
Interconnecting
Public Transport Information

Merlin Felix

Bachelor’s Thesis
September 2024

Real-Time and Embedded Systems Group
Department of Computer Science

Kiel University

Advised by
Dr. Ing. Alexander Schulz-Rosengarten

Selbstständigkeitserklärung

Hiermit erkläre ich, dass ich die vorliegende Arbeit selbstständig verfasst und keine anderen
als die angegebenen Quellen und Hilfsmittel verwendet habe.

Weiterhin erkläre ich, dass die digitale Fassung dieser Arbeit, die dem Prüfungsamt per
E-Mail zugegangen ist, der vorliegenden schriftlichen Fassung entspricht.

Kiel,

iii

Abstract

Public transport is an important aspect to a sustainable future of mobility [MS13]. Thus, re-
search on innovative public transport options are gaining interest. To help new and innovative
public transport projects to integrate with existing solutions, this thesis aims towards inter-
connecting public transport and mobility information from different sources. It is intended
to provide an easy-to-integrate service providing all relevant data in a uniform way. The
provided data is strived to be ready-to-use in traveler-facing public transport information
systems without the need of further preprocessing or cleansing.

Acknowledgements

First, I would like to thank Prof. Dr. Reinhard von Hanxleden as the Head of the Real-Time
and Embedded Systems Group for making it possible to write this thesis.

Further, I would like to thank my advisor Dr.-Ing. Alexander Schulz-Rosengarten for the
guidance, feedback and ideas he provided.

Finally, I would like to thank Tokessa Hamann, Yorik Hansen and especially Finn Evers
for provided feedback, ideas and inspiration as well as the good company during the process
of writing this thesis.

v

Contents

1 Introduction 3
1.1 Problem Statement . 4
1.2 Outline . 4

2 Related Work 5
2.1 Existing Traveler-Facing Public Transport Information 5
2.2 Academic Research . 8

3 Preliminaries 9
3.1 Transmodel . 9
3.2 General Transit Feed Specification Schedule . 9

3.2.1 General Transit Feed Specification Realtime 10
3.2.2 Relevant General Transit Feed Specification Datasets 10

3.3 Deutsche Bahn Timetables Application Programmable Interface 11
3.4 General Bike Feed Specification . 13
3.5 Other Sources . 14

4 Concepts 15
4.1 Overall Architecture . 15
4.2 Data Acquisition . 17
4.3 Public Transport and Mobility Domain Model 18
4.4 Uniform Internal Representation of the Data . 20
4.5 Cross-Source Data Merging and Harmonization 20

4.5.1 Duplicate Identification on Insertion . 20
4.5.2 Duplicate Identification Criteria . 23
4.5.3 Merging during Query . 24

4.6 User Story . 25

5 Implementation 27
5.1 Project Structure . 27
5.2 Backend . 28

5.2.1 Architecture . 28
5.2.2 Database Design . 29
5.2.3 Merging the Data . 32
5.2.4 Instantiating Trips . 32
5.2.5 Serving the Application Programmable Interface 33

5.3 Fronted Implementation . 34

vii

Contents

6 Evaluation 37
6.1 Comparison with Existing Solutions . 37
6.2 Conceptual Limitations . 37
6.3 Quality and Consistency of the Source Data . 38
6.4 Performance . 40

7 Conclusion 47
7.1 Summary . 47
7.2 Encountered Problems . 47
7.3 Future Work . 48

7.3.1 Connect Other Sources . 48
7.3.2 Distinguish Different Platforms . 48
7.3.3 Implement Routing . 49
7.3.4 Support for On-Demand Public Transport 49
7.3.5 Improve Implementation . 50

A Benchmark Script 51

Bibliography 63

viii

List of Figures

2.1 The Plön Mobil service. 6
2.2 Catenary Maps with the wrongly displayed RE8 in Plön. 7
2.3 Transitland with the wrongly displayed RE8 in Plön. 7

4.1 Architecture of the Application. 16
4.2 Invocation of Request-Invoked Collectors. 18
4.3 Public Transport and Mobility Domain Model. 19
4.4 Example of two stops considered distinct until insertion of another stop. . . . 21
4.5 Interaction of a user with the Application Programmable Interface (API) via a

client app. 26

5.1 The application structure. 27
5.2 Diagram of all tables in the database. 31
5.3 Suggestions provided by the stop search endpoint when searching for the

pattern Lütjenb . 34
5.4 The User Interface (UI) with Plön focused. 35
5.5 The UI with a trip of the train line RE83 selected. 36

6.1 The routing feature of Nahverkehrsverbund Schleswig-Holstein (NAH.SH). . . 38
6.2 Kiel Central Station in three different General Transit Feed Specification (GTFS)

feeds. 39
6.3 Kiel Central Station bus stops in three different GTFS feeds. 40
6.4 The UI of the developed tool in Bad Malente-Gremsmühlen. 41
6.5 A selection of the available bus stops near Bad Malente-Gremsmühlen. 42
6.6 Mean response times and number of returned trips for all stations on the

Kiel-Lübeck track and bus stops near the Malente-Lütjenburg track. 44
6.7 Mean response times and number of trips fetched from the database for all

stations on the Kiel-Lübeck track and bus stops near the Malente-Lütjenburg
track. 45

6.8 Development of response times as a function of time frame size for Kiel Central
Station. 46

ix

List of Tables

xi

List of Acronyms

HAFAS HaCon Fahrplan-Auskunfts-System

NAH.SH Nahverkehrsverbund Schleswig-Holstein

API Application Programmable Interface

REST Representational State Transfer

DB Deutsche Bahn

GTFS General Transit Feed Specification

GBFS General Bike Feed Specification

NeTEx Network Timetable Exchange

SIRI Service Interface for Real Time Information

CSV Comma Separated Values

DELFI Durchgängige Elektronische Fahrgastinformation

SSE Server-Side Event

SQL Structured Query Language

UI User Interface

1

List of Tables

HTTP Hypertext Transfer Protocol

ID Identifier

HATEOAS Hypermedia as the Engine of Application State

JSON JavaScript Object Notation

HTML Hyper Text Markup Language

XML Extensible Markup Language

CSS Cascading Style Sheets

OSM OpenStreetMap

2

Chapter 1

Introduction

Public transport consists of a variety of different networks, modes of transportation, and
transportation providers. Utilizing only one of them might often be insufficient to reach a
desired destination. For example, two cities might be directly connected via railway, but
reaching a specific location within a city might require taking the bus or using an on-demand
service in case of more remote places. As a consequence, traveling by public transport does
often require the utilization of multiple different options or services.

Other than the binary parameter of reachability, different public transport options also
differ in terms of time efficiency, frequency, comfort, etc. When planning a trip using pub-
lic transport, all the different options, their availabilities and other circumstances such as
schedules are usually investigated and taken into consideration.

This problem does not only exist regarding the planning process in advance, it persists
during the trip when it comes to adapting to, e.g., delayed or cancelled connections. These
deviations from the schedule are communicated using different apps or websites, further
complicating traveling by public transport.

Although services gathering information from different public transport agencies already
exist, these have some major limitations. They are often limited to fixed-route public transport
services with fixed time schedules. On-demand public transport on the other hand is likely
to become more popular with the increasing interest in autonomous vehicles. In the context
of REAKT DATA1, a project dedicated to reactivate disused railway tracks using on-demand
autonomous trains, a well suited integration with other mobility options is of interest. While
it is sometimes possible to submit own timetables as a mobility provider, easy and affordable
ways to integrate information regarding available public transport and mobility options
in another project are also very limited. Use cases for this include for instance displaying
or announcing subsequent mobility options. Existing solutions also tend to restrict source
formats to mostly one or very few. However, not all public transport and mobility information
is available in the same format. The challenge arising from the utilization of various data
sources is the high diversity of the data superficially in terms of representation, but also
contentwise in quality, density and completeness. Different information sources might also
overlap in as far as the same information might be contained in multiple sources.

1https://reakt.sh/

3

https://reakt.sh/

1. Introduction

1.1 Problem Statement

The goal of this thesis is to conceptualize, implement and evaluate a service, which provides
in a uniform way information regarding different public transport and mobility options.
The gathered information should be traveler facing and is intended to be used by passenger
information systems, such as mobile apps or embedded devices such as in vehicles or at
stops.

In order to create a solution especially aimed towards small or regional mobility projects
like REAKT DATA, publicly available data sources should be investigated and interconnected.
Further, the proposed solution will be open-source. This way, it can easily be used to integrate
the own mobility service with others. If a desired data-source is missing, it can just be
implemented.

A broad coverage of available options should be aimed for, optimally eliminating the need
of consulting any other information sources. For the scope of this thesis, it is limited to the
geographical proximity to the Malente-Lütjenburg railway track.

1.2 Outline

The next chapter will conclude related work on the topic of public transport information and
existing applications. Chapter 3 will introduce common data formats and information sources
relevant to this thesis. In Chapter 4, methodology for acquiring, merging and processing
public transport and mobility data is addressed. Chapter 5 shows how the developed concepts
are implemented and which technology is used. Chapter 6 reflects on the developed concepts.
Finally, Chapter 7 concludes this thesis.

4

Chapter 2

Related Work

This chapter provides a brief overview over similar existing software solutions and the
research previously conducted on the field of public transport information.

2.1 Existing Traveler-Facing Public Transport Information

Existing services providing public transport information for travelers include various solutions
by transport companies and associations, as well as mostly proprietary regional solutions
commissioned by cities or similar representatives. The proprietary nature of these solutions
make it difficult to integrate a small mobility project, especially when it comes to accessing
information regarding other mobility options directly, rather than viewing it on a standalone
website or app. This data has to be collected from various sources, constituting a major
complication, as the sources vary in standards, availability, quality and completeness.

One of the most commonly used systems across Germany is the HaCon Fahrplan-
Auskunfts-System (HAFAS). HAFAS provides both static timetable information and real-time
deviations. It is used by, for example, the Deutsche Bahn and NAH.SH.

There are also many attempts to compile various public transport options into one service.
For instance, Google Transit allows for the integration of public transport information with
Google Maps. However, real-time data is missing for some routes and a few relevant information
such as arrival or departure platforms are not displayed. While it is also possible to submit
own timetables as a mobility provider, this requires operating on fixed-time schedules. This
excludes on-demand services completely. Shared Mobility options are also not included. When
a mobility project wants to integrate other mobility options by, e.g., displaying departures of
adjacent public transport options, one can utilize the Google Routes API. This API however is
not free, especially excluding very small local projects1.

Other solutions integrating different mobility options include the Liniennetzplan NAH.SH2,
SWL Mobil Planer3, KVG Kiel Liniennetzplan4 and Plön Mobil5, which are all developed by
Baumgardt Consultants6. The UI is focused on nearby public mobility options as visible in
Figure 2.1a using Plön Mobil. These solutions are also used for digital information kiosks

1https://mapsplatform.google.com/intl/de/pricing/
2https://www.liniennetz.nah.sh/
3https://netzplan.swhl.de/maps/tlnp
4https://www.netzplan-kiel.de/maps/tlnp-kiel
5https://www.ploen-mobil.de/
6https://www.baumgardt-online.de/

5

https://mapsplatform.google.com/intl/de/pricing/
https://www.liniennetz.nah.sh/
https://netzplan.swhl.de/maps/tlnp
https://www.netzplan-kiel.de/maps/tlnp-kiel
https://www.ploen-mobil.de/
https://www.baumgardt-online.de/

2. Related Work

like Plön Mobil in Preetz, as shown in Figure 2.1b. In contrast to the strategy favored in this
thesis, these solutions all just query the respective HAFAS instances from the frontend directly
for displaying public transport information. This limits accessible public transport options
to those available in the according HAFAS instance or requires connecting another API in the
frontend. Shared mobility options like bike rental stations on the other hand are integrated
via an own API.

(a) Plön Mobil website with the Bahnhof Preetz
focused.

(b) Plön Mobil at a digital information kiosk in
Preetz.

Figure 2.1. The Plön Mobil service.

Next to these proprietary solutions, there also exist a few open-source ones. For instance,
Bahn Experte7 is a web application, which provides detailed passenger information regarding
German trains. Another example of a similar project is Kiel Live8, which displays current
positions of all buses operated by the Kieler Verkehrsgesellschaft. Catenary Maps9 is a fairly
new project, visualizing world-wide public transport. However, it mainly focuses on one
source format and displays incorrect information in Germany. The UI can be seen in Figure 2.2,
where multiple entries exist for the same lines, as well as a line called RE8, which does not
exist in this form.

7https://bahn.expert/
8https://kiel-live.github.io/
9https://maps.catenarymaps.org

6

https://bahn.expert/
https://kiel-live.github.io/
https://maps.catenarymaps.org

2.1. Existing Traveler-Facing Public Transport Information

Figure 2.2. Catenary Maps with the wrongly displayed RE8 in Plön.

Figure 2.3. Transitland with the wrongly displayed RE8 in Plön.

7

2. Related Work

Transitland10 aggregates transit data from all over the world. This however is limited to
open data standards, and proprietary APIs are excluded. Transitland features a download
for the complete global feed as well as an API. It contains the same incorrect information
as Catenary Maps as can be seen in Figure 2.3, since Catenary Maps uses Transitland as a
source. Opposed to this thesis, Transitland seems to focus on global coverage rather than
completeness within a regional area.

Lastly, ÖPNV Karte11 displays public transport lines based on OpenStreetMap12. The
displayed information however is limited to a list of stops for each line and the exact path.
Further information such as arrival or departure times and schedules in general are not
displayed.

2.2 Academic Research

Academic research on this topic is rather limited. However, research on similar topics has been
conducted, including a world-wide visualization of vehicle positions based upon timetable
information [BBS14]. Due to the bad quality of the available public transport schedule datasets
for Germany, the authors decided to create a refined dataset, which is publicly available.

Another notable publication focuses on generating web scrapers for the public transport
domain for the lack of publicly available information on accessibility [VCC+19]. This thesis
however will not involve web-scraping, as many other data sources exist, which provide most
of the desired information and are easier to work with. Nevertheless, web-scraping might be
a suitable addition to the methods this thesis focuses on.

Lastly, research on the general performance of public transport information systems and
routing exists [RVD+20; CVM17]. As this thesis’ main focus is a broad, consistent and dense
coverage of available mobility options, performance optimizations are beyond scope.

10https://www.transit.land/
11https://www.%C3%B6pnvkarte.de/
12https://www.openstreetmap.org/

8

https://www.transit.land/
https://www.%C3%B6pnvkarte.de/
https://www.openstreetmap.org/

Chapter 3

Preliminaries

This chapter gives a brief overview and introduction to the data specifications, data sets, and
APIs used throughout this thesis.

Open data regarding public transport and mobility for the whole of Germany can be
found in the Mobilithek1, which is a service provided by the German Bundesministerium für
Digitales und Verkehr. Datasets regarding public transport in Germany can also be found in the
Open Data ÖPNV2 portal. Although this service is provided by the Verkehrsbund Rhein-Ruhr
AöR, datasets are for all of Germany are available. Datasets regarding public transport and
mobility for the German state of Schleswig-Holstein can be found on the Open-Data Schleswig-
Holstein3 website, which is a service provided on behalf of the minister president of the state
of Schleswig-Holstein.

3.1 Transmodel

Transmodel4 provides a data model for the public transport domain. Based upon this are
the specifications Network Timetable Exchange (NeTEx)5 and Service Interface for Real Time
Information (SIRI)6. NeTEx provides schedule data in the Extensible Markup Language (XML)
format. SIRI extends this format by real-time information also via XML. This is a format mainly
used in Europe including Germany. However, it is not used throughout this thesis.

3.2 General Transit Feed Specification Schedule

The GTFS7 is an open standard and de facto standard for exchanging static information
regarding public transport schedules. Google Transit8 uses GTFS to integrate public transport
information with Google Maps9. The GeOps Live Train Tracker10 visualizes current positions

1https://mobilithek.info/
2https://www.opendata-oepnv.de/ht/de/willkommen
3https://opendata.schleswig-hosltein.de/dataset
4https://transmodel-cen.eu/
5https://transmodel-cen.eu/index.php/netex/
6https://transmodel-cen.eu/index.php/siri/
7https://gtfs.org/
8https://developers.google.com/transit
9https://www.google.com/maps

10https://mobility.portal.geops.io/com/world.geops.transit

9

https://mobilithek.info/
https://www.opendata-oepnv.de/ht/de/willkommen
https://opendata.schleswig-hosltein.de/dataset
https://transmodel-cen.eu/
https://transmodel-cen.eu/index.php/netex/
https://transmodel-cen.eu/index.php/siri/
https://gtfs.org/
https://developers.google.com/transit
https://www.google.com/maps
https://mobility.portal.geops.io/com/world.geops.transit

3. Preliminaries

of predominantly European and North American train lines on a map. These positions are
estimated based on data in the GTFS format [BBS14]. This section provides a basic overview
over the GTFS specification, but a detailed documentation can be found on the official GTFS

website.
A GTFS feed consists of multiple text files in the Comma Separated Values (CSV) format.

These files are usually bundled as a single zip file. The data is organized as a relational
database, where each file represents a table. To gain a basic understanding of the GTFS

structure, a selection of the most important files of a GTFS feed is listed:

Ź stops.txt contains names and geographic data for all stops in the feed.

Ź trips.txt contains all unique trips of the feed. Each trip is associated with a service. A
trip is available when the service is available.

Ź stop_times.txt associates a list of stops and times of day with a trip. The order of stops
within a trip is determined by a stop sequence.

Ź routes.txt contains all lines. Usually, trips.txt associates multiple trips with one line.

Ź calendar.txt defines the availability of services for each weekday within a start and end
date.

Ź calendar_dates.txt specifies exceptions to the service availability specified by the calendar_-

dates.txt. It is also possible for service to have all available days defined in this file rather
than calendar_dates.txt. At least one of calendar.txt or calendar_dates.txt must be
present in the database.

Ź shapes.txt if present, describes the exact route a trip might take as sequence of geographic
points.

3.2.1 General Transit Feed Specification Realtime

Live updates to a static GTFS feed are also possible using the GTFS Realtime specification.
These updates may include deviations from the schedule or services, information about
unscheduled trips and real-time vehicle positions. Like GTFS schedule, it is used by Google
Transit and the GeOps Live Train Tracker. The updates are provided as a Protocol Buffer11.

3.2.2 Relevant General Transit Feed Specification Datasets

A GTFS dataset for the whole of Germany is provided by the Durchgängige Elektronische
Fahrgastinformation (DELFI). The GTFS schedule feed can be found in the Mobilithek12 13 and

11https://protobuf.dev/
12https://mobilithek.info/offers/-2883874086141693018
13https://mobilithek.info/offers/552578819783815168

10

https://protobuf.dev/
https://mobilithek.info/offers/-2883874086141693018
https://mobilithek.info/offers/552578819783815168

3.3. Deutsche Bahn Timetables Application Programmable Interface

OpenData ÖPNV14 A matching GTFS Realtime feed is also available in the Mobilithek15 This
dataset is based upon the DELFI NeTEx dataset and preferred over the NeTEx dataset, as GTFS is
a globally adopted format.

A dataset, which is developed upon the same base dataset, but aims towards a better
quality, is the GTFS feed created by Patrik Brosi16. However, some information such as detailed
paths of trips is omitted from the free version. This dataset also comes with a matching
real-time feed.

Finally, a GTFS feed for NAH.SH can be found in the Mobilithek17, OpenData ÖPNV18

and Open-Data Schleswig-Holstein19 A matching GTFS real-time feed can be found in the
Mobilithek20. The geographical scope of this feed is Schleswig-Holstein.

3.3 Deutsche Bahn Timetables Application Programmable Interface

The Deutsche Bahn (DB) Timetables API21 is a direct service of the Deutsche Bahn. It is one
of the many APIs available at the API marketplace of the Deutsche Bahn22. While many of
these APIs are potentially relevant to this thesis, most of them are not free to use. The DB

Timetables API however comes with a free plan limited to 60 requests per minute. To use
the DB Timetables API, a BahnID account is needed. When requesting data from the API, a
previously generated client Identifier (ID) and client secret has to be present in the Hypertext
Transfer Protocol (HTTP) headers.

Listing 3.1. Example response for the planned stops at the Bad Malente-Gremsmühlen station.

1 <?xml version=’1.0’ encoding=’UTF-8’?>

2 <timetable station=’Bad Malente-Gremsmühlen’>

3 <s id="-5431105109679105522-2404212306-4">

4 <tl f="D" t="p" o="X1" c="erx" n="21036"/>

5 <ar pt="2404212334" pp="1" l="RE83" ppth="Lübeck Hbf|Bad Schwartau|Eutin"/>

6 <dp pt="2404212335" pp="1" l="RE83" ppth="Plön"/>

7 </s>

8 <s id="8274242101897729034-2404212345-2">

9 <tl f="D" t="p" o="X1" c="erx" n="21093"/>

10 <ar pt="2404212353" pp="2" l="RB84" ppth="Plön"/>

11 <dp pt="2404212353" pp="2" l="RB84"

14https://www.opendata-oepnv.de/ht/de/organisation/delfi/startseite?tx_vrrkit_view%5Baction%5D=details&tx_vrrkit_view%

5Bcontroller%5D=View&tx_vrrkit_view%5Bdataset_name%5D=deutschlandweite-sollfahrplandaten-gtfs
15https://mobilithek.info/offers/755009281410899968
16https://gtfs.de/
17https://mobilithek.info/offers/766317902476267520
18https://www.opendata-oepnv.de/ht/de/datensaetze?tx_vrrkit_view%5Baction%5D=details&tx_vrrkit_view%5Bcontroller%5D=View&

tx_vrrkit_view%5Bdataset_name%5D=fahrplandaten
19https://opendata.schleswig-holstein.de/dataset/fahrplandaten
20https://mobilithek.info/offers/766315425546817536
21https://developers.deutschebahn.com/db-api-marketplace/apis/product/timetables
22https://developers.deutschebahn.com/db-api-marketplace/

11

https://www.opendata-oepnv.de/ht/de/organisation/delfi/startseite?tx_vrrkit_view%5Baction%5D=details&tx_vrrkit_view%5Bcontroller%5D=View&tx_vrrkit_view%5Bdataset_name%5D=deutschlandweite-sollfahrplandaten-gtfs
https://www.opendata-oepnv.de/ht/de/organisation/delfi/startseite?tx_vrrkit_view%5Baction%5D=details&tx_vrrkit_view%5Bcontroller%5D=View&tx_vrrkit_view%5Bdataset_name%5D=deutschlandweite-sollfahrplandaten-gtfs
https://mobilithek.info/offers/755009281410899968
https://gtfs.de/
https://mobilithek.info/offers/766317902476267520
https://www.opendata-oepnv.de/ht/de/datensaetze?tx_vrrkit_view%5Baction%5D=details&tx_vrrkit_view%5Bcontroller%5D=View&tx_vrrkit_view%5Bdataset_name%5D=fahrplandaten
https://www.opendata-oepnv.de/ht/de/datensaetze?tx_vrrkit_view%5Baction%5D=details&tx_vrrkit_view%5Bcontroller%5D=View&tx_vrrkit_view%5Bdataset_name%5D=fahrplandaten
https://opendata.schleswig-holstein.de/dataset/fahrplandaten
https://mobilithek.info/offers/766315425546817536
https://developers.deutschebahn.com/db-api-marketplace/apis/product/timetables
https://developers.deutschebahn.com/db-api-marketplace/

3. Preliminaries

12 ppth="Eutin|Pönitz(Holst)|Pansdorf|Bad Schwartau|Lübeck Hbf"/>

13 </s>

14 <s id="4353865067445023361-2404212315-2">

15 <tl f="D" t="p" o="X1" c="erx" n="21041"/>

16 <ar pt="2404212322" pp="2" l="RE83" ppth="Plön"/>

17 <dp pt="2404212323" pp="2" l="RE83" ppth="Eutin|Bad Schwartau|Lübeck Hbf"/>

18 </s>

19 <s id="2175454902161277207-2404212228-6">

20 <tl f="D" t="p" o="X1" c="erx" n="21084"/>

21 <ar pt="2404212304" pp="1" l="RB84"

22 ppth="Lübeck Hbf|Bad Schwartau|Pansdorf|Pönitz(Holst)|Eutin"/>

23 <dp pt="2404212305" pp="1" l="RB84" ppth="Plön"/>

24 </s>

25 </timetable>

The DB Timetables API provides timetables for individual stations. The main data struc-
ture is the Timetable, which consists of individual TimetableStops. An exemplary Timetable

returned by the DB Timetables API can be seen in Listing 3.1. TimetableStops are denoted
by the XML tag <s></s>. A Timetable is always assigned to a specific station. All contained
TimetableStops are stops at that station. A TimetableStop consists of an arrival Event <ar/>

and / or an departure Event <dp/>. The Events contain information like departure or arrival
time, status of the stop, which can be either planned, added or cancelled, and the path of the
trip before the arrival or past the departure. The TimetableStop also contain basic information
regarding the trip they are part of, such as the trips’ ID and the TripLabel denoted with
<tl></tl>. The planned path (ppth) is provided via two strings of station names separated by
pipe symbols. The first string provides the path of stations visited before the station of the
Timetable and the second string contains all stations visited after the Timetable’s station. The
fact that the path only contains station names rather than IDs makes it difficult to map those
to the according Timetables, as these names are also not always consistent with names stored
in the Timetable. TimetableStops also have a stop index as part of their ID, which can also
be used to construct trip form TimetableStops. The problem hereby is, that the information
regarding possibly missing stops get lost. Further, the documentation only states, that added
stops get assigned a stop index above 100. It is not mentioned, how these indices are assigned
in detail. Thus, it might not be possible to infer the actual position of an added stop within
the path.

The DB Timetables API has one endpoint to provide scheduled timetable information for
a specified station. This endpoint also requires specifying a date and an hour. It returns all
scheduled stops at the station within the specified hour. This requires 24 requests per day per
station to fetch, which is much considering the rate limiting.

The API has two endpoints for obtaining real-time changes to the schedule, one for all
changes within a day and one for changes during past 60 seconds. The last endpoint should
be used when calling the endpoint multiple times per minute. Just like the schedule endpoint,
both endpoints are limited to one specified station.

12

3.4. General Bike Feed Specification

Lastly, the DB Timetables API contains an endpoint for searching stations by name. This
endpoint however does not work with German umlauts. The documentation does state how
to deal with umlauts, but the proposed strategy does not work. Thus, stations containing
umlauts in their name have to be obtained via the eva number or ril100/ds100 ID, which are
internal identifiers used by the Deutsche Bahn. Multiple lists of ril100/ds100 IDs can be found
online23 24, including one by the Deutsche Bahn25.

The DB also provides an API for detailed station information called StaDa26 in their API

marketplace.

3.4 General Bike Feed Specification

General Bike Feed Specification (GBFS)27 is the GTFS counterpart for shared mobility like
bike rental stations. In contrast to GTFS, a GBFS feed consists of multiple JavaScript Object
Notation (JSON) resources. Relevant resources in a GBFS feed include the following:

Ź station_information.json This resource contains static information for all stations in the
feed. This includes the stations name, geographical coordinates and vehicle capacity.

Ź station_status.json This resource provides real-time status information for the available
stations. This includes information such as number of available docks for returning vehicles,
number of currently available vehicles and number of currently available vehicles of specific
types. The latter can include ebikes, bikes, cargo bikes, etc. All existing vehicle types within
a feed are specified in the resource vehicle_types.json.

In the scope of this thesis, one relevant GBFS feed exists for the Kiel Region28 rental
bikes called SprottenFlotte29, which are operated by Donkey Republic30. Relevant stations
for the Malente-Lütjenburg track exist in Kiel, Preetz, and Plön. The feed is available at
https://stables.donkey.bike/api/public/gbfs/2/donkey_kiel/gbfs. The above-mentioned resources are
available at:

Ź https://stables.donkey.bike/api/public/gbfs/2/donkey_kiel/en/station_information.json

Ź https://stables.donkey.bike/api/public/gbfs/2/donkey_kiel/en/station_status.json

Ź https://stables.donkey.bike/api/public/gbfs/2/donkey_kiel/en/vehicle_types.json

23http://www.bahnseite.de/DS100/DS100_main.html
24https://ds100.frankfurtium.de/dumps/orte_de.html
25https://fahrweg.dbnetze.com/resource/blob/1359908/f9d782b88f2c1224ac1192e2d4b5f6ff/betriebsstellen-data.pdf
26https://developers.deutschebahn.com/db-api-marketplace/apis/product/stada/api/113501#/StaDaStationData_290/overview
27https://gbfs.org/
28https://www.kielregion.de/
29https://www.kielregion.de/mobilitaetsregion/sprottenflotte/
30https://www.donkey.bike/

13

https://stables.donkey.bike/api/public/gbfs/2/donkey_kiel/gbfs
https://stables.donkey.bike/api/public/gbfs/2/donkey_kiel/en/station_information.json
https://stables.donkey.bike/api/public/gbfs/2/donkey_kiel/en/station_status.json
https://stables.donkey.bike/api/public/gbfs/2/donkey_kiel/en/vehicle_types.json
http://www.bahnseite.de/DS100/DS100_main.html
https://ds100.frankfurtium.de/dumps/orte_de.html
https://fahrweg.dbnetze.com/resource/blob/1359908/f9d782b88f2c1224ac1192e2d4b5f6ff/betriebsstellen-data.pdf
https://developers.deutschebahn.com/db-api-marketplace/apis/product/stada/api/113501##/StaDaStationData_290/overview
https://gbfs.org/
https://www.kielregion.de/
https://www.kielregion.de/mobilitaetsregion/sprottenflotte/
https://www.donkey.bike/

3. Preliminaries

3.5 Other Sources

This section covers other available data sources, which were not used throughout this thesis
due to missing time. In the geographical area surrounding the Malente-Lütjenburg track,
e-scooters are available from multiple suppliers. These include TIER31, emmy32, and Bolt33. All
of these have an own API. For the TIER API exists an official documentation34. Inofficial docu-
mentations for all above-mentioned e-scooter providers exist in a public GitHub repository35

36 37.
The Bürgerbus Malente is run by a local association and provides two bus lines, which stop

at multiple locations in and around Bad Malente-Gremsmühlen. The stops and live vehicle
position are shown on a map on the website of the Bürgerbus Malente. The stops are obtained
via a simple HTTP endpoint as JSON. Live vehicle position updates are pushed via a websocket
connection. However, the Bürgerbus is out of service since the 11nth of September until this
thesis was finalized. The websocket is not publicly documented and currently does not send
any updates. Thus, the Bürgerbus is not further considered throughout this thesis.

A collection of public transport APIs can be found at transport.rest38. These include a
wrapper around the HAFAS API of the DB and formerly also NAH.SH.

31https://www.tier.app/
32https://emmy-sharing.de/
33https://bolt.eu/
34https://api-documentation.tier-services.io/
35https://github.com/ubahnverleih/WoBike/blob/master/Bolt.md
36https://github.com/ubahnverleih/WoBike/blob/master/Emmy.md
37https://github.com/ubahnverleih/WoBike/blob/master/Tier.md
38https://transport.rest/

14

https://www.tier.app/
https://emmy-sharing.de/
https://bolt.eu/
https://api-documentation.tier-services.io/
https://github.com/ubahnverleih/WoBike/blob/master/Bolt.md
https://github.com/ubahnverleih/WoBike/blob/master/Emmy.md
https://github.com/ubahnverleih/WoBike/blob/master/Tier.md
https://transport.rest/

Chapter 4

Concepts

Traveler facing information regarding public transport is available at many different sources.
Most of these sources are limited to information regarding public transport options which
have a common denominator. This common denominator can be the transport agency, mode
of transportation, spatial proximity or similar. In many cases, it is a combination of the
aforementioned. Furthermore, many sources are not even complete within these scopes.
For example, the DB Timetables API provides passenger information for most German train
stations. According to the APIs description however, it is limited to stations operated by the
DB Station&Service AG. Therefore, in the German state of Schleswig-Holstein, all stations
operated by the Altona-Kaltenkirchen-Neumünster Eisenbahn GmbH are not included. Thus,
multiple sources should be consulted in order to cover a broad variety of public transport
options. Due to these circumstances, a software solution should be developed, which collects
relevant public transport information from possibly various sources. The goal is to make the
information accessible all at one place, ideally unified and interconnected as if all information
were from the same source. The main challenges arising from this are attributed to the
diversity of the data and the contained information as well as the different ways the data is
made available. To address these issues, the following sections state the individual problems
when gathering the information and propose a solution respectively.

4.1 Overall Architecture

In order to design a service, which interconnects, unifies and makes available information
from different sources, two fundamental architectural concepts are considered.

The most trivial solution is to gather information from all sources directly in a frontend
application, e.g., a mobile app. Information is queried from publicly available sources and
directly displayed to the user. The benefits of this approach are obviously the simplicity and
the independence. An application like this can be easily used without the need of setting up
a complex infrastructure.

However, a major downside of this approach in the public transport domain is, that the
provided data is in some cases not suitable for direct access to specific parts of information
and might require some kind of preprocessing in order to efficiently obtain the desired
information. For instance, retrieving all arrivals and departures at a specific station within a
certain timeframe might require first extracting it from a schedule, as it is the case with the
GTFS format. Not only must the data be present in some kind of database system to extract

15

4. Concepts

Source

Source

Source

...

Collector

Collector

Collector

...

Service

Database

API Client

Server

Figure 4.1. Architecture of the Application.

information with acceptable performance, in case of GTFS, the file size is also too large to
download and process it on the spot. Thus, a persistence layer is required. Unfortunately, this
requirement does not fit web-based solutions and rather requires a native application.

Another issue to deal with are sources that require an API key or a similar method of
authentication. These keys should not be put of end-user applications. Besides that, those
services tend to limit the requests per time and access key, which would also make multiple
concurrent users accessing the service difficult. An example for this is the DB Timetables API.
It is intended to be used in combination with a web server caching requests to the same
resource. With the free plan, access is limited to 60 requests per minute per API key. Thus,
each client should be required to obtain their own credentials for each source requiring
authentication. This would however constitute an unwanted high barrier to using the service
for the end-user.

Most importantly, this thesis focuses on making bundled mobility information available for
virtually arbitrary use cases. End-user software such as mobile apps are in fact an important
use case and are the main concern to the hereinafter presented concept, but other valid
use cases may need to further process the information or to integrate them within other
systems such as embedded devices for passenger information. Thus, the information should
be provided with the uncertainty of the concrete use case in mind, which renders client-side
solutions rather impractical.

The solution to the above-mentioned problems with the client side approach is to introduce
a centralized server, which is accountable for aggregating information from all sources,
performing any required processing of the data and providing it to client applications as a
unified API. Another positive side effect to this is that adding, removing or replacing sources
does not require changes to client code, as the client has no need to care about source formats
and how to interpret and transform these formats. This particularly is an advantage when

16

4.2. Data Acquisition

multiple different clients are involved, like e.g., a mobile app and embedded passenger
information device.

Due to these reasons, a client-server architecture is favored and implemented in this
thesis. A frontend client is implemented as a simple demonstration to provide an easy user
interface and just display the information demanded by the user as clear as possible. The
client retrieves all information from the server via a minimal and uniform API. All complex
tasks are left to the server. The architecture of the backend server can be seen in Figure 4.1
and consists of the following main components:

Ź Multiple data collectors gathering information from one specific source each. These sources
include web APIs, external libraries, manually provided data, etc.

Ź A persistent database, where all information extracted by the different collectors flow
together, such that relevant information can be easily queried.

Ź A central service, which manages the database and is used by both the API and the
collectors to provide or obtain information.

Ź A web API enabling clients to query specific information.

The data collectors obtain data from their source, convert this data into the applications
internal format and finally hand the result to the central service. The central service then
processes the data semantically before pushing it into the database. On request, the web API

consults the central service with the specific query. The central service then looks the desired
information up in the database.

4.2 Data Acquisition

Different data sources are connected via different collectors. These specialized components
exist for each data source or common format respectively. Collectors are free to obtain data
in any way possible such as using an API, downloading and reading from files, scraping
websites, utilizing external libraries or even by manually entered data. However, only APIs

and downloaded files are implemented throughout this thesis.
A collector is responsible for regularly fetching data from the source it is responsible for.

All collectors are required to implement a common protocol, so the rest of the application has
no need to care for the specific collectors. This way, new collectors can be easily added the
same way as existing ones can be removed or altered, without having to alter any other parts
of the application.

This works for most of public transport and mobility data, but there are cases where it is
not possible nor practical to collect and store all data in advance. While this could be due
to technical limitations like restrictive rate limiting, there also exist sources for information
impossible to fully collect in advance. This is when a source calculates its data based upon
user specified parameters, where just the amount of possible parameter values is infinite or

17

4. Concepts

Client

API

Service

Database

Request-
Invoked Collector

Regular Collector

Regular Collector

Source

...

Invokes

Figure 4.2. Invocation of Request-Invoked Collectors.

too large to preemptively request. An example for such sources are routing services like the
Google Routes API1 or similar APIs based on OpenStreetMap2. One solution to this problem
would be to not utilize said sources at all and in case of calculate data, to self-calculate the
data. However, this thesis aims to provide an easily extendable base for combined mobility
data and strives for a broad coverage, it would be rather counterproductive to conceptually
exclude sources like heavily rate-limited APIs. Although such sources are not implemented
in this thesis, they might be required in other scopes and thus should be considered as well.
Further, when complex algorithms are involved, own implementations might lag behind
established services or re-implementation might constitute an unnecessary high expense.
Thus, the proposed solution is to extend the architecture for request-invoked data collectors,
which only get invoked on API requests as shown in Figure 4.2.

4.3 Public Transport and Mobility Domain Model

Regardless of source, format or the like, conventional traveler facing public transport informa-
tion always consists of stops, lines and trips. A stop is anything where public transport vehicles
stop at, like a bus stop, a train station or even a specific platform at a train station. A line (or
route in GTFS) bundles similar trips under a short name conveying meaning to travelers. An
example of this could be a train line with a name such as RE83, which serves the same route
each hour. A trip is a concrete instance of such. It is assigned to a specific line and consists of

1https://developers.google.com/maps/documentation/routes
2https://wiki.openstreetmap.org/wiki/Routing

18

https://developers.google.com/maps/documentation/routes
https://wiki.openstreetmap.org/wiki/Routing

4.3. Public Transport and Mobility Domain Model

Location

Stop

TripLine

Agency

Vehicle

Service

Station

Vehicle

Public Transport Shared Mobility

Figure 4.3. Public Transport and Mobility Domain Model.

a sequence of stops. Associated with each stop are the times of day the vehicle serving the
trip is expected to arrive and depart according to plan. This is usually extended to real-time
information, which contain information such as delay times, cancelations or the like.

The domain model used throughout this thesis is shown in Figure 4.3. It strongly resembles
the GTFS model as it is a de facto standard, and designed to fit a broad variety of public
transport options. Next to the core entities of stops, lines and trips, the developed model
also includes transport agencies and services, which are similar to those in GTFS. Each line is
operated by a transport agency. Each trip is assigned a service, which specifies the days a
trip is available. Next to regular real-time information, a trip can also have a concrete vehicle
assigned, which serves the trip. To also support shared mobility, this model is extended by
shared mobility stations and vehicles. Shared mobility stations represent a fixed location,
where vehicles like bikes can be rented. Shared mobility vehicles represent individual vehicles,
which can be rented from the current position they are parked at, independent of any station.
An example for this are e-scooters. Both stops and shared mobility stations are assigned fixed
geographic coordinates, vehicles and shared mobility vehicles have dynamically updated
positions.

In the context of this thesis, it is also differentiated between trips and concrete trip instances.
Opposed to a trip, which itself is detached from specific dates of operation and more like
a reusable pattern, a trip instance is a specific instance of such a trip at a specific day. This
allows trip instances to also be enriched with possible real-time data. Trips are also optionally
assigned to shapes. A shape specifies the exact geographical path a trip takes, with a way
higher resolution than the path formed by the positions of each stop.

19

4. Concepts

4.4 Uniform Internal Representation of the Data

Since multiple information sources by different providers are involved, the data naturally has
a high diversity in representation, density and quality. Therefor, it is necessary to preprocess
the obtained data accordingly in order to achieve uniformity and integrity. The overall goal of
this is for all data of all sources to become compatible to each other semantically as well as
in representation. In order to reach this goal, the data needs to be converted into a uniform
structural representation first. This internal representation should be independent of the
original data formats. Following the idea of making the main backend application unaware
of the concrete source formats, this task has to be done by the collectors. Only when this is
accomplished, the data can be handed to the central service for further processing and finally
insertion into the database.

Simply converting the data into a uniform representation is rather straightforward opposed
to the semantic harmonization, although it may involve converting concrete instances of
trips into a schedule or vise versa. In this case, it was decided to store schedules rather than
concrete trip instances for space consumption reasons.

4.5 Cross-Source Data Merging and Harmonization

When considering multiple information sources, it may occur that these sources overlap. For
instance, a bus stop or train station might be present in more than one sources. The challenge
arising from this is to identify these overlapping subjects and to merge them in a sensible way.
Therefor, it is distinguished between individual records and subjects, which each record has,
but multiple records can also share the same subject. For instance, two records from different
sources might exist for the train station Bad Malente-Gremsmühlen. In this case, both are
individual records, but the subject of both is the Bad Malente-Gremsmühlen train station.
In order to provide an easy way of tracing an information back to its origin and to make it
easy for collectors to update their data without having to deal with other collectors’ data,
this separation is also reflected by the database. Thus, the identification of records with same
subjects and the actual merging of said records is split.

4.5.1 Duplicate Identification on Insertion

Identification of records regarding the same subject can be done during query, periodically
or on insert. Firstly, identification during query is the most flexible, as the criteria for when
records are considered the same subject can easily be changed with each query. With this
approach, identified subjects do not need to be present in the database. Also, the number of
records to check is quite low, as they can be filtered to match the query first. On the other hand,
this approach would negatively impact the query time. In order to keep the increased time low,
advanced preprocessing like clustering has to be done. Moreover, the high flexibility of this
approach is not that big of a benefit, as the criteria for what is e.g., considered the same stop
is only expected to change during development to find suitable thresholds. Thus, this would

20

4.5. Cross-Source Data Merging and Harmonization

not really constitute a benefit to the end user. Secondly, periodically performed identifications
are not impacting the query performance, but when new records are inserted, query results
might be suboptimal until the next identification of same subjects. Lastly, identifying subjects
on insertion affects only insertion performance, but not the query performance. Thus, it is not
affecting the end user. In contrast to the periodically performed identifications, subjects are
identified as soon as possible. This makes it less likely that two records, that should have been
merged, are returned to the end user as two separate entities. This approach is favored in this
thesis over duplicate identification during query or periodically performed identifications
over the whole database due to the aforementioned reasons. A hybrid or cached approach is
also possible, but was not chosen due to the increasing complexity.

The downside to this approach compared to all others is however, that not all records
with potentially the same subject are known during insertion. When implementing this, one
has to be aware, that the subjects of previously inserted records might change due to later
inserted records. For instance, when inserting two records into the database, they might be
found to be unrelated. Then, when a third record gets inserted, it might be found to regard
the same subject as both the records inserted before. At this point, all three records are known
to regard the same subject due to the transitivity of the equals-relation. To reflect this in the
database, at least one of the existing records has to be updated.

Eutin

Eutin Bahnhof

(a) Two stops just too far apart to be considered
equal.

Eutin

Eutin Bahnhof

Eutin Bf.

(b) Insertion of a third stop, causing all three stops
to be within radius to be considered the same.

Figure 4.4. Example of two stops considered distinct until insertion of another stop.

To give a practical example of this in the public transport domain, when inserting stops
and identifying same stops only based on spatial distance, it could happen that two stops with
just enough distance between to be found unrelated are inserted like shown in Figure 4.4a.

21

4. Concepts

Here, first Eutin and Eutin Bahnhof are inserted from different origins. Both stops represent
the same train station, but due to the relatively far distance between both stops, they are
considered different stops. When a third stop is then inserted spatially in between, it is found
to be the same stop as both the stops inserted before due to the short distance to these stops.
Thus, all three stops should be marked as the same stop. This can be seen in Figure 4.4b,
where the stop Eutin Bf. is inserted from yet another origin, which also represents the same
train stations as both previously inserted stops. Let D be the set of all found duplicates
including the one to insert. When all elements in D are from distinct origins, they can all be
marked as the same subject. Otherwise, as it can be expected, that the same source does not
include the same subject twice, it is not sensible to consider those the same.

In a bigger database, this could cascade through a lot of records. For simplicity, this
is ignored during this thesis. Only the newly inserted element gets marked as the same
subject as the found duplicate with the highest similarity. Note, that this might lead to
suboptimal results in some cases. Also, it is possible due to this to get slightly different results
based on the order of insertion. However, since subjects of records will not be changed after
insertion, this also enables manual overriding subjects, without having to treat manually
set subjects separately. Manual overriding is an important aspect to the developed concept,
as the varying quality, density and completeness make it impossible to guarantee correct
results when automatically identifying subjects. Thus, it is necessary to provide an easy
option to override the detected subjects, without getting reset during each update. As this
thesis targets a regionally limited area, these manual adjustments are feasible and subtle
improvements to automatic processes might not be as useful. If the developed concept was
extended to a wider scope, it might be worth to implement the above described behavior.
With this simplified approach however, when a records subject is found to be duplicate upon
insertion, the following cases apply:

Ź An existing record from the same source, which does exactly match gets replaced, as it is
considered as an update.

Ź An existing record from the same source, which does not match exactly, is ignored and
the new record gets inserted with its own subject. This is due to the fact, that two records
regarding the same subject are not expected to be present in the same source, unless it is
an updated version. In the latter case however, it can be expected, that the updated version
can be identified exactly.

Ź Otherwise, the record is inserted next to the existing ones, but the newly inserted record
gets assigned to the same subject.

The only exception to this is when two trips from the same origin are identified to be
equal. If this applies, both trips are merged into one in the database. In this case, also the
services assigned to both trips are merged. Two trips from the same origin can be detected as
equal via a third trip from another source, if this is again equal to one of said trips.

22

4.5. Cross-Source Data Merging and Harmonization

4.5.2 Duplicate Identification Criteria

This section briefly points out the different characteristics of each entity in the public transport
domain model suitable to identify records likely to regard the same subject. Note, that these
identifications are mostly best-effort and correctness can not be guaranteed due to inaccuracies,
errors or just slightly different naming in individual data sources. Thus, it might be necessary
to manually correct individual records. In order to test two entities of the same kind for equal
subjects, a similarity is computed for each considered characteristic. Those similarities are
weighted according to their estimated significance, resulting in a single similarity between
0 and 1 for the tested entities. If this values surpasses a certain threshold, both entities are
considered the same.

Stops In Figure 4.4, stops where used as an example on how identification of equal subjects
is done in general. Therefor, the example used a simplified approach, where only spatial
distance is considered to decide whether two stops are equal. However, this might lead
to undesired results in reality, as two physically distinct stops might exist directly next to
each other. For example, central bus stations are often located next to train stations. Also,
geographical locations for the same larger central station provided by different sources might
have a higher distance than the actual distance between two physically distinct bus stops. Thus,
when only considering spatial distance, either the central station will be incorrectly identified
as multiple distinct stations, or the two distinct bus stops will be incorrectly identified as the
same. Thus, equal stops from different sources are identified by both geographical position
and name. If the spatial distance between two stops from different sources is less than a few
meters and their names are very similar, they are very likely to be the same stop. The similarity
of names is determined using the Levenshtein distance, Wandelt et al. [WWS16] implemented
a very similar approach in order to simplify a skeleton of the worldwide railway network
obtained from OpenStreetMap (OSM). As differences in naming for the same stop follow
common patterns for abbreviations and synonyms most of the time, the Levenshtein distance
algorithm is supplemented by the recognition of those common patterns. For example, Kiel
Hauptbahnof and Kiel Hbf. are considered to be exactly the same, as the abbreviation Hbf. for
Hauptbahnhof is recognized.

It is however important to note, that different platforms within a station are also very likely
to have a similar name and short distance in between, but these should not be considered
equal. Thus, two stops are only considered equal, if both their platform codes - if set for at
least on of them - are exactly the same.

Agencies Duplicate agencies are mainly identified using their name, as two agencies with
the same name are very unlikely. If agency websites, email addresses or phone numbers are
provided, those can be used to distinguish agencies with the same name, if ever needed. They
can also help to identify agencies as the same, if the name varies too much.

23

4. Concepts

Lines The easiest criteria for identifying same lines is the name of the line. But this alone is
not sufficient, as different lines with different names exist. It is however very unlikely that
two lines with the same name are operated by the same agency. Line names must match
exactly, as just one different letter or digit will very likely describe a completely different
line. This is due to the fact that line names are by design very short and often just 1 to
4-digit numbers. For instance, the train line RB84 with terminal station Lübeck Central Station
via Bad Malente-Gremsmühlen is a completely different line as the RB85, which also has
Lübeck Central Station as a terminal station, but does not stop in Bad Malente-Gremsmühlen.
However, name matching is case-insensitive and all non-alphanumeric symbol such as spaces
or dashes are ignored, as those typically do not convey any meaning. For example, in the
GTFS dataset for the German state of Schleswig-Holstein, contains 98 lines with non-unique
names, but there do not exist two lines with the same name, which are also operated by the
same agency. In some special cases, it might be necessary to also consider concrete trip routes,
but this is also more complex and unlikely to be necessary.

Trips Trips are the most complex to identify. The most meaningful identification charac-
teristic for a trip is the path of stops and corresponding stop times. Considering possible
deviations of different data sources, it might be useful to not compare paths for exact equality,
but rather compute a similarity and decide whether it is above a certain threshold or not.
This similarity might be computed based on - when not exactly the same - spatial distance
between stops, stop names and most importantly stop times and order of stops. A practical
example of when this might be useful are rail replacement buses. These are sometimes listed
to stop at the railway station the replaced train usually stops at, but sometimes also at nearby
bus stops. This might also vary between sources.

4.5.3 Merging during Query

Multiple data records found to regard the same subject are merged when queried based upon
the previously identified subjects. This allows for excluding certain sources from the query.
Also, not merging the data until queried allows the collectors to easily update the data, as
they don’t have to care about other collectors’ data. The data is merged based on the subjects
identified beforehand as described in Section 4.5.1.

As mentioned earlier, the only reason for having to merge data, is that different information
sources might overlap. These sources might also have different levels of quality. For instance,
one source might cover a very broad range of public transport services, but might have poor
quality in that specific information such as platform codes might be missing or inaccurate.
Another source however might be very specialized towards one public transport service,
but have a high quality. Such circumstances make it sensible to prefer certain sources and
use others just as a fallback. This allows to cover both a broad variety and also high quality
information where available.

In order to implement this in the developed application, each source is assigned a priority.
When merging data from different sources regarding the same subject, these priorities are

24

4.6. User Story

used to decide which information to keep. For each property, the value from the source
with the highest priority, where the property is set, is kept in the resulting merged data. For
example, when merging two stops which where identified as the same, but only the stop
from the source with the lower priority has geographical coordinates assigned, these are kept.
However, the name is present for both stops, thus the name of the stop from the source with
the higher priority is kept.

4.6 User Story

The main use case of the developed service are traveler or passenger facing information
systems of any kind, possibly including mobile apps, embedded devices at stations or on-
board of vehicles which for instance display next departures or connection trips. The latter can
be generalized as some kind of location-bound departure or arrival boards. In order to cover
a broad range of mobility options, the user might find it helpful if these boards do not only
include arrivals and departures at one specific stop, but also include those at nearby stops
within walking distance. Displaying these arrival and departure boards is also a main use
case to a possible mobile app. As a main goal is to provide small, regional, or experimental
mobility and public transport projects a service to integrate information regarding adjacent
mobility options, the average user can be expected to be mainly interested in mobility options
near their current location or within a certain proximity to another mobility option.

Due to the aforementioned expected use-cases, the API is designed around geographic
positions rather than stops or stations. This way, nearby mobility options can be discovered
easily without having to search individual stops.

Following this decision, the main API endpoint returns all available mobility options at
a specified geographical location within a certain radius and time frame. Also, the option
to apply other filters might be useful. A response to a successful query of this endpoint
might include nearby stops, lines regularly serving these stops, shared mobility options
and most importantly trip instances. The information provided by this endpoint should be
complemented by another endpoint providing real-time updates such as deviations from the
schedule. The response should also link to the same endpoint at the location and time of
arrival for each stop of each trip, so the user can easily navigate through trips and locations.
This interaction is visualized in Figure 4.5.

When it comes to mobile apps, one of the most important features of such apps in the
public transport domain is routing. Most of the time, users of such apps want to figure out
how they can reach a certain destination from a starting point. Thus, it would be beneficial for
such use-cases to provide an endpoint, which finds routes from a starting point to a desired
destination, utilizing the available mobility options as efficient as possible. This however is
beyond the scope of this thesis.

25

4. Concepts

User Client-App API

Request Nearby Mobility Options

Request to API

Returns Nearby

Moblity Options

Display Options

Select Stop of a Trip

Request to API

Returns Nearby

Mobility Options

.

Figure 4.5. Interaction of a user with the API via a client app.

26

Chapter 5

Implementation

This chapter explains how the concepts discussed in the previous chapter where implemented.

5.1 Project Structure

The project mainly consists of a database server, the main backend web server, a map tile
server for the frontend and lastly the web frontend itself as shown in Figure 5.1. For the
database server, PostgreSQL1 was chosen due to its performance and broad variety of useful
features. It also has a fairly good documentation and is widely used. The frontend is directly
hosted by the backend for simplicity. All components are orchestrated via docker compose
and can be started using the docker compose up command. The frontend web application is a
minimal exemplary consumer of the API provided by the backend server. It communicates with
the backend via a Representational State Transfer (REST) API for static data and Server-Side
Events (SSEs) for real-time updates.

1https://www.postgresql.org/

web(executable)

client(web-app) tile_server(executable)

API requests hosts

request tiles

public_transport(library)

database(library)

model(library)

gtfs(library, collector)

gbfs(library, collector)

deutsche_bahn(library, collector)

Figure 5.1. The application structure.

27

https://www.postgresql.org/

5. Implementation

5.2 Backend

The backend server is implemented in the Rust programming language2 with axum3 for serving
the API and SQLx4 for accessing the PostgreSQL5 database. Rust was chosen for its per-
formance and static code analysis features, helping with the implementation of a fast and
reliable service. It is important to the following, to understand some core aspects of rust.
Rust traits are similar to interfaces in conventional object-oriented languages. Conventional
classes do not exist in rust. However, rust has structs, which are somewhat like classes, but
the pure definition of the data and the implementation of the associated method is a bit more
separated.

5.2.1 Architecture

This section explains how the general architecture proposed in Chapter 4 was implemented
in code.

Common struct definitions shared between backend and potential clients are implemented
in the crate model. The API, which is basically a wrapper around the main backend library, is
implemented in the crate web. This crate is also the main entry point of the backend application.
The main backend library is implemented in the crate public_transport. It consists of the
following components:

Client The client provides the functionality of the central service introduced in Chapter 4.
While it is implemented decentralized for performance reasons, it coordinates database
accesses like expected from the central service.

Database The database just consists of trait definitions. This way, the main backend is
independent of a concrete database. The actual database implementation is externalized to
the crate database.

Collectors The collectors are realized as a rust trait, which each collector has to implement.
This way, the main backend application has no requirement to care about individual collectors.
In order to add a new collector, it just has to implement the collector trait, an excerpt of which
is shown in Listing 5.1. Besides the actual data gathering logic of the collector, it also provides
methods to specify behavior for recovery on failure and on panic. By specifying the State

type, the application knows how serialize and deserialize the collectors’ state, to store it in
the database as JSON. To activate an instance of this collector, the settings for the instance have
to be inserted into the collectors table in the database. This way, multiple instances of the

2https://www.rust-lang.org/
3https://github.com/tokio-rs/axum
4https://github.com/launchbadge/sqlx
5https://www.postgresql.org/

28

https://www.rust-lang.org/
https://github.com/tokio-rs/axum
https://github.com/launchbadge/sqlx
https://www.postgresql.org/

5.2. Backend

same collector with different settings are possible at the same time to allow gathering data
from e.g., multiple different GTFS sources.

Listing 5.1. Excerpt of the collector trait.

1 #[async_trait]

2 pub trait Collector {

3 type Error: Debug;

4 type State: Debug + /* ... */;

5

6 /* ... */

7

8 /// This method is regularly called and supposed to gather source data,

9 /// convert it and push it to the database.

10 async fn run<D: Database>(

11 &mut self,

12 client: &Client<D>,

13 state: Self::State,

14) -> Result<(Continuation, Self::State), Self::Error>;

15

16 /// Specifies how long to wait between calls to the ‘run‘ method.

17 fn tick(&self) -> Option<Duration> {

18 Some(Duration::from_secs(10))

19 }

20

21 /* ... */

22

23 /// Specifies the behavior for when the collector returns an error.

24 fn on_error(&self, _error: Self::Error) -> SupervisionStrategy {

25 SupervisionStrategy::Resume

26 }

27

28 /// Specifies the behavior for when the collector panics.

29 fn on_panic(&self, _error: Box<dyn Any + Send>) -> SupervisionStrategy {

30 SupervisionStrategy::Restart

31 }

32 }

5.2.2 Database Design

As the chosen database server is PostgreSQL, the implemented database is a relational
database. This fits the conceptional decision of using a very GTFS-like model well, as a GTFS

feed also resembles a relational database.

29

5. Implementation

Tables

Each entity from the model presented in Section 4.3 has its own table in the database. The
central tables contain an identifier column and an origin column, hinting the source from
which the record originates. The concept of records with possibly shared subjects introduced
in Section 4.5 is implemented in the database by allowing multiple records with different
origins to share the same identifier. Thus, the combination of the identifier and the origin
makes the primary key of most tables. This way, to mark multiple records from different
sources as the same subject, they just need to be assigned the same identifier. When a subject
is queried from the database, it is queried only based on its identifier. Then, all returned
records are merged with the priority of each origin.

For most tables, there also exist separate tables, in which identifiers used in the source
datasets are mapped to the internal identifiers, in order to provide an option for collectors to
obtain records in the database by the original identifiers. These can be used when translating
references in the source dataset to the internal representation. The identifier mappings are
also used to replace records with newer versions. By using the original identifier to match
records on update, it is impossible, that a new record is created by accident.

The following provides an overview of the most important tables. All tables are shown in
Figure 5.2.

Ź origins: Contains an entry for each data source.

Ź collectors: Contains all collector instances and settings as JSON.

Ź agencies: Contains all public transport agencies. The contained information includes the
name, a website, an email address and the like.

Ź stops: Contains all stops. This table holds information such as a stops name, geographical
location and kind (e.g, station, platform etc.)

Ź lines: Contains all lines. Lines have a name and reference an agency, which operates the
line.

Ź trips: Contains all trips. Containes information such as the assigned line, thus references
the lines table. It does however not contain any stops sequences or the like. Just as in GTFS,
all stops visited are stored the stop_times table. The trips table references the stop_times

table and via a specified service the calendar_windows and calendar_dates table.

Ź stop_times. Like in GTFS, this table contains the sequence of stops and the associated times
for each trips.

Ź calendar_windows and calendar_dates. These tables specify the availability of a service,
just like in GTFS.

30

5.2. Backend

agencies
id slug
origin slug
name TEXT
website TEXT
phone_number TEXT
email TEXT
fare_url TEXT

agencies_original_ids
origin slug
original_id TEXT
id slug

calendar_dates
service_id INTEGER
date DATE
exception_type service_exception_type

calendar_windows
service_id INTEGER
monday service_availability
tuesday service_availability
wednesday service_availability
thursday service_availability
friday service_availability
saturday service_availability
sunday service_availability
start_date DATE
end_date DATE

collectors
id INTEGER
origin slug
kind TEXT
is_active BOOLEAN
state JSONB

lines
id slug
origin slug
name TEXT
kind line_type
agency_id slug

lines_original_ids
origin slug
original_id TEXT
id slug

origins
id slug
name TEXT
priority INTEGER

services_original_ids
origin slug
original_id TEXT
id INTEGER

shapes
id INTEGER
sequence INTEGER
latitude DOUBLE PRECISION
longitude DOUBLE PRECISION
distance DOUBLE PRECISION

shared_mobility_stations
id slug
origin slug
name TEXT
latitude DOUBLE PRECISION
longitude DOUBLE PRECISION
capacity INTEGER
rental_uri_androidTEXT
rental_uri_ios TEXT
rental_uri_web TEXT
status JSONB

shared_mobility_stations_original_ids
origin slug
original_id TEXT
id slug

stop_times
origin slug
trip_id slug
stop_sequence INTEGER
stop_id slug
arrival_time BIGINT
departure_time BIGINT
stop_headsign TEXT

stops
id slug
origin slug
name TEXT
description TEXT
parent_id slug
latitude DOUBLE PRECISION
longitude DOUBLE PRECISION
address TEXT
platform_code TEXT

stops_original_ids
origin slug
original_id TEXT
id slug

trip_updates
origin slug
trip_id slug
trip_start_date DATE
status trip_status
stop_time_updates JSONB
timestamp TIMESTAMP(6) WITH TIME ZONE

trips
id slug
origin slug
line_id slug
service_id INTEGER
headsign TEXT
short_name TEXT

trips_original_ids
origin slug
original_id TEXT
id slug

vehicles
id slug
origin slug
trip_id slug
latitude DOUBLE PRECISION
longitude DOUBLE PRECISION

Figure 5.2. Diagram of all tables in the database.

31

5. Implementation

Queries and Indexes

Next to primary keys, all columns, which are regularly used in queries, are indexed accord-
ingly.

In order to provide an efficient text search for stations, the name column of the stations
table is indexed using the PostgreSQL extension pg_trgm6, which enables trigram search. This
way, stations with similar names to specified text values can easily be queried and ordered by
their according similarity. Trigram search is used to implement the stop search endpoint as
specified in Section 4.6 as well as for fetching candidates for duplicate identification when
inserting a new stop. When inserting a new stop, these candidates are also filtered on spatial
distance between the geographic locations.

Geographical locations for e.g., stops are stored as two simple floating point values for
the latitude and the longitude. Thus, they are indexed using a normal non-unique index.
When searching for stops within a radius around a geographical point, this is entirely done
in the Structured Query Language (SQL) query. Whether a stop is within the specified radius
is determined by the haversine distance between the stops location and the radius’ center
point. Before performing the expensive computation for the haversine distance, the stops are
filtered based on a bounding rectangle, as this is cheaper to compute. This approach works
very well with the data used throughout this thesis. However, if even better performance for
querying stops within a certain radius is required, the locations of the stops can be stored as
a PostGIS7 point and thus indexed using PostGIS. The stops can then be queried using the
PostGIS functions.

5.2.3 Merging the Data

Each model definition in the model crate, which allows for sensible merging of instances,
implements a respective trait. When multiple of those records are fetched from the database,
they are returned in a DatabaseFrame. This data structure allows to individual access of those
records, but also provides a method to merge the contained records if wanted. When calling
this method, one can specify which origins to include. The order of the origins defines their
priority. Examples for such models are stops, trips or lines. There are also models, which
will not be merged. Instead, the value from the origin with the highest priority will be used,
where the value is actually set. This includes shapes.

5.2.4 Instantiating Trips

In this thesis, trips are treated like a pattern. A trip mainly consists of a path of stops with
associated stop times. Such a stop time is just a time of day, without a specific date. A trip is
associated to a service, which specifies the concrete days a trip is available at. This way, a lot
of storage is saved, as most trips follow a pattern and thus do not need to be stored for each

6https://www.postgresql.org/docs/current/pgtrgm.html
7https://postgis.net/

32

https://www.postgresql.org/docs/current/pgtrgm.html
https://postgis.net/

5.2. Backend

day. Users however are mostly interested in instances of such trips at specific dates. Thus,
when trips are queried from the database, they must be instantiated to specific dates. This is
done by fetching all possible trips within the requested time frame and iterating through the
service dates, which fall into the specified time frame. For each of those days, a new instance
of the trip is then created. During this process, it is also decided whether the trip really
matches the query, as the database might return too many trips for performance reasons.

5.2.5 Serving the Application Programmable Interface

The API is implemented using axum. As described in Section 4.6, it consists of mainly one
endpoint to discover everything near a certain point. Live updates are provided via SSEs.
Only for this reason, the response of the main API endpoint features IDs. In order to fetch
more detailed information for a specific thing or to e.g., navigate to a location a certain trip
stops at, the response data contains direct links to the respective resources. This is done to
avoid that the consumer has to deal with the API structure such as worrying which data is
available at which endpoint other than the main endpoint. The concept used to implement
this feature is called Hypermedia as the Engine of Application State (HATEOAS). The API is
implemented in the web crate and is basically a wrapper around the main backend service.
The most important endpoints are the following:

Ź GET /api/v1/nearby. This endpoint is the main endpoint to discover everything near a
given point. The geographical location of this point can be specified using the query
parameters latitude and longitude.

Ź GET /api/v1/realtime/nearby. This endpoint provides real-time updates for a nearby query.
It works exactly as the nearby endpoint, but returns a SSE connection, over which real-time
updates are pushed towards the client. The client has to match updates to the according
trips using the IDs present in both the updates and the data obtained from the nearby

endpoint.

Ź GET /api/v1/stops/search/SEARCH_PATTERN. This endpoint returns stations, where the name
matches the specified pattern. The pattern can be a part of the stops name or the full
name. It also has a tolerance for typos. SEARCH_PATTERN is a placeholder for this pattern.
The results are sorted by similarity to the provided pattern. This endpoint is intended to be
used for implementing e.g., a search box and also to provide autocomplete capabilities. An
example of a search box utilizing this endpoint can be seen in Figure 5.3, where suggestions
for the search pattern Lütjenb are shown.

All endpoints are automatically documented with JSON schemas. The JSON schemas are
automatically inferred from the Rust types. Documentation comments in the Rust code are
also included as field descriptions in the generated JSON schemas. For each endpoint, the JSON

schema of the response is available by appending /schema to the address of the endpoint.

33

5. Implementation

.

Figure 5.3. Suggestions provided by the stop search endpoint when searching for the pattern Lütjenb

5.3 Fronted Implementation

The frontend is a very minimalistic website, which just serves as an exemplary client of the
provided API. It is implemented using Hyper Text Markup Language (HTML), Cascading Style
Sheets (CSS) and JavaScript. The UI concept is very simple, as it is just a map, where the
user can click on a certain location to view nearby departures, arrivals and shared mobility
options. The UI also features a search bar, where the user can search for specific stations or bus
stops. This can be seen in Figure 5.3. The map is rendered using MapLibre8. On startup, the
user’s actual location is fetched via the browser API and focused. When a location is focused,
no matter whether by manually clicking on it, searching for it in the search bar or due to
the location fetched on startup, the sidebar on the left shows all arrivals and departures of
nearby public transport options as well as shared mobility. This is shown in Figure 5.4 for the
example of Plön. The sidebar displays all lines stopping nearby, all arrivals and departures at
nearby stops and the bike rental station at the train station. In Figure 5.4, one can also see that
real-time information for the displayed train lines are available. These are displayed as bold
text next to the scheduled arrival and departure times. The involved stops are also shown
on the map. Users can also click on trips to see detailed information about the trip’s path.
This is shown in Figure 5.5. When the user clicks on a specific stop on the trip’s path, the UI

navigates to the location of that stop at the exact time of the planned arrival of the trip at that
stop.

8https://maplibre.org/

34

https://maplibre.org/

5.3. Fronted Implementation

Figure 5.4. The UI with Plön focused.

35

5. Implementation

Figure 5.5. The UI with a trip of the train line RE83 selected.

36

Chapter 6

Evaluation

This chapter evaluates the developed concept and implemented software. First, Section 6.1
compares the implemented application to existing solutions. Then, Section 6.2 presents
some restrictions implied by the taken conceptual decisions. Section 6.3 briefly evaluates
the source data and thus the implied quality of the information provided by the solution
developed throughout this thesis. Lastly, Section 6.4 elaborates on the technical efficiency and
performance of the implemented solution with a focus towards the main API endpoint.

6.1 Comparison with Existing Solutions

Compared to the broad variety of existing traveler facing public transport information systems,
the features provided by the solution developed throughout this thesis are rather limited.
Good routing features are probably the most important aspect of those systems and especially
mobile apps, as they are perfectly suited to plan trips in advance. Most of the established
solutions like the NAH.SH app and website come with a strong routing feature like shown in
Figure 6.1. The implementation of such features was not the focus of this thesis and beyond
scope. It is however perfectly possible to extend the developed software by such features.
Most existing software will also display more detailed information such as ticket prices. This
is, as long as provided by the consulted information sources, an easy addition.

6.2 Conceptual Limitations

While the client-server architecture constitutes an easy foundation for developing further
clients utilizing the same data, it also comes with some limitations. A concrete example of
this is the integration of renting a shared mobility vehicle or buying tickets directly in an
end-user app utilizing the implemented API. Ideally, this would be directly possible via the
API, as the advantage of the uniformity of the data provided by the API would get somewhat
lost, when tasks like this have to be done by the client, as it would then require to implement
separate solutions for each service in the client nevertheless. But integrating the purchase
process within the API can be challenging for security reasons. To avoid directly sharing user
credentials with the backend server, an access token would be required. Thus, all involved
services must provide such an option. Further, even when sharing such an access token with
a third-party server, the user suddenly has to trust the server not to use the access token in
unintended ways.

37

6. Evaluation

Figure 6.1. The routing feature of NAH.SH.

6.3 Quality and Consistency of the Source Data

The quality of the provided service is limited by the data it is built upon. In the process of writ-
ing the thesis, multiple information sources regarding public transport options in Germany
and Schleswig-Holstein where considered. These vary a lot in quality and completeness.

When it comes to GTFS feeds, there exist three options covering the target region around
the disused Malente-Lütjenburg track. These feeds are compared in Figure 6.2 and Figure 6.3
using two selected examples. First, there is the GTFS feed for the whole of Germany by the
DELFI. According to a report by the MITFAHR|DE|ZENTRALE1, validating different German
GTFS feeds using the tool Mecatran GTFSVTOR2, this dataset contains 420198 errors. When
loaded into the application developed throughout this thesis, about the same number of rows
could not even be parsed, mostly due to invalid enumeration variants. This feed contains
a stop for each platform. For most platforms of train stations like Kiel Central Station, the
platform codes are present in the data. This can be observed in Figure 6.2a Platform codes
for the platforms of the Kiel Central Station bus stops are however missing as shown in
Figure 6.3a. Because of the high amount of errors in this dataset, another GTFS feed for

1https://gtfs.mfdz.de/
2https://github.com/mecatran/gtfsvtor

38

https://gtfs.mfdz.de/
https://github.com/mecatran/gtfsvtor

6.3. Quality and Consistency of the Source Data

(a) Kiel Central Station in the DELFI
GTFS feed.

(b) Kiel Central Station in the GTFS
feed by Patrick Brosi.

(c) Kiel Central Station in the
NAH.SH GTFS feed.

Figure 6.2. Kiel Central Station in three different GTFS feeds.

Germany is published by Patrick Brosi. This feed has a much better quality and parses
without errors. The free version lacks some information such as platform codes and detailed
geographic trip paths, but each platform has its own stop. This can be observed in Figure 6.2b.
In some exceptions however, such as the bus stops at Kiel Central Station, the platform codes
are included in the stop names as seen in Figure 6.3b. Both feeds are based upon the DELFI

NeTEx dataset. There also exists the NAH.SH GTFS feed for Schleswig-Holstein. This feed also
parses without errors. Different from the two GTFS feeds for the whole of Germany, this feed
does not contain separate stops for each platform at stations as shown in Figure 6.2c and
Figure 6.3c. Thus, information about platforms are completely missing. This information
however is quite important to passengers. Also, replacement buses are labeled as railway,
which might be confusing to users. While the feed is very complete within the near proximity
to Bad Malente-Gremsmühlen, some train lines such as the RE8 between Lübeck Central
Station and Lübeck-Travemünde are missing. The NAH.SH feed contains 4869 errors according
to the MITFAHR|DE|ZENTRALE.

When it just comes to the quality and reliability of the content, the data provided by the
DB Timetables API seems to be the very reliable when compared to the information shown in
e.g., the DB Navigator app, but it is limited to information regarding trains and does not even
include all train stations in Germany let alone Schleswig-Holstein. The DB Timetables API

also provides detailed real-time information for virtually all train lines included in the API. In
contrast, the real-time feeds for the GTFS feeds seem to be pretty incomplete. Most real-time
deviations shown by the NAH.SH app are not included.

One solution to the different quality and reliability of the sources might be to display
the sources for each trip. This way, the user can decide how credible an information is. This
way, poor quality information have less impact to the overall trustworthiness of all provided
information.

With regard to Bad Malente-Gremsmühlen as the main point of interest for this thesis’
implementation, the displayed information as seen in Figure 6.4 are nearly complete. However,
information regarding the Bürgerbus Malente are missing due to the reasons mentioned

39

6. Evaluation

(a) Kiel Central Station bus stops in
the DELFI GTFS feed.

(b) Kiel Central Station bus stops in
the GTFS feed by Patrick Brosi.

(c) Kiel Central Station bus stops in
the NAH.SH GTFS feed.

Figure 6.3. Kiel Central Station bus stops in three different GTFS feeds.

in Section 3.5. Visible in the screenshot are the buses and trains arriving and departing at
the train station in Bad Malente-Gremsmühlen. An overview of stops near Bad Malente-
Gremsmühlen, which are included in the implementation developed throughout this thesis,
can be seen in Figure 6.5.

6.4 Performance

The main API endpoint provides all known public transport and mobility options near a
specified geographical location and within a specified radius and time frame. Requests to
this endpoint are slow when many public transport trips are stopping within the specified
search radius. For example, requesting this endpoint for a radius of 300 meters around Kiel
Central Station with a time frame of 1 hour during day, a client has to wait about 2 seconds
for a response. This response includes 5 stops, 70 lines and 191 trip instances with a total size
of 1.86 megabytes.

All performance measurements where conducted with the backend hosted on a vServer
with 6 processor cores and 16 gigabytes of memory. Total request times are measured by
a client requesting the resource. The durations for fetching trips from the database and
the instantiation of trips where measured directly by the backend server. The results were
sampled over 100 request for each point over a total duration of 2 hours and 9 minutes.
The radius was set to 300 meters. The client script used to perform the measurements is
provided in Listing A.1. The measurements performed in the backend application are all
done within the code excerpt in Listing A.2. In order to prevent characteristics of different
information sources to influence the results, only the NAH.SH GTFS dataset was consulted
during the measurements. Since the DB Timetables API only provides trip schedules for short
amount of days ahead of time and the amount of actually fetched schedule information is
also influenced by the rate limiting, this could e.g., influence some measurements. In contrast,

40

6.4. Performance

Figure 6.4. The UI of the developed tool in Bad Malente-Gremsmühlen.

with a GTFS dataset, all data is available and complete.

Response time measurements with the same parameters for all stations on the Kiel-Lübeck
track and some stops close to the Malente-Lütjenburg track can be seen in Figure 6.6. These
measurements are compared to the number of returned trip instances. A strong correlation
between the number of trip instances returned and the total request time. Figure 6.7 also
implies an equal correlation between the number of trips fetched from the database and the
total request time. However, it is shown that much more trips are returned from the database
than trip instances are returned for each stop.

Figure 6.8a shows the response times and returned trip instances for increasing time
frames within a range expected as typical. The displayed measurements are performed for
Kiel Central Station, since Figure 6.6 and Figure 6.7 show the highest response times for
this stop. One can observe, that the number of returned trip instances does increase linearly,
but the total response time does not change significantly with increasing time frames. So
the response times do not really seem to depend on the number of returned trip instances.
Further, it can be observed that the time taken to fetch the trips from the database does also
stay pretty constant with increasing time frames. This is worth noting, as fetching the trips
from the database seems to take most of the total response time, while the time taken to

41

6. Evaluation

Figure 6.5. A selection of the available bus stops near Bad Malente-Gremsmühlen.
42

6.4. Performance

instantiate the trips is almost negligible.
The reason for this can be seen in Figure 6.8b, which shows the same information as

Figure 6.8a, but for much larger time frames. Additionally, the number of trips fetched from
the database is also shown. It can be observed, that for this very large span of time frames,
ranging from 0 to 75 hours, the same amount of trips is queried from the database for each
time frame. For time frames shorter than 24 hours, most of the trips returned from the
database will be thrown away during instantiation. Only from 5 hours onwards, more trip
instances are returned than trips are fetched from the database. Also, the total response time
seems to indeed correlate with the number of returned trip instances, but not too much. In
fact, this correlation seems especially low for typical time frames, as Figure 6.8a suggests.
Since the trip instantiation time does not nearly increase equally to the overall request time
and the time for fetching trips from the database does not increase at all, this correlation can
probably be explained by the increasing transmission times caused by increasing file sizes.

In conclusion, the measurements imply that trips are poorly filtered by time when fetched
from the database, which is indeed true. Although the trips are filtered by stops pretty
accurately, time of day is not considered at all and filtering by service days only works for
service exceptions and beyond the availability time span of a service, which typically is
about a year. This is due to the complexity of the required logic for an adequate filtering in
the database. Due to the way services are stored, it is difficult to decide whether a certain
trip stops at a specific stop within a given timeframe or not in a SQL query. Therefor, too
many trips are returned from the database rather than too few. It is then decided during
instantiation, which of these trips are actually within the timeframe.

43

6. Evaluation

0

20

40

60

80

100

120

140

160

180

co
un

t

number of returned trip instances

Kiel
Hbf

Kiel
-E

lm
sc

hen
hag

en

Rais
dorf

Pre
etz Plön

Bad
M

ale
nte-

Gre
m

sm
ühlen

Eutin

Pönitz
(H

olst
)

Pan
sd

orf

Bad
Sch

war
tau

Lübec
k Hbf

M
ale

nte-
Ben

z Alte
r Bah

nhof

Högsd
orf-

Fleh
m

Abzw
. Klet

kam
p

Högsd
orf

Hohen
ste

in

Lütje
nburg

ZOB
0

0.5

1

1.5

2

2.5

ti
m

e
in

se
co

nd
s

mean response time

Figure 6.6. Mean response times and number of returned trips for all stations on the Kiel-Lübeck track
and bus stops near the Malente-Lütjenburg track.

44

6.4. Performance

0

1,000

2,000

3,000

4,000

5,000

6,000

co
un

t

number of trips fetched from database

Kiel
Hbf

Kiel
-E

lm
sc

hen
hag

en

Rais
dorf

Pre
etz Plön

Bad
M

ale
nte-

Gre
m

sm
ühlen

Eutin

Pönitz
(H

olst
)

Pan
sd

orf

Bad
Sch

war
tau

Lübec
k Hbf

M
ale

nte-
Ben

z Alte
r Bah

nhof

Högsd
orf-

Fleh
m

Abzw
. Klet

kam
p

Högsd
orf

Hohen
ste

in

Lütje
nburg

ZOB
0

0.5

1

1.5

2

2.5

ti
m

e
in

se
co

nd
s

mean response time

Figure 6.7. Mean response times and number of trips fetched from the database for all stations on the
Kiel-Lübeck track and bus stops near the Malente-Lütjenburg track.

45

6. Evaluation

0

100

200

300

400

500

co
un

t

number of returned trip instances

0 20 40 60 80 100 120 140 160 180

0.5

1

1.5

2

2.5

time frame in minutes

re
sp

on
se

ti
m

e
in

se
co

nd
s

mean response time mean trip query time mean trip instantiation time

(a) Time frames expected to be requested in typical use-cases. Number of trips returned from database are omitted
due to readability. See Figure 6.8b.

0

1,000

2,000

3,000

4,000

5,000

6,000

7,000

co
un

t

number of returned trip instances number of trips fetched from database

0 500 1,000 1,500 2,000 2,500 3,000 3,500 4,000 4,500

0.5

1

1.5

2

2.5

3

time frame in minutes

re
sp

on
se

ti
m

e
in

se
co

nd
s

mean response time mean trip query time mean trip instantiation time

(b) Very large time frames.

Figure 6.8. Development of response times as a function of time frame size for Kiel Central Station.

46

Chapter 7

Conclusion

Concluding this thesis, Section 7.1 summarizes the findings and the developed solution.
Section 7.3

7.1 Summary

In this thesis, existing solutions for passenger facing public transport solutions where pre-
sented. It was found, that existing solutions are either limited in scope and quality, or difficult
for small projects to integrate with due to the proprietary nature. In order to develop a
solution for this problem, available information sources for all different kinds of public
transport and mobility with relevance to the REAKT DATA project where presented. As a
possible solution, a concept was proposed and implemented throughout this thesis. Lastly,
the developed solution was evaluated, revealing the weaknesses and unsolved problems. In
order to provide reliable and complete public transport information, which is competitive
with existing proprietary solutions such as the DB Navigator, there is a still work to be done
regarding the developed concept and implementation. However, this thesis provides a starting
point for implementing a more refined and feature-complete implementation. As it was part
of the concept of this implementation to develop an open-source solution, the implemented
software is published in a GitHub repository1.

7.2 Encountered Problems

The high diversity of the different source data was expected to be a challenge from the
beginning of this thesis. However, one particular source was especially challenging, is just
the use of it in isolation was inconvenient. The DB Timetables API has some weaknesses
already addressed in Section 3.3. Besides these, the available documentation is incomplete
and contains incorrect information such as optional fields marked as required or wrong date
formats. Further, the design of the API made it difficult to use it, as it is centered around
stations and not trips. Thus, users of the API are required to build the trips from the stops
fetched for each station themselves. In order to do so, one can either use the index of the stop
in a trip, which is contained in the ID of the stop or use the provided path. The challenge
when using the latter is that it is just a string of station names, not IDs. To make matters
worse, these station names are not even consistent within the API. However, using the stop

1https://github.com/DerBusNachRaisdorf/OpenTransitAndMobility

47

https://github.com/DerBusNachRaisdorf/OpenTransitAndMobility

7. Conclusion

indices to assemble trips from stops is also not ideal, since one can not easily know if stops
are missing from the trip unless also utilizing the path string. Further, the documentation
states that added stops get assigned a stop index above 100, it does however not mention how
these indices are assigned. Thus, it is not possible to know the exact position of an added
stop within a trip.

7.3 Future Work

As mentioned above, the approach developed throughout this thesis constitutes a basis for a
combined public transport information system, but a lot of work has still to be done in order
to compete with existing solutions. Thus, this section points out the unsolved problems and
possible improvements.

7.3.1 Connect Other Sources

In Section 3.5, other information sources where mentioned, which are somewhat relevant
to the scope of this thesis, but where not implemented. However, the e-scooter information
sources are an interesting addition to the implemented shared mobility stations in the GBFS

format, as e-scooters are not rented based on fixed-location stations. E-scooters can be rented
anywhere someone left one and can be returned likewise. The Bürgerbus Malente is also an
interesting service, as the service is quite unusual. Further, although the bus operates on fixed
routes and with fixed schedules, the real-time updates only include vehicle positions and not
estimated arrival and departure times. Thus, it is an interesting service for experimenting
with predicting delays based upon real-time vehicle positions and schedules. Therefor, these
information sources should be integrated with the developed application.

7.3.2 Distinguish Different Platforms

Especially at larger stations, platform codes are very important to users of a public transport
information system. However, the current implementation shows all platforms of stations as
one stop. This is mainly due to the choice of using the NAH.SH GTFS dataset, which does not
include individual platforms. Replacing the dataset by e.g., the DELFI GTFS dataset is sufficient
to display each platform individually and include platform codes in arrival and departures.

However, the implementation for the DB Timetables API collector must be extended to
create an individual stop for each platform at each station. This is straightforward to imple-
ment, as the DB Timetables API returns all existing platform codes when station information
are queried. The collector then to insert a stop with the same name as the station for each
platform, where the field for the platform code is set respectively. The parent station of these
stops should be set for best results, but it is not necessary. Geographical coordinates must not
be set, as they are not known. The stops for the individual platforms will then successfully
get matched with the GTFS stops for the corresponding platforms based upon station name,

48

7.3. Future Work

platform code and optionally parent station. Thus, when merged on query, the geographical
locations are obtained from the GTFS data.

Note, that using the free version of the GTFS dataset by Patrick Brosi will not work as
intended, as the redundant information needed to match platforms is not present between
this GTFS dataset and the information provided by the DB Timetables API. The free GTFS

dataset by Patrick Brosi includes only the geographical locations of each platform, but not
the platform codes, whereas the DB Timetables API provides only the platform codes, but not
the geographical locations for each platform. The platform specific information of the GTFS

dataset by Patrick Brosi and the platform specific information included in the DB Timetables
API are disjunct,

7.3.3 Implement Routing

The features provided by the service are very basic at the moment. Filtering departures
and arrivals by a desired destination or origin is not possible at the moment, but easy to
implement. A routing feature on the other hand is much more complex to implement but
crucial to the usefulness of the solution. Thus, possible solutions for routing should be
researched and implemented. Beyond conventional public transport routing features as e.g.,
provided by HAFAS, including shared mobility like rental bikes or e-scooters might be a useful
addition. When implementing such a feature, the user experience can be improved further by
connecting other information services unrelated to public transport or mobility. This includes,
for instance, favoring public transport options over certain shared mobility options despite
worse availability or travel times over rental bikes or e-scooter based on current or predicted
weather conditions.

7.3.4 Support for On-Demand Public Transport

On-demand public transport is especially useful in regions where the existing infrastructure
is limited and demand for public transport is neither high enough nor stable to justify a
conventional public transport line. An example for this is the service planned for the Malente-
Lütjenburg track. Thus, on-demand public transport services should be supported by the
implemented solution in order to meet the goal of supporting a broad variety of public
transport and mobility with a focus on small and innovative mobility projects. However, an
on-demand public transport service does currently not exist in the proximity to the Malente-
Lütjenburg track, thus support for on-demand options where not implemented in this thesis.
As the public transport domain model developed throughout this thesis is strongly based on
the GTFS model, it should be possible to implement support for on-demand services without
major changes to the existing solution. This is due to GTFS already supporting on-demand
public transport to a certain degree.

49

7. Conclusion

7.3.5 Improve Implementation

Some features presented in the concept chapter currently have incomplete or poor implemen-
tations. Most notably, this applies to the duplicate identification and merging of trips. Thus,
incomplete implementations, especially the merging and identification of trips, should be
finalized. Further, features with poor implementations should be improved.

Besides missing or incomplete features, the implementation might also benefit from
technical improvements. As mentioned in Chapter 6, the instantiation of trips at specified
stations within a specified time frame is quite slow. To improve this, the SQL query fetching
the trips from the database should filter the returned trips by time of day as well as service
days.

50

Appendix A

Benchmark Script

Listing A.1. Python script used to benchmark the implemented API.

1 import sys

2 import json

3 import requests

4 import numpy as np

5 from typing import Callable, Self

6 from datetime import datetime, timedelta

7

8 # helper functions for drawing tikz pictures

9 from eval.tikz import TikzPicture

10

11 def str_to_datetime(datetime_str: str) -> datetime:

12 return datetime.strptime(datetime_str, "%Y-%m-%dT%H:%M:%S")

13

14 def datetime_to_str(dt: datetime) -> str:

15 return dt.strftime("%Y-%m-%dT%H:%M:%S")

16

17 class Mean:

18 def __init__(self, mean: float, err: np.floating):

19 self.mean = mean

20 self.err = err

21

22 def calc_mean(xs, selector: Callable | None = None) -> Mean:

23 if selector is None:

24 selector = lambda x: x

25 mean = sum(selector(x) for x in xs) / len(xs)

26 std = np.std(np.array(list(selector(x) for x in xs)))

27 return Mean(mean, std)

28

29 class PointYMean:

30 def __init__(self, x: float | int, y: Mean):

31 self.x = x

32 self.y = y

33

34 def printed(self) -> Self:

35 print(f"({self.x}, {self.y.mean}) +- (0, {self.y.err})")

36 return self

51

A. Benchmark Script

37

38 def get(lat, lon, radius, start, end):

39 response = requests.get(

40 f’https://nah.bahn.sh/api/v1/nearby?latitude={lat}&longitude={lon}&radius={radius}&

start={start}&end={end}’,

41 allow_redirects=True,

42 headers={

43 "Accept": "application/json",

44 "Accept-Encoding": "gzip, deflate, br, zstd"

45 })

46

47 if response.status_code == 200:

48 return response

49 else:

50 print(f"Failed to retrieve data: {response.status_code}")

51 exit()

52

53 def increasing_timeframe(point, radius, start_time, step_minutes, num_steps, x_exp=None,

count=10):

54 dt = str_to_datetime(start_time)

55 time_points = []

56 for i in range(num_steps):

57 minutes = i * step_minutes

58 if x_exp:

59 minutes = int(minutes**x_exp)

60 end_time = datetime_to_str(dt + timedelta(minutes=minutes))

61 time_points.append({

62 "minutes": minutes,

63 "start": start_time,

64 "end": end_time,

65 "responses": [],

66 })

67 for _ in range(count):

68 for time_point in time_points:

69 response = get(

70 point["latitude"],

71 point["longitude"],

72 radius,

73 time_point["start"],

74 time_point["end"]

75)

76 body = response.json()

77 time_point["responses"].append({

78 "elapsed": response.elapsed.total_seconds(),

79 "numTripInstances": len(body["trips"]),

80 "benchmark": body["debugInfo"]["benchmark"]

81 })

52

82 print(response.elapsed)

83 results = []

84 for time_point in time_points:

85 elapsed = calc_mean(time_point["responses"], lambda x: x["elapsed"])

86 fetchStops = calc_mean(time_point["responses"], lambda x: x["benchmark"]["

fetchStopsSecs"])

87 fetchLines = calc_mean(time_point["responses"], lambda x: x["benchmark"]["

fetchLinesSecs"])

88 fetchTrips = calc_mean(time_point["responses"], lambda x: x["benchmark"]["

fetchTripsSecs"])

89 instantiateTripsSecs = calc_mean(time_point["responses"], lambda x: x["benchmark"]["

instantiateTripsSecs"])

90 numberOfTripInstances = calc_mean(time_point["responses"], lambda x: x["

numTripInstances"])

91 numberOfTripsFetched = calc_mean(time_point["responses"], lambda x: x["benchmark"]["

numTripsFetched"])

92 results.append({

93 "minutes": time_point["minutes"],

94 "elapsed": {

95 "totalRequest": elapsed,

96 "fetchStops": fetchStops,

97 "fetchLines": fetchLines,

98 "fetchTrips": fetchTrips,

99 "instantiateTrips": instantiateTripsSecs

100 },

101 "numberOfTripInstances": numberOfTripInstances,

102 "numberOfTripsFetched": numberOfTripsFetched

103 })

104 return { "name": point["name"], "points": results, "count": count }

105

106 def plot_increasing_timeframe(result, picture: TikzPicture, include_database_trips=True):

107 width = "14cm"

108 height = "9cm"

109

110 # count axis

111 count_axis = picture.axis()

112 count_axis.width(width)

113 count_axis.height(height)

114 count_axis.y_label("count")

115 count_axis.y_axis_right()

116 count_axis.x_tick(None)

117 count_axis.legend_style(0.5, 1.05)

118

119 # number of trips fetched plot

120 trip_insances_plot = count_axis.plot("number of returned trip instances")

121 trip_insances_plot.color("red")

122 trip_insances_plot.mark("red")

53

A. Benchmark Script

123 trip_insances_plot.line_width("1pt")

124 trip_insances_plot.points_y_mean([

125 PointYMean(point["minutes"], point["numberOfTripInstances"])

126 for point in result["points"]

127])

128 trip_insances_plot.error()

129

130 # number of returned trip instances plot

131 if include_database_trips:

132 trips_plot = count_axis.plot("number of trips fetched from database")

133 trips_plot.color("red!25")

134 trips_plot.mark("red!25")

135 trips_plot.line_width("1pt")

136 trips_plot.points_y_mean([

137 PointYMean(point["minutes"], point["numberOfTripsFetched"])

138 for point in result["points"]

139])

140 trips_plot.error()

141

142 # time axis

143 time_axis = picture.axis()

144 time_axis.width(width)

145 time_axis.height(height)

146 time_axis.x_label("time frame in minutes")

147 time_axis.y_label("response time in seconds")

148 time_axis.y_axis_left()

149 time_axis.legend_style(0.5, 1.15)

150 time_axis.scaled_ticks(False)

151

152 # total request time plot

153 req_time_plot = time_axis.plot("mean response time")

154 req_time_plot.mark("blue")

155 req_time_plot.line_width("1pt")

156 req_time_plot.points_y_mean([

157 PointYMean(point["minutes"], point["elapsed"]["totalRequest"]).printed()

158 for point in result["points"]

159])

160 req_time_plot.error()

161

162 # trip query time plot

163 req_time_plot = time_axis.plot("mean trip query time")

164 req_time_plot.color("blue!50")

165 req_time_plot.mark("blue!50")

166 req_time_plot.line_width("1pt")

167 req_time_plot.points_y_mean([

168 PointYMean(point["minutes"], point["elapsed"]["fetchTrips"]).printed()

169 for point in result["points"]

54

170])

171 req_time_plot.error()

172

173 # trip instantiation time plot

174 req_time_plot = time_axis.plot("mean trip instantiation time")

175 req_time_plot.color("blue!25")

176 req_time_plot.mark("blue!25")

177 req_time_plot.line_width("1pt")

178 req_time_plot.points_y_mean([

179 PointYMean(point["minutes"], point["elapsed"]["instantiateTrips"]).printed()

180 for point in result["points"]

181])

182 req_time_plot.error()

183

184 def all_stops(points, radius, start_time, end_time, count):

185 points = json.loads(json.dumps(points))

186 for _ in range(count):

187 for point in points:

188 response = get(point["latitude"], point["longitude"], radius, start_time,

end_time)

189 elapsed = response.elapsed.total_seconds()

190 data = response.json()

191 print(elapsed)

192 point["results"].append({

193 "elapsed": elapsed,

194 "numTripInstances": len(data["trips"]),

195 "numLines": len(data["lines"]),

196 "numStops": len(data["stops"]),

197 "numSharedMobilityStations": len(data["sharedMobilityStations"]),

198 "benchmark": data["debugInfo"]["benchmark"]

199 })

200 # evaluate

201 results = []

202 for point in points:

203 elapsed = calc_mean(point["results"], lambda x: x["elapsed"])

204 fetchStops = calc_mean(point["results"], lambda x: x["benchmark"]["fetchStopsSecs"])

205 fetchLines = calc_mean(point["results"], lambda x: x["benchmark"]["fetchLinesSecs"])

206 fetchTrips = calc_mean(point["results"], lambda x: x["benchmark"]["fetchTripsSecs"])

207 instantiateTripsSecs = calc_mean(point["results"], lambda x: x["benchmark"]["

instantiateTripsSecs"])

208 numberOfTripInstances = calc_mean(point["results"], lambda x: x["numTripInstances"])

209 numberOfTripsFetched = calc_mean(point["results"], lambda x: x["benchmark"]["

numTripsFetched"])

210 results.append({

211 "stop": point["name"],

212 "elapsed": {

213 "totalRequest": elapsed,

55

A. Benchmark Script

214 "fetchStops": fetchStops,

215 "fetchLines": fetchLines,

216 "fetchTrips": fetchTrips,

217 "instantiateTripsSecs": instantiateTripsSecs

218 },

219 "numberOfTripInstances": numberOfTripInstances,

220 "numberOfTripsFetched": numberOfTripsFetched

221 })

222 return { "points": results, "count": count }

223

224 def plot_all_stops(result, picture: TikzPicture, trip_instances=True):

225 width = "14cm"

226 height = "9cm"

227

228 # count axis

229 count_axis = picture.axis()

230 count_axis.width(width)

231 count_axis.height(height)

232 count_axis.y_bar(width="7pt")

233 count_axis.bar_shift("0.2cm")

234 count_axis.y_axis_right()

235 count_axis.y_label("count")

236 count_axis.y_min(0)

237 #count_axis.y_max(200)

238 count_axis.x_min(0.5)

239 count_axis.x_max(len(result["points"]) + 0.5)

240 count_axis.x_tick(None)

241 count_axis.legend_style(0.5, 1.05)

242

243 if trip_instances:

244 # number of trip instances plot

245 trip_instances_plot = count_axis.plot("number of returned trip instances")

246 trip_instances_plot.fill("red!30")

247 trip_instances_plot.points_y_mean([

248 PointYMean(idx+1, point["numberOfTripInstances"])

249 for idx, point in enumerate(result["points"])

250])

251 else:

252 # number of trips fetched plot

253 trips_plot = count_axis.plot("number of trips fetched from database")

254 trips_plot.fill("red!30")

255 trips_plot.points_y_mean([

256 PointYMean(idx+1, point["numberOfTripsFetched"])

257 for idx, point in enumerate(result["points"])

258])

259

260

56

261 # response time axis

262 time_axis = picture.axis()

263 time_axis.width(width)

264 time_axis.height(height)

265 time_axis.y_bar(width="7pt")

266 time_axis.y_axis_left()

267 time_axis.y_label("time in seconds")

268 time_axis.y_min(0)

269 time_axis.scaled_ticks(False)

270 time_axis.x_tick_labels([point["stop"] for point in result["points"]])

271 time_axis.option("enlarge x limits={abs=0.5}")

272 time_axis.legend_style(0.5, 1.15)

273

274 # total response time plot

275 req_time_plot = time_axis.plot("mean response time")

276 req_time_plot.points_y_mean([

277 PointYMean(idx+1, point["elapsed"]["totalRequest"])

278 for idx, point in enumerate(result["points"])

279])

280 req_time_plot.error(relative=True)

281 req_time_plot.bar_shift("-0.2cm")

282

283 RADIUS = 0.3

284 START_TIME = "2024-09-26T16:27:52"

285 END_TIME = "2024-09-26T17:27:52"

286 COUNT = 100

287

288 INCREASING_TIMEFRAME_STEP_MINUTES = 30

289 INCREASING_TIMEFRAME_STEPS = 10

290

291 def point(name, lat, lon):

292 return {

293 "name": name,

294 "latitude": lat,

295 "longitude": lon,

296 "results": []

297 }

298

299 POINTS = [

300 point("Kiel Hbf", 54.314985, 10.131976),

301 point("Kiel-Elmschenhagen", 54.287142, 10.180414),

302 point("Raisdorf", 54.280937, 10.243694),

303 point("Preetz", 54.233941, 10.275752),

304 point("Plön", 54.159479, 10.422562),

305 point("Bad Malente-Gremsmühlen", 54.167014, 10.55151),

306 point("Eutin", 54.135343, 10.610123),

307 point("Pönitz (Holst)", 54.045654, 10.671157),

57

A. Benchmark Script

308 point("Pansdorf", 53.981034, 10.703056),

309 point("Bad Schwartau", 53.916276, 10.702722),

310 point("Lübeck Hbf", 53.867547, 10.669821),

311 point("Malente-Benz Alter Bahnhof", 54.221874, 10.613542),

312 point("Högsdorf-Flehm Abzw. Kletkamp", 54.240823, 10.63057),

313 point("Högsdorf Hohenstein", 54.256625, 10.623575),

314 point("Lütjenburg ZOB", 54.292405, 10.593936),

315]

316

317 if __name__ == ’__main__’:

318 args = sys.argv

319 all = ’all’ in args

320 if all or ’all-stops-trip-instances’ in args:

321 results = all_stops(POINTS, RADIUS, START_TIME, END_TIME, COUNT)

322 picture = TikzPicture()

323 latex = plot_all_stops(results, picture, trip_instances=True)

324 picture.render_to_file("thesis/graphics/6-performance-trip-instances.tex")

325 if all or ’all-stops-trips-fetched’ in args:

326 results = all_stops(POINTS, RADIUS, START_TIME, END_TIME, COUNT)

327 picture = TikzPicture()

328 latex = plot_all_stops(results, picture, trip_instances=False)

329 picture.render_to_file("thesis/graphics/6-performance-trips-fetched.tex")

330 if all or ’increasing-timeframe-small’ in args:

331 results = increasing_timeframe(

332 POINTS[0],

333 RADIUS,

334 START_TIME,

335 20,

336 10,

337 count=COUNT

338)

339 picture = TikzPicture()

340 latex = plot_increasing_timeframe(results, picture, include_database_trips=False)

341 picture.render_to_file("thesis/graphics/6-increasing-timeframe-small.tex")

342 if all or ’increasing-timeframe-big’ in args:

343 results = increasing_timeframe(

344 POINTS[0],

345 RADIUS,

346 START_TIME,

347 INCREASING_TIMEFRAME_STEP_MINUTES,

348 INCREASING_TIMEFRAME_STEPS,

349 x_exp=1.5,

350 count=COUNT

351)

352 picture = TikzPicture()

353 latex = plot_increasing_timeframe(results, picture)

354 picture.render_to_file("thesis/graphics/6-increasing-timeframe-big.tex")

58

Listing A.2. Excerpt from the implementation of the API

1 #[derive(Serialize)]

2 #[serde(rename_all = "camelCase")]

3 struct NearbyBenchmark {

4 fetch_shared_mobility_stations_secs: f64,

5 fetch_stops_secs: f64,

6 fetch_lines_secs: f64,

7 fetch_trips_secs: f64,

8 instantiate_trips_secs: f64,

9 num_trips_fetched: usize,

10 }

11

12 async fn nearby(

13 OriginalUri(original_uri): OriginalUri,

14 State(WebState { transit_client, .. }): State<WebState>,

15 Query(params): Query<TripsNearbyQuery>,

16 Extension(base_url): Extension<Arc<BaseUrl>>,

17) -> HateoasResult<NearbyDto> {

18 let origins = transit_client.get_origin_ids().await?;

19 let radius = params.radius.unwrap_or(0.05);

20 let start = params.start.unwrap_or(Local::now());

21 let end = params.end.unwrap_or(start + Duration::hours(1));

22

23 // get shared mobility stations

24 let now = Instant::now();

25 let shared_mobility_stations = transit_client

26 .find_nearby_shared_mobility_stations(

27 params.latitude,

28 params.longitude,

29 radius,

30 &origins,

31)

32 .await

33 .map_err(|why| {

34 RouteErrorResponse::from(why)

35 .with_method(&Method::GET)

36 .with_message("Could not query nearby shared mobility stations.")

37 .with_uri(original_uri.path())

38 })?;

39 let fetch_shared_mobility_elapsed = now.elapsed();

40

41 // get stops

42 let now = Instant::now();

43 let stops = transit_client

44 .find_nearby(params.latitude, params.longitude, radius, &origins)

45 .await

46 .map_err(|why| {

59

A. Benchmark Script

47 RouteErrorResponse::from(why)

48 .with_method(&Method::GET)

49 .with_message("Could not query nearby stops.")

50 .with_uri(original_uri.path())

51 })?;

52 let fetch_stops_elapsed = now.elapsed();

53

54 // get lines and trips

55 let now = Instant::now();

56 let mut lines = vec![];

57 for stop in stops.iter() {

58 // get lines

59 lines.extend(

60 transit_client

61 .get_lines_at_stop(&stop.content.id, &origins)

62 .await

63 .map_err(|why| {

64 RouteErrorResponse::from(why)

65 .with_method(&Method::GET)

66 .with_message("Could not query lines at nearby stops.")

67 .with_uri(original_uri.path())

68 })?,

69);

70 }

71 let fetch_lines_elapsed = now.elapsed();

72

73 // stop ids

74 let stop_ids = stops

75 .iter()

76 .map(|stop| &stop.content.id)

77 .collect::<Vec<_>>();

78

79 // get raw trips

80 // TODO: what to do with duplicate trips?

81 let now = Instant::now();

82 let trips = transit_client

83 .get_all_trips_via_stops(&stop_ids, start, end, &origins)

84 .await

85 .map_err(|why| {

86 RouteErrorResponse::from(why)

87 .with_method(&Method::GET)

88 .with_message("Could not query trips at nearby stops.")

89 .with_uri(original_uri.path())

90 })?;

91 let fetch_trips_elapsed = now.elapsed();

92 let num_database_trips = trips.len();

93

60

94 // instanciate trips

95 let now = Instant::now();

96 let mut instanciated_trips = transit_client

97 .instanciate_trips_include(

98 trips,

99 DateTimeRange::new(start, end),

100 Some(&stop_ids),

101 true,

102 true,

103 true,

104 &origins,

105)

106 .await

107 .map_err(|why| {

108 RouteErrorResponse::from(why)

109 .with_method(&Method::GET)

110 .with_message("Could not instanciate trips at nearby stops.")

111 .with_uri(original_uri.path())

112 })?;

113 let instantiate_trips_elapsed = now.elapsed();

114

115 // sort trips

116 TripInstance::sort(&mut instanciated_trips);

117

118 // unique lines

119 lines = lines

120 .into_iter()

121 .unique_by(|line| line.id.clone())

122 .collect();

123

124 let benchmark = NearbyBenchmark {

125 fetch_shared_mobility_stations_secs: fetch_shared_mobility_elapsed

126 .as_secs_f64(),

127 fetch_stops_secs: fetch_stops_elapsed.as_secs_f64(),

128 fetch_lines_secs: fetch_lines_elapsed.as_secs_f64(),

129 fetch_trips_secs: fetch_trips_elapsed.as_secs_f64(),

130 instantiate_trips_secs: instantiate_trips_elapsed.as_secs_f64(),

131 num_trips_fetched: num_database_trips,

132 };

133

134 let nearby = NearbyDto {

135 radius,

136 latitude: params.latitude,

137 longitude: params.longitude,

138 start,

139 end,

140 stops: stops

61

A. Benchmark Script

141 .into_iter()

142 .map(|stop| stop_with_distance_hateoas(stop, base_url.clone()))

143 .collect(),

144 lines: lines

145 .into_iter()

146 .map(|line| line_hateoas(line, base_url.clone()))

147 .collect(),

148 trips: instanciated_trips

149 .into_iter()

150 .map(|trip| {

151 trip_hateoas(

152 TripInstanceDto {

153 info: trip.info,

154 stops: trip

155 .stops

156 .into_iter()

157 .map(|stop_time| {

158 stop_time_hateoas(stop_time, base_url.clone())

159 })

160 .collect::<Vec<_>>(),

161 stop_of_interest: trip.stop_of_interest,

162 line: trip

163 .line

164 .map(|line| line_hateoas(line, base_url.clone())),

165 agency: trip

166 .agency

167 .map(|agency| agency_hateoas(agency, base_url.clone())),

168 },

169 base_url.clone(),

170)

171 })

172 .collect::<Vec<_>>(),

173 shared_mobility_stations: shared_mobility_stations

174 .into_iter()

175 .map(|x| x.content.content)

176 .collect(),

177 };

178

179 Ok(nearby_hateoas(nearby, base_url, Some(benchmark)).json())

180 }

62

Bibliography

[BBS14] Hannah Bast, Patrick Brosi, and Sabine Storandt. “Real-time movement visu-
alization of public transit data”. In: Proceedings of the 22nd ACM SIGSPATIAL
International Conference on Advances in Geographic Information Systems. SIGSPATIAL
’14. Dallas, Texas: Association for Computing Machinery, 2014, pp. 331–340. isbn:
9781450331319. doi: 10.1145/2666310.2666404. url: https://doi.org/10.1145/2666310.2666404.

[CVM17] Pieter Colpaert, Ruben Verborgh, and Erik Mannens. “Public transit route plan-
ning through lightweight linked data interfaces”. In: Web Engineering. Ed. by Jordi
Cabot, Roberto De Virgilio, and Riccardo Torlone. Cham: Springer International
Publishing, 2017, pp. 403–411. isbn: 978-3-319-60131-1.

[MS13] Bhargab Maitra and Shubhajit Sadhukhan. “Urban public transportation system
in the context of climate change mitigation: emerging issues and research needs
in india”. In: Mitigating Climate Change: The Emerging Face of Modern Cities. Ed.
by Anshuman Khare and Terry Beckman. Berlin, Heidelberg: Springer Berlin
Heidelberg, 2013, pp. 75–91. isbn: 978-3-642-37030-4. doi: 10.1007/978-3-642-37030-4_5.
url: https://doi.org/10.1007/978-3-642-37030-4_5.

[RVD+20] Julián Andrés Rojas, Dylan Van Assche, Harm Delva, Pieter Colpaert, and Ruben
Verborgh. “Efficient live public transport data sharing for route planning on
the web”. In: Web Engineering. Ed. by Maria Bielikova, Tommi Mikkonen, and
Cesare Pautasso. Cham: Springer International Publishing, 2020, pp. 321–336.
isbn: 978-3-030-50578-3.

[VCC+19] Belén Vela, José María Cavero, Paloma Cáceres, and Carlos E. Cuesta. “A semi-
automatic data–scraping method for the public transport domain”. In: IEEE
Access 7 (2019), pp. 105627–105637. doi: 10.1109/ACCESS.2019.2932197.

[WWS16] Sebastian Wandelt, Zezhou Wang, and Xiaoqian Sun. “Worldwide railway skele-
ton network: extraction methodology and preliminary analysis”. In: IEEE Transac-
tions on Intelligent Transportation Systems 18.8 (2016), pp. 2206–2216.

63

https://doi.org/10.1145/2666310.2666404
https://doi.org/10.1145/2666310.2666404
https://doi.org/10.1007/978-3-642-37030-4_5
https://doi.org/10.1007/978-3-642-37030-4_5
https://doi.org/10.1109/ACCESS.2019.2932197

	Introduction
	Problem Statement
	Outline

	Related Work
	Existing Traveler-Facing Public Transport Information
	Academic Research

	Preliminaries
	Transmodel
	General Transit Feed Specification Schedule
	General Transit Feed Specification Realtime
	Relevant General Transit Feed Specification Datasets

	Deutsche Bahn Timetables Application Programmable Interface
	General Bike Feed Specification
	Other Sources

	Concepts
	Overall Architecture
	Data Acquisition
	Public Transport and Mobility Domain Model
	Uniform Internal Representation of the Data
	Cross-Source Data Merging and Harmonization
	Duplicate Identification on Insertion
	Duplicate Identification Criteria
	Merging during Query

	User Story

	Implementation
	Project Structure
	Backend
	Architecture
	Database Design
	Merging the Data
	Instantiating Trips
	Serving the Application Programmable Interface

	Fronted Implementation

	Evaluation
	Comparison with Existing Solutions
	Conceptual Limitations
	Quality and Consistency of the Source Data
	Performance

	Conclusion
	Summary
	Encountered Problems
	Future Work
	Connect Other Sources
	Distinguish Different Platforms
	Implement Routing
	Support for On-Demand Public Transport
	Improve Implementation

	Benchmark Script
	Bibliography

