
Applying Automatic Visualisation
to Deep Neural Network

Development

Mette Preuhsler

Bachelor’s Thesis
April 2024

Prof. Dr. Reinhard von Hanxleden
Real-Time and Embedded Systems Group

Department of Computer Science
Kiel University

Advised by
M. Sc. Maximilian Kasperowski

M. Sc. Connor Schönberner

Selbstständigkeitserklärung

Hiermit erkläre ich, dass ich die vorliegende Arbeit selbstständig verfasst und keine anderen
als die angegebenen Quellen und Hilfsmittel verwendet habe.

Weiterhin erkläre ich, dass die digitale Fassung dieser Arbeit, die dem Prüfungsamt per
E-Mail zugegangen ist, der vorliegenden schriftlichen Fassung entspricht.

Kiel,

iii

Abstract

In the last two decades, the application of artificial neural networks has seen unprecedented
increase in adoption rate. Artificial neural networks gave rise to increasingly complex models,
called Deep Neural Networks. These are able to learn more complex contexts and relationships
and can therefore also solve more demanding tasks. This thesis examines the automatic
visualisation of Deep Neural Networks (DNNs), precisely through the use of the PyTorchKGT
tool, which was developed in this thesis.

Most other tools focus on different visualisations, and computational graph visualisations
are uncommon. While TensorBoard now supports visualisations of computational graphs,
it is mainly a multi-purpose live monitoring tool that is used for tracking, monitoring and
plotting metrics of Machine Learning experiments. In contrast, PyTorchKGT, an extension
to the PyTorch framework, is specialised for automatic neural network visualisation and is
also lightweight and extensible. Especially computational graph visualisations can be viewed
without restrictions such as no limitations in size. The tool uses the diagramming framework
KLighD, which then uses the automatic layout of ELK. It focuses on visualising computational
graphs, which serve as the foundation for computing gradients by backwards propagation,
which is at the heart of how deep neural networks learn in the first place.

The evaluation showed that the visualisation of DNNs is an important part of development
and research in this area. The thesis also investigates the potential for further development of
the PyTorchKGT tool to create a live monitoring tool for applied development and research.

Acknowledgements

I would like to start by expressing my gratitude to Prof. Dr. Reinhard von Hanxleden, who
heads the Real-Time and Embedded Systems Group, for giving me the opportunity to work
on this fascinating and cutting-edge topic.

Furthermore, I want to express my thanks to Maximilian Kasperowski and Connor
Schönberner for supervising my thesis. They helped and guided me in to the right direction.
The weekly meetings and the discussions helped me to decide the next steps.

I would also like to thank Michel Spils, from the Intelligent Systems group, and the
whole working group, Real-Time and Embedded Systems, for the help and the friendly and
forthcoming office environment.

v

Contents

1 Introduction 1
1.1 Motivation . 1
1.2 Contributions . 2

2 Foundations 3
2.1 Machine Learning Architectures . 3
2.2 Deep Neural Networks . 4
2.3 Training and Computational Graphs . 5
2.4 Graphs and Automatic Graph Drawing . 5
2.5 KLighD and ELK from the KIELER Project . 6

3 Related Work 7
3.1 Automated Visualisation of DNNs . 7
3.2 Existing DNN Visualisation Tools . 7
3.3 GraphViz . 8
3.4 PyTorchViz . 9

4 Deep Neural Network Visualisation Tool PyTorchKGT 11
4.1 Visualisation tool architecture . 11
4.2 Design Choice for DNN Visualisations . 12
4.3 Determination of PyTorchViz as Tool of Choice 13
4.4 Computational Graph Visualisation . 13
4.5 Architectural Graph Visualisation . 15

5 Implementation 19
5.1 KGraph Format . 19
5.2 KGraph Specification . 19
5.3 PyTorchViz Node Definitions . 24
5.4 KGraph Definition and Implementation . 27
5.5 PyTorchKGT Implementation . 29

6 Evaluation 31
6.1 PyTorchKGT Visualisation Results . 31
6.2 Survey . 32

6.2.1 Results . 33
6.2.2 Discussion . 34

vii

Contents

7 Conclusion 35

Bibliography 37

viii

List of Figures

3.1 A GraphViz example of a neural network diagram for a multi-class classification
problem, taken from [Zey24]. 8

3.2 A visualisation of a computational graph by PyTorchViz, taken from [Git24]. . 10

4.1 Overview of the tool’s general process from input to the representation. 11
4.2 PyTorch neural network module model. 16

5.1 Class diagram of the KGraph structure from the KLighD implementation [Spi14]. 20
5.2 KRendering class diagram from the KLighD implementation [Sch14]. 21
5.3 KIELER Lightweight Diagrams (KLighD) project KStyle class diagram. 22
5.4 The class diagram of the ContainerRendering. 23
5.5 PyTorchKGT visualisation of an LSTM start and middle section. 24
5.6 PyTorchKGT visualisation of an LSTM start and middle section, with results

shown. 26
5.7 The class diagram of the KRendering and the KStyle classes. 27

6.1 PyTorchKGT visualisation of an Long Short-Term Memory Network (LSTM)
computational graph. 31

6.2 PyTorchKGT visualisation of an LSTM as a compact view and result view. . . . 32
6.3 PyTorchKGT visualisation of an LSTM as a compact view and result view with

additional values. 33

ix

Acronyms

KLighD KIELER Lightweight Diagrams

KGT KGraph Text

ML Machine Learning

DNN Deep Neural Network

CNN Convolutional Neural Network

RNN Recurrent Neural Network

LSTM Long Short-Term Memory Network

GAN Generative Adversarial Network

xi

Chapter 1

Introduction

Machine Learning (ML) is more present in everyday life than ever before. This includes many
different areas of daily life, such as finance, the automotive industry and retail. ML supports
business management and research in different fields through predictions and optimisation.
As described by [Zi24], ML is used in the healthcare sector to evaluate results of MRIs or X-rays.
It is also used for development of drugs and the recognition of symptoms in clinical pictures
and the diagnosis of the underlying illness. Large machine learning models are mostly used
for solving more complex problems such as natural language recognition, strategic decision
making and image processing.

ML, especially Deep Neural Networks, make these technologies possible. To develop
these DNN models, one needs to understand the underlying processes. Visualisations of
these models can compactly describe parts of themselves. Deep neural networks learn by
computing gradients through backwards propagation. This process can be visualised within a
computational graph, providing a clear understanding of how the network learns.

1.1 Motivation

The field of deep learning is constantly evolving. Computational graphs are the technical
basis of backwards propagation, which drives the training of DNNs. Visualisation of these
foundations, as well as live monitoring visualisations, can help to understand the inner
workings of DNNs. Visualisations require manual creation and adaptation for papers, lectures
or architectural explanations. This can be difficult for larger DNNs and can be simplified
and made more efficient by an automatic visualisation of computational graphs. Better
visualisation provides benefits not only for general understanding, but also for solving
specific problems with its help [Hee19]. It provides a variety of benefits that help researchers,
developers, and users to better understand the inner workings and performance of these
complex computational graph structures. It can also be used for educational materials to
provide a better understanding of the computations used in a DNN.

PyTorchViz is an existing tool that allows for the generation of visualisations from
DNNs. The DNN model is specified in Python code, using the deep learning library PyTorch.
The created visualisations are exported as PNG image files. PyTorch is a widely used deep
learning framework due to its flexibility, ease of use, and high performance. It has also become
increasingly popular with deep learning practitioners because it enables an imperative style
of programming, making modelling and debugging more intuitive [SAV+20].

1

1. Introduction

1.2 Contributions

This thesis examines the automatic visualisation of DNNs, in particular through the use of
the PyTorchKGT tool developed in this thesis. The tool provides a computational graph
visualisation that is displayed using KLighD, part of the KIELER project at the University of
Kiel. This allows PyTorchKGT to use any visualisation options that are provided by KLighD.

According to [Cho22], Python is one of the most widely used programming languages in
the field. This fact combined with PyTorchViz being implemented in Python are the reasons
that Python was used for this project. To use Python with KLighD, the python datastructure
that stores the DNN model, needs to be converted to be used in KLighD. To achieve that a
converter into the KGraph Text format was developed. The converter or parts of the converter
can be reused to implement other Python programs that shell be exported to the KGraph
Text (KGT) format.

It is possible to visualise different aspects of the DNN model. One of the aspects is
the computational graph. This thesis includes the implementation of KGT export of the
computational graph for a given DNN model, as well as the concept of an architecture of DNN

structures visualisation. Further research or implementation effort is required for additional
different visualisations.

Additionally, the following research questions were answered in this thesis. How to
visualise computational graphs of DNNs? What advantages does PyTorchKGT bring to the
KIELER project? How does PyTorchKGT be integrated as a use case for authors of academic
papers and developers of DNNs?

The rest of this thesis is organized as follows. Chapter 2 lays the foundations by covering
the basics of machine learning, graph drawing and KLighD. The related works of different
visualisation tools are elucidated in Chapter 3. Chapter 4 provides a detailed explanation
of the implementation concepts of the PyTorchKGT tool, followed by the definition and
implementation of its various components in Chapter 5. In Chapter 6 the visualisation results
are evaluated, and in Chapter 7 the general results are summarised and future extensions are
discussed.

2

Chapter 2

Foundations

In this chapter the fundamentals of machine learning are explained. First ML and its model
architectures are defined, as well as the specific functions of different ML models. Afterwards
DNNs, their applications, and the training processes are discussed. Then the computational
graph, which visualises the computations and the forward propagation and backwards propaga-
tion is described. Lastly, the structure of the ML and their interrelationships are reviewed and
these concepts are outlined. Also the importance of graph drawing and KLighD is explained.

2.1 Machine Learning Architectures

The following principles of artificial neural networks align with Goodfellow, Bengio, and
Courville [GBC16]. ML is the field of algorithms that learn from examples and experience,
rather than relying on hard-coded rules, to be able to operate on new data. They employ
mathematical computations which can be represented as directed graphs, also known as
computational graphs. These graphs visually convey the structure and relationships within the
data. ML models are mathematical structures that can learn from data and make accurate
predictions or decisions. The landscape of ML models is diverse and includes supervised
learning models such as linear regression and support vector machines, unsupervised learn-
ing models, and neural network models such as Convolutional Neural Networks (CNNs) and
Recurrent Neural Networks (RNNs) [RR96]. In the context of DNNs, model architecture is the
arrangement of layers, neurons, and connections that enables networks to learn patterns and
relationships from data. Deep learning is a sub-field of machine learning that focuses on artifi-
cial neural networks and the processing of large amounts of data using DNN models [SA23].
This encompasses various types of ML models, including feedforward Neural Networks, CNNs,
RNNs, and transformers. Supervised learning models are trained on labeled datasets, while
unsupervised learning models identify patterns in unlabeled data. Reinforcement Learning
models learn through trial and error. Specialised architectures, such as Generative Adversarial
Networks (GANs) for synthetic data generation and autoencoders for unsupervised feature
learning further contribute to the diversity of ML model types. Integrating computational
graphs and automatic visualisation tools enhances understanding and interpretability of
complex ML models.

The range of deep learning models is vast, encompassing various types tailored to
different data types and tasks. Each model type has its strengths and application areas. The
fundamental deep learning model is a deep feedforward network that consists of fully connected

3

2. Foundations

layers and non-linear activation functions. CNNs are composed of convolution layers, non-linear
activation functions and pooling layers. CNNs are commonly used for processing visual data,
particularly in image recognition, due to their ability to extract features from images. RNNs, on
the other hand, are well-suited for sequential data, making them ideal for language processing
tasks where the order of information is crucial. RNNs have an internal state representation
that enables them to store and utilise information about previous data points. RNNs are
created by concatenating the intermediate results as a new input for the previous state. Long
Short-Term Memory Networks (LSTMs), a specialised type of RNN, are particularly effective at
capturing long-term dependencies in sequential data. This makes them well-suited for tasks
such as natural language understanding and speech recognition. They go beyond having just
short-term memory such as an RNN, by also having long-term memory.

ML models exhibit diverse functionalities, with decision trees adept at classification and
regression tasks. DNNs play a key role in feature extraction, enabling the identification of
intricate patterns in complex datasets [KNP+]. The range of ML models extends to supervised
learning, where models are trained on labeled datasets for prediction or classification. Un-
supervised learning models uncover patterns and structures in unlabeled data, providing
insights into the inherent organisation of data. Reinforcement Learning models learn decision
strategies through trial and error interactions with the environment. Specialised architectures
such as GANs generate synthetic data, while autoencoders contribute to unsupervised feature
learning, demonstrating the adaptability and versatility of ML to address a wide range of
tasks and challenges.

2.2 Deep Neural Networks

A Deep Neural Network (DNN) is an artificial neural network with additional hidden layers,
that is an interconnected group of artificial neurons organised in layers as mentioned in
Section 2.1, and they are arranged hierarchically [AOM17]. This network structure is used to
model relationships and solve various tasks. Due to the simple structure of an artificial neural
network, consisting of only one or a few layers, they are mainly used for binary classification,
simple pattern recognition or simple regression tasks [YWC20]. Hornik, Stinchcombe, and
White [HSW89] also refer to them as universal approximators, which is yet another indication
of their fundamental purpose. DNNs, however are used for classification, regression, pattern
recognition, and feature extraction [SSR20]. Their ability to process large volumes of data
and extract high-level features from raw input is one of their key strengths. DNNs have
applications in various fields, including image recognition, natural language processing, and
speech recognition [SSR20]. The depth of a DNN is determined by the number of hidden layers
it contains. Each layer applies mathematical transformations to input data using weights and
biases. By stacking multiple layers, DNNs can learn more abstract representations of input
data, resulting in better performance in complex tasks such as image recognition [SCW+16].
This differs from an artificial neural network, which generally has only one hidden layer,
while DNNs have a high count of hidden layers. The training of DNNs is accomplished through

4

2.3. Training and Computational Graphs

backwards propagation and stochastic gradient descent, which are used to optimize the DNNs

weights and biases [CXS+20]. Further explanations to the training of DNNs and computational
graphs follow in the next section.

2.3 Training and Computational Graphs

DNNs are trained to minimise the loss. The loss measures how close the predicted outcome is
to the true outcome. A smaller loss value indicates higher accuracy. To achieve this, a form of
gradient descent is used, and the gradients of the weights of the neural network are calculated
using backwards propagation. All trainable parameters, such as weights and biases, are
adjusted by stochastic gradient descent in the direction of their gradients, which is towards
the minimum [CXS+20]. In the context of DNNs, a computational graph plays an important
role in training. The computational graph visualisation is used to automatically calculate
gradients that can take on various values during training. This visualisation presents data on
the loss. It provides a systematic representation of the calculations from the input data. This
allows for a clear and concise representation of the model’s structure and facilitates analysis
and optimisation. By visualising a computational graph, one can navigate the complexities
of ML models. It consists of nodes that represent mathematical operations or variables,
and edges that indicate the direction of data flow. This graphical representation enables
researchers to comprehend the dependencies between operations, facilitating the debugging
and optimisation of ML models [CM10].

The forward propagation calculation predicts the results of the calculations, which are
then compared with the expected results. The backwards propagation algorithm calculates
the gradients for all learnable parameters by going backwards through the computational
graph step by step. The training of DNNs therefore utilises gradients computed based on the
loss to learn from the data and makes adjustments as it progressively reduces errors during
training. This process is essential for training the model’s result and ensuring it can correctly
process unseen data. Visualising computational graphs helps to identify problematic patterns
and analyse the training process at a higher level. A comprehensive understanding of the
computational graph is important for various ML tasks, such as developing new DNNs and for
general understanding when developing and teaching.

2.4 Graphs and Automatic Graph Drawing

Graphs are versatile structures used to model relationships between objects. In data visual-
isation, they are used to explore complex relationships, with vertices representing entities
and edges representing connections or correlations between them. Graph drawing algorithms
create planar embeddings of graphs with nodes represented by boxes and edges represented
by arcs that present information in an informative pleasing manner [BBD+19].

These graphs can be used to visualise different aspects of the model, such as computational
graphs illustrating the flow of data through the network, or dependency graphs highlighting

5

2. Foundations

the relationships between different model components. Layout algorithms are often used
to optimise the arrangement of nodes and edges, providing insight into the relationships
within the DNN architecture. These graphical representations of complex structures make
it easier to understand the nuanced connections within DNNs. Prioritising factors such as
minimising edge crossing and improving overall readability are crucial in the visualisation
process [DRS+15; KW01].

In the dynamic field of ML, a wide variety of model architectures are driven by computa-
tional graphs. Automatic visualisation plays a key role in revealing the relationships within
these complex structures. As ML continues to evolve, the interplay between computational
complexity and visualisation remains a paramount area of research and development, as
highlighted by ongoing studies [BL10; BL09].

2.5 KLighD and ELK from the KIELER Project

KLighD is a framework which enables the translation of diagram data into the KLighD model
in Java that can then easily be rendered. KLighD was developed to enable the creation of
interactive diagrams with minimal time expenditure. It provides mechanisms for the simple
definition of diagrams and their visual representation [SSH13]. KLighD provides different
style options for changing the resulting graph model view. It also handles actions associated
with interacting with graph elements. It facilitates the efficient rendering of diagrams with
automatic layout and interactive functions. A KLighD visualisation is based on the KGraph
structure, which provides an interface for defining models as a graph structure with rendering
information and data for positioning the graph elements. KLighD is based on the use of the
KGraph structure, which makes it possible to define models as graphs with specific rendering
information. This structure provides a flexible way to represent different types of diagrams
by using elements such as nodes, edges and labels. KLighD calculates the size of each element
and then calls the automatic layout of Eclipse Layout Kernel (ELK).

ELK is a open-source framework for automatically generating the layout of graph struc-
tures [DHS+23]. By using ELK, graphs can be automatically laid out in a way that is clear and
aesthetically pleasing. The ELK graph representation connects diagram viewers and editors
[Bor19]. It offers features suitable for computational graph visualisations, including hierarchi-
cal nodes and layout algorithms [Pet19; Kas21; Sch16]. The software supports different types
of diagrams, including hierarchical data flow diagrams, textual and visual representations,
and edge-label diagrams placed within a layered graph drawing context [SWH18; Ren18]. It
also emulates zooming during graph layout by scaling [KH23].

6

Chapter 3

Related Work

In the dynamic realm of ML, visualising the intricacies of DNNs and computational graphs
is of importance. This section examines different existing visualisation tools, methods, and
solutions that make a significant contribution to this area. It emphasises the importance of
understanding DNNs and explores the need to move from manual to automated visualisation
approaches. The PyTorchViz1 and GraphViz2 libraries are tools that provide visualisations.

3.1 Automated Visualisation of DNNs

Manual visualisation methods are traditionally used to understand the complexities of DNN

architectures and to provide a quick overview on them. Hand-drawn diagrams and manually
crafted graphs are foundational tools for conveying the intricate details of neural network
structures [YCN+15]. It is important to acknowledge the historical significance of these
methods and their contextual relevance in the evolving landscape of DNN visualisation. As
the visualisations become larger, manual visualisation becomes a difficult task. Automated
visualisation is then required to efficiently visualise complex or considerably large DNNs.

Automated visualisation tools brought a paradigm shift in understanding DNNs [FR21].
These tools are scalable and efficient, using sophisticated algorithms to create visual rep-
resentations. By using automated visualisation tools, the architectures of DNNs are better
comprehensible. This section explores the algorithms and methodologies of automated tools,
showcasing the technological advancements that have propelled the field forward [ZTS+23].

The analysis considers both historical and current DNN visualisation techniques. The com-
bination of manual and automated approaches contributes to a comprehensive understanding
of the potentially large and complex structures within DNNs.

3.2 Existing DNN Visualisation Tools

The landscape of DNN visualisation tools is diverse, with a myriad of options available for
researchers and practitioners. This variety leads to a lack of standardization and uniformity
in visual representations across different tools. Each tool comes with its unique features, ad-
vantages, and potential limitations, contributing to the heterogeneous nature of visualisations
in the field.

1https://github.com/szagoruyko/pytorchviz
2https://graphviz.org/Gallery/directed/neural-network.html

7

https://github.com/szagoruyko/pytorchviz
https://graphviz.org/Gallery/directed/neural-network.html

3. Related Work

Figure 3.1. A GraphViz example of a neural network diagram for a multi-class classification problem,
taken from [Zey24].

Tools like TensorBoard3, hiddenlayer4, and PyTorchViz5 offer specific functionalities
tailored to the frameworks they support. TensorBoard is primarily associated with TensorFlow
but is also usable with PyTorch. PyTorchViz and hiddenlayer are designed for PyTorch6.
Additionally, there are more general-purpose tools like Netron7, GraphViz8, which can be used
to visualise computational graphs and neural network architectures across various frameworks
[NHP+18]. However, the flexibility of these tools may come at the cost of specialised features,
potentially impacting the depth and specificity of the visualised information. While these
tools excel in providing detailed insights into the respective frameworks, their specificity
can result in inconsistencies when comparing visualisations across different deep learning
ecosystems.

The lack of a standardised visualisation format poses challenges for researchers and
practitioners aiming to collaborate or transition between different tools. It emphasises the
importance of understanding the capabilities and limitations of each tool in the context
of specific use cases. As the field continues to evolve, efforts towards establishing conven-
tions and interoperability standards could contribute to a more cohesive and unified visual
representation of DNN architectures [Hay20].

3.3 GraphViz

GraphViz [EGK+02] is a generic tool designed to visualise graphs in a wide range of applica-
tions [GN00]. The generic nature makes it versatile, but it is not specifically designed for the
structure and requirements of DNNs. However, there may be some practical considerations that

3https://www.tensorflow.org/tensorboard/graphs, https://www.youtube.com/watch?v=qEQ-_EId-D0
4https://github.com/waleedka/hiddenlayer
5https://github.com/szagoruyko/pytorchviz
6https://github.com/ashishpatel26/Tools-to-Design-or-Visualize-Architecture-of-Neural-Network
7https://github.com/lutzroeder/netron
8https://graphviz.org/Gallery/directed/neural-network.html

8

https://www.tensorflow.org/tensorboard/graphs
https://www.youtube.com/watch?v=qEQ-_EId-D0
https://github.com/waleedka/hiddenlayer
https://github.com/szagoruyko/pytorchviz
https://github.com/ashishpatel26/Tools-to-Design-or-Visualize-Architecture-of-Neural-Network
https://github.com/lutzroeder/netron
https://graphviz.org/Gallery/directed/neural-network.html

3.4. PyTorchViz

make it challenging to integrate with more advanced tools in some specific fields such as deep
learning, where specific-purpose visualisation tools like TensorBoard are more commonly
used due to their seamless integration with the deep learning frameworks. Nonetheless,
GraphViz remains a valuable tool in many graph visualisation contexts [AAO20; Gan11]. The
simple example in Figure 3.1 shows a neural network diagram that has three input units
(purple) and 4 output units (green). The hidden layer units are seen in red in the middle.
It displays the connections between the different layers and the high number of units that
are used in a simple and quite small example. For a bigger visualisation, manual input of
a visualisation is not favourable. A key issue is the manual configuration and the resulting
complexity when applied to DNNs, which leads to GraphViz being a less preferred tool for
visualising DNNs in Python. Visualising these complex network architectures often requires
an automated and customisable solution [SBM+17].

Another crucial point is the availability of specialised alternatives in Python, which are
better suited to the needs of DNNs. Tools such as PyTorchViz or TensorBoard are designed to
interact with deep learning frameworks in Python and offer specific features for visualising
DNNs. These specialised alternatives allow for more efficient integration and ensure that the
visualisation meets the specific requirements of DNNs. The ML Python community prefers
specialised tools that are better adapted to the needs of DNNs and allow a more efficient
integration [VSS+19].

3.4 PyTorchViz

PyTorchViz is a dedicated tool for visualizsing PyTorch models that produces accurate and
meaningful visualisations by using the general structures of PyTorch models [PWW+24;
LLT23]. The precise coordination with the framework is undoubtedly a strength when it
comes to precise visualisation of PyTorch models.

PyTorchViz focuses on the visualisation of computational graphs, which makes it a useful
resource for users who need exactly this feature. However, this focus has its limitations. In
particular, with more advanced analysis, metrics tracking or real-time updates PyTorchViz is
limited. Another drawback is its incompatibility with other deep learning frameworks. This
limitation may pose a challenge for users working in different frameworks, such as Jax which
is a relatively new deep learning framework that might gain traction in the future9 [KBH+24].
Another limitation is that you may want to switch between frameworks, which may affect the
applicability of PyTorchViz.

Figure 3.2 illustrates a simple example of a LSTM visualisation from the PyTorchViz
tool. The grey boxes contain the operators collected during forward-propagation, such as
AccumulateGrad, TBackward or AddmmBackward and can be recognised and distinguished.
The inputs are shown as a blue square and the end output as a green square. The specific
calculation steps are explained in more detail in Section 5.3.

9https://github.com/google/jax

9

https://github.com/google/jax

3. Related Work

Figure 3.2. A visualisation of a computational graph by PyTorchViz, taken from [Git24].

The integration of PyTorchViz with PyTorch provides a useful resource for users who need
to understand how data flows through the network and how computations are performed
[SBM+17]. Powered by the PyTorch framework, PyTorchViz interacts with the internal struc-
tures of PyTorch models to produce accurate and meaningful visualisations. Developers and
researchers using PyTorch as their preferred framework benefit from the specialised nature of
PyTorchViz, as it provides optimal support for their specific requirements.

10

Chapter 4

Deep Neural Network Visualisation Tool
PyTorchKGT

This chapter presents the concepts, ideas and discussions about how the implementation and
its parts should work in different levels of detail before looking at the implementation itself.
Since the implementation is divided into a KGraph component and a tool implementation
part, it shows the concepts of each part and the communication between them. The concepts
on how to display the visualisation and how to form the different design choices are described.
This chapter starts by looking at the general structure of the concept of graph generation and
the general steps needed to achieve a visualisation.

4.1 Visualisation tool architecture

 KGraph Graph
(PyTorchKGT)

KGT
(Python)

KLighD

PyTorchViz Diagram

Figure 4.1. Overview of the tool’s general process from input to the representation.

Figure 4.1 provides an overview of the concept of this thesis. The PyTorchViz tool is
adapted to interact with the developed graph structure and can be used as an input. Other
tools can be connected to the graph structure, and further applications occur automatically.
The graph structure is at the center and outputs a KGT structure, which can be displayed in

11

4. Deep Neural Network Visualisation Tool PyTorchKGT

the KLighD application. The main task involves designing a Python tool that can be used to
generate visualisations.

4.2 Design Choice for DNN Visualisations

The design of a visualisation is crucial in drawing the user’s attention to the most important
and essential areas, as the human eye can only focus on small areas and perceive a rough form
of the overall visualisation. Various aspects of visualisation optimization can individually
enhance a visualisation, including the Gestalt laws and the data ink ratio [McG15]. The following
section explains the different Gestalt laws.

Conciseness Perceiving and interpreting complex images as the simplest forms as possible.
Proximity Elements that are visually close to each other are related.
Similarity Elements that look like each other in size, colour or shape are related.
Connection Elements that are visually connected are related.
Enclosure Elements that are separated together are related.
Symmetry Elements that are symmetric can be perceived as forming a visual connection.
Figure / Ground Elements are perceived as either figures or background.
Common Fate Elements with the same moving direction are perceived as a unit.
The Gestalt laws are used to comprehend how users perceive and interpret visualisations,

allowing to determine which visualisation is most effective. To prevent visual overload, we
aim to use minimal ink in our visualisations. The data ink ratio can be used to determine
the amount of ink required to represent data without sacrificing information. This ensures
that the user is not overwhelmed. The visualisations in DNN contain significant information
that should be presented clearly and objectively. To adapt the visualisations to their purpose,
several visualisation options should prioritise relevant information. This requires a graph
visualisation that standardises the basic structures of DNNs to reflect the different visualisation
priorities. The data is visualised in a left-to-right flow to make it more legible for the user, as
it represents a process and structure that is common for them. To ensure clear and concise
visualisations, it is recommended to use basic structures with straight edges [BVB+11]. This
allows for easier comprehension by the user while maintaining symmetry.

Nodes should be represented as squares containing information. Nodes with similar tasks
should be placed close to each other to fulfil the principles of enclosure and similarity. The
nodes should then be connected by edges using an asymmetric relationship, as it creates a
flow in one direction. The principle of connection is highlighted here, and one-sided arrows
are used for all connections that also receive similarity. These principles can be applied to
distinguish inputs and outputs, providing nodes with conciseness and a sense of common
fate. To highlight important content, additional colours can be used, such as blue and orange,
taking into account colour-blindness. Another way to achieve this is by using different shapes
for the nodes. However, visualisations that contain too many shapes and colours can become
confusing and lose their purpose, as explained by the data ink ratio. Therefore, it makes sense
to use only one variant.

12

4.3. Determination of PyTorchViz as Tool of Choice

The same specifications apply to a visualisation of DNNs, and therefore also to a visuali-
sation of a computational graph. Due to the potentially enormous size of DNNs, it is more
practical to use colours rather than different shapes for specification purposes. This helps
to avoid unnecessary enlargement of the visualisation. Additionally, since DNN and compu-
tational graph visualisations include inputs, intermediate results, and an output result, an
additional colour, such as green, is needed to represent the input result. Colours can also be
used to distinguish different areas of the visualisation at greater distances.

4.3 Determination of PyTorchViz as Tool of Choice

As stated in the overview, the Python code should use the realised function from a DNN model
and output an automated visualisation as KGT. To achieve this, the DNN data model must
be extracted. Since there are existing tools available to visualise DNNs and extract important
information from the code, these can be used as a base for importing data into existing
software. As the KIELER project currently lacks an application to convert DNN Python code
into a KGT visualisation, a transition must be constructed manually.

Existing tools have been surveyed and a promising candidate has been selected, to extract
the computational graph elements and their connections.

Several authors [NHP+18; PWW+24; LLT23] have discussed the usefulness of PyTorchViz
in visualising PyTorch models. However, PyTorchViz’s specificity to PyTorch may limit its
functionality and hinders its compatibility with other deep learning frameworks as mentioned
before. Nevertheless, PyTorchViz is a promising starting point for the development of new
tools for visualising the complex structures of DNNs. Python is a widely used language for
DNN development, and PyTorch is one of the most popular deep learning frameworks in
Python. PyTorchViz takes advantage of these two popular approaches and combines them. In
addition, PyTorchViz uses the DOT visualisation representation, which is commonly used to
visualise neural networks in PyTorch. The tool visualises the graphs and outputs them as a
PDF1. The tool allows the extraction of the computational graph from a given model. The
model data must be prepared for transformation into the KGT format. This involves ensuring
that the data is structured correctly and follows the necessary conventions.

4.4 Computational Graph Visualisation

This section describes the steps of extracting DNN models using PyTorchViz and visualising
their computational graphs. It considers properties such as input and output representation,
as well as visualisation readability that is necessary for effective visualisation.

The first step is to extract the DNN models. As further explained in the Section 4.5, this was
done by using parts of an existing tool PyTorchViz. This extraction and use of the obtained
DNN model data leads to the generation of the graph. This thesis uses Python as the main

1https://github.com/szagoruyko/pytorchviz/blob/master/examples.ipynb

13

https://github.com/szagoruyko/pytorchviz/blob/master/examples.ipynb

4. Deep Neural Network Visualisation Tool PyTorchKGT

language and outputs a KGT file that can be automatically visualised by KLighD, for example
with the Visual Studio Code extension2. This can display the KGT file and the visualisation at
the same time.

To take a closer look at the development of the overall structure of the process, it is
important to understand what requirements passed to the final development structure.
During the research, it was clarified that there were many different possibilities with different
priorities. However, each of these visualisations also has similarities. In order to obtain the
most appropriate visualisation, the most important requirements for this thesis are as follows.

Requirement 1 Compatibility with the structure of a KGT format should be ensured.
Which does not rely on other modules from other frameworks.

Requirement 2 The input, output and hidden layers should be visualised. This should
ideally be done in different nodes.

Requirement 3 Since the DNN development proceeds mainly in Python, the implementa-
tion should be written in Python too. Furthermore, the widely used Python PyTorch neural
network models should be a possible input, as this is used in many areas.

Requirement 4 The different layers must be clearly organised. The individual hidden
layers as well as the labelling of inputs and outputs. The data used should be presented
efficiently and visually while informative. It should be possible not to display sub-areas in
order not to see unnecessary or extra information.

Requirement 5 Due to the flowing structure, it should be possible to display this visuali-
sation horizontally, as this intuitively supports the reading direction from left to right.

A visualisation of a computational graph should include input, output and the hidden
layers, which can display some data as well as different information. Displaying anything
other than the input and output tensors is not essential for the hidden layers. However, it is
important to display a representation of the backwards propagation calculations as this is a
significant and interesting area.

Variants that only display a basic structure and show further data through hovering over
them, fulfil requirements 3 and 4, but not the other requirements. Especially the requirement
1 that is essential for the project.

Another possibility is to visualise the basic structure in nodes and display the values
saved in the nodes next to them. However, this often leads to a confusing graph, because of
the extra information than is not necessary. Therefore, the requirements 1, 2, 3, and 5 are
satisfied, but not 4.

PyTorchViz is a visualisation tool that displays data only when results are given and can
show additional data when needed. It displays the basic structure as a graph drawing in
a visualisation of a vertical orientation and meets the requirements 1, 2, 3 and 4, but not
5. Despite the vertical orientation being hard to read, PyTorchViz provides a solid basic
structure. However, it should be noted that the color scheme used is not suitable for those
with color blindness, deuteranopia and tritanopia, which should be taken into consideration

2https://marketplace.visualstudio.com/items?itemName=kieler.klighd-vscode

14

https://marketplace.visualstudio.com/items?itemName=kieler.klighd-vscode

4.5. Architectural Graph Visualisation

when creating effective visualisations. Furthermore, large visualisations cannot be displayed
on a single page and are cut off. The tool uses a customized structure to explore the required
data from the model and generate a graph. The graph structure follows that of KLighD, which
is used for visualising the KGT. To convert the Python KGraph to a KGT representation,
the Python KGraph structure must be synthesised. The components of the Python KGraph
structure are exported text in the order of the tree structure. The main KGraph element
contains all nodes of the graph. The nodes can contain edges, labels, and any other rendering
or style of all elements inside them, as well as other nodes. This code generates a recursive
structure of calls, creating new elements for each run. The structure of the resulting elements
resembles a tree, allowing for iteration over individual elements using depth-first search. The
KGT structure contains the data that builds the visualisation. It includes nodes surrounded by
a rectangle, which can hold varying amounts of information. The nodes also connect to the
next nodes in the process and other connections. The visualisation displays both the inputs
and outputs, as well as the backwards propagation results as shape representations of the
calculations, as expected from requirement 4. The edges are arranged straight and evenly to
clearly show connections and make it easier to recognise assignments. A generally uniform
visualisation of the nodes and edges is maintained to ensure a clear structure and sequence
of events. The use of only a few colours ensures clarity and distinguishes the individual
different areas of the layers. If a graph is overloaded with visualisations of colours, shapes,
and alignments, it can become confusing and difficult to read. For this reason, the colour
scheme is divided into the main colours black and white, blue and orange appropriate for the
colour-blind. The inputs and outputs are coloured because they are given more relevance. A
solution against a crowded visualisation should be available.

A visualisation meeting various criteria for a useful visualisation and reflecting the
differences in the visualisations is required. The user can generate different visualisations and
customise them through input variables. The normal view does not display any additional
values, so no further user input is required. The show_saved input variable can be used to
add results to the visualisation. The representative values of the backwards propagation are
displayed as additional KNodes at the KNodes from which they originate. The show_attrs
input variable can be used to display the values available for calculations in the KNodes,
which are represented within the KNodes themselves. To obtain a compressed view of the
computational graph visualisation, the resultView input variable can be used. This will
display only KNodes that are inputs, outputs, or have computation outputs. Each input
variable can be linked individually, allowing for a compressed view without the need to view
the results.

4.5 Architectural Graph Visualisation

The architecture of a DNN graph can be visualised by converting it to a graph that then can
be visualised, identical to the KGT visualisation. Since Hiddenlayer [Fer18] is a tool that can
already perform such visualisations and extract data from PyTorch neural network models, it

15

4. Deep Neural Network Visualisation Tool PyTorchKGT

is a good starting point for a visualisation tool. It uses a combination of PyTorch, TensorFlow
and Keras [Fer18]. TensorFlow was used for the extraction from the neural network model
data. Other models also visualise these architectures similarly or with other extraction tools
like ONNX3. They are used to extract the Data from function of the neural network modules,
like forward(self, x) seen in Figure 4.2 code example.

Hiddenlayer has not been updated in several years so, therefore this tool can no longer
be used effectively. TensorFlow is another deep learning framework that also aids with
the model data transformation, but it has changed in a way that requires the program to
be reworked in order to function properly. Furthermore TensorFlow’s transition to version
2.0 made Hiddenlayer incompatible. For this reason, we opted for an alternative approach
without the use of a tool and developed a new program.

import torch.nn as nn

import torch.nn.functional as F

class Model(nn.Module):

def __init__(self):

super().__init__()

self.conv1 = nn.Conv2d(1, 20, 5)

self.conv2 = nn.Conv2d(20, 20, 5)

def forward(self, x):

x = F.relu(self.conv1(x))

return F.relu(self.conv2(x))

Figure 4.2. PyTorch neural network module model.

From the given neural network module code, the model can be interpreted and the
differed layers of the architecture visualisation extracted. The extracted data from the PyTorch
neural network model, is structured as follows.

The __init__() creates the model including all its layers, such as convolutional layers,
and their distribution in a corresponding variable. These can be extracted using the PyTorch
framework. The method forward(self, x) is the forward-propagation and establishes the
connections between the layers. To reduce the amount of data and improve computational
efficiency, pooling functions divide the input volumes into smaller regions and select the
maximum value for each region as output. For example, the maxpooling, which can reduce
the dimensionality of imported data without loss, making it more efficient and easier to
process[GK20]. Non-linear activation functions enable the neural network to model complex
patterns and structures in the data, thereby enhancing the networks performance and ef-
fectiveness in solving complex problems. To extract functions not stored in any variable, a
TorchDynamo-based ONNX exporter can be used. This exporter transforms the functions

3https://onnx.ai/onnx/intro/concepts.html

16

https://onnx.ai/onnx/intro/concepts.html

4.5. Architectural Graph Visualisation

into an ONNX graph. An ONNX graph is a format used to describe the structure and model
of a neural network in a machine-readable format. It makes the provided layers and functions
from the PyTorch neural network module accessible as variables. That is necessary to extract
the pooling and the non-linear activation functions data from the forward function, because
these are not stored in a variable. The KGT version should be created from this model. A more
unconventional and unstable way is to read this textually from the forward function, which
was used in this prototype. This approach may encounter difficulties when dealing with more
complex neural networks. Therefore, it is necessary to use the standard specification of the
model and convert extractions clearly. It is important to avoid using invented specifications
with loops, external variables, and methods as they can make the process more complex and
less comprehensible.

17

Chapter 5

Implementation

In this chapter we discuss various implementation aspects of the PyTorchKGT tool in detail
and explain their implementation to illustrate the functionality of the components.

The program executes Python code to generate an automated visualisation in the form of
a KGT, based on a given PyTorch neural network model. Figure 4.1 illustrates the structural
setup, which is a Python code input that is transformed into a graph structure inside of
PyTorchKGT. This graph structure is designed to match the graph structure of KLighD. KLighD

can then work with this KGT.
The graph structure includes the specification and implementation of the KGraph class,

which forms the basic framework for the graphical representation of deep learning models.
The modified PyTorchViz implementation and functionality, which had to be adapted for
the further integration of their applications, is also discussed. Furthermore, a prototype is
presented to demonstrate how architecture graphs can be visualised.

5.1 KGraph Format

This project combines the visualisation of DNNs with KLighD, which is designed to create
effective visualisations. The class diagram of the KGraph model is presented in Figure 5.1.
The KGraph model consists of different parts, with the nodes KNode and the edges KEdge
being the basic elements of a KGraph. Nodes may contain ports for input and output.
These elements belong to KLabeledGraphElements, with labels KLabels used to attach text.
Additional customization to the KGraph can be made with KGraphElements. KGraphData
and KRendering allow for changes to colour, shape, and position. The project implementation
involved retaining the existing structure of the Java implementation. This approach allowed
to benefit from compatibility with KLighD, resulting in a consistent and well-structured
visualisation solution. To implement this structure, the existing class division was maintained
and the necessary parameters were divided into the individual classes. Specifically, the edges
were modeled as children of the node similar to the KNode. It is important to include this
information in the KGraphData class so that the data is consistent with the visualised data.

5.2 KGraph Specification

When implementing the Python data structure to store the DNN model, the same structure as
in KLighD was used. Examining their structure reveals similarities and highlights fundamental

19

5. Implementation

KGraphElement

0..*

KEdgeKNode KPort
1 0..*

0..*1

0..*

1 0..*

0..1

0..*

KLabeledGraphElementKLabel

0..* 0..*

KGraphData

KRendering

0..1

0..1

Figure 5.1. Class diagram of the KGraph structure from the KLighD implementation [Spi14].

differences in their design. Figure 5.1 illustrates a class diagram of the KGraph model view.
The KGraph is modeled with the shown classes.

KNode A KNode in the KGraph is modeled to contain further KNodes (children), KEdges
(target) and KPort connections (ports). Nodes are the core of the graph structure and enable
the visualisation of nested graphics and network topologies. It can also have a KLabel (label)
that shows names or other information of a KNode.

KEdge A KEdge is a representation of a connection between KNodes. They have a target
reference and an optional port reference. It can also have a label similar to the KNode.

KPort A KPort is a connection point on a KNode. It can be used as a source port or
a target port for KEdges. This helps to group KEdges at one point or to connect children
KNodes through a specific point.

KLabel A KLabel is added to the object to add infomation that is then shown at the
visualisation stage. It is always optional to give an object a KLabel but is availabe for children
of the KLabeledGraphElement.

20

5.2. KGraph Specification

Using KGraphData and KRendering more options to improve the KGraph exist. The
KNode has mutable options to extend the features used for improvement. The Figure 5.2
gives an overview of the classes.

KGraphData

KRendering

KStyle

<Interface>
KPlacementData

KContainerRendering

KRenderingLibrary

KChildAreaKRenderingRef

0..*

0..1

0..*0..11

0..*

Figure 5.2. KRendering class diagram from the KLighD implementation [Sch14].

Several classes extend KRendering for style and rendering options for modifications. The
Figure 5.3 and Figure 5.4 provide a more detailed view of the KContainerRendering and
KStyle classes, which contain the most prominent changes between KLighD and PyTorchKGT.
Another main difference is the KStyle on KRendering Layer, which is shown in Figure 5.7.
Below, the different sections in Figure 5.2, Figure 5.3 and Figure 5.4 are described.

KRenderingRef A KRenderingRef contains a reference to KRenderings in the KRender-
ingLibrary. However, the KRenderingRef only contains an ID, which is an indirect reference
to the corresponding rendering in the KRenderingLibrary.

KChildArea KChildArea rendering is used to specify where the children of the current
KGraph element should be placed. This implementation simply calls the function to generate
the view for each child element.

KContainerRendering KContainerRendering is never directly created, only child classes
of this class can be rendered.

KText KText is a textual element that allows for KRenderings to add descriptions.
KStyle KStyle is extended by classes that allow for the rendering of objects with additional

features, such as rotation or colouring. It is possible to style any KRendering.
KRotation KRotation is a subclass of KStyle that rotates the KRendering around an

anchor point, with the angle specified as a property.

21

5. Implementation

KStyle

KColoring KRotation

KBackground KForeground

KTextKShadow

KRendering

0..*

0..1

Figure 5.3. KLighD project KStyle class diagram.

KShadow KShadow is a subclass of KStyle that adds a shadow to the KRendering,
making it stand out more. The colour defined in the shadow is applied to each copy with
decreasing levels of opacity.

KColoring KColoring is a subclass of KStyle and contains the colours in the RGB colour
codes.

KBackground KBackground is a subclass of KStyle, it fills the KRendering without the
objects itself.

KForeground KForeground is a subclass of KStyle, it sets the colour from the text in a
KForeground style.

The subclasses of KStyle provide several options to regulate the amount of information
displayed in order to manage visual overload, these options are presented in the KGT. The
options can be applied to all objects that have been rendered, because it extends from
KRendering. As KLabels are used from KNodes, KEdges und KPorts, an additional KText
is typically not necessary. However, in certain circumstances, it may prove beneficial, and is
possible for every KRendering individually. Classes that are less relevant for this visualisation

22

5.2. KGraph Specification

KContainerRendering

KRoundedRectangle KPolyline

KPolygon KSpline

KImageKRectangle

KRendering

0..1

0..*

KEllipse KArc

KText KCustomRendering

Figure 5.4. The class diagram of the ContainerRendering.

which can also be added but have not yet been implemented, include KImage, KArc and
KCustomRendering. They are included in the KGraph implementation for completeness,
however, they will not be explained here or used in the PyTorchKGT visualisation.

KEllipse The KEllipse is a subclass of KContainerRendering and is a ellipse element. The
radii in x and y direction are calculated from the bounds’ width and height.

KRectangle The KRectangle is a subclass of KContainerRendering, it is a rectangle with
sharp corners.

KPolyline The KPolyline is a subclass of KContainerRendering, it is a line that connects
objects.

KPolygon The KPolygon is a subclass of KContainerRendering, it is a closed polyline.

KSpline The KSpline is a subclass of KContainerRendering and is a polyline with curves
that are smoothed.

KRoundedRectangle The KRoundedRectangle is a subclass of KContainerRendering, it
is a rectangle that has corners that are rounded.

As opinions differ as to whether colour differences or shape differences provide better
clarity, both options are offered here. Colours can also be used in different ways to cover
KBackground and KForeground.

23

5. Implementation

 CatBackward0 CatBackward0 AddmmBackward0
 AccumulateGrad

 dense2.bias
 (1)

 ViewBackward0 ReluBackward0 ViewBackward0 AddmmBackward0 AccumulateGrad
 dense1.bias
 (64)

TBackward0AccumulateGrad
 dense1.weight
 (64, 5)

 TBackward0 AccumulateGrad
 dense2.weight
 (1, 9216)

 AddmmBackward0
 AccumulateGrad

 outputs.0.bias
 (1)

 ViewBackward0 MulBackward0 ReluBackward0 ViewBackward0 AddmmBackward0
 AccumulateGrad

 dense.0.bias
 (64)

 ViewBackward0 CatBackward0 ViewBackward0 ReluBackward0 AddmmBackward0 AccumulateGrad
 carry_preds.0.bias
 (144)

 TBackward0 AccumulateGrad
carry_preds.0.weight
 (144, 1)

 TBackward0 AccumulateGrad
dense.0.weight
 (64, 6)

 TBackward0 AccumulateGrad
 outputs.0.weight
 (1, 9216)

 AddmmBackward0
 AccumulateGrad

 outputs.1.bias
 (1)

 ViewBackward0 MulBackward0 ReluBackward0 ViewBackward0 AddmmBackward0
 AccumulateGrad

 dense.1.bias
 (64)

 ViewBackward0 CatBackward0 ViewBackward0 ReluBackward0 AddmmBackward0 AccumulateGrad
 carry_preds.1.bias
 (144)

 TBackward0 AccumulateGrad
 carry_preds.1.weight
 (144, 2) TBackward0 AccumulateGrad

 dense.1.weight
 (64, 6)

 TBackward0 AccumulateGrad
 outputs.1.weight
 (1, 9216)

 (1, 3)

(a) LSTM start section.

 CatBackward0 CatBackward0 AddmmBackward0
 AccumulateGrad

 dense2.bias
 (1)

 ViewBackward0 ReluBackward0 ViewBackward0 AddmmBackward0 AccumulateGrad
 dense1.bias
 (64)

TBackward0AccumulateGrad
 dense1.weight
 (64, 5)

 TBackward0 AccumulateGrad
 dense2.weight
 (1, 9216)

 AddmmBackward0
 AccumulateGrad

 outputs.0.bias
 (1)

 ViewBackward0 MulBackward0 ReluBackward0 ViewBackward0 AddmmBackward0
 AccumulateGrad

 dense.0.bias
 (64)

 ViewBackward0 CatBackward0 ViewBackward0 ReluBackward0 AddmmBackward0 AccumulateGrad
 carry_preds.0.bias
 (144)

 TBackward0 AccumulateGrad
carry_preds.0.weight
 (144, 1)

 TBackward0 AccumulateGrad
dense.0.weight
 (64, 6)

 TBackward0 AccumulateGrad
 outputs.0.weight
 (1, 9216)

 AddmmBackward0
 AccumulateGrad

 outputs.1.bias
 (1)

 ViewBackward0 MulBackward0 ReluBackward0 ViewBackward0 AddmmBackward0
 AccumulateGrad

 dense.1.bias
 (64)

 ViewBackward0 CatBackward0 ViewBackward0 ReluBackward0 AddmmBackward0 AccumulateGrad
 carry_preds.1.bias
 (144)

 TBackward0 AccumulateGrad
 carry_preds.1.weight
 (144, 2) TBackward0 AccumulateGrad

 dense.1.weight
 (64, 6)

 TBackward0 AccumulateGrad
 outputs.1.weight
 (1, 9216)

 (1, 3)

(b) LSTM middle section

Figure 5.5. PyTorchKGT visualisation of an LSTM start and middle section.

5.3 PyTorchViz Node Definitions

Figure 5.5 shows a start and middle section of an LSTM with the different computational steps
as nodes with their specific names. These are used and adapted by PyTorchViz from the
PyTorch model. They are static and cannot be changed during the visualisation process. The
function of each node is explained below. The visualisations are showing a LSTM visualisation
form the PyTorchViz tool for the explanations. The Figure 5.6 shows the same visualisation as
the Figure 5.5, however with shown results.

The following terms are typically related to the implementation details of a deep neural
network framework, particularly when using automatic differentiation to compute gradients
during the training process. These are shown at the graph visualisation of a computational
graph with PyTorchViz.

AccumulateGrad This refers to the process of accumulating gradients computed during
backwards propagation. In deep learning frameworks, gradients are computed for each
parameter during backwards propagation and accumulated over multiple iterations before
applying them to update the model parameters.

TBackward This represents the backwards propagation through a transposition operation.

24

5.3. PyTorchViz Node Definitions

Transposition involves flipping the dimensions of a tensor, and during backwards propagation,
gradients are computed with respect to the input tensor based on the gradients of the output
tensor.

AddmmBackward This corresponds to the backwards propagation through an operation
that involves adding a matrix-matrix multiplication to another matrix. During backwards
propagation, gradients are computed with respect to the inputs of this operation, which may
include gradients with respect to the two input matrices and the bias vector of these.

CatBackward This relates to the backwards propagation through a concatenation operation.
During backwards propagation, gradients are computed and propagated back to the input
tensors that were concatenated together.

ReluBackward This represents the Rectified Linear Unit (ReLU) activation function during
the backwards propagation. Throughout the backwards propagation, gradients are computed
with respect to the inputs of the ReLU function based on the gradients of the outputs. There
are other activation functions that are used instead of the ReLU function. This is one of the
most commonly used activating features available.

ViewBackward This is an operation that is performed during backwards propagation,
which reshapes a tensor and views it differently. In backwards propagation, gradients are
calculated based on the gradients of the reshaped tensor and propagated back to the input
tensor.

MulBackward This represents backwards propagation through a multiplication operation.
In backwards propagation, gradients are computed with respect to the inputs of the multipli-
cation operation, based on the gradients of the output. The use of automatic differentiation to
compute gradients during backwards propagation and the updating of model parameters
during training.

Weight() These are central components in neural networks, representing the strength of
the connection between neurons. The dimensions given in parentheses are weight matrices.
The first value describes the size of the input feature vectors. The second value indicates
how many outputs or targets they are connected to. In the case of an LSTM, it indicates the
connection weights between the input data and the internal gates or cell states.

Mat() These are the values of tensor operation, also known as matrix-vector multiplication.
The dimensions are given as values in parentheses. They indicate the size of the tensors or
input/output. In an LSTM, this indicates the size of a particular input or output vector in the
network, where the first value describes the lot size, the number of instances, and the second
value represents the features or dimensions of the vector.

Result() This output represents the dimensions of the results (outputs) of certain oper-
ations within the network. The parentheses can contain different numbers of values and
therefore dimensions. The first value is the batch size of the input instance being computed.
The second value describes the number of hidden cells per layer at a given time. The third
value represents the level of the data structure, which denotes additional features, output
units, or the number of outputs per time step in a sequential process. Three dimensions

25

5. Implementation

 CatBackward0 CatBackward0

 AddmmBackward0

 mat1
 (1, 9216)

 mat2
 (9216, 1)

 AccumulateGrad
 dense2.bias
 (1)

 ViewBackward0

 ReluBackward0 result
 (1, 144, 64)

 ViewBackward0 AddmmBackward0

 mat1
 (144, 5)

 AccumulateGrad
 dense1.bias
 (64)

 TBackward0 AccumulateGrad
 dense1.weight
 (64, 5)

 TBackward0 AccumulateGrad
 dense2.weight
 (1, 9216)

 AddmmBackward0
 mat1
 (1, 9216)

 mat2
 (9216, 1)

 AccumulateGrad
 outputs.0.bias
 (1)

 ViewBackward0 MulBackward0

 other
 (1, 144, 64)

 ReluBackward0 result
 (1, 144, 64)

 ViewBackward0

 AddmmBackward0
 mat1
 (144, 6)

 mat2
 (6, 64)

 AccumulateGrad
 dense.0.bias
 (64)

 ViewBackward0 CatBackward0 ViewBackward0 ReluBackward0

 result
 (1, 144)

 AddmmBackward0

 mat1
 (1, 1)

 mat2
 (1, 144)

 AccumulateGrad
 carry_preds.0.bias
 (144)

 TBackward0 AccumulateGrad
 carry_preds.0.weight
 (144, 1)

 TBackward0 AccumulateGrad
dense.0.weight
 (64, 6)

 TBackward0 AccumulateGrad
 outputs.0.weight
 (1, 9216)

 AddmmBackward0
 mat1
 (1, 9216)

 mat2
 (9216, 1)

 AccumulateGrad
 outputs.1.bias
 (1)

 ViewBackward0 MulBackward0

 other
 (1, 144, 64)

 ReluBackward0 result
 (1, 144, 64)

 ViewBackward0 AddmmBackward0

 mat1
 (144, 6)

 mat2
 (6, 64)

 AccumulateGrad
 dense.1.bias
 (64)

 ViewBackward0 CatBackward0 ViewBackward0 ReluBackward0

 result
 (1, 144)

 AddmmBackward0

 mat1
 (1, 2)

 mat2
 (2, 144)

 AccumulateGrad
 carry_preds.1.bias
 (144)

 TBackward0 AccumulateGrad
 carry_preds.1.weight
 (144, 2)

 TBackward0 AccumulateGrad
 dense.1.weight
 (64, 6)

 TBackward0 AccumulateGrad
 outputs.1.weight
 (1, 9216)

 (1, 3)

(a) LSTM start section.

 CatBackward0 CatBackward0

 AddmmBackward0

 mat1
 (1, 9216)

 mat2
 (9216, 1)

 AccumulateGrad
 dense2.bias
 (1)

 ViewBackward0

 ReluBackward0 result
 (1, 144, 64)

 ViewBackward0 AddmmBackward0

 mat1
 (144, 5)

 AccumulateGrad
 dense1.bias
 (64)

 TBackward0 AccumulateGrad
 dense1.weight
 (64, 5)

 TBackward0 AccumulateGrad
 dense2.weight
 (1, 9216)

 AddmmBackward0
 mat1
 (1, 9216)

 mat2
 (9216, 1)

 AccumulateGrad
 outputs.0.bias
 (1)

 ViewBackward0 MulBackward0

 other
 (1, 144, 64)

 ReluBackward0 result
 (1, 144, 64)

 ViewBackward0

 AddmmBackward0
 mat1
 (144, 6)

 mat2
 (6, 64)

 AccumulateGrad
 dense.0.bias
 (64)

 ViewBackward0 CatBackward0 ViewBackward0 ReluBackward0

 result
 (1, 144)

 AddmmBackward0

 mat1
 (1, 1)

 mat2
 (1, 144)

 AccumulateGrad
 carry_preds.0.bias
 (144)

 TBackward0 AccumulateGrad
 carry_preds.0.weight
 (144, 1)

 TBackward0 AccumulateGrad
dense.0.weight
 (64, 6)

 TBackward0 AccumulateGrad
 outputs.0.weight
 (1, 9216)

 AddmmBackward0
 mat1
 (1, 9216)

 mat2
 (9216, 1)

 AccumulateGrad
 outputs.1.bias
 (1)

 ViewBackward0 MulBackward0

 other
 (1, 144, 64)

 ReluBackward0 result
 (1, 144, 64)

 ViewBackward0 AddmmBackward0

 mat1
 (144, 6)

 mat2
 (6, 64)

 AccumulateGrad
 dense.1.bias
 (64)

 ViewBackward0 CatBackward0 ViewBackward0 ReluBackward0

 result
 (1, 144)

 AddmmBackward0

 mat1
 (1, 2)

 mat2
 (2, 144)

 AccumulateGrad
 carry_preds.1.bias
 (144)

 TBackward0 AccumulateGrad
 carry_preds.1.weight
 (144, 2)

 TBackward0 AccumulateGrad
 dense.1.weight
 (64, 6)

 TBackward0 AccumulateGrad
 outputs.1.weight
 (1, 9216)

 (1, 3)

(b) LSTM middle section

Figure 5.6. PyTorchKGT visualisation of an LSTM start and middle section, with results shown.

26

5.4. KGraph Definition and Implementation

indicate a richer or more complex data structure and fewer dimensions indicate already
simplified or transformed values.

Bias() These are bias vectors that are added to adjust the output of each neuron before the
activation function is applied. The parentheses can contain one or more values. One value
indicates a one-dimensional quantity that determines the length of a bias vector. Two values
indicate tensors with rows and columns representing input and output dimensions. The
larger these values are, the more neurons are used.

5.4 KGraph Definition and Implementation

The KGraph implementation is based on the structure of KLighD, as was explained in Chapter 4.
The newly implemented Python datastructures are named after the KLighD classes. In the
following paragraphs the Python classes are described.

The KNode and KEdge classes are the main objects, as ports are not necessary in most
DNNs and are therefore not included in the implementation of this work. Elsewhere ports can
improve the visibility for visualisation with the control of the connection of edges to nodes.
As edges require a starting KNode and there are no ports available, the KEdges must also be
created within a node. This may vary for certain edges if ports were present. This KNode and
KEdge connections results in a tree structure.

KStyle

KColoring

KRotation

KBackground

KForeground

KText

KShadow

0..*

0..1

KGraphData

KRendering

<Interface>
KPlacementData

KContainerRendering

KRenderingLibrary

KChildAreaKRenderingRef

KColor

KIdentifier

0..*

0..*

0..1

1

0..*

0..1

Figure 5.7. The class diagram of the KRendering and the KStyle classes.

The structure of the KRenderings is replicated and can therefore be applied to any KNode.
KColor extends this by allowing the use of RGB colour codes, enabling the integration of
desired colours in the model. The KStyles are defined in the KGraphData area for a more

27

5. Implementation

compact view and retain their function, however they are not used in the current version of
this implementation. Similarly, the various KContainerRenderings are not yet used, with the
exception of the KRectangles.

The KStyle not only extends the KGraph, but also the KGraphContainerRendering. Figure
5.4 and 5.7 are showing specific areas that are explained, which are related to the shapes of
the borders of the KNodes and the KEdges. As previously mentioned, classes such as KImage,
KArc, and KCustomRendering, are less relevant and have not been implemented.

The current implementation is using KRectangles and KColor, but depending on prefer-
ence a different style could be used. The various extensions of KGraph objects do not include
KLighD interactions.

make_KGT The make_KGT function, to visualise a neural network, is called with a neural
network model as parameter. When using the make_KGT function to build a KGT, the KGT

file is accessed to create a KGraph element. Upon creating the first KNode, a KRectangle
is also generated. The necessary data records are transferred via lists. The getId function
and getData function can be used to identify KNodes that are not the current KNode and
to establish connections. This is necessary not only to adapt to the KIELER data structure
but also for the exporting functions. During the export functions, the references of multiple
KNodes are needed to write the KGT and the export function export_KGT is called in the
process. To accurately translate particular objects into KGT format, it is essential to stick to the
specified sequences. Additionally, due to the nested structure, a depth first search is necessary
to retrieve all connected parameters. The following steps will explain this process in detail.

export_KGT The function exports a description of the KGraph type by taking an outer
node as input. The KGraph type is represented as a string in the result, containing the
complete structure, including nodes, edges, and their respective properties and data. The
function iterates over the children of the outer node and then calls the export_node function
for each of these children to enable the entire structure to be exported.

export_node This function exports a detailed description of an outer KNode to the KGraph.
The KNodes comprehensive description includes, its different data and labels, as well as its
outgoing edges and child nodes. For each child node, the function recursively calls itself to
export the entire hierarchical structure.

export_data This function exports the description of the data to be added to the KGraph,
such as KSplines or KRectangles and their additional data.

export_styles This function exports styles in the KGraph. It iterates through the various
types of styles, including background colours, and records their properties, such as colour
and transparency. The export function is called by other functions in order to integrate the
style properties into the specific part of the overall export.

export_label This function exports the label description to the KGraph as a string. The
function only includes the label text as a string and is used by other functions to insert label
information.

export_edge This function exports the description of a KEdge in the KGraph. Both the
source and target nodes of the edge, as well as the data and labels associated with the edge

28

5.5. PyTorchKGT Implementation

are taken into account. The nodes can be identified and connected by their IDs. Like other
functions, a recursive export function call is used to export all edge information.

These functions are linked recursively and continue to call each other until the result is
returned. The KGraph is created by the outer KNode with the necessary properties and is
then exported. These properties include the default KGraph synthesis, node size, and node
label placement, providing the foundational configuration for the KGraph. The KNode begins
its recursive run by executing export_data, export_styles, export_label, and export_edge. Then,
export_data, export_styles, and export_label are called again for the KEdges before moving on
to the next KNode and repeating the process from the beginning until the entire structure
has been processed. Additional export functions can be added to the required position and
are inserted into the chain of calls with another function. Indentation is used to improve the
readability of the KGT file.

5.5 PyTorchKGT Implementation

To use the make_KGT method a PyTorch neural network module is necessary. The required
shapes are specified there, and if needed, changes can be made to the structure used in
the forward function. If a neural network module already exists, it can be used as the first
input. Additionally a dictionary with label translations can be passed in to rename certain
information contained inside the model. The attributes show_attrs, show_saved, and resultView
are Booleans that specify which visualisation to create. If none of the values are set to True, a
calculated graph is created without any outputs or values. Only the input instances will be
visible.

show_attrs displays the values contained in the nodes, including the mathematical values,
tensors, and whether a result has been generated for this KNode.

show_saved attaches the calculation results to the KNodes and outputs the corresponding
values. The different variants were explained in more detail in Section 5.3.

resultView provides a compressed view that only displays the nodes and their connections,
if they have a calculation result, hiding all other intermediate steps. These specifications can
be combined to meet individual requirements.

If the parameters are not passed, they will not be visualised. To create a graph, first, use
add_base_tensor(v) to add the parameters of the PyTorch neural network to the new KGraph.
Each KNode is represented by a KRectangle that outlines the information it contains. To
maintain the hierarchy, the graph is used as the parent for the start node. The other data in
the tensor is then appended if further information is available. Furthermore, the following
nodes are called using the function add_nodes(var.grad_fn, node, node). Before adding this
function to the graph, several operations must be considered. If a node already exists, an
edge is added to it.

The implementation starts for adding a node, with appending the node and giving a
unique identifier for naming purposes. To ensure comprehensibility, a KLabel containing the
tensors var_name is added. Additionally, an edge is included that points to the preceding node.

29

5. Implementation

This is essential because the tensors are listed in reverse order during backwards propagation,
and thus the direction of the links must be established from back to front. The links serve
as children and parents of the nodes, ensuring proper nesting. To avoid running the tensors
multiple times, they are introduced in seen = set(tuple()). Furthermore, the other instances
of the node are also checked and any existing results or other nodes are appended. The nested
instances are selected one by one, this is a depth first search, and added to their respective
positions. Additionally, certain nodes that are identifiable as input or output are highlighted
with corresponding colours to distinguish them from the rest and provide a clearer overview.

30

Chapter 6

Evaluation

This chapter evaluates the visualisation results of the PyTorchKGT tool. Section 6.1 presents
the tool’s evaluation and provides examples of computational graph visualisations. Section 6.2
discusses the survey approach taken and considers the systematic approach of the survey.
The evaluation of the survey is discussed in Section 6.2.1. The responses to the evaluation
survey from potential users of the tool were analysed. Section 6.2.2 describes the analysis
of the specific results and their implications for future extensions. The results are presented
objectively, and the success of the visualisation of computational graphs is evaluated. A
conclusion is drawn based on the findings.

6.1 PyTorchKGT Visualisation Results

The tool’s visualisation options are implemented in different areas, making them easier to
identify and modify. The tool consists of several cases that describe and cover the different
implementation areas, enhancing the structure and use of the PyTorchKGT tool. The use of
KLighD enables a range of visualisation possibilities, which can be viewed through the Visual
Studio Code extension. It is important to note that this improved text adheres to the desired
characteristics of objectivity, comprehensibility, logical structure and conventional structure.
As well as clear and objective language, format, formal register, structure, balance, precise
word choice, and grammatical correctness. These criteria are the basis for the creation of the
various visualisation display options. As explained in Chapter 5, the visualisation can be
changed by three parameters.

 CatBackward0 CatBackward0 AddmmBackward0
 AccumulateGrad

 dense2.bias
 (1)

 ViewBackward0 ReluBackward0 ViewBackward0 AddmmBackward0 AccumulateGrad
 dense1.bias
 (64)

TBackward0AccumulateGrad
 dense1.weight
 (64, 5)

 TBackward0 AccumulateGrad
 dense2.weight
 (1, 9216)

 AddmmBackward0
 AccumulateGrad

 outputs.0.bias
 (1)

 ViewBackward0 MulBackward0 ReluBackward0 ViewBackward0 AddmmBackward0
 AccumulateGrad

 dense.0.bias
 (64)

 ViewBackward0 CatBackward0 ViewBackward0 ReluBackward0 AddmmBackward0 AccumulateGrad
 carry_preds.0.bias
 (144)

 TBackward0 AccumulateGrad
carry_preds.0.weight
 (144, 1)

 TBackward0 AccumulateGrad
dense.0.weight
 (64, 6)

 TBackward0 AccumulateGrad
 outputs.0.weight
 (1, 9216)

 AddmmBackward0
 AccumulateGrad

 outputs.1.bias
 (1)

 ViewBackward0 MulBackward0 ReluBackward0 ViewBackward0 AddmmBackward0
 AccumulateGrad

 dense.1.bias
 (64)

 ViewBackward0 CatBackward0 ViewBackward0 ReluBackward0 AddmmBackward0 AccumulateGrad
 carry_preds.1.bias
 (144)

 TBackward0 AccumulateGrad
 carry_preds.1.weight
 (144, 2) TBackward0 AccumulateGrad

 dense.1.weight
 (64, 6)

 TBackward0 AccumulateGrad
 outputs.1.weight
 (1, 9216)

 (1, 3)

Figure 6.1. PyTorchKGT visualisation of an LSTM computational graph.

Figure 6.1 displays a view that does not use any of these parameters. In this view, all
hidden layer steps are shown in grey, the inputs in blue, and the final result in green. The text
flows smoothly from left to right, with the KEdge arrow directions providing clear guidance.
The use of an LSTM allows for a more intricate concatenation that spans the entire graph,
although this can make it more challenging to display due to its length. Unfortunately, the full
version of this graph is not legible due to the limited resolution, therefore the graph is shown
again in a compacted view in Figure 6.2 below. Intermediate results that are coloured orange

31

6. Evaluation

are displayed. The addition of values, tensors, and biases can be difficult to recognise and
read. To make this easier, the third parameter can be used to reduce the hidden layer elements
to those that provide a result, resulting in a clearer and easier-to-recognise visualisation. Both
the reduced and full views can utilise each of these parameters. The KLighD application’s web
view allows for scaling, eliminating the problem of visualisation being too large during active
use. However, for this type of work, the size might still be a problem.

 AddmmBackward0

 mat1
 (1, 9216)

 mat2
 (9216, 1)

 dense2.bias
 (1)

 ReluBackward0
 result
 (1, 144, 64)

 AddmmBackward0 mat1
 (144, 5)

 dense1.bias
 (64)

 dense1.weight
 (64, 5)

 dense2.weight
 (1, 9216)

 AddmmBackward0

 mat1
 (1, 9216)

 mat2
 (9216, 1) outputs.0.bias

 (1)

 MulBackward0
 other
 (1, 144, 64)

 ReluBackward0

 result
 (1, 144, 64)

 AddmmBackward0
 mat1
 (144, 6)

 mat2
 (6, 64)

 dense.0.bias
 (64)

 ReluBackward0 result
 (1, 144)

 AddmmBackward0

 mat1
 (1, 1)

 mat2
 (1, 144) carry_preds.0.bias

 (144)

 carry_preds.0.weight
 (144, 1)

 dense.0.weight
 (64, 6)

 outputs.0.weight
 (1, 9216)

 AddmmBackward0

 mat1
 (1, 9216)

 mat2
 (9216, 1) outputs.1.bias

 (1)

 MulBackward0
 other
 (1, 144, 64)

 ReluBackward0 result
 (1, 144, 64)

 AddmmBackward0
 mat1
 (144, 6)

mat2
 (6, 64)

dense.1.bias
 (64)

 ReluBackward0 result
 (1, 144)

 AddmmBackward0

 mat1
 (1, 2)

 mat2
 (2, 144)

 carry_preds.1.bias
 (144)

 carry_preds.1.weight
 (144, 2)

 dense.1.weight
 (64, 6)

 outputs.1.weight
 (1, 9216)

 (1, 3)

Figure 6.2. PyTorchKGT visualisation of an LSTM as a compact view and result view.

Figure 6.2 displays the compressed view of the results, with orange nodes representing
the tensor values from the backwards propagation calculation. This view is also available in
the full view, but it is not represented as an image due to its size. The arrow indicates that
the node is an output from the direction to the right.

For additional information, all parameters can be utilised, as shown in Figure 6.3. Each
result is derived from values at the node and displayed accordingly. This view is also available
in the extended format and is not hierarchically displayed. The AddmmBackward serves as a
connection point where multiple results are calculated, resulting in more vertices.

6.2 Survey

To investigate the relevance and opinions of users in this area, a survey was conducted.
The survey was conducted in the Intelligent Systems group of Kiel University to assess
the functionality and usability of the PyTorchKGT visualisations. This included questions
about the computational graph visualisations and their various results were presented. An
overview of the topic and other relevant information were explained and the opinions were
gathered. The participants examined the interface between the user and the tool that was

32

6.2. Survey

 AddmmBackward0

alpha : 1
beta : 1
mat1 : [saved tensor]
mat1_sym_sizes : (1, 9216)
mat1_sym_strides: (9216, 1)
mat2 : [saved tensor]
mat2_sym_sizes : (9216, 1)
mat2_sym_strides: (1, 9216)

 mat1
 (1, 9216)

 mat2
 (9216, 1)

 dense2.bias
 (1)

 ReluBackward0

result: [saved tensor]

 result
 (1, 144, 64)

 AddmmBackward0

alpha : 1
beta : 1
mat1 : [saved tensor]
mat1_sym_sizes : (144, 5)
mat1_sym_strides: ()
mat2 : None
mat2_sym_sizes : (5, 64)
mat2_sym_strides: (1, 5)

 mat1
 (144, 5)

 dense1.bias
 (64)

 dense1.weight
 (64, 5)

 dense2.weight
 (1, 9216)

 AddmmBackward0

alpha : 1
beta : 1
mat1 : [saved tensor]
mat1_sym_sizes : (1, 9216)
mat1_sym_strides: (9216, 1)
mat2 : [saved tensor]
mat2_sym_sizes : (9216, 1)
mat2_sym_strides: (1, 9216)

 mat1
 (1, 9216)

 mat2
 (9216, 1)

 outputs.0.bias
 (1)

 MulBackward0

other: [saved tensor]
self : None

 other
 (1, 144, 64)

 ReluBackward0

result: [saved tensor]

 result
 (1, 144, 64)

 AddmmBackward0

alpha : 1
beta : 1
mat1 : [saved tensor]
mat1_sym_sizes : (144, 6)
mat1_sym_strides: (6, 1)
mat2 : [saved tensor]
mat2_sym_sizes : (6, 64)
mat2_sym_strides: (1, 6)

 mat1
 (144, 6)

 mat2
 (6, 64)

 dense.0.bias
 (64)

 ReluBackward0

result: [saved tensor]

 result
 (1, 144)

 AddmmBackward0

alpha : 1
beta : 1
mat1 : [saved tensor]
mat1_sym_sizes : (1, 1)
mat1_sym_strides: (1, 1)
mat2 : [saved tensor]
mat2_sym_sizes : (1, 144)
mat2_sym_strides: (1, 1)

 mat1
 (1, 1)

 mat2
 (1, 144)

 carry_preds.0.bias
 (144)

 carry_preds.0.weight
 (144, 1)

 dense.0.weight
 (64, 6)

 outputs.0.weight
 (1, 9216)

 AddmmBackward0

alpha : 1
beta : 1
mat1 : [saved tensor]
mat1_sym_sizes : (1, 9216)
mat1_sym_strides: (9216, 1)
mat2 : [saved tensor]
mat2_sym_sizes : (9216, 1)
mat2_sym_strides: (1, 9216)

 mat1
 (1, 9216)

 mat2
 (9216, 1)

outputs.1.bias
 (1)

 MulBackward0

other: [saved tensor]
self : None

 other
 (1, 144, 64)

 ReluBackward0

result: [saved tensor]

 result
 (1, 144, 64)

 AddmmBackward0

alpha : 1
beta : 1
mat1 : [saved tensor]
mat1_sym_sizes : (144, 6)
mat1_sym_strides: (6, 1)
mat2 : [saved tensor]
mat2_sym_sizes : (6, 64)
mat2_sym_strides: (1, 6)

 mat1
 (144, 6)

 mat2
 (6, 64)

 dense.1.bias
 (64)

 ReluBackward0

result: [saved tensor]

 result
 (1, 144)

 AddmmBackward0

alpha : 1
beta : 1
mat1 : [saved tensor]
mat1_sym_sizes : (1, 2)
mat1_sym_strides: (2, 1)
mat2 : [saved tensor]
mat2_sym_sizes : (2, 144)
mat2_sym_strides: (1, 2)

 mat1
 (1, 2)

 mat2
 (2, 144)

 carry_preds.1.bias
 (144)

 carry_preds.1.weight
 (144, 2)

 dense.1.weight
 (64, 6)

 outputs.1.weight
 (1, 9216)

 (1, 3)

Figure 6.3. PyTorchKGT visualisation of an LSTM as a compact view and result view with additional
values.

presented. Relevant questions about the visualisation solutions were asked and the response
was provided, and an assessment of their overall impression was conducted, including both
the positive and the negative aspects. Other application requests that would extend the
range of applications were also included. In the following section, the evaluation of the
implementation and the possibility for further development is explained. Additionally, this
thesis considers the approach taken and its impact on the final results. The strengths and
weaknesses of the approach are analysed and discussed, along with its further impact on the
KIELER project.

6.2.1 Results

The negative feedback included both minor comments and major points. Readability is
impaired by the dark blue colour and black font used for the entries. There was also a desire
for interactive features, such as the ability to change the graph by clicking on it and to collapse
and expand data. There is also a need for large visualisations that can be displayed vertically
in different ways for publications.

Respondents noted that the colour scheme of blue, white, orange, and green was a good
choice as it is also suitable for colour blind people. The clear structure of the graphs and their
uniformity contributed to good readability, as calculations were communicated effectively.
Additionally, the variety of visualisation options were appreciated, as these were essential for
a clear overview. The use of Python models was also highlighted as a positive aspect, leading
to discussions about its potential applications.

33

6. Evaluation

Further comments on the future development of this visualisation led to development
possibilities that these participants would like to use in the future. The interactive Live
Monitoring visualisation could allow different ranges of values to be displayed in terms of
the time taken to compile the calculation, as well as highlighting borderline result values.
The different views could be displayed optionally or continuously if required. This would
be useful when searching for problems. Another option could be to visualise the active
training with the active values to make the current progress visible. The time aspect and the
boundary areas could then also be monitored live, and possible issues during training could
be displayed.

Overall, the respondents had a positive view of the visualisation tool and expressed
interest in using it if further developed. It was emphasised that the tool offers potential
when used for computational graph visualisations in publications and for the monitoring of
learning of the DNN models, while training as well as while developing models.

6.2.2 Discussion

Throughout this thesis, the principles of effective visualisation have been applied to enhance
visibility and facilitate understanding. This has been achieved through the use of colour
coding and common destiny. These techniques have improved the understanding of grouping.
The simple and clear presentation of the visualisations was also commended for its structure
and readability. The demand for a more interactive application also broadens the potential for
smaller visualisations of individual parts, which can utilise distinct forms for differentiation.
The positive feedback and quick understanding of the respondents shows that the implemen-
tation of the computational graph visualisation and its features are a positive aspect of the
PyTorchKGT tool compared to other tools that lack good visualisation options.

The abstract nature of computational graph visualisation can be preserved in the im-
plementation. The necessary features, as described in Section 4.4, have been implemented
and are usable for the PyTorchKGT visualisation tool. Further explanations regarding the
implementation and the PyTorchKGT tool are provided in the Section 6.1.

Additionally, the visualisation of DNN architectures has not yet been completed. Therefore,
a finished visualisation, as explained in Section 4.5, is not available. However, a prototype is
already available, which can be used to expand from a more advanced point.

Overall, this project is the first Python implementation to interact with the KIELER project.
The ability to continue to develop these structures allows future projects to create additional
visualisations using KLighD. This combination with the PyTorchKGT tool and the use of the
KLighD framework also allows for further development as it is a framework that is actively
used and developed.

The evaluation was mostly positive, while the negative points required further develop-
ment, which could not be realised due to the scope of this thesis. Despite the lack of higher
level applications, the visualisation of the computational graph was visualised well. Therefore,
it can be concluded that on the basis of the limited number of interviews and the evaluation
of the visualisations, it can be concluded that the visualisation has been successful.

34

Chapter 7

Conclusion

We have presented a tool that automatically extracts computational graphs from PyTorch
models and visualises them by converting them into KGraphs for use with KLighD. The
shapes of the different backwards propagation results can be viewed with the different
visualisation options, which the graph is providing. Changing an existing tool and connecting
it to the KGT structure to improve the visualisation shows an approach to computational
graph visualisation and the extension of the KGT structure into the Python area. This Python
tool is useful in the field of machine learning as confirmed by the evaluation group. Although
the primary use of the tool is for learning purposes, further development could improve the
adaptability of the tool for use in other applications as well. In addition, the possibility of
further visualisations is provided by the open structure. The KGT structure provides a useful
way of visualising DNNs and allows individual customisation through manually adjustable
variables. That improves the quality of the visualisation of shown tensors and values. The
simplicity of the input makes it user-friendly, and the improvements in seeing optional
different values are improving the usability even more. In order to improve the tool, we need
to focus on its potential applications. However, further research is needed to standardise and
classify specifications for a functional visualisation form in this area.

The project utilised an effective visualisation form, but the main focus is on visualising
the hidden layer area by showing data flow of computational calculations and their values.

Future Work

The PyTorchKGT tool could output improved and additional visualisation variants after
further improvements and extensions. The tool can visualise not only computational graphs
but also architectural visualisation and other visualisation options thanks to the currently
unutilised KGT implementation and the help of KLighD. Additional options for customisation
are available through the use of colour gradients, shadow rotation, and other features. The
computational graph can also be enhanced by incorporating groupings. As the Python
KGraph of this thesis shares a similar structure with the KGraph specification of the KIELER
project, many of the visualisation options used in that project can be implemented in this tool,
providing a wide range of possibilities for customisation and adaptation. The visualisation of
the architecture could be improved by extracting ReLU and maxpool differently. This can be
achieved via ONNX exporter as mentioned in Section 4.5.

35

Bibliography

[AAO20] E. O. Aliyu, A. O. Adetunmbi, and B. A. Ojokoh. “Intermediate representa-
tion using graph visualization software”. In: Journal of Software Engineering and
Applications 13.05 (2020), pp. 77–90. issn: 1945-3116. doi: 10.4236/jsea.2020.135006.

[AOM17] Ricardo de A. Araújo, Adriano L.I. Oliveira, and Silvio Meira. “A morphological
neural network for binary classification problems”. In: Engineering Applications
of Artificial Intelligence 65 (2017), pp. 12–28. issn: 0952-1976. doi: 10.1016/j.engappai.

2017.07.014. url: https://www.sciencedirect.com/science/article/pii/S0952197617301628.

[BBD+19] Carla Binucci, Ulrik Brandes, Tim Dwyer, Martin Gronemann, Reinhard von
Hanxleden, Marc J. van Kreveld, Petra Mutzel, Marcus Schaefer, Falk Schreiber,
and Bettina Speckmann. “10 reasons to get interested in graph drawing”. In:
Computing and Software Science - State of the Art and Perspectives. Ed. by Bernhard
Steffen and Gerhard J. Woeginger. Vol. 10000. Lecture Notes in Computer
Science. Springer, 2019, pp. 85–104. doi: 10.1007/978- 3- 319- 91908- 9_6. url: https:

//doi.org/10.1007/978-3-319-91908-9%5C_6.

[BL09] Enrico Bertini and Denis Lalanne. “Surveying the complementary role of auto-
matic data analysis and visualization in knowledge discovery”. In: Proceedings
of the ACM SIGKDD Workshop on Visual Analytics and Knowledge Discovery: Inte-
grating Automated Analysis with Interactive Exploration // VAKD ’09. Ed. by Kai
Puolamäki. VAKD ’09. New York, NY, USA: Association for Computing Machin-
ery and ACM Press, 2009, pp. 12–20. isbn: 9781605586700. doi: 10.1145/1562849.1562851.

[BL10] Enrico Bertini and Denis Lalanne. “Investigating and reflecting on the inte-
gration of automatic data analysis and visualization in knowledge discov-
ery”. In: SIGKDD Explor. Newsl. 11.2 (2010), pp. 9–18. issn: 1931-0145. doi:
10.1145/1809400.1809404.

[Bor19] Yannic Borgfeld. “Tool support for layout algorithm development with elk”.
In: (2019). url: https://rtsys.informatik.uni- kiel.de/~biblio/downloads/theses/yab-

bt.pdf?utm_source=textcortex&utm_medium=zenochat.

[BVB+11] Michael Burch, Corinna Vehlow, Fabian Beck, Stephan Diehl, and Daniel Weiskopf.
“Parallel edge splatting for scalable dynamic graph visualization”. In: IEEE Trans-
actions on Visualization and Computer Graphics 17.12 (2011), pp. 2344–2353. doi:
10.1109/TVCG.2011.226.

[Cho22] Francois Chollet. Deep learning with python. Second edition. Shelter Island: Man-
ning Publications, 2022. isbn: 9781617296864.

37

https://doi.org/10.4236/jsea.2020.135006
https://doi.org/10.1016/j.engappai.2017.07.014
https://doi.org/10.1016/j.engappai.2017.07.014
https://www.sciencedirect.com/science/article/pii/S0952197617301628
https://doi.org/10.1007/978-3-319-91908-9_6
https://doi.org/10.1007/978-3-319-91908-9%5C_6
https://doi.org/10.1007/978-3-319-91908-9%5C_6
https://doi.org/10.1145/1562849.1562851
https://doi.org/10.1145/1809400.1809404
https://rtsys.informatik.uni-kiel.de/~biblio/downloads/theses/yab-bt.pdf?utm_source=textcortex&utm_medium=zenochat
https://rtsys.informatik.uni-kiel.de/~biblio/downloads/theses/yab-bt.pdf?utm_source=textcortex&utm_medium=zenochat
https://doi.org/10.1109/TVCG.2011.226

Bibliography

[CM10] Michel Chein and Marie-Laure Mugnier. Graph-based knowledge representation:
computational foundations of conceptual graphs. Advanced Information and Knowl-
edge Processing. London: Springer-Verlag, 2010. isbn: 978-1-84800286-9.

[CXS+20] Yiran Chen, Yuan Xie, Linghao Song, Fan Chen, and Tianqi Tang. “A sur-
vey of accelerator architectures for deep neural networks”. In: Engineering
6.3 (2020), pp. 264–274. issn: 2095-8099. doi: 10.1016/j.eng.2020.01.007. url: https:

//www.sciencedirect.com/science/article/pii/S2095809919306356.

[DHS+23] Sören Domrös, Reinhard von Hanxleden, Miro Spönemann, Ulf Rüegg, and
Christoph Daniel Schulze. The eclipse layout kernel. 2023.

[DRS+15] C. Dunne, S. I. Ross, B. Shneiderman, and M. Martino. Readability metric feedback
for aiding node-link visualization designers | ibm journals & magazine | ieee xplore
// readability metric feedback for aiding node-link visualization designers. 2015. doi:
10.1147/JRD.2015.2411412.

[EGK+02] John Ellson, Emden Gansner, Lefteris Koutsofios, Stephen C. North, and Gordon
Woodhull. “Graphviz— open source graph drawing tools”. In: Graph Drawing.
Ed. by Petra Mutzel, Michael Jünger, and Sebastian Leipert. Berlin, Heidelberg:
Springer Berlin Heidelberg, 2002, pp. 483–484. isbn: 978-3-540-45848-7.

[Fer18] Phil Ferriere. Hiddenlayer/hiddenlayer/transforms.py at master · waleedka/hiddenlayer.
2018. url: https://github.com/waleedka/hiddenlayer.

[FR21] Stephen Fitz and Peter Romero. “Neural networks and deep learning: a paradigm
shift in information processing, machine learning, and artificial intelligence”. In:
The Palgrave Handbook of Technological Finance. Ed. by Raghavendra. Rau, Robert.
Wardrop, and Luigi. Zingales. Cham: Springer International Publishing and
Imprint: Palgrave Macmillan, 2021, pp. 589–654. isbn: 978-3-030-65117-6. doi:
10.1007/978-3-030-65117-6{\textunderscore}22.

[Gan11] Emden Gansner. “Drawing graphs with graphviz”. In: (2011). url: https://www.
ammd.ch/1.pdf?utm_source=textcortex&utm_medium=zenochat.

[GBC16] Ian Goodfellow, Yoshua Bengio, and Aaron Courville. Deep learning. http://www.
deeplearningbook.org. MIT Press, 2016.

[Git24] GitHub. Github - szagoruyko/pytorchviz: a small package to create visualizations of
pytorch execution graphs. 2024. url: https://github.com/szagoruyko/pytorchviz.

[GK20] Hossein Gholamalinezhad and Hossein Khosravi. Pooling methods in deep neural
networks, a review. 2020. arXiv: 2009.07485 [cs.CV].

[GN00] Emden R. Gansner and Stephen C. North. “An open graph visualization system
and its applications to software engineering”. In: Software: Practice and Experience
30.11 (2000), pp. 1203–1233. issn: 0038-0644. doi: 10.1002/1097-024X(200009)30:11{\textless}

1203::AID-SPE338{\textgreater}3.0.CO;2-N.

38

https://doi.org/10.1016/j.eng.2020.01.007
https://www.sciencedirect.com/science/article/pii/S2095809919306356
https://www.sciencedirect.com/science/article/pii/S2095809919306356
https://doi.org/10.1147/JRD.2015.2411412
https://github.com/waleedka/hiddenlayer
https://doi.org/10.1007/978-3-030-65117-6{\textunderscore }22
https://www.ammd.ch/1.pdf?utm_source=textcortex&utm_medium=zenochat
https://www.ammd.ch/1.pdf?utm_source=textcortex&utm_medium=zenochat
http://www.deeplearningbook.org
http://www.deeplearningbook.org
https://github.com/szagoruyko/pytorchviz
https://arxiv.org/abs/2009.07485
https://doi.org/10.1002/1097-024X(200009)30:11{\textless}1203::AID-SPE338{\textgreater}3.0.CO;2-N
https://doi.org/10.1002/1097-024X(200009)30:11{\textless}1203::AID-SPE338{\textgreater}3.0.CO;2-N

Bibliography

[Hay20] Yoichi Hayashi. “New unified insights on deep learning in radiological and
pathological images: beyond quantitative performances to qualitative interpreta-
tion”. In: Informatics in Medicine Unlocked 19.6088 (2020), p. 100329. issn: 23529148.
doi: 10.1016/j.imu.2020.100329.

[Hee19] Jeffrey Heer. “Agency plus automation: designing artificial intelligence into
interactive systems”. In: Proceedings of the National Academy of Sciences 116.6
(2019), pp. 1844–1850. doi: 10.1073/pnas.1807184115. eprint: https://www.pnas.org/doi/pdf/
10.1073/pnas.1807184115. url: https://www.pnas.org/doi/abs/10.1073/pnas.1807184115.

[HSW89] Kurt Hornik, Maxwell Stinchcombe, and Halbert White. “Multilayer feedforward
networks are universal approximators”. In: Neural Networks 2.5 (1989), pp. 359–
366. issn: 0893-6080. doi: https://doi.org/10.1016/0893-6080(89)90020-8. url: https://www.

sciencedirect.com/science/article/pii/0893608089900208.

[Kas21] Maximilian Kasperowski. “A top-down approach on automatic graph visualiza-
tion”. In: (2021). url: https://rtsys.informatik.uni-kiel.de/~biblio/downloads/theses/

mka-mt.pdf?utm_source=textcortex&utm_medium=zenochat.

[KBH+24] Aymen Rayane Khouas, Mohamed Reda Bouadjenek, Hakim Hacid, and Sunil
Aryal. Training machine learning models at the edge: a survey. 2024. arXiv: 2403.02619

[cs.LG].

[KH23] Maximilian Kasperowski and Reinhard von Hanxleden. “Top-down drawings
of compound graphs”. In: arxiv (12.2023). url: https : / / rtsys . informatik . uni -

kiel.de/~biblio/downloads/papers/arxiv23b.pdf?utm_source=textcortex&utm_medium=zenochat.

[KNP+] Hartmut Klauck, Danupon Nanongkai, Gopal Pandurangan, and Peter Robinson.
“Distributed computation of large-scale graph problems”. In: Proceedings of the
2015 Annual ACM-SIAM Symposium on Discrete Algorithms (SODA), pp. 391–410.
doi: 10.1137/1.9781611973730.28.

[KW01] Michael Kaufmann and Dorothea Wagner, eds. Drawing graphs: methods and
model. Vol. 2025. Lecture notes in computer science. Berlin: Springer, 2001. isbn:
3-540-42062-2.

[LLT23] Shaoxuan Lai, Wanna Luan, and Jun Tao. “Explore your network in minutes:
a rapid prototyping toolkit for understanding neural networks with visual
analytics”. In: IEEE Transactions on Visualization and Computer Graphics 14.3 (2023),
pp. 1–11. issn: 1077-2626. doi: 10.1109/TVCG.2023.3326575.

[McG15] Kevin McGurgan. “Data-ink ratio and task complexity in graph comprehension.”
In: Rochester Institute of Technology (2015).

[NHP+18] Shaoliang Nie, Christopher Healey, Kalpesh Padia, Samuel Leeman-Munk,
Jordan Benson, Dave Caira, Saratendu Sethi, and Ravi Devarajan. “Visualizing
deep neural networks for text analytics”. In: IEEE, 2018. doi: 10.1109/pacificvis.2018.

00031.

39

https://doi.org/10.1016/j.imu.2020.100329
https://doi.org/10.1073/pnas.1807184115
https://www.pnas.org/doi/pdf/10.1073/pnas.1807184115
https://www.pnas.org/doi/pdf/10.1073/pnas.1807184115
https://www.pnas.org/doi/abs/10.1073/pnas.1807184115
https://doi.org/https://doi.org/10.1016/0893-6080(89)90020-8
https://www.sciencedirect.com/science/article/pii/0893608089900208
https://www.sciencedirect.com/science/article/pii/0893608089900208
https://rtsys.informatik.uni-kiel.de/~biblio/downloads/theses/mka-mt.pdf?utm_source=textcortex&utm_medium=zenochat
https://rtsys.informatik.uni-kiel.de/~biblio/downloads/theses/mka-mt.pdf?utm_source=textcortex&utm_medium=zenochat
https://arxiv.org/abs/2403.02619
https://arxiv.org/abs/2403.02619
https://rtsys.informatik.uni-kiel.de/~biblio/downloads/papers/arxiv23b.pdf?utm_source=textcortex&utm_medium=zenochat
https://rtsys.informatik.uni-kiel.de/~biblio/downloads/papers/arxiv23b.pdf?utm_source=textcortex&utm_medium=zenochat
https://doi.org/10.1137/1.9781611973730.28
https://doi.org/10.1109/TVCG.2023.3326575
https://doi.org/10.1109/pacificvis.2018.00031
https://doi.org/10.1109/pacificvis.2018.00031

Bibliography

[Pet19] Jette Petzold. “Intentional layout in sprotty diagrams: defining user interaction”.
In: (2019). url: https://rtsys.informatik.uni- kiel.de/~biblio/downloads/theses/jet-

bt.pdf?utm_source=textcortex&utm_medium=zenochat.

[PWW+24] Rusheng Pan, Zhiyong Wang, Yating Wei, Han Gao, Gongchang Ou, Caleb Chen
Cao, Jingli Xu, Tong Xu, and Wei Chen. “Towards efficient visual simplification
of computational graphs in deep neural networks”. In: IEEE Transactions on
Visualization and Computer Graphics (2024), pp. 1–14. issn: 1077-2626. doi: 10.1109/

TVCG.2022.3230832.

[Ren18] Niklas Rentz. “Moving transient views from eclipse to web technologies”. In:
(2018). url: https://rtsys.informatik.uni-kiel.de/~biblio/downloads/theses/nir-mt.pdf?

utm_source=textcortex&utm_medium=zenochat.

[RR96] G. Ramalingam and Thomas Reps. “On the computational complexity of dy-
namic graph problems”. In: Theoretical Computer Science 158.1 (1996), pp. 233–277.
issn: 0304-3975. doi: 10.1016/0304- 3975(95)00079- 8. url: https://www.sciencedirect.com/

science/article/pii/0304397595000798.

[SA23] Thirumurugan Shanmugam and Shweta A. Bansal, eds. Cutting-edge technologies
in innovations in computer science and engineering. San International Scientific
Publications, 2023. isbn: 9788196384975. doi: 10.59646/csebook/004.

[SAV+20] Eli Stevens, Luca Antiga, Thomas Viehmann, and Soumith Chintala. Deep learn-
ing with pytorch. Shelter Island (New York): Manning, 2020. isbn: 9781617295263.

[SBM+17] Wojciech Samek, Alexander Binder, Gregoire Montavon, Sebastian Lapuschkin,
and Klaus-Robert Muller. “Evaluating the visualization of what a deep neural
network has learned”. In: IEEE Transactions on Neural Networks and Learning
Systems 28.11 (2017), pp. 2660–2673. doi: 10.1109/TNNLS.2016.2599820.

[Sch14] Christian Schneider. Kgraph meta model - kieler project - confluence. Ed. by Real-
Time and Embedded Systems. 2014. url: https://rtsys.informatik.uni- kiel.de/

confluence/display/KIELER/The+KRendering+Notation+Model.

[Sch16] Alan Schelten. “Hierarchy-aware layer sweep”. In: (2016). url: https://rtsys.

informatik.uni-kiel.de/~biblio/downloads/theses/alan-mt.pdf?utm_source=textcortex&utm_

medium=zenochat.

[SCW+16] Shizhao Sun, Wei Chen, Liwei Wang, Xiaoguang Liu, and Tie-Yan Liu. “On the
depth of deep neural networks: a theoretical view”. In: Proceedings of the AAAI
Conference on Artificial Intelligence 30.1 (2016). issn: 2374-3468. doi: 10.1609/aaai.v30i1.

10243.

[Spi14] Michel Spils. Kgraph meta model - kieler project - confluence. Ed. by Real-Time
and Embedded Systems. 2014. url: https://rtsys.informatik.uni-kiel.de/confluence/
display/KIELER/KGraph+Meta+Model.

40

https://rtsys.informatik.uni-kiel.de/~biblio/downloads/theses/jet-bt.pdf?utm_source=textcortex&utm_medium=zenochat
https://rtsys.informatik.uni-kiel.de/~biblio/downloads/theses/jet-bt.pdf?utm_source=textcortex&utm_medium=zenochat
https://doi.org/10.1109/TVCG.2022.3230832
https://doi.org/10.1109/TVCG.2022.3230832
https://rtsys.informatik.uni-kiel.de/~biblio/downloads/theses/nir-mt.pdf?utm_source=textcortex&utm_medium=zenochat
https://rtsys.informatik.uni-kiel.de/~biblio/downloads/theses/nir-mt.pdf?utm_source=textcortex&utm_medium=zenochat
https://doi.org/10.1016/0304-3975(95)00079-8
https://www.sciencedirect.com/science/article/pii/0304397595000798
https://www.sciencedirect.com/science/article/pii/0304397595000798
https://doi.org/10.59646/csebook/004
https://doi.org/10.1109/TNNLS.2016.2599820
https://rtsys.informatik.uni-kiel.de/confluence/display/KIELER/The+KRendering+Notation+Model
https://rtsys.informatik.uni-kiel.de/confluence/display/KIELER/The+KRendering+Notation+Model
https://rtsys.informatik.uni-kiel.de/~biblio/downloads/theses/alan-mt.pdf?utm_source=textcortex&utm_medium=zenochat
https://rtsys.informatik.uni-kiel.de/~biblio/downloads/theses/alan-mt.pdf?utm_source=textcortex&utm_medium=zenochat
https://rtsys.informatik.uni-kiel.de/~biblio/downloads/theses/alan-mt.pdf?utm_source=textcortex&utm_medium=zenochat
https://doi.org/10.1609/aaai.v30i1.10243
https://doi.org/10.1609/aaai.v30i1.10243
https://rtsys.informatik.uni-kiel.de/confluence/display/KIELER/KGraph+Meta+Model
https://rtsys.informatik.uni-kiel.de/confluence/display/KIELER/KGraph+Meta+Model

Bibliography

[SSH13] Christian Schneider, Miro Spönemann, and Reinhard von Hanxleden. “Just
model! — putting automatic synthesis of node-link-diagrams into practice”. In:
2013 IEEE Symposium on Visual Languages and Human Centric Computing. Sept.
2013, pp. 75–82. doi: 10.1109/VLHCC.2013.6645246.

[SSR20] Mohit Sewak, Sanjay K. Sahay, and Hemant Rathore. “An overview of deep
learning architecture of deep neural networks and autoencoders”. In: Journal of
Computational and Theoretical Nanoscience 17.1 (2020), pp. 182–188. issn: 1546-1955.
doi: 10.1166/jctn.2020.8648.

[SWH18] Christoph Daniel Schulze, Nis Boerge Wechselberg, and Reinhard von Hanxle-
den. “Edge label placement in layered graph drawing”. In: (2018). url: https:

//rtsys.informatik.uni- kiel.de/~biblio/downloads/papers/report- 1802.pdf?utm_source=

textcortex&utm_medium=zenochat.

[VSS+19] Ivan Vasilev, Daniel Slater, Gianmario Spacagna, Peter Roelants, and Valentino
Zocca. Python deep learning - second edition. 2nd edition. Packt Publishing, 2019.
isbn: 978-1-78934-846-0.

[YCN+15] Jason Yosinski, Jeff Clune, Anh Nguyen, Thomas Fuchs, and Hod Lipson. Under-
standing neural networks through deep visualization. 2015.

[YWC20] Shuoheng Yang, Yuxin Wang, and Xiaowen Chu. A survey of deep learning tech-
niques for neural machine translation. 2020.

[Zey24] Hu Zeyuan. Draw a neural network through graphviz. 2024. url: https://zhu45.org/
posts/2017/May/25/draw-a-neural-network-through-graphviz/.

[Zi24] Zi. Künstliche intelligenz in der medizin | zentralinstitut für die kassenärztliche
versorgung. Ed. by Zentralinstitut kassenärtzliche Versorgung. 2024. url: https:
//www.zi.de/themen/it-und-data-science/kuenstliche-intelligenz-in-der-medizin.

[ZTS+23] Marc-André Zöller, Waldemar Titov, Thomas Schlegel, and Marco F. Huber.
“Xautoml: a visual analytics tool for understanding and validating automated
machine learning”. In: ACM Transactions on Interactive Intelligent Systems 13.4
(2023), pp. 1–39. issn: 2160-6455. doi: 10.1145/3625240.

41

https://doi.org/10.1109/VLHCC.2013.6645246
https://doi.org/10.1166/jctn.2020.8648
https://rtsys.informatik.uni-kiel.de/~biblio/downloads/papers/report-1802.pdf?utm_source=textcortex&utm_medium=zenochat
https://rtsys.informatik.uni-kiel.de/~biblio/downloads/papers/report-1802.pdf?utm_source=textcortex&utm_medium=zenochat
https://rtsys.informatik.uni-kiel.de/~biblio/downloads/papers/report-1802.pdf?utm_source=textcortex&utm_medium=zenochat
https://zhu45.org/posts/2017/May/25/draw-a-neural-network-through-graphviz/
https://zhu45.org/posts/2017/May/25/draw-a-neural-network-through-graphviz/
https://www.zi.de/themen/it-und-data-science/kuenstliche-intelligenz-in-der-medizin
https://www.zi.de/themen/it-und-data-science/kuenstliche-intelligenz-in-der-medizin
https://doi.org/10.1145/3625240

	Introduction
	Motivation
	Contributions

	Foundations
	Machine Learning Architectures
	Deep Neural Networks
	Training and Computational Graphs
	Graphs and Automatic Graph Drawing
	KLighD and ELK from the KIELER Project

	Related Work
	Automated Visualisation of DNNs
	Existing DNN Visualisation Tools
	GraphViz
	PyTorchViz

	Deep Neural Network Visualisation Tool PyTorchKGT
	Visualisation tool architecture
	Design Choice for DNN Visualisations
	Determination of PyTorchViz as Tool of Choice
	Computational Graph Visualisation
	Architectural Graph Visualisation

	Implementation
	KGraph Format
	KGraph Specification
	PyTorchViz Node Definitions
	KGraph Definition and Implementation
	PyTorchKGT Implementation

	Evaluation
	PyTorchKGT Visualisation Results
	Survey
	Results
	Discussion

	Conclusion
	Bibliography

