An Architecture Comparison Framework
for Software Project Visualization

Malte Mannott

Bachelor Thesis
March 27, 2025

Prof. Dr. Reinhard von Hanxleden
Real-Time and Embedded Systems Group
Department of Computer Science
Kiel University

Advised by
M. Sc. Niklas Rentz






Selbststandigkeitserklirung

Hiermit erkldre ich, dass ich die vorliegende Arbeit selbststindig verfasst und keine anderen
als die angegebenen Quellen und Hilfsmittel verwendet habe.

Weiterhin erklére ich, dass die digitale Fassung dieser Arbeit, die dem Priifungsamt per
E-Mail zugegangen ist, der vorliegenden schriftlichen Fassung entspricht.

Kiel,

iii






Abstract

Communicating and visualizing changes in software projects are a time consuming and
difficult task to accomplish with accuracy. Still, software projects grow in size and change every
day and those changes have to implemented by developers for which accurate information is
key.

0SGiViz is generated from SPViz, a generator for customized visualization tools, and OSGiViz
is a visualizer, for software projects written with the OSGi framework. However, it lacks the
ability to compare different models to each other. Versions of software, different states or
source control could be compared.

This thesis implements such a comparison framework for OSGiviz with the possibility of
abstraction into SPViz. The comparison framework enables developers to write and read OSGi
models in a human-friendly and compact way and compare two models using new concepts,
such as a visual comparison in a visual diff. This makes the visualization of differences easy
and compact.

Acknowledgements

First of all I want to thank Prof. Dr. Reinhard von Hanxleden as the head of the working
group. He not only welcomed me for this thesis as the end of my university studies, but also
provided me with a working space that was available at all times. The nudges he gave, always
sent me in the right direction.

I also want to express my gratitude to my supervisor Niklas Rentz, hopefully soon Dr.
Niklas Rentz, for always helping and really working with me to give me a chance at writing
a compelling thesis. He not only helped with writing this thesis, but also showed me how
software development is done, outside of theoretical university exercises.

Thanks also go to Soren Domros, Maximilian Kasperowski, Jette Petzold, Alexander
Schulz-Rosengarten, and my fellow students that wrote their thesis at the same time and
working group as me for the valuable ideas, feedback, and all around fun company.






Contents

Introduction
1.1 Problem Statement . . . . . . . .. .. ... ... 1
1.2 Related Work . . . . . . . . . . 2
1.3 Outline . . . . . . .. e e e e 3
Used Technologies 5
2.1 Xtext ..o e e e e e e 5
2.2 EMFE . o o e e 5
23 KLIGAD . . .\ vttt e e e e e e 6
24 OSGIVIZ '« v v v e e e e 6
25 SPVIZ . . o o e e 7
Concepts 9
3.1 DesiredState. . . . . . . . . .. e e 9
3.2 Differences in Visual Comparison . . ... .. ... .. .. ... ... ...... 15
3.2.1 Freely Merged Differences . . ... ... ... ... ... .. .. .... 16
3.2.2 Plain Differences . . . . . . . . . . . ... 17
3.2.3 Differences Model . . . ... ... ... ... .. ... 18
324 Colors . . ..o 20
Implementation 25
4.1 Open Services Gateway initiative (OSGi) Differences Model . . . . . . ... ... 25
42 Desired State . . . . . . . .. e e 25
4.3 Plain Differences . . . . . . . . . e e 26
43.1 Visualization Context Model Handling . . . . ... ............ 27
432 Color . . . . . e 28
Evaluation 31
5.1 Possible Evaluation Questions. . . . . .. .. .. ... ... ... ... ... .. 31
5.2 Completion of Proposed Goals . . . . ... ........ .. ........... 32
521 Hard Goals . ... . .. . . . . . . e 32
522 SoftGoals . . ... .. ... e 33
5.3 Lessons Learned . .. .. .. .. . . . .. .. ... 33
54 Collaborations . . . . . . . . . . . e e 34
Conclusion 35
6.1 Future Work . . . . . . . . e e 35

vii



Contents

Bibliography

viii

37



1.1

3.1
3.2
3.3
3.4
3.5
3.6
3.7
3.8
39
3.10
3.11
3.12
3.13
3.14
3.15
3.16
3.17

4.1
4.2
4.3
44
4.5

51
5.2

List of Figures

Layout diff by Arne Schipperetal. [SFH09] . . . . .. ... ............ 2
The OSGi architecture as a UML diagram . . . . . ... ............... 10
Default look of every visualization.. . . . ... ... ... ... ... ...... 11
View of the XML example with available artifacts shown. . . . . ... ... ... 12
Default look of visualization . .. ... ... .... ... .. ..... .. ..., 15
KLighD bundle dependencies visualized with OSGiviz . . . ... ... ... ... 15
Language demo features with bundle dependencies visualized by 0SGiviz . . . 16
Comparison example of the freely merged diff by Arne Schipper et al. [SFH09] 16
Comparison example plain diff by Arne Schipper et al. [SFH09] . . . . . . . .. 17
Differences architecture . . . . ... ... ... .. ... .. o L. 18
Synthesis architecture . . . .. ... ... ... L o Lo 19
Diff model visualization defaultlook . . .. ... ... ... ... .. ..... 19
Diff model visualization with features . . . . . . ... ... ... .. .. ... .. 20
Language demo visualized with all subnodes opened . . . . .. ... ... ... 21
Colorusagein GitLab . . . . ... ... ... .. ... . L L o 22
Color usage by Arne Schipper etal. [SFHO9] . . ... ... ............ 22
Comparison example using addition, deletion, and movement with the plain diff 23
Comparison of KLighD feature architecture with some changes . . . . . . .. .. 23
sourceModel KNode on the left and targetModel KNode on the right . . . . .. .. 26
User interaction workflow . . . .. ... ... ... . oo oo 26
Example of partial treeof nodes . . . . ... ... ... .o o L L 27
Opening one side opens bothside . . . . ... ..... ... ........... 28
Subset of the OSGi class structure . . . . .. ... ... ... ... ...... 29
A small example diff derived from the language demo example . . . . . . . .. 31
A very complex example derived from KLighD . . . ... ... .......... 32

ix






Acronyms

SPViz
OSGi
KIELER
IDE
KLighD
DSL
EMF
OSGiViz
XML
UML
ER
0AW
ELK
VCM

ADL

Software Project Visualization

Open Services Gateway initiative

Kiel Integrated Enviroment for Layout Eclipse RichClient

integrated development enviroment

KIELER Lightweight Diagrams

domain-specific language

Eclipse Modeling Framework

visualization for OSGi projects

Extensible Markup Language

Unified Modeling Language

entity-relationship

openArchitectureWare

Eclipse Layout Kernel

visualization context model

architecture description language

xi






Chapter 1

Introduction

Software projects grow in size every day. New features added to improve or widen the effec-
tiveness, different dependency structures, bug fixes or security interventions are implemented
by developers. The desired changes are often communicated in functional specification
documents in the form of diagrams.

Currently the developers create Unified Modeling Language (UML)/entity-relationship (ER)
diagrams by hand, use plugins for an integrated development enviroment (IDE) or external
tools made specifically for reverse engineering or code execution tracing. UML/ER diagrams
are used in class diagrams, sequence diagrams and state charts which not only show the
current state but can display the future structure as well. Plugins visualize the program
structure by recording code execution traces and displaying the way all parts of the structure
work together. Another option is the usage of software reflexion models [MNS01] which map
structure dependencies based on system artifacts. These are excellent tools for displaying
the current project structure, yet they lack the ability to display a desired state. Most of the
options available are without a concrete comparison framework and are therefore limited in
their usability for representations in specification documents.

The visualization for OSGi projects (0SGiViz) [RDH20] introduces a way to visualize the soft-
ware project structure implemented with the Open Services Gateway initiative (OSGi) [TV08]
framework. The visualization works by displaying the dependency structure and hierarchy in
the form of diagrams with directional arrows which are especially advantagous in presenta-
tions of dependencies between project parts. Diagrams display nested hierarchies by visually
encapsulating bundles into their corresponding features. The existing visualization works as
the basis of this comparison framework and displays the current state of the project in the
comparison visualization.

This comparison framework enables developers to quickly distinguish the differences in
the dependency structures. The ability to create comparisons is a fitting tool for representations
in specification documents or progress reports and for that reason is highly beneficial. All
this can be abstracted into Software Project Visualization (SPViz) and is thereby usable for all
software architectures regardless of framework.

1.1 Problem Statement

The goal is to able to compare two different OSGi models via the current state of the project
generated by OSGiviz and a model specifiable by humans. Currently the model generated



by OSGiviz is not specifiable by humans and I therefore have to introduce a new way of
specifying a model. The model represented by the domain-specific language (DSL) works
as the desired state and thereby the current state can be compared to the desired state.
This enables developers to compare two states of the same project for progress reports or
visualization in specification documents. I have to decide which layout is most practicle for
the comparison and find a way to graphically compare two versions with each other.

1.2 Related Work

Arne Schipper et al. [SFH09] introduce multiple layouts for the visual comparison of two
diagrams. Layouts differ from two diagrams next to each other with colors highlighting
changes to a freely or incrementally merged visual diff which only displays one diagram with
colors highlighting their differences aswell.

Statechart v. 2
53

Statechart v. 1

~ ( Statechart v. 2
Statechart v. 1 I = D—s1 B
@— 1 ——7—(s2 -

J Collapse
" G/H Collapse I 3 o—E—o—:
Collapse C/D ®—l1 C/D
®—> Sla———{@—1
Cc/D @®—1 F c/D

Collapse

S0 (b) Plain diff with red marking deletion, green ad-
(a) Original Diagram diton and blue new position

Freely merged Statechart

Incrementally merged Statechart
A/B

AB

Collapse

I O—sta—— F/
/ S3 ~ — c/D
. Sta g Collapse .
I— " —- S3
C/D *—w F
(c) incrementally merged diff (d) Freely merged diff

Figure 1.1. Layout diff by Arne Schipper et al. [SFH09]

Most important for us is the plain (Figure 1.1b) visual diff and its color scheme. Furthermore,
implementation details in regard to finding differences and displaying the differences, in
multiple ways, are described.

There are tools to generate code from UML diagrams and visualize code as a UML diagram
as well. One such example is GitUML. Fiddle, the tool behind GitUML, generates diagrams
from source code and can generate code from diagrams too. The tool displays the structure of
an entire codebase and can track changes over time and visualize them if needed. GitUML

Thttps:/ /www.gituml.com/



supports adding new dependencies and classes during runtime which will work as a basis
for this comparison framework.

Another option for reverse engineering source code is the Intelli] Idea® plugin AppMap®.
AppMap displays searchable diagrams from records of code execution traces. AppMap can
locate dependencies and visualize them if needed. This works for any architecture.

Niklas Rentz et al. [RH25] implemented SPViz. SPViz developed at the Real-Time and
Embedded Systems Group at Kiel University’s Department of Computer Science introduced
a way to visualize software project structures as diagrams using domain-specific languages
(DSL). SPViz can generate visualizations for any project structure and the basis of this thesis,
0SGiViz, is designed inside the SPViz tool.

1.3 Outline

Chapter 2 explains all the technologies and frameworks used in the making of this thesis.
Chapter 3 discusses the various concepts on how the comparison should be visualized. Simple
and complex examples are shown in this chapter aswell as different schemes of visualization.
The implementation and its difficulties are shown in Chapter 4, while Chapter 5 evaluates the
implementation completion with a look at the proposed goals. At last, Chapter 6 gives a brief
conclusion and a look into future work.

2https: / /www jetbrains.com/de-de/idea/
Shttps:/ /appmap.io/






Chapter 2

Used Technologies

This chapter introduces the most important technologies necessary to understand the thesis
implementation of this thesis. Each section contains a single framework or programming
language.

2.1 Xtext

Xtext! is a framework used in the development of DSLs and programming languages. The
framework is developed by the Eclipse Foundation as part of the Eclipse Modeling Framework
(EMF). Xtext is a grammar language that not only implements itself but is well documented as
well and can be used to describe the syntax of personalized programming languages or DSLs.
The previously mentioned dialect of Java, Xtend, is implemented in Xtext. They are developed
simultaneously to ensure their compatibility, which is important for multiple implementation
steps of this thesis.

Xtext is used twice during the implementation of this thesis. Both times, Xtext is used to
define a DSL and to integrate them into a software project.

First released as an openArchitectureWare (0AW) project by Efftinge et al. [EV06] it has
since evolved and established itself as part of the open source Eclipse ecosystem. The complete
user guide and examples can be found on the Xtext website?.

2.2 EMF

The Eclipse Modeling Framework (EMF) is a framework used for modeling structured data.
Code generation can be done with this framework as well. As part of the Eclipse modeling
project, EMF is developed under the supervision of Ed Merks®. The modeling is done via, for
example, the previously mentioned Xtext framework or Ecore and thereby abstracts from
implementing models [Bud04]. EMF ensures the interoperability between all technologies
under its hood, which makes this framework highly flexible and versatile in almost all
modeling operations.

EMF is used during this thesis to describe and generate models, as well as accessing them.
EMF connects different parts of the implementation by the ensured interoperability and thus

Thttps:/ /eclipse.dev /Xtext/
Zhttps:/ /eclipse.dev/Xtext/documentation /index.html
Shttps:/ /projects.eclipse.org /projects /modeling.emf.emf/who



allows us to work with different models that best fit each situation.

This framework was first released in 2003 as part of the open-source Eclipse ecosystem
and has since received updates to this day. A guide can be found in the Eclipse wiki?.

2.3 KLighD

KIELER Lightweight Diagrams (KLighD) is a framework used to generate graphical represen-
tations of models. Development is done by the Real-Time and Embedded Systems group at
Kiel University as part of Kiel Integrated Enviroment for Layout Eclipse RichClient (KIELER).

KLighD works by synthesizing a model recursivly and implementing a specific synthesis
for each and adding a layout with Eclipse Layout Kernel (ELK). The synthesis turns the source
data of the model into KGraph instances, which describe the visual representation of the
visual node.

KLighD is used during this thesis to synthesize a graphical representation of a model,
allowing us to visualize and interact with it.

Current development is done by the Real-Time and Embedded Systems group at Kiel
University, and the focus is now on the graphical representations. A guide and tutorial can be
found on the KIELER GitHub wiki®.

2.4 O0OSGiViz

The visualization for OSGi projects (OSGiViz) is a visualizer for software projects implemented
with the 0SGi framework. It cannot visualize the projects directly, but instead visualizes a
textual representation that follows an OSGi model. The textual representation is then turned
into a top-level OSGi project as a complex data structure, which is then visualized using this
visualizer. The visualization is done with KLighD [RDH20].

0SGiViz is the basis of the entire implementation, and this thesis aims to enhance the
current version of it.

0SGiViz was first developed by Rentz et al. [RDH20] as a proposal for the visualization
of OSGi projects. OSGiViz is no longer in direct active development, as it is now part of SPViz.
SPViz is able to generate OSGiViz and therefore the results of this thesis are to be abstracted
into SPViz. The last non-generated version of OSGiViz and a user guide can be found on their
GitHub®.

“https:/ /wiki.eclipse.org/
Shttps:/ /github.com /kieler/KLighD/
Ohttps:/ /github.com/kieler/ osgiviz?tab=readme-ov-file



2.5 SPViz

Software Project Visualization (SPViz) is a generator for customized visualization tools of
arbitrary software architectures [RH25]. This tool generator uses two DSLs to firstly describe
the structure and secondly to configure the visualization. The visualization style is derived
from the previously mentioned OSGiViz. The important step is the abstraction from a visu-
alizer for a specific architecture to a generator for visualizations for any architecture while
keeping the simple dependency structure and bundle hierarchy of OSGiViz. SPViz generates
the visualization in multiple parts.

1) A template for a generator that reads the project files and outputs a corresponding model
file.

2) The visualizer that turns the model file into a graph with KLighD as the underlying graph
framework

3) A language server for viewing the visualization in web environments.

A Maven build system completes the visualizer to a full-fledged Eclipse plug-in or executable.
SPVviz generated the used version of 0OSGiviz on which this thesis is based on. That way it
created the groundwork of nearly every implementation element. Every change will ultimately
be abstracted into SPViz.
Developed by Rentz et al. [RH25] as an academic project, SPViz is already used in the
industry for clarifying software structures and is available as an open-source library’. More
info as well as a user guide can be found on the SPViz GitHub wiki®.

"https:/ /github.com /kieler/SoftwareProjectViz
8https:/ / github.com /kieler/SoftwareProjectViz /wiki






Chapter 3

Concepts

This chapter discusses the design decisions made during this thesis and their impact. It
introduces the ideas behind the implementation and aims to show the different approaches
to problems that arose during the implementation. Two main problems had to be solved.
Firstly the construction of a target architecture model that allows for handwritten modeling
is introduced and discussed. The model is implemented as a DSL that has the same structure
as the source architecture. After a model can be handwritten, the next step is to compare the
two different versions of OSGi models, for which I introduce two methods and discuss which
one more closely aligns with our goals. At first, this chapter explains the process behind the
implementation of the desired state.

3.1 Desired State

Implementing the desired state is the first step to create the architecture comparison frame-
work and the first hurdle of our framework. The desired state represents the project archi-
tecture as it could be without having to implement everything. It is not even necessary to
implement a software skeleton. This is important because the generator for the current states
needs implemented code to generate models out of. You can just write down what you want
your project architecture to resemble. The written desired state has to conform to the same
pattern of the OSGi model as the current state to ensure compatibility with the synthesis. The
goal is a DSL that is capable of creating the same models as the OSGiViz generator but can be
manually written without implementation needs.

The 0SGi architecture model that the OSGiViz tool generated from SPViz as seen in Figure 3.1:

> OSGi Project: The all-encompassing root contains the project name and everything else.
> Product: A product comprises features and bundles.
> Feature: A feature consists of bundles.

> Bundle: A bundle incorporates the dependencies between itself and other bundles. A
bundle also holds the service interfaces, service components and packages it is part of.

> Servicelnterface: A service interface holds the service components it is required by.

> ServiceComponent: A service component features the service interfaces it is provided by.



Project Product

F

Feature

— L

Bundle Dependency

Rl

\‘
J | ’

-

—* *—

—Required by»
Service Service

Interface Component
Provided by—

Figure 3.1. The OSGi architecture as a UML diagram

<?xml version="1.0" encoding="ASCII"?>
<model:0SGiProject xmi:version="2.0" xmlns:xmi="http://www.omg.org/XMI"
xmlns:model="de.cau.cs.kieler.spviz.osgi.model" projectName="languagedemo_slim">
<products ecoreld="Product_englishtranslator" name="englishtranslator"
features="Feature_de.scheidtbachmann.osgi.language.runtime. feature
Feature_de.scheidtbachmann.osgi.language.base.feature"
bundles="Bundle_ch.qos.logback.classic Bundle_ch.qos.logback.core"/>
<features ecoreld="Feature_de.scheidtbachmann.osgi.language.runtime.feature"
name="de.scheidtbachmann.osgi.language.runtime. feature"
products="Product_englishtranslator" bundles="Bundle_ch.qos.logback.classic"/>
<features ecoreld="Feature_de.scheidtbachmann.osgi.language.base.feature"
name="de.scheidtbachmann.osgi.language.base.feature"
products="Product_englishtranslator" bundles="Bundle_ch.qos.logback.core"/>
<bundles ecoreld="Bundle_ch.qgos.logback.classic" name="ch.qos.logback.classic"
external="false" products="Product_englishtranslator"
features="Feature_de.scheidtbachmann.osgi.language.runtime.feature"



connectingDependencyBundles="Bundle_ch.qos.loghack.core"/>

7 <bundles ecoreld="Bundle_ch.qgos.logback.core" name="ch.qgos.logback.core"
external="false" products="Product_englishtranslator"
features="Feature_de.scheidtbachmann.osgi.language.base.feature"
connectedDependencyBundles="Bundle_ch.qos.logback.classic"/>

8 </model:0SGiProject>

Listing 3.1. A small example for an 0SGi model in XML.

Listing 3.1 shows the generated text for a small example I implemented. It is a simplified
version of an example OSGi model from the examples repository.! The example consists of:

> The overarching project: languagedemo_slim
> The product: englishtranslator

> Two features: de.scheidtbachmann.osgi.language. runtime. feature
and de.scheidtbachmann.osgi.language.base.feature

> Two bundles: ch.qos.logback.classic and ch.qos.logback.core

Every artifact has its ecoreld and name specified. The product contains the features and
bundles, the features contain their respective bundles and their parent. The bundles contain
the dependency to another bundle and their parent. The redundancy in the Extensible Markup
Language (XML) format is everywhere. Starting from the top in line 1 from Listing 3.1, I
do not care for the version of XML nor the encoding. The model is already specified by the
tile extension. Both ecoreld and name are always specified as seen in line 3 from Listing 3.1,
even though they contain the same information. The ecoreld can be generated directly from
the name and a prefix of the artifact type. The features do not have to mention their parent
artifact nor do the bundles like they do in line 4.2 from Listing 3.1. The connection between
two bundles can be implemented with only one bundle specifying the connection.

The current implementation mentions both sides, like in lines 6.3 and 7.3.

The improvements are shown later. Now I take a closer look at the existing visualization.

Overview

[Services Iﬁ] [BundIeServices Iﬁ]

[ BundleDependencies IE] [ Features Iﬁ]

=30

Figure 3.2. Default look of every visualization.

Thttps:/ /github.com/kieler/ osgiviz/tree/ master/examples/languagedemo

11



Overview

Services a ‘ BundleDependencies 3% - _|
BundleServices a
[ch.qos.log.classic ‘]j—-»[{ ch.qos.log.core ‘]

Features 3 - T
de.scheidtbachmann.osgi.language.runtime.feature |~ de.scheidtbachmann.osgi.language.base.feature |~
| BundleDependencies 3% - _] BundleDependencies 3% - _]

[ch.qos.log.classic ‘P— —————— o — ch.qos.log.core ‘]

Products b+ Ha

[ englishtranslator ﬁ’F

Figure 3.3. View of the XML example with available artifacts shown.

> Services shows the services described in this model.

> BundleServices shows the bundles with their services embedded in them.
> BundleDependencies shows the bundles and their dependencies.

> Features shows the features.

> Products shows the products.

Figure 3.3 is one possible visualization of Listing 3.1. As our example does not contain
services, Services and BundleServices are closed. BundleDependencies, Features and Products are
opened with dependencies enabled. Until now, I introduced the already existing infrastructure
for visualizing OSGi models using 0SGiViz. How do I improve this to write our own desired
state as text by hand? The structure has to follow the structure from Figure 3.1 since that way,
I can reuse the already implemented OSGi synthesis to synthesize the resulting object from
our DSL.

12



0SGi languagedemo_slim_target {

Product englishtranslator {

Features: [’de.scheidtbachmann.osgi.language.runtime.feature’,
"de.scheidtbachmann.osgi.language.base.feature’]

Bundles: [’'ch.qgos.log.classic’,'ch.qos.log.core’]

}

Feature ’'de.scheidtbachmann.osgi.language.runtime.feature’ {
Bundles: [’'ch.qos.log.classic’]

}

Feature ’'de.scheidtbachmann.osgi.language.base.feature’ {
Bundles: [’ch.qos.log.core’]

}

Bundle ’'ch.qos.log.classic’ {
}

Bundle ’'ch.qgos.log.core’ {

}

"ch.qos.log.classic’ Dependency To ’'ch.qos.log.core’

Listing 3.2. First structure for OSGiDSL implementing Listing 3.1.

First, I need a structure for our DSL. Listing 3.2 is the first attempt at a structure for the
OSGiDSL. This structure removes a lot of redundant information. The XML structure is gone and
replaced with human writable text. There are no parents mentioned in child artifacts, and only
the name is written down since the ecoreld can be generated. The containment is implemented
as individual lists with square brackets inside the curly brackets of an artifact. Depencies
between bundles are shown by writing them as sourceBundle Dependency To targetBundle as
seen in line 17. Further improvements can be made by adding the dependencies to the bundle
containments.

0SGi languagedemo_slim_target {
Product englishtranslator {
Features: [’de.scheidtbachmann.osgi.language.runtime.feature’,
"de.scheidtbachmann.osgi.language.base.feature’]
Bundles: [’ch.qos.log.classic’,'ch.qos.log.core’]

}

Feature ’'de.scheidtbachmann.osgi.language.runtime.feature’ {
Bundles: [’'ch.qgos.log.classic’]

}

Feature ’'de.scheidtbachmann.osgi.language.base.feature’ {
Bundles: [’'ch.qos.log.core’]

}

Bundle ’'ch.qos.log.classic’ {
Dependency To ’'ch.qgos.log.core’

}

Bundle ’'ch.qgos.log.core’ {

}

13



Listing 3.3. Second structure for OSGiDSL implementing Listing 3.1.

Listing 3.3 improves on the dependency redundancy from Listing 3.2. Bundle depen-
dencies are now written as references inside the curly brackets of the source bundle. Only
the bundle the dependency comes from articulates the dependency and thus removes the
bidirectional references. This structure enables us to write the same model architecture with
567 characters, which is down a lot from the 1447 characters used in the XML version from
Listing 3.1. There are still improvements to be implemented. For example the indentation
stemming from the 05Gi curly brackets in line 1 is plain annoying. The artifact types should
also be lowercase.

Introducing the second and final version of the proposed DSL:

projectName languagedemo_slim_target
product englishtranslator {
features: [’de.scheidtbachmann.osgi.language.runtime.feature’,
"de.scheidtbachmann.osgi.language.base.feature’]
bundles: [’'ch.qgos.logback.classic’,
"ch.qos.logback.core’]
}
feature ’'de.scheidtbachmann.osgi.language.runtime.feature’ {
bundles: [’'ch.gos.log.classic’]
}
feature ’'de.scheidtbachmann.osgi.language.base.feature’ {
bundles: [’'ch.qos.log.core’]
}
bundle ’'ch.qgos.log.classic’ {
dependency to ’'ch.qos.log.core’

}

bundle ’'ch.qos.log.core’

Listing 3.4. Final structure implementing the example from Listing 3.1.

The outer project curly brackets were removed and all uppercases were replaced with
lowercases as types in other languages are always lowercase. The need to write curly brackets
if the artifact is empty was also removed.

The visualization of our OSGIiDSL looks identical to Figure 3.3. The identical look is exactly
what I wanted to achieve and I have succeeded in implementing a human writable DSL that is
capable of representing the same architectures as the OSGiviz generator.

The desired state contains nothing specific from OSGi, which is by design as the goal is to
abstract everything into SPViz. SPViz should be able to generate everything that is needed to
handwrite a desired state for any software architecture.

14



Overview

[Services Iﬁ] [BundIeServices Iﬁ]

[ BundleDependencies IE] [ Features Iﬁ]

=30

Figure 3.4. Default look of visualization

-Klighd.piccol.test ||

~..Klighd.kgraph il

[ ..Klighd.piccolo.batik H l ..Klighd.piccolo.draw2d ‘*)3 l ..Klighd.piccolo.frechep H [ - Klighd.ui.em ‘*)3 [ ..Klighd.ui. wizard ‘*)3 [ . Klighd.kgx "}j

Figure 3.5. KLighD bundle dependencies visualized with OSGiViz

3.2 Differences in Visual Comparison

This section introduces different choices for displaying changes and the reasoning behind the
final selection, but also the colors chosen to represent different kinds of changes.

Let us first take a look at what is already in place.

0SGiViz is already able to visualize a single model as seen in Figure 3.3. Figure 3.4 displays
the result of the OSGi synthesis and the recursive subsyntheses. The visible subsynthesis are
Services, BundleServices, BundleDependencies, Features and Products. These subsynthesis are
nodes in their own regard and recursively call their subsynthesis. This creates the tree of
nodes the visualizer displays at the end. The visualizer can display any OSGi model. Some
examples are shown below with KLighD? and the language demo®.

I want to create a structure with which I can compare two models. This would be used to
compare old and new versions, different branches in source control, or a current state and a
desired state of an architecture. I have to expand the capabilities of OSGiViz to display their

Zhttps:/ / github.com /kieler/KLighD
Shttps:/ / github.com/kieler/ osgiviz/tree/master /examples /languagedemo

15



Overview

[Servlces |al [BundleSemces |a] [BundleDependenc\es |5]

Features [ase -

de sgi.language.base.feat |-

BundleDependencies |q P

de.scheidtbachmann.osgi.language.english.feature | =

= de.schei sgilanguage.database.providerfile | ~
[ase | [

Services E ’

4"‘ Llang ,.......H |.< i sgl.test.applicati |-| |.< sgi.langua c-wlus|‘|
(=] pilE=E |

| BundleDependencies

de.sche sgi.language.klingon.feature |- | de. sgi.anguage.runtime.feature |-|

| BundleDependencies |q 3.~ ‘ BundleDependencies |Q, 3¢ -

Figure 3.6. Language demo features with bundle dependencies visualized by 0SGiViz

Freely merged Statechart

[ Statechart v. 2 |

Statechart v. 1 \

Collapse ) /
(S 1a @—y
F/ C/D S3

-

A/B

Collapse

(a) Original Diagram (b) Freely merged diff with red
marking deletion, green addition
and blue movement

Figure 3.7. Comparison example of the freely merged diff by Arne Schipper et al. [SFH09]

differences in a single merged graph or as two models side by side to achieve this comparison.
I have to choose between those two options as implementing both would not be in scope for
this thesis.

3.2.1 Freely Merged Differences

The first option is a freely merged diff That way, both states are compared and merged into
a single graph, which then shows the overall structure of both states with the differences
highlighted in color.

This example between Figure 3.7a and 3.7b provided by Arne Schipper et al. [SFH09]

16



- S ( Statechart v. 2 ) ( Statechart v. 2
Statechart v. 1 Statechart v. 1
S3 S3

@—si—— RN o—6f

G/H A/B
Collapse Collapse
Collapse C ® Collapse C 7:
K‘@ﬁu Sala C/D = C/D @—’:n F 518 C/D =
(@) Or1gma1 Diagram (b) Plain diff with red marking deletion, green ad-

dition and blue movement

Figure 3.8. Comparison example plain diff by Arne Schipper et al. [SFH09]

shows the two original diagrams, which are in our framework comparable to the current state
as Statechart v. 1 and the desired state as Statechart v. 2. The result is then merged into a freely
merged diff as shown in Figure 3.7b. All nodes are incorporated into the final merged diff
and the differences are highlighted in color.

For example, the node S 2 is missing in the desired state and therefore is highlighted in
red, while the node S 3 is added in the desired state, is therefore colored in green. The node
S 1 in the current state and the node S 1a in the desired state fulfill the same purpose. The
only difference is the connection to other nodes. As a result, the nodes are merged and the
resulting node is colored blue. Completely unaffected nodes stay the same color as they are
neither merged nor deleted or added.

The resulting graph is very compact, takes up little space, and additions or deletions are
easily visible. Yet the computation of a merged graph is complicated. Simple examples, as
shown above, are visualized easily and are pleasant to look at. However, more convoluted
examples, especially with nested layouts, get very labyrinthine and therefore unreasonably
complex and difficult to understand. Another downside is the recognizability of the resulting
graph after examining the known current state. With many changes the merged diff changes
the graph so much it becomes unrecognizable and it takes a long time to understand the
changes made to the original architecture.

Due to these downsides, I introduce another way of displaying differences in the following.

3.2.2 Plain Differences

The plain diff is the comparison of two graphs without merging them. Two graphs are placed
side by side, and the differences are highlighted with color. It does not require another
synthesis for creating a singular merged graph and the plain diff is therefore a lot simpler to
implement.

Figure 3.8 shows that both the current state, Statechart v. 1, and the desired state, Statechart
v. 2, are just displayed again on the right side; however, the nodes that got changed are
colored. The current state contains the node S 2 while the desired state got rid of it, hence,
the node S 2 is colored red. Looking at the desired state, it contains the node S 3 while the
current state does not. Therefore, it was added to the desired state and thus is colored green.
The node S 1 is the result of the nodes S I and S 12 merging, but the connections change from
the current to the desired state, and that being the case, is colored in blue.

17



Differences references

Model

references

source target
Model Model

Figure 3.9. Differences architecture

This way of displaying the graphs is simpler then the freely merged diff. I am able to print
the graphs as they are synthesized and just have to color the changes nodes accordingly. This
eases the implementation and fits the recursive synthesis as I can show the diff synthesis as a
graph and the plain diff graph is visualized. The side-by-side comparison is user-friendly,
and no introduction is needed to aid understanding.

There are a few downsides to this comparison style. The more nodes are compared at a
time, the more they are scaled down. This is true for all styles, nonetheless, the shrinkage is
doubled here, as there are two graphs displayed at a time. This, at times, creates the need of
zooming into the left or right side, which then loses the ability to compare the states, as only
a part of one state is shown. This style is more sensitive to structural changes, as the structure
of both states should be nearly identical to easily and quickly identify the changes.

In the end, I decided to use the plain diff. Mainly for its ease of implementation and
simple readability compared to the difficult implementation of a freely merged diff and its
reading difficulties for small changes.

Now that I have decided on the way I want to display the diff, the next section discusses
how the plain diff is realized for OSGiViz.

3.2.3 Differences Model

The main idea is to expand on the recursion by introducing a new model that sits at the top of
the tree of nodes, which then combines two models by calling their syntheses as subsyntheses.
Figure 3.9 shows the connections between the model files. The OSGi diff model is specified
by a DSL and serves as the connection between two OSGi models. The diff model contains a
reference to the sourceModel and to the targetModel. Both states follow the same OSGi model
structure and can therefore be synthesized by the same synthesis. They can also be swapped
anytime by changing the referencing order in the differences model. I disregard coloring the
differences for now.
The resulting visualization looks like this:

18



KLighD

Differences synthesis

Differences
Model

KNode

OSGi synthesis OSGi synthesis

source
Model

KNode

Figure 3.10. Synthesis architecture

Overview Overview
Services ﬁ] ‘BundIeServices E] Services E’ ‘BundIeServices E]
BundleDependencies E’ ‘Features ﬁ] B BundleDependencies ﬁ] ‘Features E]
Products a Products a

Figure 3.11. Diff model visualization default look

Figure 3.11 shows the visualization of the proposed idea from Figure 3.10. Figure 3.11
shows two models side by side, but in reality it is just one diff model that has two OSGi
models as subsyntheses. The default view is identical to Figure 3.4. It just shows the two
underlying models side by side as the goal is the visualization of a plain diff, which calls
for a side by side visualization. Opening the features reveals that both sides have the same

19



Overview Overview

[Services |[:|] [BundIeServices |E] [BundleDependencies |5] [Services |5] [BundIeServices |5] [BundIeDependencies |5]

| Features |Q 32 - ‘| [ Products |ﬁ] | Features |C\ 32 - ‘| [ Products |E]

[ de.scheidtbachmann.osgi.language.base.feature |E] [ de.scheidtbachmann.osgi.language.base.feature |E]

[ de.scheidtbachmann.osgi.language.runtime.feature |E] [ de.scheidtbachmann.osgi.language.runtime.feature |E|]

Figure 3.12. Diff model visualization with features

features. The two models work in sync if it is possible. Every action on one side is also done
on the other side if the node exist on both sides. This is an important feature so that the user
does not need to look for changes twice when interacting with the diff model.

Now that I have a functioning visualization capable of displaying two models at the same
time, I can discuss how to visualize the differences between the models in the most fitting
way.

3.2.4 Colors

Colors are crucial for finding the changes between the current and desired state easily with
the human eye. The possible changes are done when writing the desired state, and they are:

1. The addition of any artifact is defined by writing it in the desired state when it is not part
of the current state.

2. The deletion of any artifact is shown by not including it in the desired state.

3. The movement/merging of any artifact has several possibilities to be shown. The depen-
dencies can change or the overarching node can change, but it itself stays the same.

Striking and recognizable colors are essential to the user experience. Firstly, colors that
are already used when coloring the nodes in the visual graph or colors closely resembling
them are off limits as there is no differentiating them. This creates a problem as the color for
nodes is chosen not randomly but by fixing the value and saturation in the Hue, Saturation,
Value, or in short HSV color space, and only circling around the hue. Circling around the
hue means increasing the hue untils it is at 360° and then starting again at 0. This happens in
every shortening intervalls to ensure the colors are unique Those colors are generated during
the generation of the visualization tool by SPViz and are then used during the synthesis. This
means I need to differentiate the generated colors in general by, for example, increasing the
saturation of our colors.

20



Overview

Services

Q el [ BundleServices IE]

de.scheidtbachmann.osgi.language.services.dataprovider.LanguageDatabaseProvider

) O

m}

de.scheidtbachmann.osgi.language.services.translator. TranslatorService | E‘]

de.scheidtbachmann.osgi.language.german2english.internal.German2EnglishTranslator | E]

de.scheidtbachmann.osgi.language.german2klingon.internal.German2KlingonTranslator

d

[ FileBasedLanguageDatabaselLoader |E|]
[ de.scheidtbachmann.osgi.test.application.TranslatorClient

d

BundleDependencies Q-

Features Q-

de.scheidtbachmann.osgi.language.database.provider.file |E,|TJ

]E]

de.scheidtbachmann.osgi.language.base.feature |E

de.scheidtbachmann.osgi.language.german2english |E]

de.scheidtbachmann.osgi.language.german2klingon |E]

de.scheidtbachmann.osgi.language.model |E]

de.scheidtbachmann.osgi.language.services |E]

— M M M M

de.scheidtbachmann.osgi.test.application |E]

de.scheidtbachmann.osgi.language.english.feature | E]

de.scheidtbachmann.osgi.language.klingon.feature | E]

[
[
[
[

de.scheidtbachmann.osgi.language.runtime.feature |E]

Products b+ S

[ englishtranslator | E/F

[ klingontranslator |E]

Figure 3.13. Language demo visualized with all subnodes opened

Figure 3.13 shows the first five colors to be generated for artifacts.?

4https:/ / github.com /kieler/ osgiviz/ tree /master /examples/languagedemo

21



Showing 9 changed files v with 304 additions and 18 deletions

Figure 3.14. Color usage in GitLab

p N ( Statechart v. 2 )
Statechart v. 1 =
@ > S 1 B >
/ Collapse
0 &
C/D @—{(11) C/D
N\ J N J

Figure 3.15. Color usage by Arne Schipper et al. [SFH09]

I also want fixed colors for fixed meanings. For the abstraction into SPviz to work, a
color that has a special meaning should stay the same, regardless of visualized architecture.
This renders generated colors for visualizing changes unusable as different architectures
incorporate a different amount of colors and the colors used for visualizing changes would
change when the architecture changes.

I at first identified what colors are applied in real-world contexts for the possible changes.
The first example is the color usage of GitLab to display differences in textual files:

Figure 3.14 is a screenshot from a commit issued during this thesis and shows the header
of the changes from the commit. It uses the color green for addition, red for deletion, and
blue for identifying the changed files. GitHub uses this color scheme as well.

A second example is the color usage of the previously mentioned related work from Arne
Schipper et al. [SFH09].

Figure 3.15 shows the deletion in red, the addition in green, and even the movement of a
node in blue.

The use of red as deletion and green as addition is widespread, and there are countless
comparison tools available that use red and green in this way. Most important is the usage in
GitLab® and GitHub®, as they are widely used in the world of software engineering and their
color usage is therefore well known. The color for the movement of a node is a more difficult
choice. Arne Schipper et al. [SFH09] introduced blue as the color of choice for showing
movement of a node in Figure 3.15, which is why blue is our choice for showing movement.

I need to ensure that my colors stick out by increasing the saturation. The HSV colors that
are generated always use a value of 1, a gradient of 0.12-0.24 and the hue is circled around.
My colors always use a value of 1, a saturation of 0.62 for addition (green), 0.52 for deletion
(red), and 0.52/0.80 for movement (blue). The difference in this case is 0.4-0.7 in saturation,

5https://about.gitlab.com/company/
6https://github.com/about

22


https://about.gitlab.com/company/
https://github.com/about

Kiighd.sdk feature | B .-Klighd.sdk feature.test [ =
BundleDependencies |0\ b24 - BundleDependencies ‘Q 34 -
[orasnsonis [l [ttt oo [
/ 7 / 7
Carmess [ : ' A '
N > ..kgraph.text |~ ji=/ Ny N _,
B L B < G [ -
e Commanrass
e Compaon [
(a) Part of a current state showing removal and (b) Part of a desired state showing addition and
change in parent change in parent

Figure 3.16. Comparison example using addition, deletion, and movement with the plain diff

Figure 3.17. Comparison of KLighD feature architecture with some changes

which ensures that even though red, green, and blue are generated by SPviz and used by
0SGiViz, the colors I chose, are different enough for any misunderstandings to happen.

Figure 3.16 shows the colors in action during a comparison. The colors are higher in
saturation than the colors previously presented in Figure 3.13. I also use two different kinds
of blue, to indicate, which state I are currently looking at.

Figure 3.17 displays two models. The left one, the current state, was generated by the
0SGiViz generator while the model on the right, the desired state, was handwritten by us with
some changes to demonstrate the usage of color. This now connects the two core concepts
of this thesis. I can display two models and compare them using the plain diff and I can
manually write a model that gets compared to an existing model. This enables this framework
to visualize version control, source control and compare the current state of an architecture to
a desired state that has yet to be implemented.

23






Chapter 4

Implementation

This chapter features the implementation details regarding the previously discussed concepts.
The structure of this chapter resembles the previous one, and therefore it starts with the
implementation of the OSGi diff model, followed by the core concepts of the last chapter, the
desired state and the plain diff.

4.1 0SGi Differences Model

The 0sGi diff model is implemented in Xtext and it specifies the structure of an .osgidiff file.
The structure is defined as the connection of the current state as the sourceModel and the
desired state as the targetModel. The model references are strings containing the file paths
and those references are saved in an OSGiDiff object. These file paths are then used to load
the sourceModel and the targetModel during the OSGi diff synthesis if they were not previously
loaded to reduce redundant runtime. The OSGi diff synthesis then calls the synthesis for the
loaded models and adds the respective other model to the synthesis properties as well as the
knowledge whether the synthesis is for the sourceModel or the targetModel. This is used later
to identify differences and categorize them accordingly.

4.2 Desired State

The desired state is implemented in Xtext and it specifies the contents of an .osgidsl file.
The grammar was first generated from the OSGi ecore model and was then adjusted as seen
in Chapter 3.1. The section also brought the generation of the ecoreld. The ecoreld is now
implemented during the linking process and combines the artifact type prefix with the name
of that artifact. For example, a bundle with the name new.example.test generates a bundle with
the ecoreld Bundle_new_example_test.

The bidirectional references, also mentioned in Chapter 3.1, are implemented during the
same linking process as well. A check for a bundle dependency is done and if it is true, then
a reference from the target bundle is added. This is necessary, as the bidirectional references
are very useful for handling the model during, for example, the synthesis. Even though EMF
has bidirectional lists that update each other, Xtext is bugged and this issue is circumvented

by implementing the bidirectional references during the linking process’.

1 https://bugs.eclipse.org/bugs/show_bug.cgi?id=282486

25


https://bugs.eclipse.org/bugs/show_bug.cgi?id=282486

Overview Overview

[Services IEI] [ BundleServices IEI] [Services IE] [BundIeServices IE]

[BundIeDependencies IE] [ Features IE] [ BundleDependencies IE] [Features IE]

=0 (o 5

Figure 4.1. sourceModel KNode on the left and targetModel KNode on the right

’Layout & Renderingi

VCM VCM
sourceModel targetModel

modifies modifes
I I
KGraph KGraph
sourceModel targetModel
A A
interacts interacts

User

Figure 4.2. User interaction workflow

4.3 Plain Differences

The plain diff is the specific visualization of the OSGi diff model. First, an invisible Polyline
connecting the KNodes generated from the model synthesis is added to ensure the layout of
the models is consistent. This solution solves the possibility of unordered nodes, because the
the order is not specified to the layout algorithm in any other way. The left graph always
shows the sourceModel and the right graph shows the targetModel. Figure 3.11 shows the
connection in the middle, visualized for this figure, and the sourceModel on the left and the

targetModel on the right.

Differentiating the models when implementing new features was the first hurdle.



OSGiDiff
KNode

—

OSGiProject
KNode

OSGiProject
KNode

Bundle
Dependencies
Overview
KNode

Bundle
KNode

Figure 4.3. Example of partial tree of nodes

4.3.1 Visualization Context Model Handling

One of the biggest problems was the handling of the visualization context model (VCM). The
VCM contains all currently visualized nodes and their status. Figure 4.2 shows the handling of
the interaction as it is now implemented. Previously interacting with a node from either side
of the KGraph resulted in an error as at first there was only one VCM, thus both sides showed
the same model, and after implementing two, one for each KGraph side, the program still had
to clarify which of the two is responsible.

The correct root VCM, in the original OSGiViz was chosen by “walking” up the tree of nodes
to the root. Figure 4.3 shows part of a KGraph tree with a path from the top node to a node
on the bottom which can be interacted with.

This KGraph tree was created by the KLighD synthesis that was used on the model file.
The synthesis build the KGraph by creating KNodes for the different ways I want to visualize
the software architecture and incorporates the model elements as children to the KNodes at
the top. The structure of the OSGi model still remains as the model elements have the same
structure in the KGraph tree. For example a feature still incorporates bundles. The synthesis
also relates the VCM element to the corresponding KNode, so that the references back to the
VCM and with that to the bundle from the original model can be drawn. The root VCM for
all elements from one side of the tree in Figure 4.3 is the same, as they belong to the same
model. Finding the root VCM is important for the program to know which of the OSGiprojects
the user wants to interact with.

After finding the corresponding OSGiProject KNode, from which the program gets the
corresponding VCM, the VCM is modified.

27



Overview Overview
[Services ‘Ex] [BundIeServices ‘E] [Services ‘5] [BundleServices ‘E]
BundleDependencies ‘O\ 3 T [Features ‘5] BundleDependencies ‘O\ 3 - [Features ‘E\]
[ch.qos.logback.classic I[‘l\? Products |5 [ ch.qos.logback.classic IEVJ? [ Products ‘E]
[ ch.qos.logback.core IE;] [ ch.qos.logback.core IE]

Figure 4.4. Opening one side opens both side

Actively handling the VCM also enables us to implement new features. When interacting
with a node in either state, the corresponding node in the other state should act as well, if it
exists. Otherwise, only the clicked-on node reacts. This works by searching for the respective
VCM on the other side and modifying it in the same way. The corresponding VCM is searched
for by going up the tree of nodes again and adding each step to a list, reversing it and
checking all resulting options for the original ecoreld.

This is without a doubt a huge improvement for clarity and ease of comparison. A few
examples are:

> Expanding a node like in Figure 4.4, opens the node on both sides.
> Clicking on a node highlights the node and its connections in blue.
> Showing the connections of a node.

> Hiding a node.

4.3.2 Color

Implementing the changing colors for the nodes is the next topic. I introduced three different
colors: red for deletion, green for addition, and blue for movement. Of course, if it is not any
of the three, the node should keep their default color.

The other 0SGi model is passed down the syntheses, because I need it to compare the
artifacts to. As mentioned in Chapter 3, a node that exists in the sourceModel, but not in the
targetModel should be colored red and green if its the other way around. The implementation
checks for each artifact if it exists in the other model.

28



OSGi
Project

0.*

(o“* (o“* 0.* 7 0.* W 0.*

Service Service
Interfaces Components

Features Products Bundles

Figure 4.5. Subset of the 0sGi class structure

This works because the model has direct access to the artifacts as shown in Figure 4.5. For
example, a bundle with the ecoreld Bundle_new_example_test checks the existence of a bundle
with the same ecoreld by accessing the Bundles class from the OSGi model and comparing the
ecoreld to each bundle. If the bundle exists it is returned for later use. This works for both red
and green by checking which model the node belongs to afterwards. The check for which
model a node belongs to is analog to Figure 4.3.

Blue is implemented after the checks for green/red are positive. This guarantees that both
models contain this artifact. Blue had two meanings, as mentioned in Chapter 3. The first
implementation works by checking the parent of an artifact like a bundle.

A bundle can return its parent and is therefore able to compare its parent to an existing
parent of the corresponding node in the other model. If the parents are not the same the color
is set to blue. The second implementation works by accessing the respective target bundle
and comparing the incoming and outgoing dependencies. If they are not the same the node is
colored blue. The lighter blue and the darker blue are decided on by again checking, which
model this node belongs to.

29






Chapter 5

Evaluation
Overview Overview
[Services IE] [BundIeServices IE] [Serwces Iﬁ] [BundIeSerwces I"]

‘ BundleDependencies lO\ 32 _| ‘ BundleDependencies

b+4 | Features | E]

[ch.qos.logback.core |_}j [{ ch.qos.logback.classic |_]

[Features IE] [Products IE]

Figure 5.1. A small example diff derived from the language demo example

This chapter discusses possible questions that could be asked to evaluate the effectiveness
of this comparison framework and evaluates the completion of the goals I set for myself at
the start of the semester. Furthermore, this chapter describes the lessons I learned during the
duration of this thesis.

5.1 Possible Evaluation Questions

Conducting a survey is out of scope for this thesis, but I still propose and discuss possible
questions for future work after this thesis. The goal of the questions should be to figure out
how effective the comparison framework is at letting users spot differences and ease of use.

I propose 3 different kinds of questions. The first kind of question would be questions
about the meaning of the colors. A questionnaire would show how small examples diffs. with
isolated changes at first and increase the complexity gradually. A low complexity example
would be Figure 5.1. There is only one node removed and everything is readable without
zooming. Figure 5.2 displays a very complex example which would be shown near the end of
the questionnaire.

The second kind of question would be about the visibility of the changes. The amount of
changes would increase and the questionnairewould for example ask on a scale of 1 to 10 how
easy, how many, the changes were spotted in what time frame and did they find all changes.

31



Figure 5.2. A very complex example derived from KLighD

The third kind of question would be implementing a model from a diff. The sourceModel
would be given and the final diff and the objective would be to change the sourceModel into
the needed targetModel to produce the given diff. The complexity would have to be shallow
and this question could only be asked to people already familiar with programming, but this
framework would also only be used by programmers. This would work with Figure 5.1, but
not with Figure 5.2.

5.2 Completion of Proposed Goals

At the start of the semester, after getting the task for this thesis, I set myself goals to achieve
during the implementation. Hard requirements are required for this thesis and have to be
met at the end. Soft requirements are not required, nonetheless add quality of life features to
round off this implementation.

5.2.1 Hard Goals

The overarching goal was to create a comparison framework for OSGiviz with the possibility
of abstraction into SPViz. The comparison for OSGiViz is implemented, and the abstraction is
possible, yet not implemented.

The first hard goal for this thesis was to create a way of describing an 0SGi model by
writing it as text and then having it displayed in the same way the generated OSGi model is.
Chapter 3 has most of a section designated to the evolution of my DSL.

Furthermore, I had to create or choose a visualization style. The first idea I had was to
sketch different possibilities and compare those possibilities. A few weeks in, I was introduced
to the work of Arne Schipper et al. [SFH09] which then served as the basis for the comparison
styles mentioned in this thesis and where I ultimately picked the plain diff style from.

The last requirement was the implementation of the chosen comparison style in OSGiViz.
This encapsulates two objectives: Firstly, a way to visualize two models next to each other and
secondly, to color the differences. The first objective was done fairly quickly by implementing
a small-scale DSL which connects the two models into one and displays them. The second
objective was more difficult to implement but was also done easily, after discovering where

32



the necessary changes belong.
Every hard goal has therefore been achieved, and the assessment of the obstacles at the
start of the semester, was correct.

5.2.2 Soft Goals

The first soft goal was interactivity between the two models, which has been partly achieved
by the synchronization of actions between the models. Every action that was implemented in
OSGiViz is synchronized but the options sidebar has not yet been implemented which is an
addition of significant use.

Another proposed soft goal was the implementation of other comparison styles. This has
not happened, but the concept for the freely merged diff exists and is detailed clearly in its
own subsection in Chapter 3.

As the title of this thesis suggests, the abstraction into SPViz was always something that
will happen, but not as part of this thesis. Suggested as a soft goal at the start of this semester,
I discovered quickly that this was outside of scope for me. Nonetheless, attention was spent
on the implementation as to not use OSGi-specific code that would prevent the abstraction.

5.3 Lessons Learned

This was the first time that I worked on a larger software project by myself and there is a lot I
learned during the implementation of this thesis.

The biggest hurdle in the beginning was the size of the project I had to change and
adjust. The sheer amount of concepts and technologies was staggering. KLighD, ELK, EMF
and, by extension, Xtext, were already in use by 0SGiViz and were thereby required for
me to understand before I could start changing the code according to my needs. There
were problems that were so far out of scope for me that I had no choice but to rely on my
supervisor. An example would be to get OSGiViz running in Eclipse on my machine. This
seemingly rudimentary task turned out to be a multi-day problem, which I had no chance of
solving in a reasonable time. Problems like these in turn made this thesis more difficult but
also more interesting, and I gained deeper knowledge about subjects I had little investment
in earlier.

The programming language used for 0SGiViz, XTend, was a new language for me. Yet as a
Java dialect and my prior knowledge of Java, it turned out to be a pleasant change and made
me appreciate dynamic typing.

My programming skills in general improved greatly during this thesis, not only in terms of
writing code, but also debugging, thinking about, and understanding concepts, and inventing
new ones. The debugging feature was of significant help when beginning this thesis and
trying to understand the software project in front of me.

The last thing I want to talk about is time management. Setting fixed time windows for
the implementation was highly difficult for me at the start, as I had little knowledge about the

33



project and the way it works. Things take time and often longer than anticipated, especially
when writing this thesis in English, with German being my native language. Though, writing
this thesis nurtured my interest in the academic process and gave me a greater understanding
of working in an academic setting.

5.4 Collaborations

The results from this thesis were presented to representatives from Scheidt & Bachmann
GmbH! and they are pleased with the final look of this comparison framework. SPViz is cur-
rently used by them and they are looking forward to work with this comparison visualization.

Scheidt & Bachmann GmbH is not the only one using SPViz and the results were presented
to some other users as well and the overarching response was very positive.

Thttps:/ /www.scheidt-bachmann.de/de/

34



Chapter 6

Conclusion

This thesis shows a way to create a comparison framework for OSGiviz and the possibility
of abstraction into SPViz. It introduces new concepts for writing and comparing models
and discusses them assidouosly. The possibility of abstraction into SPviz means, that this
framework can also be used for any given software structure, which increases the value of
the results from this thesis tremendously.

Comparison frameworks however, are never finished, and neither is this one. There is still
room for improvement in regards to the mentioned soft goals and even more possibilities
beyond those soft goals.

The results can ultimately be used in real-world applications, similar to how SPViz is
currently being used. They can also be used by other students to play around with and
expand upon during new theses.

6.1 Future Work

This comparison framework can be expanded upon in a number of ways. Some ideas are
presented here:

Abstraction into SPViz: The abstraction into SPViz is the goal for the future. Abstracting expands
the usability of this framework like no other contribution will and is very important for
the future of this framework.

Writing the model as an ADL: An architecture description language (ADL) is a way of describing
software architectures similiar to the DSL I implemented [Cle96]. They are commonly used
to generate code from an abstract description [RAB+04]. The structure of the architecture
is given by a concrete implementation of the DSL and the artifacts would be predefined
per type. This would make it possible to generate code from the model that you write
down with the OSGiDSL. Thereby speeding up the process of converting the theoretical
software structure into the finished product. The generation would be a software skeleton
without concrete implementation details.

Different diffs.: Different kinds of diffs like the freely merged diff mentioned in Chapter 3
would widen the possibilities of expressing the changes made to a structure. This feature
is not necessary for this framework to function but would provide some diversity.

More Interactivity: Adding the support of the option sidebar would greatly improve the
usability and grant this framework the same functionality as a singular displayed model.

35



Different Color Schemes: Right now the dominant colors in use are red, green and blue. Yet

36

the most common color vision deficiency is red-green [Sim16]. This makes some users
unable to differentiate changes which in turn makes this framework unusable for those
developers. An option for switching between different color schemes can be implemented.
Some examples schemes would include brown-purple or pink-blue.



[Bud04]

[Cle96]

[EVO06]

[MNSO01]

[RAB+04]

[RDH20]

[RH25]

[SFHO09]

[Sim16]

[TVO08]

Bibliography

Frank Budinsky. Eclipse modeling framework: a developer’s guide. Addison-Wesley
Professional, 2004.

P.C. Clements. “A survey of architecture description languages”. In: Proceedings of
the 8th International Workshop on Software Specification and Design. 1996, pp. 16-25.

DOI: 10.1109/IWSSD.1996.501143.

Sven Efftinge and Markus Volter. “0oAW xText: a framework for textual DSLs”. In:
Workshop on Modeling Symposium at Eclipse Summit. Vol. 32. 118. 2006.

G.C. Murphy, D. Notkin, and K.J. Sullivan. “Software reflexion models: bridging
the gap between design and implementation”. In: IEEE Transactions on Software
Engineering 27.4 (2001), pp. 364-380. DOL: 10.1109/32.917525.

S. Rigo, G. Araujo, M. Bartholomeu, and R. Azevedo. “Archc: a systemc-based
architecture description language”. In: 16th Symposium on Computer Architecture
and High Performance Computing. 2004, pp. 66—73. DOI: 16.1169/sBAc- PAD.2604.8.

Niklas Rentz, Christian Dams, and Reinhard von Hanxleden. “Interactive Vi-
sualization for OSGi-based Projects”. In: 2020 Working Conference on Software
Visualization (VISSOFT). 2020, pp. 84—88. DOI: 16.1109/vIss0FT51673.2020.00013.

Niklas Rentz and Reinhard von Hanxleden. “SPViz: a DSL-driven approach for
software project visualization tooling”. In: Proceedings of the 20th International
Joint Conference on Computer Vision, Imaging and Computer Graphics Theory and
Applications - IVAPP. INSTICC. SciTePress, 2025, pp. 967-974. 1sBN: 978-989-758-

728-3. DOTI: 10.5220/0013356800003912.

Arne Schipper, Hauke Fuhrmann, and Reinhard von Hanxleden. “Visual compari-
son of graphical models”. In: 2009 14th IEEE International Conference on Engineering
of Complex Computer Systems. 2009, pp. 335-340. DOI: 10.1169/1cECCS. 2009. 15.

Matthew P Simunovic. “Acquired color vision deficiency”. In: Survey of ophthal-
mology 61.2 (2016), pp. 132-155.

Andre L.C. Tavares and Marco Tulio Valente. “A gentle introduction to OSGi”.
In: SIGSOFT Softw. Eng. Notes 33.5 (Aug. 2008). 15sN: 0163-5948. DOT: 10.1145/1402521.

1402526.

37


https://doi.org/10.1109/IWSSD.1996.501143
https://doi.org/10.1109/32.917525
https://doi.org/10.1109/SBAC-PAD.2004.8
https://doi.org/10.1109/VISSOFT51673.2020.00013
https://doi.org/10.5220/0013356800003912
https://doi.org/10.1109/ICECCS.2009.15
https://doi.org/10.1145/1402521.1402526
https://doi.org/10.1145/1402521.1402526

	Introduction
	Problem Statement
	Related Work
	Outline

	Used Technologies
	Xtext
	EMF
	KLighD
	OSGiViz
	SPViz

	Concepts
	Desired State
	Differences in Visual Comparison
	Freely Merged Differences
	Plain Differences
	Differences Model
	Colors


	Implementation
	osgi Differences Model
	Desired State
	Plain Differences
	Visualization Context Model Handling
	Color


	Evaluation
	Possible Evaluation Questions
	Completion of Proposed Goals
	Hard Goals
	Soft Goals

	Lessons Learned
	Collaborations

	Conclusion
	Future Work

	Bibliography

