated into this principle
by setting a result register by JW according to the comparison.

All KEP instructions, especially the register operations that are used to compile
the Esterel expressions as described before, are limited to 16 bit integers. The KEP
provides a built-in register to use integer values up to 32 bit, namely UINT32REG.
Given a 32 bit integer number 7 € N in a register operation reg_op reg, #i, the 32 bit
value i is replaced by register UINT32REG. This results in the following instruction
instead: reg op reg, UINT32REG. The value i is previously loaded to register -
UINT32REG by the DEF32 instruction: DEF32 #i. To ensure the correct use of 32 bit
values, the compiler checks all register operations for integer values and replace them
accordingly if needed.

92

6 Priority Assignment

A main problem for compiling Esterel onto the KEP is the need to manage the
thread priorities to ensure the correct execution order. If an instruction depends on
other instructions then those must be executed prior and thus have a higher priority.
Therefore these priorities have to be assigned properly during creation and further
execution. In the KEP setting, this is not merely a question of efficiency, but a
question of correct execution. The computation of these priorities is called priority
assignment [28].

Priorities are assigned during the creation of a KEP thread by PAR instructions and
by a particular PRIO instructions. Due to the non-linear control flow, it is still possible
that a given instruction may be executed with varying priorities; in principle, the
architecture would allow a fully dynamic scheduling. However, it is assumed that the
given Esterel program can be executed with a statically determined schedule, which
requires that there are no cyclic signal dependencies. This is a common restriction,
imposed for example by the Esterel v7 [19] and the CEC [15] compilers. Note that
there are also Esterel programs that are causally correct (constructive [§]), yet cannot
be executed with a static schedule and hence cannot be directly translated into
KEP assembler using the approach presented here. However, these programs can
be transformed into equivalent, acyclic Esterel programs [30], which can then be
translated into KEP assembler. Hence, the actual run-time schedule of a concurrent
program running on the KEP is static in the sense that if two instructions that
depend on each other, such as the emission of a certain signal and a test for the
presence of that signal, are executed in the same logical tick, they are always executed
in the same order relative to each other, and the priority of each instruction is known
in advance. However, the run-time schedule is dynamic in the sense that due to the
non-linear control flow and the independent advancement of each program counter,
in general it cannot be determined in advance which code fragments are executed
at each tick. This means that the thread interleaving cannot be implemented with
simple jump instructions. Instead a run-time scheduling mechanism is needed that
manages the interleaving according to the priority and actual program counter of
each active thread.

This leads to the priority assignment. Each KEP instruction respective CKAG
node are one or two priorities assigned, dependent on the type and behavior of the
control flow:

Definition 6.1 (Node Priorities). For all nodes n € N the according priority
n.prio € N is defined as the priority that the thread n.threadid should be running
with, when executing n.

93

6 Priority Assignment

For delayed nodes n € D U J additionally a priority n.prionext € N is defined,
the priority the according instruction has to be executed with, after the delay.

Given a join node j, the assigned priority j.prionext represents the priority that
thread j.threadid must have after the complete parallel construct (j.fork,j) has
terminated non-instantaneously. If a parallel is always instantaneously executed, no
next priority is needed for the specific join node. That is the case, when the delayed
successors of j are empty, see Section [4.1]

The aggregate of computed priorities n.prio and n.prionext is named as the pri-
ority assignment of a given CKAG. The priority assignment is in graphical repre-
sentations denoted with preceded “P” for all nodes n € N. Thus, their accord-
ing priorities n.prio and n.prionext have the following form: P(n.prio) respective
P(n.prio) /(n.prionext).

To obtain a more general understanding of how the priority mechanism influences
the order of execution, recall that at the start of each tick, all enabled threads are
activated and subsequently scheduled according to their priorities. Furthermore,
each thread is assigned a priority upon its creation by a PAR instruction. Once a
thread is created, its priority remains the same, unless it changes its own priority
with a PRIO instruction. In that case it keeps that new priority until it executes yet
another PRIO instruction, and so on. Neither the scheduler nor other threads can
change its priority. Note also that a PRIO instruction is considered instantaneous.
The only non-instantaneous instructions, which delimit the logical ticks and are also
referred to delayed instructions, are the PAUSE instruction and derived instructions,
such as AWAIT, SUSTAIN and HALT, although these were yet dismantled and does not
occur at this compilation step. This mechanism has a couple of implications:

e At the start of a tick, a thread is resumed with the priority with which it was
terminated. This could be the last thread’s PRIO instruction executed during
the preceding ticks, or the priority it has been created with if it has not executed
any PRIO instructions. In particular, if we must set the priority of a thread
to ensure that at the beginning of a tick the thread is resumed with a certain
priority, it is not sufficient to execute a PRIO instruction at the beginning of
that tick; instead, we must already have executed that PRIO instruction in the
preceding tick.

e A thread is executed only if no other active thread has a higher priority. Once
a thread is executed, it continues until a delayed instruction is reached, or
until its priority is lower than that of another active thread or equal to that
of another thread with higher id value. While a thread is executing, it is
not possible for other inactive threads to become active; furthermore, while a
thread is executing, it is not possible for other threads to change their priority.
Hence, the only way for a thread’s priority to become lower than that of other
active threads is to execute a PRIO instruction that lowers its own priority
below that of other active threads.

o4

6.1 Signal Dependencies

WRITER READER ’ SETV S,) 1]

1

‘EMITS‘

‘ PRESENT s‘ ‘ [W]ABORT S,AQ ‘

v)
.7 ™

(a) signal dependencies (b) signal value depen- (c) exit dependency
dencies

Figure 6.1: The types of signal dependencies. The PAUSE instruction is only a reader,
when part of an ABORT respective trap scope, see (a) and (c). The SETV
instruction manipulates a signal value, so it is only writer of signal value
manipulating instructions.

6.1 Signal Dependencies

This section defines the dependencies, introduced for the priority dismantling in
Section in detail. KEP instructions that manipulate a signal or its value are
called writer or dependency source. Instructions that use a signal (value) are called
reader or dependency sink. Which instructions are writer or reader is defined in the
following.

Definition 6.2 (Writer and Reader Set). The set of writers Wy C N respective
readers Ry C N is defined for a given a signal symbol s € S as follows:

Wy = {n eN | n.stmt = EMIT s, SIGNAL s, SETV s,., EXIT S}
Rs := {n € N | n.stmt = PRESENT s, SUSPEND s, ABORTI s, reqg_op .,7s, PAUSE},

where reg_op € {LOAD, ADD, SUB, MUL, ANDR, ORR, XORR, CMP} and the PAUSE
instructions i Rg are part of an abort or trap scope, i.e., it exists an abort or trap
node n with PAUSE € n.scope according to signal s.

The writers and readers of a CKAG are denoted with W and R, and are defined
as the unions about all Wy and R, respectively:

W .= USESWS and R = UseSRS'

A tuple of writer and reader form regarding to the same signal a signal dependency.
Relevant for the scheduling are only dependencies between concurrent instructions,
therefore they are defined accordingly:

95

6 Priority Assignment

Definition 6.3 (Signal Dependency). The setDs C Wyx Ry C N x N of concurrent
writer-reader tuples of signal symbol s € S is the set of signal dependencies of s:

VS eS: Dg:={(w,r) € Wg X Rg | w.threadid || r.threadid},
where it is required that SETV writers have only signal value readers:
V(w,r) € Dg: w.stmt = SETV S = r.stmt =reg op.?S.

To indicate that a dependency (w,r) € Dg belongs to signal S, it is denoted as

(w,r)s.
The set of all signal dependencies D C W X R is the union of all Dg:

D:= USESDS'

The readers of a node n are called the dependency successors of n and written as
n.dep:
n.dep :={r e N | (w,r) € D}.

All possible combinations of writer and reader instructions that form signal de-
pendencies are shown in Figure All writers are on the left in (a) and (b) and
form a dependency with the readers on the right, denoted by a dotted (red) line.
An abort node is only a reader if it is immediate. A PAUSE instruction is a reader
only if it is in the scope of an abort node. This is denoted in the figure by dashed
(blue) edges between abort and corresponding abort label nodes xthat represent the
enclosing ABORT construct. The PAUSE might also be a reader to trap signals of
EXIT instructions (c), here the PAUSE is part of a trap scope.

Note that no instructions/nodes of the main thread are part of a signal dependency:
The main thread is never concurrent to another thread, because all other threads
are sub-threads of the main thread. Therefore all writer and reader nodes have a
KEP thread-id different from the main thread, with an id value greater than zero.

Non-concurrent dependencies are not defined as dependencies, even though their
writers must be executed prior, too. For sequential instructions the execution order
is fixed, as mentioned, therefore it is not possible to affect their order by priorities.
If they have a wrong order, the Esterel source is invalid. We assume acyclic Esterel
programs on the input side of the compiler. The strl2kasm performs no analysis for
Esterel correctness, this has to be done at the Esterel level before the strl2kasm is
used.

In the definition of writers W and readers R occur no PAR, PARE and JOIN instruc-
tions. Therefore fork and join nodes are never writers or readers and thus never part
of a dependency.

It turns out that analogously to the distinction between prio and prionext, we
must distinguish between dependencies that affect the current tick and the next tick:

Definition 6.4 (Delayed and Immediate Dependency Successors). A dependency
(w,r) € Dg is called delayed if r is a delay node in between the scope of a strong

o6

6.1 Signal Dependencies

abort node over S, i.e., for reader r exists a strong abort successor n' belonging to
signal S. Therefore the set of delayed dependencies is defined accordingly:

VS eS: DS,d = {(’LU,’I“) € Dg | 3(’1”, n,)(&g) S]P}.

The delayed dependency successors of node n € N are defined analogously to
n.dep:
n.depg :={r € N | (w,r) €D 4}.

The remaining successors are called immediate dependency successors and the
according dependencies are called immediate dependencies:

n.dep; := n.dep \ n.depg and Dg; :=Dg \ Dgq.

Note that only dependencies that have a delay node d € D as reader can be de-
layed, due to the fact that only delay nodes have strong abort preemption successors.
The other way round are dependencies (w,r) € D always immediate, if r € N \ D.

A CKAG is not allowed to have cycles in the graph induced by the instantaneous
successors of its nodes, as mentioned in Chapter [d] This correlates with the ban of
instantaneous loops in Esterel and allows a proper WCRT analysis [12] on the CKAG.
This non-cycle requirement is now extended by taking the dependencies into account:
a program is considered cyclic if the priority assignment algorithm presented in this
chapter fails. This leads to the following definition of a program cycle:

Definition 6.5 (Program Cycle). An Esterel program is cyclic if the corresponding
CKAG contains an instantaneously executable cyclic node path p = (ng, ...,n;) € N¥,
k > 2 withng = ng, whereby also the dependency successors are included:

Vi=0,...,k—1 : pit1 € p;-Sucinst Up;.dep; V
Pi+1 € pi-depg = Pit2 € Pit1-SUCdelayed V
Pit+1 € Pi-SUCdelayed = Pi € Pi—1-depq,

that means for p that all successors are instantaneous or dependency related, where
after delayed dependencies only delayed successor follow, and vice versa.

Note that this definition is conservative, because the definition of the instantaneous
and delayed successors of fork-join node pairs is made conservatively. However,
what exactly constitutes a cycle in an Esterel program is not obvious and there
exist different, but accepted, definition of cyclicality at the language level. Esterel
compilers that require acyclic programs differ in the programs they accept as ‘acyclic’:
the CEC accepts some programs that the v5 compiler rejects and vice versa [34].

Due to the fact that Esterel has a loop construct, the CKAG in general contains
cycles, non-instantaneous cycles or non-program cycles, which are valid. The ques-
tion is how the constraints allow an assignment for such valid cycles. The answer are
the prionext priorities. Consider a (valid) cycle (d,nq,...,ng,d) that starts and

o7

6 Priority Assignment

ends with a delay node d. The induced constraint chain starts and end with priori-
ties d.prionext and d.prio respectively, thus the priorities can decrease alongside the
constraint chain from d.prionext to d.prio.

In the absence of a program cycle, as defined here, the priority assignment should
be able to fulfill all constraints derived from node and dependency successors, as
defined in the next section.

6.2 Priority Constraints

The task of the priority assignment algorithm is to compute a priority assignment
that respects the Esterel semantics as well as the execution model of the KEP. The
algorithm computes for each reachable node n in the CKAG the priority n.prio
and, for nodes in D U J, n.prionext. According to the Esterel semantics and the
observations made in Chapter 4] a correct priority assignment must fulfill the follow-
ing constraints, starting with the dependency constraints implicated by the signal
dependencies:

Definition 6.6 (Dependency Constraints). An ordering >;q between assigned
priorities of concurrent nodes n,m € N is defined, called “thread-id greater”, that
respects the KEP scheduling mechanism by taking the KEP thread-id values of n and
m into account:

n.prio >;q m.prio := (n.prio > m.prio) V

(n.prio = m.prio A n.threadid.id > m.threadid.id).

The instantaneous and delayed dependencies indicate each an instantaneous and
delayed dependency constraint respectively:

Y(w,r) €Dy : w.prio >;q r.prio
Y(w,r) €Dy : w.prio >;q r.prionext

Because all dependencies must hold, the writers priority must be greater than the
mazimum priority of its dependency successors:

Vn € N :n.prio >;q maz -, ({m.prio | m € n.dep;} U{m.prionext | m € n.depg}).

Why is the KEP scheduling behavior reflected by the >;; relation? First, >;4 is
defined between concurrent nodes as only these can be active concurrently, and
second is the greater KEP thread-id value relevant when the priorities are equal, as
same as the KEP scheduling works. The >;4 greater relation can be summarized as
'if not greater in priority than in the thread-id value’ relation.

A node might have no dependency successors. This is trivially the case for non-
writer instructions, but also for writers that have no appropriate reader. Note that
dependencies exists always according to some signal symbol, and both, writer and
reader instruction, refer to this signal. If only a writer exists of some signal, no

o8

6.2 Priority Constraints

dependencies exist for them and they all have an empty set as dependency suc-
cessors. The >;;-maximum priority of an empty set is defined as the minimum
priority, defined as one. The >;4 relation is total (defined on concurrent nodes!),
ie,n>gm V m >;gn is true for all concurrent nodes n,m € N, because con-
current nodes must have different KEP thread-id values as defined by the thread-id
tree properties in Section [4.2]

The instantaneous control flow constraints derive from a node’s instantaneous
SUCCessors:

Definition 6.7 (Instantaneous Control Flow Constraints). Within a logical tick, a
thread’s priority cannot increase:

Vn € N Vm € n.sucipst : N.prio > m.prio.
An equivalent definition:
Vn € N : n.prio > mazx{m.prio | m € n.sucins}.

When the execution starts with a mew tick at a delayed instruction, its former
delayed successors are in that instant instantaneous and the priorities should also
not increase:

Vn € N : n.prionext > mazx{m.prio | m € n.sucqeiayed}-

This constraint is needed because the increase of a thread priority has only an effect
for the possibly next instant, not for the current instant. If a thread is scheduled,
than it has the highest priority of active threads, by a yet higher priority it remains
the thread with the maximum priority.

Note that for delayed nodes n, the definition does not forbid the increase of the
prionext priority, i.e., n.prionext > n.prio can be assigned without violating the
constraints. As mentioned, this is important to schedule valid cyclic programs.

The dependency constraints are between concurrent instructions according to the
dependency definition. In contrast, the instantaneous control flow constraints are
only among non-concurrent instructions, so it is possible to distinguish these con-
straints by their KEP thread-ids.

Theorem 6.8 (Non-Concurrency of Control Successors). The control flow succes-
sors in a CKAG are always among nodes with non-concurrent KEP thread-id:

Vn € N, m € n.suc: —(n.threadid || m.threadid).

Proof. All edges are created during the building process by processing the specific
Esterel bodies one by one, especially the bodies of a parallel statement list. Edges
between nodes deriving from different concurrent bodies therefore do not exist. [

Implicit concurrent instructions are executed in some order with according control
flow successors, but this is done by the KEP scheduling mechanism and not matched
by edges in the CKAG. In general concurrent nodes could always be a successor of
each other, this behavior is adequatly expressed by the concurrency relation.

99

© 0 N O U W N

e
=]

© 00 N O U e W N

e T e e
o Ul s W N = O

6 Priority Assignment

procedure main() 1| function prio [Next]Max(M)
forall n € N do 2| p:=0
noprio ‘= —1 3 forall n € M do
v p ._'6 4 p := max(p, getPrio[Next](n))
prio -=—
Vprionezt =0 z e:lec::urn p
Nr1opo = Nroot
while 3n € Nropo \ Vprio do
getPrio(n) 1| function getPrio(n)
forall _n e(buJ)n me’o) \ Vorionext do 2 if n.prio = —1 then
getPrioNext(n) 3 if (n € Vprio) then
end 4 error (Cycle detected!)
5 Vprio U=n
function getPrioNext(n) 6 if n E D the.n
if n.prionext = —1 then 7 n.prio := prioMax(n.sucw)
(& Vo) then S| Nrep o= nues U
error (Cycle detected!) o .
Vi — 10 n.prio := prioMax(
iprTZL"TgQB then 11 n.suce U (n, n.join).sucinst)
n.prionext := 12 NTOD.O o= (n, n-join).sucdelayed
prioMax(n.suce U n.sucs) 13 f.Joun.prio
elseif n c J then 14 elself‘ n € T then
n.prionest = 15 n.prio := max(
max(n. fork.prio 16 pr!oMax(n.succ),
prioMax((n. fork,n).sucqelayed)) 1 pr!oMax(nAdepi) +1
end 18 prioNextMax(n.depg) + 1)
end 19 end
return n.prionext 20 end .
end 21 return n.prio
22 | end
Figure 6.2: Algorithm to compute the priority assignment.
p p Yy
[P2]
- [P2]
[P2] PRIO 2 @
~“insert PRIO1 ~“insert @ ~insert
P <> o1
[PY] (b) priority increase
.. s P1
(a) priority lowering (P P1]

(c) label forwarding

Figure 6.3: Insert PRIO instructions according to the priority assignment.

60

6.2 Priority Constraints

%% % Esterel Module: Example
[L3,TO,P1] PAR* INPUT I
OUTPUT O
. SIGNAL AR
EMIT _ TICKLEN, #12
module Example: [[L5.T1,P2] WABORTI AA3] [[L15.T2P1] ABORT RAS| [LO]_,TO,P]_] PAR 2,A0,1
. _ [L02,TO,P1] PAR 1,A1,2
nput t' o [L03,T0,P1] PARE A2,1
output O; [LO4,T1,P2] AO:
ol ARG (77172 EMIT] [LO5,T1,P2] WABORTI A A3
s-g[na , Rin [LO6,T1,P2] A4
L07,T1,P2] EMIT R
[L8T1 PRIO1 [L18,T2,P1] GOTO A6 [' !
szttZ?:rT? [L08,T1] PRIO 1
¢ . _ [L09,T1] PRIO 2
:":?t" 6’""‘“"3"6 Ai i oz [L10,T1,P1/2] PAUSE
[L11,T1,P2] GOTO A4
I L)
. 12,T1,P1 A3:
await amr] - emiTo
| emi [L14,T2,P1] AL
. [L15T2,P1] ABORT R,A5
[L11,T1,P2] GOTO A4
end signal [Pz GoTo 4] [L16T2.P1] A6:
[L17,T2,P1/1] PAUSE
end module [L18,T2,P1] GOTO A6
(a) Esterel source [L2270PU1) JOIN [L19.T2,P1] AS:
[L20,T2,P1] EMIT A
[L21] A2:
@ [L22,TO,P1/1] JOIN
[L23,T0,P1/1] HALT

(b) priority assignment (c) resulting KEP assembler

program

Figure 6.4: An priority assignment example, starting with the Esterel source (a)
the assignment is performed on the CKAG and when finished PRIO in-
structions are inserted (b), see also the resulting KEP program (c). The
priorities of the assignment are shown as [P{prio)(/(next))|.

61

6 Priority Assignment

6.3 Assignment Algorithm

The fulfillment of all constraints is achieved by the priority assignment algorithm.
The algorithm computes a minimum assignment, i. e., the assigned priorities are as
high as needed to fulfill the constraints, but as low as possible:

n.prio(next) := min{p € N: ¥Ym € n.suceonstraints : P >/ >iqd m.prio},

whereby n.8UCconstraints Summarize all the constraint successors described before.
The control flow constraints are fulfilled by assigning at least the maximum successor
priority. The priorities must also consider dependency constraints, which can lead
to an increase of the priority. In fact dependencies are the only reason why the
priority can get higher than the overall minimum. Given the dependency (w,r),
the constraint w.prio >;4 r.prio must be fulfilled. This can be realized by assigning
the same priority when the writers thread-id value is greater, i.e., w.prio = r.prio.
When the thread-id value is lower, the priority is increased by one:

Vr € w.dep : w.threadid.id < r.threadid.id = w.prio :=r.prio+ 1.

Priority r.prio+1 is in case of a lower thread-id value the lowest priority with
W.Prio >;q T.prio.

If a node has no constraints at all, neither control flow nor dependency, the overall
minimum priority is assigned as priority. These nodes are typically delay nodes,
where the instantaneous control flow stops.

The priority assignment algorithm is shown in Figure [6.2] It starts in the main()
procedure, which, after some initializations, in line 8 calls getPrio() for all nodes that
must yet be processed. This set of nodes, given by Nropo \ Vprio (for “Visited”),
initially just contains the root of the CKAG. After prio has been computed for
all reachable nodes in the CKAG, a forall loop computes the prionext priorities for
reachable delay/join nodes that have not been computed yet.

Procedure getPrio() first checks whether it has already computed n.prio. If not,
it then checks for a recursive call to itself (lines 3/4, see also Theorem . The
remainder of getPrio() computes n.prio and, in case of delay and fork nodes, adds
nodes to the Nr,p, list. Similarly getPrioNext() computes n.prionext.

Theorem 6.9 (Termination). For a valid, acyclic Esterel program, getPrio() and
getPrioNext() terminate. Furthermore, they do not generate a “Cycle detected!” error
message.

Proof. Procedure getPrio() produces an error (line 4) if it has not computed n.prio yet
(checked in line 2) but has already been called (line 3) earlier in the call chain. This
means that it has called itself via one of the calls to prioMax() or prioNextMax() (via
getPrioNext()). An inspection of the calling pattern yields that an acyclic program in
the sense of Definition [6.5] cannot yield a cycle in the recursive call chain. O

62

6.4 Realizing the Priority Assignment

Theorem 6.10 (Fulfillment of Constraints). For a valid, acyclic Esterel program,
the priority assignment algorithm computes an assignment that fulfills the constraints

of Definitions [6.6 and [6.7

Proof. First observe that, apart from the initialization in main(), each n.prio is as-
signed only once. Hence, when prioMax() returns the maximum of priorities for a given
set of nodes, these priorities do not change any more. Therefore, the fulfillment of
Constraint [6.6] can be deduced directly from getPrio. O

Theorem 6.11 (Linearity). For a CKAG with nodes N and edges E and P, the
computational complezity of the priority assignment algorithm is O(|N| + |E| + |P)).

Proof. Apart from the initialization phase, which has cost O(|N|), the cost of the
algorithm is dominated by the recursive calls to getPrio(). The total number of calls
is bounded by |E| + |P|. With an amortization argument, where the costs of each
call are attributed to the callee, it is easy to see that the overall cost of the calls is
O(E| + |P)). 0

Note also that, while the size of the CKAG may be quadratic in the size of the
corresponding Esterel program in the worst case, it is in practice (for a bounded
abort nesting depth) linear in the size of the program. This results in an algorithm
that is effectively complexity linear in the program size.

6.4 Realizing the Priority Assignment

After priorities have been computed for each reachable node in the CKAG, we must
generate code that ensures that each thread is executed with the computed priority.
This task is presented in Figure by the priority insertion algorithm. First the
default priorities of the PAR instructions are replaced by the fork node child priorities
to initialize the threads according to the assignment.

Each time the priority changes in the assignment, i.e., a node n € N has a
successor m € n.suc with a different assigned priority (n.prio # m.prio), PRIO
instructions are inserted accordingly. In fact n.prio > m.prio must hold true and is
simply realized by inserting a PRIO instruction with the lower priority of m.prio in
between. When the priorities n.prio and n.prionext of a delayed node n € N differ,
a PRIO instruction with an increased priority of n.prionext is inserted. This time
the priority can grow, i.e., n.prio < n.prionert, and in that case the PRIO n.prionext
has to be inserted before n, see Figure (b). As mentioned earlier, the increasing
the thread priority after the delay would have no effect on the KEP scheduling, at
least in current instant. This would violate the assignment.

If the priority d.prio of a delay node d is lower than one of its parent’s priority,
but the prionext is again increasing, then two PRIO instructions are inserted, see the
example in Figure At program line L8 two PRIO instructions are inserted. First
the PRIO d.prio instruction is inserted, followed by the PRIO d.prionext. A reversed
order would make the higher assigned priority d.prionext obsolete, because directly

63

6 Priority Assignment

following the lower d.prio would be set. Hence, first the changes of control flow
successors in the assignment are realized, see the algorithm graphically described in
Figure [6.3] followed the realization of higher assigned prionext priorities. Note that
the realization of a lower prionext value is still done behind the delayed node.

The compiler suppresses PRIO instructions for the main thread, because the main
thread never runs concurrently to other threads. Also no PRIO instructions are
inserted at the end of a thread, although the priority assignment indicates a successor
with a lower priority, as the PRIO instruction would have no effect.

The insertion of PRIO instructions must respect the behavior of the instructions to
hold main invariants of the CKAG. E.g., consider the insertion of a PRIO instruction
in the middle of a GOTO and its label. This has no effect on the assembler side, and
it also destroys the CKAG control flow behavior and therefore the CKAG does not
longer match the control flow of the corresponding KEP assembler. The insertion of
PRIO instructions before abort labels does not realize the priority assignment as well.
The solution to such problems is to forward the insertion to the label’s successor, see
Figure (c). This is always possible, because label nodes have never more than
one child node. This process is recursive, i.e., if the successor of a label is again a
label, this label is also forwarded and so on.

The insertion of a PRIO instruction can always be forwarded over nodes whose in-
struction is no reader. In particular, it can be forwarded across writer nodes, because
it is never a problem to execute a writer with a higher priority than the assignment
has computed. To avoid the need for multiple PRIO instructions, it should not be
forwarded to multiple children, but only to a single child. As mentioned before,
label nodes have this property and are additionally never readers. Another instruc-
tion with the same behavior are the NOTHING instructions that might be needed to
distinguish labels from each other. As an optimization the forwarding is applied to
NOTHING instructions. If the control flow of the NOTHING stops in the following at
a JOIN, the PRIO instruction is not needed at all. This case is characteristic, because
the NOTHING often distinguishes PARE labels from other labels, e.g., preemption
labels of abort and trap scopes. Other more advanced optimizations are explained
in the next chapter.

64

7 Compiler Optimizations

This chapter describes the compiler optimizations of the strl2kasm compiler. Opti-
mizations in general are performed to optimize the use of machine resources, like
program space or register count, and program behavior, like execution time and re-
sponse time. E.g., the later described CKAG collapsing optimizes both, space and
time, because it combines several instructions to less, but semantically equivalent,
instructions that are executed in less cycles.

Other optimization techniques target the limits of the KEP assembler syntax:
the KEP instructions have a limited size and so are also all instruction parameters
limited, especially the thread priorities and KEP thread-id values. So it is a goal
to minimize the maximum priority and thread-id value of a given program, see the
following Sections and respectively.

Yet another optimization is applied on algebraic expressions to reduce the use of
instructions and registers via propagation propagation [2] during the CKAG building
as already mentioned. A peephole optimization [1] suppresses directly the creation
of needless instructions during the building process, e. g., instruction LOAD X,X as-
signing a register value it already has.

Some of these techniques belong to specific compilation steps and have to be
performed according to these steps, e.g., the minimization of signal dependencies
makes only sense before the priority assignment is performed, and the instruction
collapsing must be performed after the priority assignment.

The dead code removal, which is described in the next section, can be made during
all compilation steps. However it should be performed first, so that also the other
optimizations can benefit from it.

7.1 Dead Code Removal

Dead or unreachable code is program code which will never be executed, and therefore
can be removed without changing the semantic of the program. In general it is hard
to determine whether an instruction is reachable or not. The dead code removal
optimization can result in smaller CKAG and KEP assembler program.

Syntactically and semantically it is allowed to have such code within a program.
However, it often indicates a bug, because writing unreachable code is normally not
intended during software development, at most temporarily for debugging purposes.
Especially if a program is used in safety critical applications and therefore has to be
bug-free as possible, the compiler should throw a warning when detecting dead code.
In this sense the dead code removal is not only an optimization technique, it is also
a method of detecting program errors on the Esterel side.

65

7 Compiler Optimizations

On the Esterel level, there exists very easily detectable dead code, like statements
following a loop or an exit statement. Such code is automatically ignored by the
CKAG building process by setting the graph builder to the so called sleep state, see
Chapter[5l The same way statements are ignored that follow a concurrent statement
list, and (in KEP) after a JOIN instruction. If one of the sub-thread bodies contains
a loop, it never terminates by non-preemptive control flow. Nevertheless the control
might go further through the preemption of ABORT and EXIT instructions at their
appropriate labels.

The above dead code removal is performed on the Esterel level during the gen-
eration of the CKAG. A dead code analysis can be performed additionally on the
CKAG by searching for non-root nodes that have no parents. Such a node is appar-
ently not reachable and can be removed together with its children if they become
orphans and so on. The CKAG is created as a connected graph with only one root
node, namely the interface, so the described method would not change the CKAG,
because no node will be removed. There some analysis must be conducted first,
which, e. g., removes preemption edges of signals that never occur for some reason.
The preemption edges of all output, local and trap signals that have no according
writer are unreachable. This problem is in general more difficult, especially if input
signals are involved, which need no writer instruction to be active. Such an approach
could result in orphan nodes making the search and remove for such nodes useful,
because the CKAG is built coherently at the beginning.

7.2 KEP Collapsing

This section describes how to replace specific KEP instructions by semantically equiv-
alent but more efficient instructions. This technique can be seen as the opposite of
the Esterel dismantling described in Chapter [3| Especially the three types of Esterel
statements halt, sustain and await, that are dismantled initially, as described in Sec-
tion can now possibly be collapsed back to the KEP instructions HALT, SUSTAIN
and AWAIT[I].

Figure[7.1] describes which pattern has to be found and by which instruction they
were replaced. This optimization technique must be performed after the priority
assignment, which is described in the previous Chapter[6] to ensure the schedulability.
If it is not necessary to insert priority instructions, the pattern will be left unchanged
and can be collapsed.

The HALT pattern consists of a PAUSE node surrounded by a GOTO loop. This
is the simplest pattern. The SUSTAIN pattern contains an additional EMIT within
the loop. If the EMIT is valued, the resulting SUSTAIN is too with the same value.
More complicated valued EMIT’s which need more instructions to perform a register
computation do not match the SUSTAIN pattern and will not be collapsed.

The AWAIT pattern consists of a HALT instruction which is the body of an ABORT
instruction. To find these kind of pattern the HALT collapsing has to be performed
first. This pattern has an immediate variant: the AWAITI pattern. The according

66

7.2 KEP Collapsing

ABORT A,AO0
~~coll ; ~~coll AWAIT A
|
A

v

~

ABORT A,A0

GOTO A0
o)
GOTOA1
(a) Halt Collapsing (b) Await Collapsing

ABORTI A A0

ABORTI A,A0

~coll AWAITI A
/

(¢) Sustain Collapsing

(d) Await Immediate Collapsing

Figure 7.1: CKAG Collapsing (Pattern, Replacement)

ABORTI instruction is immediate and so this pattern has an additional edge between
the ABORTI and its abort label.

The collapsing of the ABRO example is shown in Figure[7.2] The lines of code were
reduced from 27 to 15 and the WCRT from 13 to 11. First three HALT patterns are
found, of these two can be reduced to an AWAIT. During the erasing of the address
labels A7 and A9 of the AWAIT pattern, the following NOTHING instructions are also
erased. The NOTHING instructions separated each an abort address label from a PAR
body label and are now superfluous, their erasing reduces the code size in addition.

A possible further work would be the detection of more complex patterns. The
KEP supports delayed AWAIT instructions in its syntax by setting a delay n via the
instruction LOAD _COUNT,#n in front of the AWAIT. Currently such instructions
are dismantled as early as on the Esterel level, which is necessary due to priority
assignment reasons [3.3] but are not collapsed back, even it would be theoretically
possible. The same situation with the await case, which is supported in KEP by the
CAWAIT instructions. These patterns are fare more complex than the implemented
ones, but should be implemented in the future.

67

7 Compiler Optimizations

INPUT AB,R
OUTPUT O
EMIT TICKLEN,#13

[LO1] A2:
[L02]
[Lo3]
[L04]
[LOS]
[LO6] A4:
[LO7]
[LO8] AS:
[LO9]
[L10]
[L11] AT7:
[L12]
[L13] AS:
[L14]
[L15] A10:
[L16]
[L17]
[L18] A9:
[L19]
[L20] A6:
[L21]
[L22]
[L23] A1L:
[L24]
[L25]
[L26] A3:
[L27]

ABORT R,A3
PAR 1,A4,1
PAR 1,A5,2
PARE A6,1
ABORT A A7

PAUSE
GOTO A8

NOTHING
ABORT B,A9

PAUSE
GOTO Al0

NOTHING

JOIN
EMIT O

PAUSE
GOTO All

GOTO A2

[L5] PAR*

1 1

[IL71 ABORT A A7

[[L14) ABORT B A9

B
N\,

[[L12 NOTHING [[L19] NOTHING]
\
N \

\ | [L21] JOIN
AN
N rk

[L22] EMIT O

@ [L25] GOTO AL
[L27] GOTO A2

(a) The ABRO example dismantled

module: abro

INPUT AB,R
OUTPUT O
EMIT TICKLEN,#11

[LO1] A2:

[L2] ABORT RA3

[L5] PAR

[L02]
[LO3]
[L04]
[LoS]
[Lo6]
[L07]
[Log]
[L09]
[L10]
[L11]
[L12]
[L13]
[L14]
[L15]

ABORT R,A3
PAR 1,A4,1
PAR 1,A5,2
PARE A6,1
A4:
AWAIT A
Ab5:
AWAIT B
A6:
JOIN 0
EMIT O
HALT
A3:
GOTO A2

68

Figure 7.2: The abro example before and after the collapsing: the code size is sig-

1 1

.

| [L11] JOIN O

|

|

|
wmeiro]

|

\ |

R
S 3 /

~ _ \R
[L15] GOTO A2

(b) The ABRO example collapsed

nificantly reduced.

7.3 Priority Assignment Modification

7.3 Priority Assignment Modification

This section explains how to minimize the use of PRIO instructions by modifying a
given priority assignment. The priority assignment described in Chapter [computes
priorities of minimal count for each node of a CKAG fulfilling all dependency and
control flow constraints defined in Chapter [6]

The basic idea of this optimization is to heighten priorities without violating the
constraints to avoid declining priorities in the control flow, because each of these pri-
ority differences induces the insertion of a PRIO instruction. Considering the example
in Figure (b), the EMIT S has a priority of two and the PAUSE of one assigned.
By heightening the PAUSE’s priority to two, no constraint would be damaged and
the insertion of the instruction PRIO 1 is now unnecessary.

Note that this optimization approach does not increase the maximum used priority
of a program, although the priority n.prio of a node might grow. The reason is that a
priority is always heightened to an existing priority n’.prio, which already assigned,
so the overall priority maximum is not affected.

A heuristic is implemented, called dominant writer heuristic, that heightens the
priorities of all nodes of a thread to the maximum priority of this thread. This is done
when a thread and its sub-threads contain of no reader nodes. Thus all constraints
remain fulfilled and at the same time no PRIO instructions are needed to realize the
assignment.

7.4 Minimizing Dependency Count

The signal dependencies are conservative, i. e., some of them might be superfluous and
can be removed, but this is in general hard to compute. Given a signal dependency
(w, r)s with writer w and reader r of signal s, this dependency would be superfluous,
if w and r are never executed within the same instant.

This optimization results in a greater amount of Esterel programs that can be
correctly compiled to KEP, as potentially wrong priority cycles are avoided. We call
these pseudo priority cycles, caused by one or more pseudo dependencies. A pseudo
dependency is a dependency between instructions that cannot be instantaneously
active and therefore does not have to be scheduled. The computation of signal
dependencies is made conservatively, i.e., the amount of computed dependencies
could be greater than it would be, if computed exactly with a NP-complete algorithm.
Such an algorithm could identify a pseudo dependency, based of a program simulation
technique to test the program for all possible states and transitions. Nevertheless if
a program is cycle-free, as each constructive program can be translated to [30], no
pseudo cycles will occur.

Another aspect of this optimization is the use of PRIO instructions. They will
be reduced, since each dependency could cause an increase in priority differences of
nodes/instructions during the priority assignment, which need PRIO instructions to
be realized.

69

7 Compiler Optimizations

A trivial knock-out criterion for a dependency belongs to its signal s: if it is never
emitted, then the according dependency can be removed. For signals of kind input,
this behavior cannot be determined, but for local and trap signals this is easily
possible and currently implemented in the strl2kasm.

A more advanced reduction could result from a dead code analysis plus removal.
As before described, if the unreachable code contains writer and reader, their de-
pendencies are also removed. The removal of one writer might reduce an arbitrarily
high number n of dependencies, if the specific writer has n readers. So the dead code
analysis can have a significant impact on the amount of signal dependencies.

7.5 Thread-Id Value Assignment

This section describes a variant of the KEP thread-id value assignment as presented
in Section that takes additionally the CKAG signal dependencies, explained in
Chapter [6] into account. This optimization technique simplifies the priority assign-
ment by solving the induced constraints before the priority assignment has even
started.

The method described in the previous section removes signal dependencies entirely,
if possible. Such a dependency causes no dependency constraint, simply because it
does not exist anymore. So both techniques have the same advantages for the priority
assignment, but neither technique makes the other obsolete, both are needed and
are complementary. A dependency constraint could eventually be solved by the id
value assignment that might not be removable by the previous method. The other
way round, if the id value optimization has no success, the removing of superfluous
dependencies might after all lead to a constraint fulfillment. Apparently the previous
method will be performed at first, because the id value assignment has no impact,
whether a signal dependency is superfluous or not.

Figure illustrates the KEP thread-id value optimization by an example. The
example program contains a dependency belonging to signal S between the emit S
and the present S statements. This signal dependency results in the dependency
constraint to execute the EMIT S before the PRESENT S. This is realized by the
priority assignment that assigns writer EMIT S the priority two, reader PRESENT S
gets a priority of one. The two sub-threads of the main thread are initialized with
these priorities at creation, see their priorities in Figure (b) at the fork node’s
child edges. Within the first thread, particularly the writer thread, the priority has
to be lowered according to the assignment. A PRIO 1 instruction is inserted at the
PAUSE in line L06 behind the EMIT S, lowering the thread priority from two to one.

The first scheduling criterion among active threads is a thread’s priority. If there
are multiple threads with the same priority the KEP thread-id values of the threads
are considered. A consequence of this behavior is that constraints could be solved by
assigning them the same priorities, with a higher id value of the writer thread. On
the other hand, as in this example, if the writer thread has a lower thread-id value
than its reader thread, its priority has to be greater. The KEP thread-id values must

70

module exThreadld:

input A,B;
output S,T;

[
emit S;
pause
I
present S then
emit T
end present

]

end module

(a) Esterel source

T1 T2
(¢c) Thread-Id Optimization:
writer thread gets the
thread-id value

/\r)opt

7.5 Thread-Id Value Assignment

INPUT AB
OUTPUT ST

EMIT TICKLEN,#10

[LO1,T0,P2]
[L02,TO,P2]
[L03,T0,P2/2]

[L04,T1,P2] Ao:

[L05,T1,P2]
[L06,T1]
[L0O7,T1,P1/1]

[L08,T2,P1] AL

[L09,T2,P1]
[L10,T2,P1]

[L11,T2,P1] A3:

[L12,T2,P1]

[L13] A2:

[L14,T0,P2]
[L15,T0,P1/1]

PAR 2,A0,1
PAR 1,A1,2
PARE A2,2

EMIT S
PRIO 1
PAUSE

PRESENT S,A3
EMIT T

NOTHING

JOIN 0
HALT

the

higher

module: exThreadld

[L3] PAR*

[L12] NOTHING

[L14] JOIN O

(b) unoptimized KEP and CKAG

module: exThreadld

[L3] PAR*

INPUT A,B

OUTPUTS,T

EMIT _TICKLEN,#9
[LO01,TO,P1] PAR 1,A0,2
[L02,TO,P1] PAR 1,A1,1
[L03,TO,P1/1] PARE A2,1
[L04,T2,P1] AO:

[L05,T2,P1] EMIT S
[L06,T2,P1/1] PAUSE
[LO7,T1,P1] AL

[L08,T1,P1] PRESENT S A3
[L09,T1,P1] EMIT T
[L10,T1,P1] A3:

[L11,T1,P1] NOTHING
[L12] A2:

[L13,T0,P1] JOIN 0
[L14,TO,P1/1] HALT

(earmss
f

\ [L11] NOTHING
[L13] JOIN 0

(d) KEP and CKAG with optimized KEP thread-id values

Figure 7.3: The thread-id optimization applied on the Esterel program shown in (a).
In (b) the writer thread has a lower thread-id value, so it must have a
greater priority in the assignment, which results here in the use of a PRIO
instruction. After the optimization in (c¢) the program could be scheduled
with priority one for all threads, this saves the PRIO instruction, reduces
the WCRT and the maximum priority, see (d).

71

7 Compiler Optimizations

be defined according to a DFS principle as explained in Section [1.2] Le., the sub-
threads must have greater id values than their parents, but among the children are no
limitations. The default is that the id values are assigned to their position as given
from the Esterel source: the ids are assigned with an increasing number resulting in
lower thread-id values for the anterior threads, namely the parent threads. In the
example the writer thread is the first thread in parallel statement and therefore gets
the lower id value of one, denoted with 711, than the reader thread with value T2.
This is an arbitrary choice, since the Esterel program would not change semantically
if the thread bodies of the concurrent statement are switched.

So we have the freedom to choose another order to assign KEP thread-id values
to sub-threads that take signal dependencies into account, before the priority assign-
ment starts. The optimization should assign lower thread-id values to reader threads.
This respects the KEP scheduling principle: a higher thread-id takes preference un-
der equal thread priorities. In the example we have a strict division between writer
and reader threads and the optimization, as seen in Figure (c) takes place by
visiting first the reader thread. This results in a switch of the sub-thread’s id values.
The main thread remains unchanged with the thread-id value of zero (7°0) and its
sub-threads keep greater id values.

The optimization of the example leads to a priority assignment of priority one for
all instructions, the former PRIO 1 is not needed anymore. The maximum priority
is reduced from two to one and also the program size and WCRT are decreased by
one. The lowering of the maximum priority is relevant for the bit size of the KEP
instruction set architecture, as priorities occur, e.g., in PAR and PRIO instructions.
Therefore the thread-id optimization has an impact on several performance critical
program properties.

Note that the example is a minimal example to show the core problem and its
solution. But in fact the PRIO 1 instruction is not really needed here and does not
change the program semantics. This problem could be addressed by an optimization
technique employed on the priority assignment itself to avoid the PRIO 1 insertion,
see Section [7.3] Nevertheless the priority lowering and therefore the PRIO insertions
are needed in general: the PAUSE could occur within the scope of an ABORT signal
and must have the lower priority as being a reader to that signal.

The reduction of PRIO instructions lowers the program size at least by its amount,
but there might be an additional effect by the previous described collapsing. The
use of less PRIO instructions could result in more patterns found by the collapsing
algorithm, which means even less instructions. The Esterel statements halt, sustain
and await are dismantled to allow the insertion of PRIO instructions in between,
see Section [3.3] and if no PRIO instructions are needed, they are collapsed again.
Therefore the id value optimization increase typically the number of patterns found,
and each extra pattern reduces the program size by two instructions.

Next the KEP thread-id value optimization is described in more detail. First
are the thread dependencies defined, which reduce the signal dependencies to the
KEP thread-id level, followed by the propagated thread dependencies, since KEP thread-
id values are assigned according to the sub-thread relation via DFS.

72

W N 3 Ok W

7.5 Thread-Id Value Assignment

1 | procedure new ids(T', boolean ordered)
procedure main (tree T) 2 if (|T'] > 0) then
compute _thread _dependencies(T); 3 if (ordered) then
compute propagated thread dependencies(T); 4 if (Tmiddle = T) then
5 Choose e € Tiiddle
id_wvalue_counter = 0; 6 new _id(e);
new_id(T.main); 7 new _ids(Tiniddle \ {€}.true);// ordered
end 8 else
9 new _ids(Tyink, false);// not ordered

=
o

new _ids(Timiddle true);// ordered

procedure new _id (thread—id t) 11 new_ids(Tsource, false);// not ordered
t.id = id_value counter + +;// new id value 12 fi
13 else
forall f € t.forks do 14 forall t € T do
// ordered assignment 15 new _id(¢);
new _ids(f.subthreads, true); 16 end
end 17 fi
end 18| fi
19 | end

Figure 7.4: Optimized Thread-Id Value Assignment: before the thread-id value op-
timization takes place, first the thread dependencies are computed, fol-
lowed by its propagated thread dependencies. After that the DFS is
started at the main thread by id optimize with a start value of zero.

b — b ~ o
Foew @oon @ ok

) default thread-id tree) propagated thread de- c¢) optimized thread-id tree
pendenmes

Figure 7.5: First are the thread-dependencies of the default tree computed (a), then
its propagated thread dependencies (b). In the last step (c) is a new
value assignment accordingly calculated.

73

7 Compiler Optimizations

Definition 7.1 (Thread Dependencies). The KEP thread-id tuple set Dy C T x T
1s defined as the thread dependencies of the signal dependencies D C N x N. Set
D7 corresponds to D, but without their information about CKAG nodes and KEP
instructions, just the KEP thread-ids are left:

Dy := D.threadid := {(dy.threadid, d,.threadid) € T X T | (dyw,d,) € D}.

The thread dependency relation D can be seen as the signal dependency relation D
modulo nodes and instructions.

Given a thread dependency (t,,t,) € Dp, we call t,, writer thread and t, reader
thread. Writer and reader thread are always concurrent per definition of the signal
dependencies, were they are derived from.

The thread-id assignment has to be made according to the DFS principle as men-
tioned in Section to ensure higher thread-id values for sub-threads. Due to this
KEP thread-id tree invariant, the dependencies were 'propagated’ to the highest
possible level, according to the sub-thread relation, where the threads are still con-
current:

Definition 7.2 (Propagated Thread Dependency). Given a thread dependency
t = (tw,tr) € Dy, the according propagated thread dependency is defined as the

tuple t, = (pw,pr) € T X T of concurrent thread-ids p,, and p,, that are mazimal
with the sub-thread relation in this behavior:

tp = maz {(p1,p2) ETXT |ty <p1 A tr <pa A p1 || p2}

Note that t and t, might be the same, this is exactly the case when their thread-ids
are the children of their least common fork.
The set of propagated thread dependencies Dp is defined by:

DP::{tPETXT:tEDT}.

According to the definition of a propagated thread dependency (pw,pr) are py and p,
children of the same fork, in particular their least common fork, so is Dp partitioned
by fork nodes. Given fork node f, the subset/sub-relation Dp(f) is defined as:

Dp(f) := {(pw,pr) € Dp : py, pr € f.subthreads}.

The partition is described by the distinct union of all these subsets:

DP - UfeFork;NodesDP(f)'

Next the optimization algorithm is explained in detail, taking the propagated
thread dependencies into account.

74

7.5 Thread-Id Value Assignment

(d) sub-cluster

(e) 1d value assignment

Figure 7.6: Thread-Id Value Assignment of a Cluster: The first and the last thread
are Tsource and Ty, and get (here) in the assognment values 5 and
1/highest and lowest, respectively (a). Hereafter, the rest T},;44.c cannot
be split further into source and sink parts (b). The #w — #r heuristic
is applied, the minimum is —1 and the thread gets value 2. The rest
is again a cluster, both 0 in #w — #r (d), and get values 3 and 4, the
result can be seen in (d). The minimum of two hard propagated thread
dependencies has been reached, denoted by h.

7.5.1 Thread-Id Value Assignment Algorithm

The algorithm described in this section takes a KEP thread-id tree T and computes
according to its propagated dependencies Dp a new KEP thread-id tree T’. The
KEP thread-id tree structure remains unchanged, only the id values are modified.

The id values of a KEP thread-id tree can be seen as a function/assignment from
KEP thread-ids to integer:

Definition 7.3 (Thread-Id Assignment). Given a KEP thread-id tree T, the func-
tion idr : T — Ng,t — t.idy induced by the thread-id values is called thread-id
assignment.

The idy assignment should minimize the number of propagated thread dependen-
cies that cannot be scheduled by a constant priority assignment, i. e., the respective
writer thread-id has a lower thread-id value than its reader.

Definition 7.4 (Hard Propagated Thread Dependency). Given a propagated thread
dependency p = (pw,pr) € Dp, p is called hard in T, if the writer thread has a lower
1d value than its reader in T respective by the assignment idr:

p hard in' T = py.idy < pr.adr.
The set of hard propagated thread dependencies of Dp is defined by:

]D)]};T = {p € Dp : p hard in T}

75

7 Compiler Optimizations

So the algorithm should compute a thread-id tree T’, that is minimal with respect
to the number of hard propagated thread dependencies:

V thread-id assignment idry :]ID)}];T,] <]ID)}};T

The best case scenario is the fulfillment of all propagated thread dependencies,
ie., |ID)]}:,’T/| = 0. In this case the fulfillment of all signal dependencies by a constant
schedule with priority one for all KEP threads is possible. The scheduling would
be realized by thread-id values only and no PRIO instructions are needed. If there
exists a cycle of propagated thread dependencies, their dependencies still have to be
scheduled with a non-constant priority assignment. More generally, each Strongly
Connected Component (SCC) of at least two KEP thread-ids must be scheduled non
trivially, we call them dependency cluster.

Definition 7.5 (Dependency Cluster). Given the graph G = (T,Dp) with KEP thread-
ids T as nodes and their propagated thread dependencies Dp as edges. A SCC ¢ C T
with |c| > 1 is called a dependency cluster of T.
The partition of Dp is inherited to G = e porknodesG(f): whereby, given fork
node f, the sub-graph according to f is defined as G(f) := (f.subthreads,Dp(f)).
All SCCs, especially the clusters, are part of exactly one sub-graph G(f) of G.

Theorem 7.6 (Cluster Assignment). A dependency cluster ¢ cannot be scheduled
with a constant priority assignment.

Proof. Given a dependency cluster ¢ with a constant priority assignment. We show
that at least one dependency constraint is not fulfilled. By definition of a SCC
and |c¢| > 1, we find in ¢ a cycle (t1,...,tn,t1) with n > 1 of propagated thread
dependencies (t;,t;i + 1). So there exists a thread dependency (t,t,) with t,.id <
t,.id, because t;.id > t;y1.id cannot be true for all ¢ = 1,...,n. Per definition of
the propagated thread dependencies there exists a signal dependency (d,,,d,) with
dy.threadid < t,, and d,.threadid < t,.. It follows d,,.threadid.id < d,.threadid.id,
because of the KEP thread-id tree characteristics. O

The basic idea of the algorithm is still a DFS, as in the default value assignment,
to ensure the KEP thread-id tree properties. The KEP thread-id value assignment
starts with value zero at the main thread and increases this count for each new
KEP thread-id the DFS visits. The only degree of freedom is the order of how sub-
threads are visited at any given fork node f. Here the optimization takes place: the
propagated thread dependencies are ordered from reader to writer or sink to source
respectively, and are visited accordingly . The set of KEP thread-ids that have to
be ordered is Dp(f) and we use the according sub-graph G(f) to order. We identify
sink and source sets, the sinks get the lowest id values and the source get the highest.
These two types of sets are defined in the following.

Definition 7.7 (Thread Dependency Sink and Source (Set)). Given KEP thread-ids
T CT. The set Tgmp € T is called thread dependency sink of T, when it contains

76

7.5 Thread-Id Value Assignment

the KEP thread-ids, that are no writers of a KEP thread-id in T':
Teink := {t eT ‘ vt eT: (t,t/) ¢ DP}

The set Tsource € T is called thread dependency source of T, if it consists of all

writers of T', that are itself no reader of T':
Tsource :={t €T |3 €T :(t,t')eDp AV €T :(t,t) € Dp}
Per definition these two sets are disjoint:
Tsink N Tsource =0

The set Tryidadie =T \ (Tsink U Tsource) C T is called the dependency middle of T.
The dependency middle accomplishes Tsini and Tsoyrce via distinct union to T and
form therefore a partition of T:

Tsink U Tmiddle U Tsource =T

Given sub-graph Gy to sort, its sink and source thread dependency sets G(f)sink
and G(f)source are computed, then the KEP thread-ids of G(f)sint get the low-
est and G(f)source the highest id values. If the union of G(f)sink and G(f)source
equals not G(f), then this principle is recursively applied on the dependency middle
G(f) (G(f)sink Y G(f)source) of G(f) and so on. If the middle remains unchanged,

a dependency cluster is found

Theorem 7.8 (Middle Cluster). Given KEP thread-ids) # T C G(f), if depen-
dency sink Tgnk and source Tsoyrce Sets are empty, then T = Tyqd1e contains at least
one cluster:

VT C G(f) t Tsink U Tsource =0 = 3clusterc: ¢CT

Proof. The propagated dependency graph induced by T consist of at least one cycle,
because each thread-id ¢ has an outgoing and incoming edge:

T = Tmiddle = {t eT | -t € Tsink N —t € Tsource}
= {teT |3 eT:(t,t')eDp A FH €T :(,t) e Dp}.

Choose a SCC containing the cycle. The cycle has at least two elements (no reflexive
edges), therefore this SCC forms a dependency cluster. O

If T' consists of a cluster then a KEP thread-id ¢ is chosen to get the next thread-id
value. This ensures the termination of the algorithm. The thread ¢ gets the lowest
thread-id value of thread-ids in T'. As a heuristic to minimize the hard propagated
thread dependencies, the amount of its writer and reader count is minimized and
maximized respectively. Therefore choose ¢ as follows:

te{t' eT | Vt": #wr(t') — #wr(r') < F#Fwr(t”) —#rr(t")},

7

7 Compiler Optimizations

whereby #wp(t) := |Dp(t,.) NTxT| € N and #rp(t) := [Dp(.,t) NTxT| € N are
defined as the count of propagated dependency writers respective readers of ¢ in 7.

The complete algorithm as described is shown by Figure[7.4]in pseudo-code. Note
that T},;441e might consist of multiple clusters. It is a presumption and has yet to be
proven that the heuristic computes a thread-id value assignment with a minimum of
hard propagated thread dependencies.

In Figure an example is shown: first the thread dependencies are computed,
three in number, so the original CKAG has at least three signal dependencies. After
the thread dependency propagation (b), one thread dependency is changed, namely
(13,15) to (T1,74), and is now at the highest possible concurrent level at their least
common fork. All propagated thread dependencies are hard, because the writer id
values are each lower than the reader ones. Each sub-graph of the propagated thread
dependency graph consists only of two nodes and one edge. This can easily be solved
and results in a perfect solution with no hard dependencies, because no cluster exists,
see (¢). An example that consists of a cluster is presented in Figure The heuristic
reaches here the minimum of two hard propagated thread dependencies.

7.5.2 Weighted Propagated Thread Dependencies

The KEP thread-id value optimization described in the previous section can be re-
fined by taking the thread dependencies and signal dependencies respectively into
account. This optimization technique is currently not implemented, in contrast to
the non-weighted thread-id value optimization, which is; but it is based on a similar—
more general—principle and a possible implementation will benefit from this. This
optimization will not effect a perfect thread-id value match, which will be, if pos-
sible, computed by the current algorithm. If a dependency cluster occurs, the best
case is not possible, see Theorem [7.5.1} Currently only the hard propagated thread
dependencies are be minimized. Each propagated thread dependencies might under-
lie several thread dependencies respective signal dependencies. The concept of hard
propagated thread dependencies can analogously be transferred to thread dependen-
cies and signal dependencies:

Definition 7.9 (Hard Dependencies). Given a thread dependency t = (ty,t,) € Dp
and a signal dependency d = (dy,d,) € D of a KEP thread-id tree T, t and d are
called hard in T if the writer’s thread-id value is less than its reader value:

t hard in T := ty.2dt < tr.idt and respective

d hard in T := dy.threadid.idy < d,.threadid.idr.

The sets of hard thread and signal dependencies are predicated as]D?’T and DT
respectively.

The basic idea of a further KEP thread-id value optimization is to take the number
of thread or signal dependencies into account to choose a KEP thread-id in order to
dissolve a dependency cluster with a minimum of hard thread or signal dependencies.

78

7.5 Thread-Id Value Assignment

procedure new id reuse(thread—id t)
t.id = id_wvalue_ counter++;// assign id value

int max = 0;
int start = id_wvalue _counter;

forall f € t.forks do
new ids reuse(f.subthreads);
max = max(id_value _counter,mazx);

= e
NP O © 0N U kR W N

if (f =t.forks.end()—1) then
id_wvalue counter = maw;
else
id_value__counter = start;// reset
fi
end
end

BT R

e e
N O ot e W

Sopdhdede elndhondn

a

Figure 7.7:

) default thread-id values) reused thread-id values

The algorithm of the KEP thread-id reusage is identical with
the algorithm described in Figure except that the new pro-
cedure new id_ reuse is used instead of new id. The procedure
new __ids_reuse is defined as new _ids, where calls of new id are re-
placed by new td_reuse. The procedures differ from each other by the
resetting id _wvalue counter to start and maxz respectively. The maxi-
mum thread-id value number can be reduced by reusing thread-id values
for KEP thread-ids, which are in sequence. These are each time the sub-
thread trees of the three two-element fork node lists. In this case the
maximum value halves by the value reuse from (a) 14 to (b) 7.

79

7 Compiler Optimizations

A new value assignment idp should now minimize \]D)%T\ and |D"T| respectively.
The additional number information can be represented as weights of propagated
dependency edges Dp.

Definition 7.10 (Weighted Propagated Dependencies). Given a propagated thread
dependency p = (pw,pr) € Dp, the dependency (pw,pr)n is called weighted propa-
gated thread dependency with edge weight n € N.

We call p, weighted by thread dependencies if n is the number of all thread de-
pendencies with the propagated thread dependency of p:

n= H(tthT) € Dy ‘ ty < pw N tp < pr}|

We call p, weighted by signal dependencies if n is the number of all signal depen-
dencies with the propagated thread dependency of p:

n = |{(dw,dr) € D | dy.threadid < p,, A dy.threadid < p,}|

The expression]]D)};;T\ should be minimized, this time with weighted dependencies
Dp, which leads to:

h,T
D

= Z n has to be minimized.

T
Pn ED}ILD’

Note that the minimization problem of the previous section correlates with the
weighted dependency problem with all weights set to one, the algorithm differ only
in the cluster solving by taking the weights into account: Given a thread depen-
dency cluster ¢ in T},;qq: of weighted propagated thread dependencies, the further
optimization algorithm chooses (to dissolve ¢) a thread-id ¢ with a minimum count
of writer minus reader edges (#w/.(t) — #r/(t)) with respect to the weights, i e.,

#wp(t) = Z{n | (t,.)n € DpNTxT} and
#rp(t) = D {n| (.t €DpNTxT}.

7.5.3 Thread-Id Reuse

Another optimization of KEP thread-ids, which is independent of the one described
before and can be applied additionally, is the reuse of KEP thread-id values to lower
the range of used KEP thread-id values. As mentioned in Section the integer
values of KEP thread-ids must be different, when they could be active at the same
time. This might be the case when they are concurrent. Also KEP thread-ids in sub-
thread relation must have different values, because the sub-threads must have greater
id values according to KEP thread-id tree properties. The only way is to reuse id
values, if KEP thread-ids are in sequence relation. Note that even if KEP thread-id
values might be the same, their KEP thread-ids remain different.

This section describes an algorithm to reuse KEP thread-id values for KEP thread-
ids related in sequence and simultaneously accomplish the KEP thread-id tree rules.

80

7.5 Thread-Id Value Assignment

The id value assignment is done by a DFS algorithm on the thread tree structure,
the same way as the default values are computed with an increasing value counter.
The only difference is that we reset this counter for sequentially related KEP thread-
ids. So all sub-thread KEP thread-ids should start for each sub-thread generating
fork of a KEP thread-id with the same reused start id value. See Figure [7.7] to see
the algorithm in pseudo-code, the reuse is there implemented by saving the counter
value at start and resetting it for each new fork node. To ensure rule (ii) of the
KEP thread-id tree properties, the maximum used id value by all sub-trees of fork
nodes is saved to reset the counter for the next—then concurrent—KEP thread-
id. See the example in Figures (a) and (b), the two sub-trees of the (first)
thread-id with id value one have a maximum id value of four, therefore gets the
concurrent KEP thread-id an id value of five. Without this resetting the value would
be four, because the counter stopped for the second fork at value three, which would
violate the rule that concurrent KEP thread-ids must have different id values, as two
concurrent thread-ids have an id value of four.

The maximum used KEP thread-id value in the example is decreased by reuse
from fourteen to seven. How much effect the reuse optimization has, this depends
in general on the amount of thread-ids that are in sequence relation to each other.
The reuse has no effect when the sequence relation is empty, but might on the other
hand be arbitrarily high, if an accordingly long list of fork nodes exists in a thread,
since their sub-trees are all in sequence relation to each other. In the example three
fork lists exist, each of length two greater one, so the reusage has an impact on all
of them.

The thread-id value optimization according to dependencies and the reuse are
independent of each other, because the dependency assignment whether they are
weighted or not is performed to order the sub-thread of a fork node, which are never
in sequence relation, and the other way round sequential thread-ids are per definition
never part of any type of dependency relation.

81

7 Compiler Optimizations

82

8 Experimental Results

To validate the correctness of the strl2kasm compilation scheme, as well as of the KEP
itself, we have collected a fairly substantial validation suite, currently containing
some 700 Esterel programs. These include all common benchmarks, such as the
Estbench [13], and other programs written to test specific situations and corner cases.
An automated regression procedure compiles each program onto KEP assembler,
downloads it into the KEP, provides an input trace for the program, and records
the output at each step. The evaluation platform is shown in Figure The user
interacts via a host computer with a FPGA Board that runs the KEP as well as
some testing infrastructure. First, an Esterel program is compiled into a KEP object
file (.ko) which is uploaded to the FPGA board. Then the host provides input events
to the KEP and reads the generated output events (.keso). The input events can
either be provided by the user interactively, or they can be supplied via an .esi file.
EsterelStudio V5.0 [20] is used to compute these input traces automatically with
state and transition coverage. The host can compare the output .keso results of the
KEP to an execution trace (.eso) also generated by EsterelStudio. Note that the
traces obtained this way still do not cover all possible paths, but this comparison
to a reference implementation proved to be a very valuable aid in validating the
correctness of both the KEP and the strl2kasm.

The renaming of interface signals due to the KEP case insensitivity leads to an un-
desired side effect: a correct KEP assembler program fails the semantically equality
test of .keso and .eso files. Therefore, for a proper test, the interface signals should
already be case insensitive in the Esterel source. Due to technical reasons and sim-
plicity, it is also demanded that the file names of the Esterel test cases coincide with
the main module names.

User Host FPGA Board

[strlzkasmH .kasm}—{%—» ko | .| KEP Assembler

.strl
B

. €eso ProtooolGerﬂ<_‘ Output < !
Fﬁ .l og % ﬂ Environment

Figure 8.1: The structure of the KEP evaluation platform

Kiel Esterel
Processor

Test Driver
|

83

8 Experimental Results

Esterel KEP Assembler tassign tcomp
Module name LoC LoCgss || LoCkep #Dep. Depth Max.Conc. #PRIO Max.Prio| [ms| [ms]
abcd 176 232 167 36 2 4 30 3 2.1 11.9
abcdef 260 344 251 90 2 6 48 3 3.3 16.8
eight buttons 344 456 335 168 2 8 66 3 4.7 67.9
channel protocol 53 78 61 8 3 4 10 2 0.7 5.7
reactor _control 31 50 32) 2 3 0 0 0.5 4.1
runner 35 69 38 2 2 2 0 0 0.5 4.9
ww__button 100 184 134 6 3 4 6 2 1.7 10.6
tcint 341 505 472 65 5 17 45 3 6.3 98.9

Table 8.1: Experimental results of the priority assignment. The lines of code (LoC)
of the Esterel source is compared with the target KEP assembler. Fur-
thermore the amount of dependencies is presented and how many priority
instructions are used to solve them. Note that the range of used priorities
is low, as can be seen by the maximal priority values.

Table [8.1] summarizes the experimental results for a selection of programs taken
from the Estbench. Obviously the generated code is very compact, and the KEP
assembler line count is comparable to the Esterel source. This is primarily a reflection
on the KEP ISA, which provides instructions that directly implement most of the
Esterel statements. The connection between program size and number of signal
dependencies is rather loose. For example, eight buttons is smaller than tcint but
contains more than twice the number of dependencies. The degree of concurrency
again varies widely; not too surprisingly, it also influences the required number of
PRIO statements (which induce potentially context switches). The reason is that
signal dependencies exist only between concurrent threads, and these induce the
dependency constraints. On the other hand, a program with an arbitrarily high
concurrency level might contain not a single PRIO instruction. However, the overall
number of generated PRIO statements seems acceptable compared to overall code
size, and there were cases where the insertion of PRIO instructions was not necessary
at all, despite several signal dependencies. This effect is enhanced when the thread-
id assignment optimization mechanism is used, as Table [8.2] shows. Similarly, the
maximum assigned priorities tended to be low in general, for none of the benchmarks
they exceeded three. The priority assignment algorithm and the overall compilation
are quite fast, generally within the millisecond range.

Next, the compilation results of Table[8.I]are compared with their optimized coun-
terparts: this time compiled by setting the optimization flag -o when executing the
cec-astkep module. Data that are independent from the optimization techniques are
not shown again. These are the Esterel LoC, dependency, thread depth and the
maximum concurrency columns. There is no big difference in the overall compila-
tion time between normal and optimized compilation. This indicates an efficient
implementation of the optimizations. Both the thread-id value assignment and the
collapsing optimization decrease the KEP assembler LoC. We consider first the ef-

84

Esterel KEP Assembler (optimized) tassign tcomp Collapsing teollapsing
Module name LoCop: decr.[%] #PRIO Max.Prio| [ms| [ms]| ||#HALT #AWAIT #SUSTAIN| [ms]
abcd 152 9.0 30 3 2.2 126 0 6 0 0.4
abecdef 232 7.6 48 3 3.6 529 0 8 0 0.6
eight _buttons 312 6.9 66 3 5.6 259 0 10 0 0.8
channel _protocol 55 9.8 10 2 0.8 6.5 0 2 0 0.1
reactor _control 22 31.3 0 0 0.5 4.0 1 3 1 0.1
runner 26 31.6 0 0 0.6 5.1 2 3 2 0.1
ww_button 94 29.9 0 0 1.7 11.0 10 12 0 0.4
tecint 354 25.0 0 0 6.7 915 2 13 17 1.3

Table 8.2: Results of the Compiler Optimizations. The KEP assembler LoC have
been decreased due to the thread-id value optimization and the collapsing.

fect of the thread-id value optimization, which is expressed by the number of PRIO
instructions. For the ww_ button and tcint examples, the number of PRIO instruc-
tions is decreased from 6 and 45 to zero, respectively. The PRIO count remains
unchanged for the other examples, in particular, none of the 66 PRIO instructions of
the eight buttons example is resolved.

The impact of the collapsing optimization is shown by columns #HALT, #AWAIT
and #SUSTAIN counting each time the according pattern is found. Note that the
number of collapsed HALT instructions in Table does not include the count of
collapsed HALTs found intermediately during the collapsing of AWAIT patterns. As
expected, the number of detected collapsing patterns correlates with the increase
during the Esterel dismantling, i.e., the programs with the highest dismantling in-
crease have also the highest collapsing potential. For the runner example, the Esterel
dismantling increases the code size by 97% and it has in relation to its code size the
highest count of patterns found. Even for the ww_button and tcint, the collapsing
affords good results. The overall collapsing speed is fast, when compared to the
priority assignment.

In conclusion, the strl2kasm and its optimizations provide efficient code in a timely
manner. A further testing could examine which effect the thread-id optimization
and collapsing have on their own; it is assumed that the thread-id optimization has
a significant positive effect on the collapsing since less patterns are destroyed by PRIO
instructions. It would also be interesting to see whether the implementation of the
weighted thread dependency optimization could decrease the PRIO count in those
examples that expose no effect for the non-weighted optimization.

85

8 Experimental Results

86

9 Implementation

This chapter illustrates the implementation of the strl2kasm compiler. The compiler
is constructed of several modules. It uses the CEC [15] as a front-end, see Figure[0.1]
namely the CEC parsing and module expanding are used. These are performed by
cec-strlxml and cec-expandmodules, respectively. The CEC parser makes use of the
Antlr |33] parser generator. The Esterel grammar and semantics are specified by
files esterel.g and staticsemantics.g, respectively. The modules interact by XML code
that represents the Esterel Abstract Syntax Tree (AST). After the Esterel source
is parsed and printed to AST XML, this is the input of module cec-expandmodule.
After the module expansion is performed, the output is again XML AST code. The
XML printing is provided by the Expat [14] tool, which is used in the CEC by class
IR::Node. In the strl2kasm implementation, the data structures for the KEP assembler
and CKAG are inherited from IR::Node. This allows to print the CKAG and all other
data structures for the purpose of further use by the strl2kasm in later compilation
steps. All modules are shown in Figure (b). Next the strl2kasm modules are
explained, which implement the compilation steps described in the previous chapters.

9.1 Compiler Modules

The back-end consists of four modules: cec-kepdismantle, cec-astkep.cpp, cec-xmlkasm.cpp
and cec-kepdot.cpp. Their sources are defined accordingly by the files cec-kepdis-
mantle.cpp, cec-astkep.cpp, cec-xmlkasm.cpp and cec-kepdot.cpp, respectively. As for the
CEC, all modules and related classes are implemented in the C++ [35] programming
language.

The KEP dismantling, described in Chapter [3] is performed by module cec-kep-
dismantle. The input and output are Esterel AST files. This module replaces the
CEC dismantling of module cec-dismantle. The KEP dismantling is implemented
by the class KepDismantler based on class Rewriter of the CEC. It is defined in file
KepDismantle.hpp.

The dismantling is made optional for some Esterel statements that are directly
supported by the KEP instruction set. These statements are halt, await, sustain and
wabort. The dismantling is activated by the option d, for dismantle, followed by
the type of statement: -d (stmt type). When this option is not used, the according
statements will not be dismantled. In general, all delayed statements must be dis-
mantled to ensure a correct priority assignment. Therefore, the compilation script
uses the following default dismantling options: -d halt -d await -d sustain. The instan-
taneous wabort statement is not dismantled by default, since it is directly supported

87

9 Implementation

CEC frond-end strl2kasm kasm2Kklst

STRL AST AST KASM || KASM LST

C++ C++ Java

Figure 9.1: Compiler Overview

Esterdl (*.strl)

cec-strixml
cec-expandmodules
cec-kepdismantle

" KEP:KepObject -
- KepNode -
TransientNode (LabelNode) |DelayNode| ForkNode JoinNode
(b)

(a) Compiler Module Structure Node Class Hierarchy

Figure 9.2: Compiler Implementation

by the KEP instruction WABORT. The complex variants of await and abort are always
dismantled, see Section

The main compilation steps are performed by cec-astkep: the CKAG construction,
priority assignment and the optimizations. The CKAG construction is performed
as traversal over the Esterel AST. This is implemented by class EsterelKep in Es-
terelKep.*pp. Class EsterelKep is a visitor of the AST structure and therefore inherited
from class AST::Visitor, a AST class. In cec-astkep.cpp an instance of EsterelKep is
created, together with an instance of the CKAG building class KEP::CKAG _ Builder.
During traversal, the CKAG is created. Thereafter, the following compilation steps
are performed by the according visitor classes. The optimizations are activated by
option o for optimized. At the end, the computed CKAG and KEP assembler pro-
gram are printed to XML.

88

9.1 Compiler Modules

An example compilation trace:

cec-strlxml < example.strl | \

cec-expandmodules | \

cec-kepdismantle -d sustain -d await -d halt | \
cec-astkep -o | \

cec-xmlkasm -i -p LINES -p PRIO > example.opt.kasm

First, the example Esterel program is given as input to cec-strlxml; the resulting XML
output is piped as input for cec-expandmodules.

At the end is the assembler program printed by cec-xmlkasm to example.opt.kasm.
The address labels are indented by option i, line numbers are added by -p LINES and
additional information about the priority assignment are printed by -p PRIO. This
printer, with all its options, is explained next inter alia in detail.

The strl2kasm supports for both the KEP assembler program and the CKAG a
printer: cec-xmlkasm and cec-kepdot. The cec-xmlkasm printer outputs the program
in the kasm format. It is implemented in file cec-xmlkasm.cpp by class KasmPrinter,
also a visitor over the KEP structure. This module supports options that affect
the layout of the KEP assembler program: the verbose option v prints additional
information about the compilation process. The option indent, applied by i, indents
the instructions to the address labels. Information about the instructions are printed
when using the p option:

e -p LINES: The line position is printed as L{pos). There are leading zeros added
to pos, if needed, depending on the overall program size. This ensures the same
length for all printed line information.

e -p THREADS: If the instruction is represented by a node in the CKAG, as most
are, its thread-id value id is printed as T(id).

e -p PRIO: The assigned priorities of the priority assignment are printed as
P(prio)(/(prionext)).

e -p WCRT: The computed WCRT’s from the WCRT analysis are printed as
W(wert)(/{wertnext)).

e —p ALL: All printings are enabled.

This information is enclosed by ’[" and ’|’ in front of the instructions, as seen in
previous program examples. Multiple information are divided by commas. The use
of p followed by an underline before an option (-p _(option)) excludes an option,
e.g., if all information, except the line information, should be printed, use -p ALL
-p _LINES. An option is not undone when added explicitly before, e.g., by using
-p LINES -p _ LINES, the line information are still printed.

The cec-kepdot prints a CKAG to the dot format, which is used as graph description
language by graphviz [24]. The visitor class KEPDOT in cec-kepdot.cpp implements
the dot printing. In Figure (a) an example dot file is shown that was generated by

89

9 Implementation

the printer. The according CKAG is visualized by dot/graphviz, see the result graph
layout in Figure (b). The same p printing options of cec-xmlkasm can applied in
cec-kepdot. In that case, the specific nodes are enriched by an according string. The
option g and a succeeding CKAG or THREADS specify the type of printed graph. As
default is the CKAG printed, equivalent to -g CKAG; an additional -g THREADS prints
both, the CKAG and its thread-id; -g THREADS prints only the thread-id tree.

9.2 Data Structures and their Visitor Classes

The basic data structures used for KEP instructions and CKAG nodes are imple-
mented by files KEP.hpp/cpp. All classes defined within these files are derived from
class KepObject, which is on their part inherited from the CEC class IR::Node to im-
plement the expat [14] XML functionality.

For each type of node described in Section an according class is defined: the
classes TransientNode, LabelNode, DelayNode, ForkNode and JoinNode implement the
transient nodes, label nodes, delay nodes, fork nodes and join nodes respectively.
The node class hierarchy is presented in Figure (c). They all inherit from class
KepNode, which implements functionality that all nodes have in common: access to
its children respective parents and the instruction, that it represents. The children
of a node are seen as a set, although they are implemented as a vector: before the
insertion of a new child, it is tested, whether it is the child already inserted. If not,
it is inserted and the new parent of the child is set. This ensures the parent-child
consistency that must hold true for the CKAG:

Vp,c € N : c € p.children < p € c.parents.

The class DelayNode has additional fields and methods for the preemption edges, as
well as the classes ForkNode and JoinNode are specified according to their properties.

All instructions are sub-classes of class Keplnstruction, whereby the class hierarchy is
refined by classes Signallnstruction, AddressInstruction, Datalnstruction, RegisterInstruction,
Prioritylnstruction and Oplnstruction to implemented the specific behavior if needed.
E.g., the class Present is a sub-class of classes Signallnstruction and AddressInstruction,
because it consists of both, a signal to test for and an else address to jump to. These
two classes are inherited virtually, because both are again sub-classes of Keplnstruction.

All data structures allow the use of the visitor pattern [23]. The main visitor
from which all other visitors are derived from, is also defined by KEP.hpp/cpp. A
default visit method is defined for each class, except the virtual ones that are never
instantiated. These default methods have the following method body:

std::cerr << "\nTYPEID: " << typeid(*this).name() << "\n"; assert(0);

that prints the visitor class’ name and the execution stopped by an assertion. The
method that causes the termination is printed, so it can be easily determined, which
method the current visitor is not already implemented, when implementing a new

90

9.2 Data Structures and their Visitor Classes

digraph G {

=W N =

size="6,7";
nodesep=0.25;

// global graph settings
concentrate=true;

© 0 N o wu

10 | // global node default values

11 | node [color=black fontsize =20 shape=box |;
12
13| // global edge default values
14 | edge [color=black fontsize =20
15 | labelfontsize =15];

module: abro

16

| /)] ————— < CKAG GRAPH >—————

18| // NODES

19 | NO [label ="module: abro" [;

20 | N1 [label="[L1] A0" shape=ellipse]; ‘ [L2] ABORT R,Al‘

21 | N2 [label="[L2] ABORT RA1"];

22 | N3 [label="[L5] PARx" /
shape=triangle color=pink];

23 | N4 [label ="[L6] A2" shape=ellipse];

24 | N5 [label="[L7] AWAIT A" shape=octagon];
25 | N6 [label ="[L8] A3" shape=ellipse |;

26 | N7 [label="[L9] AWAIT B" shape=octagon];
27 | N8 [label="[L11] JOIN 0"

shape=invtriangle color=pink];

28 | NO [label="[L12] EMIT O" |;

29 | N10 [label="[L13] HALT" shape=octagon];
30 | N11 [label="[L14] A1" shape=ellipse |;

31 | N12 [label="[L15] GOTO AQ"];

[L5] PAR*

33 | // EDGES

34 | NO —> N1 [[;

35 [N1 —> N2 [];

36 | N2 —> N3 [];

37| N3 —> N4 [label=" 1" |;
38 | N3 —> N6 [label="1"1];
39 | N4 —> N5 [];

40 | N5 —> N8 []; [L11] JOIN O
41 | N5 —> N11 [color=blue style="dashed" | |
42 taillabel ="s" label="R" |;

43| N6 —> N7 []; (‘
44 | N7 —> N8 [|; | |
45 | N7 —> N11 [color=blue style="dashed"

47 | N8 —> N9 [];

48 | N9 —> NI10 []; ‘

|
49 | N10 —> N11 [color=blue style="dashed"
50| taillabel ="s" label="R" J; \ |
s\

51| N11 —> N12 [J; o

52 | N12 —> N1 []; - R/
53 ~ \ /
54 | // LAYOUT —

55 | N4 —> N6 [style=invis] @
56 | {rank=same N4 N6}

57

58 | }

[L15] GOTO AO

(a) Dot (b) PDF

Figure 9.3: Dot File and its layouted PDF.
91

9 Implementation

visitor class, e.g., if in class PreemptionHandler that sets the preemption edges dur-
ing the CKAG building is not implemented the method visit(KEP::DelayNode&), the
following message of the default method is printed, when applied on a delay node:

TYPEID: N3KEP17PreemptionHandlerE
cec-astkep: KEP.hpp:1524:
virtual void KEP::Visitor::visit(KEP::DelayNode&): Assertion ‘0’ failed.

This example illustrates how the implementation of new KEP visitor classes is sup-
ported by their default methods.

The CKAG assembler graph and its creation are implemented in CKAG.hpp and
CKAG.cpp. The building of sequential KEP programs is realized by class KAG _Builder,
the concurrent building is completed by CKAG Builder inherited from KAG Builder.
During the building process several helper classes are used, these are inter alia ex-
plained.

Miscellaneous helper classes for graph building and monitoring the compilation
plus several classes that implement an optimization as described in Chapter [7] are
implemented by KepHandler.hpp and KepHandler.cpp, all these classes are typically
visitors of the KEP data structures inherited from KEP::Visitor.

e BasicHandler: This class provides the basic functionality that is used by other
handlers. Therefore these are inherited from the BasicHandler. Especially the
use of class KEP::Debug is provided to handle debug printings, as well as warning
and error messages.

e PreemptionHandler: This handler represents the preemption environment during
the CKAG building, therefore it consists of push and pop methods for each
preemption type to indicate the start and end of a preemption scope, respec-
tively. The preemption edges of delay or join nodes are set when this handler
is welcomed.

o NodeCreationHandler: This handler is used during the building process to create
nodes of given instructions. Therefore it uses a KEP thread-id stack to push
and pop thread-ids when fork and join nodes are created, respectively. The top
thread-id is each time used to assign the thread-id of the nodes during their
creation.

e SymbolHandler: The administration of symbol namespaces is performed by this
class.
It is initialized with the KEP keywords to rename accordingly, if needed.

e ExpressionHandler: The ExpressionHandler performs the compilation of expressions.

It uses again the ComputationHandler and ConditionalHandler to implement con-
stant propagation and the building of conditional expressions.

e GraphHandler: Similar to the BasicHandler, this class is designed to be a helper
for visitor classes that implement a computation on the CKAG.

92

9.2 Data Structures and their Visitor Classes
DeadCodeHandler: This class implements the previously described dead code
analysis.

ReachabilityHandler: The class ReachabilityHandler analyses instantaneous reach-
ability of nodes in the CKAG. E.g., this is needed to determine whether a
fork-join might be instantaneous or delayed.

DependencyHandler: This class computes the signal dependencies of a CKAG.

PriorityHandler: The priority assigning is realized by this class. Therefore, the
dependencies has already be computed by the DependencyHandler.

ThreadHandler: The thread-id optimizations are implemented by the Thread-
Handler. Additionally, the dot printing of thread-id trees is provided. This
dot code is used when cec-kepdot is applied with -g THREADS.

Def32Handler: This class replaces 32 bit integers by UINT32REG and inserts
according DEF32 instructions as described before.

CollapseHandler: This class implements the CKAG collapsing optimization. It is
applied after the priority assignment.

93

9 Implementation

94

10 Conclusions and Further Work

I presented an Esterel compiler for the KEP, a synchronous reactive processor. Since
the KEP instruction set architecture is very similar to Esterel, the compilation of
most constructs is straight-forward. But the computation of a static priority schedule
for concurrent threads is not trivial. The thread scheduling problem is related to
the problem of generating statically scheduled code for sequential processors, for
which Edwards has shown that finding efficient schedules is NP hard [17]. We have
encountered the same complexity, but our performance metrics is a little different.
The classical scheduling problem tries to minimize the number of context switches.
On the KEP, context switches are free, because no state variables must be stored
and resumed. However, to ensure that a program meets its dependency-implied
scheduling constraints, threads must manage their priorities accordingly, and it is
this priority switching which contributes to code size and costs an extra instruction
at run time. Minimizing priority switches is related to classical constraint-based
optimization problems as well as to compiler optimization problems such as loop
invariant code motion. We solved the problems and the experimental results show
an efficient implementation.

Since its inception, the reactive processing approach has demonstrated its promise
and its practicality. However, much remains to be done. On the theoretical side,
a precise characterization of the reactive execution semantics is still missing, and
its relationship to other semantics needs to be investigated, in particular regarding
causality issues. FPGA-based implementations of reactive processors have proven
very competitive to classical processor designs. For a standard suite of Esterel
benchmarks, the code size is typically an order of magnitude smaller than that of
the MicroBlaze, a 32-bit COTS RISC processor core. The worst case reaction time
is typically improved by 4x, and energy consumption is also typically reduced to a
quarter.

It is an interesting result that even large programs like the tcint, which has over 400
lines of code and 65 signal dependencies, can be scheduled only by thread-id values,
without additional priority changes. It seems, at least for the estbench examples,
that this optimization has a high variance, i.e., on some examples the optimization
has a huge impact and on others none. However, such a perfect schedule is in general
not possible.

The optimization of weighted propagated thread dependencies is a generalization
of the propagated thread dependency optimization; non-weighted is equivalent to
weight one. These edge weights correlate with the underlying number of signal
dependencies. So it is expected that this enhancement leads to a still better opti-
mization, but this optimization is currently not implemented and therefore could not

95

10 Conclusions and Further Work

be tested. A possible implementation does not change the algorithm in principle,
only the measurement of the heuristic is changed by taking the weights into account.
These could be easily computed beside the thread dependency computation, because
their computation requires the iteration over all signal dependencies. For each thread
dependency an according counter is created and increased for each appropriate sig-
nal dependency; when finished, these are the weights. During the computation of
propagated thread dependencies, the weights have to be propagated, too. Therefore,
the thread dependency weights are added to their according propagated thread de-
pendency weights, where the weights are not added if a thread dependency is itself
a propagated thread dependency.

Although the min-writer-max-reader-heuristic (see the Section provides good
results and we have not found any counter examples, it still has to be proven. If this
heuristic is not optimal, then it is presumed that it is optimal at least for dependency
clusters (again to be proven). Then, outgoing from an optimal algorithm for clusters,
an optimal algorithm can be constructed for the general case. First the SCCs of the
propagated thread dependency sub-graph are computed. This can be achieved by a
DFS based algorithm, which uses the property that the SCCs of a directed graph
and its reversed graph are identical [37]. These SCCs are forming a flow graph by
decomposition: the SCCs are the nodes and the edges are defined over the existence
of edges between the nodes of different SCCs. The above heuristic is now applied
onto the SCCs in an ordering that starts at the flow sinks and end at the sources.
Because the edges between different SCCs are no hard dependencies by construction
of the thread-id value assignment and the SCCs are for itself optimal, therefore the
overall sum would be optimal.

The Esterel pre construct is currently not implemented in the strl2kasm. The KEP
supports the pre by the PRE expression that is applied on KEP signals in KEP in-
structions. The strl2kasm has implemented the possible use of he PRE in its data
structures, but it is not used, because the CEC parsing module parses no pre ex-
pressions. Therefore no appropriate Esterel AST containing the pre is generated that
would have been used to create PRE expressions. The integration of pre is in principle
no problem, since it would not add any problems to the priority assignment. To use
the pre would require to modify the AST structure in the CEC and therefore would
result in a version branch of the CEC. This would make the integration of a future
version of the CEC with the strl2kasm more problematic.

The support of combined valued signals is not yet fully supported. During the
definition of such a valued signal, an associative operation op is defined that is used
to determine the overall signal value for multiple valued emissions. In such a case, the
value is defined as the associative combination op;—1 . ,v; of n € N emitted values
v;. Note that the emissions need to be separated from the signal value assigning.
The main difficulty of implementing the combined is the initialization of the valued
signal. When a combined signal is emitted the first time , the signal value is initialized
accordingly; for the next emissions, the combined operation is performed with the
current and the emitted value. Therefore a PRESENT test has to be made, followed
by the operational value setting in the then and the initial emission and setting

96

in the else case. Although such a control flow (present S then ... else emit S) would
be non-constructive in Esterel, it would be no problem to implement this behavior
in the KEP assembler program. But the current signal dependency computation
leads to a program cycle, therefore an implementation of the combine has to erase
dependencies between the combined emissions.

The KEP ISA supports directly the await case by CAWAIT instructions. These are
currently not used, because after they are dismantled they are not collapsed back.
The patterns needed are not yet identified, since they are much more complicated
than the ones that are currently collapsed. However, the signal expressions in await
case statements could be delayed and consists of Boolean operations; a delay again
could be a complex computation. How these statements fit into node patterns is
not obvious. Especially both the data expressions of signal delays and the Boolean
signal expressions can be arbitrarily nested. Therefore their patterns have no fixed
size. This suggests the extension of the collapse pattern concept to patterns that
match structures in the CKAG on a higher and more abstract level. How such a
meta patterns looks like and if whether these are feasible has to be analyzed.

The KEP registers that are used during the compilation of data expressions are
freed thereafter and can be reused for the next data expression. But there is still
potential for further improvement, namely a global register allocation [32]. Note
that such an optimization must still respect the KEP symbol namespace, i.e., a
register symbol is only used in a set of threads that are non-concurrent to each
other. Despite this condition, the global data allocation of KEP registers should not
differ very much from standard, because a computation is not made across different
threads. Nevertheless, the implementation of data computations is not the focus of
the KEP, the reactive parts are the main design issue.

A possible further work be the integration of the strl2kasm, KEP assembler to KEP
listing (strl2klst) and the KEP EvalBench to be used by a common GUI. This affects
not directly the strl2kasm implementation, but its interface.

Another possible further work is the portation to other source and target lan-
guages. Languages that resemble with the synchronous and reactive approach would
be possible candidates for a source language enhancement. Architectures, e.g., a
multi-threaded version of the EMPEROR, that use the principle of multi-threading
via priorities could the object of further work.

97

10 Conclusions and Further Work

98

Bibliography

1]

2]

3]

4]

[5]

(6]

7]

8]

19]

[10]

Alfred V. Aho, Ravi Sethi, and Jeffrey D. Ullman. Compilers - Principles,
Techniques, and Tools. Addison-Wesley, Reading, Massachusetts, 1986.

Randy Allen and Ken Kennedy. Optimizing Compilers for Modern Architec-
tures: A Dependence-based Approach. Morgan Kaufmann, 2001.

Massimo Baleani, Frank Gennari, Yunjian Jiang, Yatish Patel, Robert K. Bray-
ton, and Alberto Sangiovanni-Vincentelli. HW /SW partitioning and code gen-
eration of embedded control applications on a reconfigurable architecture plat-
form. In CODES’02: Proceedings of the Tenth International Symposium On
Hardware/Software Codesign, pages 151-156, New York, NY, USA, 2002. ACM
Press. http://doi.acm.org/10.1145/774789.774820.

Gérard Berry. Esterel on Hardware. Philosophical Transactions of the Royal
Society of London, 339:87-104, 1992.

Gérard Berry. The Constructive Semantics of Pure Esterel. Draft Book, 1999.
ftp://ftp-sop.inria.fr/esterel/pub/papers/constructiveness3.ps.

Gérard Berry. The Esterel v5 Language Primer, 1999. ftp://ftp-sop.inria.
fr/meije/esterel/papers/primer.ps.

Gérard Berry. The Esterel v5 Language Primer, Version v5_91. Centre de
Mathématiques Appliquées Ecole des Mines and INRIA, 06565 Sophia-Antipolis,
2000. ftp://ftp-sop.inria.fr/esterel/pub/papers/primer.pdfl

Gérard Berry. The Foundations of Esterel. Proof, Language and Interaction:
Essays in Honour of Robin Milner, 2000. Editors: G. Plotkin, C. Stirling and
M. Tofte.

Gérard Berry and Laurent Cosserat. The ESTEREL Synchronous Program-
ming Language and its Mathematical Semantics. In Seminar on Concurrency,

Carnegie-Mellon University, volume 197 of Lecture Notes in Computer Science
(LNCS), pages 389-448. Springer-Verlag, 1984.

Gérard Berry and Georges Gonthier. The Esterel Synchronous Programming
Language: Design, Semantics, Implementation. Science of Computer Program-
ming, 19(2):87-152, 1992. http://citeseer.ist.psu.edu/berry92esterel.
htmll

99

http://doi.acm.org/10.1145/774789.774820
ftp://ftp-sop.inria.fr/esterel/pub/papers/constructiveness3.ps
ftp://ftp-sop.inria.fr/meije/esterel/papers/primer.ps
ftp://ftp-sop.inria.fr/meije/esterel/papers/primer.ps
ftp://ftp-sop.inria.fr/esterel/pub/papers/primer.pdf
http://citeseer.ist.psu.edu/berry92esterel.html
http://citeseer.ist.psu.edu/berry92esterel.html

10 Bibliography

[11]

[12]

[13]

[14]
[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

100

Marian Boldt. Worst-case reaction time analysis for the KEP3. Study thesis,
Christian-Albrechts-Universitét zu Kiel, Department of Computer Science, May
2007. http://rtsys.informatik.uni-kiel.de/"biblio/downloads/theses/
mabo-st.pdfl

Marian Boldt, Claus Traulsen, and Reinhard von Hanxleden. Worst case re-
action time analysis of concurrent reactive programs. In Proceedings of the
Workshop on Model-driven High-level Programming of Embedded Systems
(SLA++P07), Braga, Portugal, March 2007.

Estbench Esterel Benchmark Suite. http://wwwl.cs.columbia.edu/
“sedwards/software/estbench-1.0.tar.gz

James Clark. The expat xml parser. http://expat.sourceforge.net/.

Stephen A. Edwards. CEC: The Columbia Esterel Compiler. http://wwwl.cs.
columbia.edu/ sedwards/cec/.

Stephen A. Edwards. An Esterel compiler for a synchronous/reactive develop-
ment system. Technical Report UCB/ERL M94/43, EECS Department, Uni-
versity of California, Berkeley, 1994. http://www.eecs.berkeley.edu/Pubs/
TechRpts/1994/2572 . htmll

Stephen A. Edwards. An Esterel compiler for large control-dominated systems.
IEEE Transactions on Computer-Aided Design of Integrated Circuits and Sys-
tems, 21(2), February 2002.

Stephen A. Edwards, Nicholas Halbwachs, Reinhard von Hanxleden, and
Thomas Stauner. 04491 executive summary — synchronous programming - syn-
chron’04. In Stephen A. Edwards, Nicolas Halbwachs, Reinhard v. Hanxleden,
and Thomas Stauner, editors, Synchronous Programming - SYNCHRON’ 04,
number 04491 in Dagstuhl Seminar Proceedings. Internationales Begegnungs-
und Forschungszentrum (IBFI), Schloss Dagstuhl, Germany, 2005. http:
//drops.dagstuhl.de/opus/volltexte/2005/195.

Esterel ~ Technologies. Company homepage. http://www.
esterel-technologies.com.

Esterel Technologies. FEsterel Studio User Guide and Reference Manual, 5.0
edition, May 2003.

Sascha Géadtke. Hardware/Software Co-Design fiir einen Reaktiven Prozessor.
Diploma thesis, Christian-Albrechts-Universitit zu Kiel, Department of Com-
puter Science, May 2007.

Sascha Géadtke, Xin Li, Marian Boldt, and Reinhard von Hanxleden. HW/SW
Co-Design for a Reactive Processor. In Proceedings of the Student Poster Session
at the ACM SIGPLAN/SIGBED Conference on Languages, Compilers, and

http://rtsys.informatik.uni-kiel.de/~biblio/downloads/theses/mabo-st.pdf
http://rtsys.informatik.uni-kiel.de/~biblio/downloads/theses/mabo-st.pdf
http://www1.cs.columbia.edu/~sedwards/software/estbench-1.0.tar.gz
http://www1.cs.columbia.edu/~sedwards/software/estbench-1.0.tar.gz
http://expat.sourceforge.net/
http://www1.cs.columbia.edu/~sedwards/cec/
http://www1.cs.columbia.edu/~sedwards/cec/
http://www.eecs.berkeley.edu/Pubs/TechRpts/1994/2572.html
http://www.eecs.berkeley.edu/Pubs/TechRpts/1994/2572.html
http://drops.dagstuhl.de/opus/volltexte/2005/195
http://drops.dagstuhl.de/opus/volltexte/2005/195
http://www.esterel-technologies.com
http://www.esterel-technologies.com

[23]

[24]

[25]

[26]

[27]

28]

[29]

[30]

[31]

[32]

[33]

10 Bibliography

Tools for Embedded Systems (LCTES’06), Ottawa, Canada, June 2006. With
accompanying poster.

Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides. Design Pat-
terns. Addison-Wesley, 1995.

Emden R. Gansner. Drawing graphs with GraphViz. Technical report, AT&T
Bell Laboratories, Murray Hill, NJ, USA, November 2004. http://www.
research.att.com/sw/tools/graphviz/libguide.pdf.

Paul Le Guernic, Thierry Goutier, Michel Le Borgne, and Claude Le Maire.
Programming real time applications with SIGNAL. Proceedings of the IEEE,
79(9), September 1991.

Nicolas Halbwachs, Paul Caspi, Pascal Raymond, and Daniel Pilaud. The
synchronous data-flow programming language LUSTRE. Proceedings of the
IEEE, 79(9):1305-1320, September 1991. http://citeseer.nj.nec.com/
halbwachs91synchronous.html.

Xin Li. The Kiel Esterel Processor: A Multi-Threaded Reactive Proces-
sor. PhD thesis, Christian-Albrechts-Universitit zu Kiel, Faculty of Engineer-
ing, July 2007. http://eldiss.uni-kiel.de/macau/receive/dissertation_
diss_00002198.

Xin Li, Marian Boldt, and Reinhard von Hanxleden. Mapping Esterel onto a
multi-threaded embedded processor. In Proceedings of the 12th International
Conference on Architectural Support for Programming Languages and Operat-

ing Systems (ASPLOS’06), San Jose, CA, October 21-25 2006.

Xin Li, Jan Lukoschus, Marian Boldt, Michael Harder, and Reinhard von
Hanxleden. An Esterel Processor with Full Preemption Support and its Worst
Case Reaction Time Analysis. In Proceedings of the International Conference
on Compilers, Architecture, and Synthesis for Embedded Systems (CASES),
pages 225236, New York, NY, USA, September 2005. ACM Press.

Jan Lukoschus and Reinhard von Hanxleden. Removing cycles in Esterel pro-
grams. EURASIP Journal on Embedded Systems, Special Issue on Synchronous
Paradigms in Embedded Systems, pages Article ID 48979, 23 pages, 2007.
http://www.hindawi.com/getarticle.aspx?doi=10.1155/2007/48979.

Sharad Malik. Analysis of cyclic combinational circuits. [EEE Transactions
on Computer-Aided Design of Integrated Circuits and Systems, 13(7):950-956,
July 1994.

Steven S. Muchnick. Advanced compiler design and implementation. 1997.

Terence J. Parr. ANTLR Reference Manual, 2006.

101

http://rtsys.informatik.uni-kiel.de/~biblio/downloads/papers/lctes06-sga-poster.pdf
http://www.research.att.com/sw/tools/graphviz/libguide.pdf
http://www.research.att.com/sw/tools/graphviz/libguide.pdf
http://citeseer.nj.nec.com/halbwachs91synchronous.html
http://citeseer.nj.nec.com/halbwachs91synchronous.html
http://eldiss.uni-kiel.de/macau/receive/dissertation_diss_00002198
http://eldiss.uni-kiel.de/macau/receive/dissertation_diss_00002198
http://www.hindawi.com/getarticle.aspx?doi=10.1155/2007/48979

10 Bibliography

[34]

[35]

[36]

[37]

[38]

[39]

102

Dumitru Potop-Butucaru, Stephen A. Edwards, and Gérard Berry. Compiling
Esterel. Springer, May 2007.

Bjarne Stroustrup. The C++ Programming Language, Second Edition.
Addison-Wesley, 1991.

Olivier Tardieu and Robert de Simone. Instantaneous termination in pure Es-
terel. In Static Analysis Symposium, San Diego, California, June 2003.

Robert E. Tarjan. Depth-first search and linear graph algorithms. STAM Journal
of Computing, 1(2):146-160, 1972.

Reinhard von Hanxleden and Xin Li. The Kiel Esterel Processor Homepage.
http://www.informatik.uni-kiel.de/rtsys/kep/.

Reinhard von Hanxleden, Xin Li, Partha Roop, Zoran Salcic, and Li Hsien
Yoong. Reactive processing for reactive systems. ERCIM News, 66:28-29, Oc-
tober 2006. http://www.ercim.org/publication/Ercim_News/EN67.pdf.

http://www.informatik.uni-kiel.de/rtsys/kep/
http://www.ercim.org/publication/Ercim_News/EN67.pdf

A Examples

103

SIS SERSTYNS &

FododoIoIowIody
Sfo)e S

y@%é@ .
dhde e db

o 0))) et
SO e

A Examples

T

'{W‘ b e RS

b
TR]
I e,

L
1 il

ey

g

fjet

AP

At
TR i
TR RAU
[‘;m gl st
} |

Al
Bt) s
W “w*“‘.} i

106

Figure A.4: CKAG of the Mca200

ﬁ
ROR000 GF
@@/.@@\:ﬁ?é. poegpaseeagpassoanggsn:

P~
es}
—

Figure A.5: Optimized Thread-Id Tree of Mca200

	Introduction
	Basics and Related Work
	The Esterel Language
	The Kiel Esterel Processor (KEP)

	Preprocessing: Esterel Dismantling
	Module/Run Dismantling
	Dismantling of Temporal and Finite Loops
	Priority Dismantling
	Simplification of Complex Signal Expressions
	Case Expressions
	Boolean Signal Expressions

	The Concurrent KEP Assembler Graph (CKAG)
	Nodes and Edges
	KEP Thread-Id Tree
	Symbol Scopes

	Constructing the CKAG
	Compiling Complex Statements
	Handling Expressions
	Compiling Signal Expressions
	Compiling Data Expressions

	Priority Assignment
	Signal Dependencies
	Priority Constraints
	Assignment Algorithm
	Realizing the Priority Assignment

	Compiler Optimizations
	Dead Code Removal
	KEP Collapsing
	Priority Assignment Modification
	Minimizing Dependency Count
	Thread-Id Value Assignment
	Thread-Id Value Assignment Algorithm
	Weighted Propagated Thread Dependencies
	Thread-Id Reuse

	Experimental Results
	Implementation
	Compiler Modules
	Data Structures and their Visitor Classes

	Conclusions and Further Work
	Bibliography
	Examples

