A Top-Down Approach on
Automatic Graph Visualization

Maximilian Kasperowski

Master’s Thesis
October 2021

Prof. Dr. Reinhard von Hanxleden
Real-Time and Embedded Systems Group
Department of Computer Science
Kiel University

Advised by
M. Sc. Niklas Rentz

Selbststandigkeitserklirung

Hiermit erkldre ich, dass ich die vorliegende Arbeit selbststandig verfasst und keine anderen
als die angegebenen Quellen und Hilfsmittel verwendet habe.

Kiel,

iii

Abstract

Automatic visualization of hierarchical graphs is a complex process involving several distinct
phases. A common approach is to perform the entire process in an all-in-one bottom-up
approach. This is in part because a typical requirement is that the sizes of innermost elements
should determine the sizes of the outer elements, in order to allow drawings that are readable
on a printed medium.

The KIELER and KEITH projects from Kiel University contain such a bottom-up graph
visualization framework to generate diagrams for specific languages. For very large diagrams
the existing process does not scale well, motivating the search for alternative approaches to
graph visualization.

Top-down graph visualization is one such alternative idea, which promises better scala-
bility and responsiveness for interacting with large diagrams by moving from a monolithic
process to a more incremental approach. This allows the user to view parts of the diagram
before everything has been loaded. Furthermore, top-down graph visualization lets us re-
think some of the requirements of the diagrams produced by automatic layout. In particular,
top-down graph layout can help to produce diagrams that are more suitable for viewing on a
zoomable computer screen.

This thesis approaches the topic of top-down graph visualization in two aspects. We
discuss the necessary architectural changes and apply the iterative concept to server-client
communication of KEITH. We also present a concept for top-down layout of graphs. The ideas
presented are implemented for KIELER and KEITH, but serve as a more general guide to how
top-down visualization can be achieved.

Acknowledgements

First of all, I would like to thank Prof. Dr. Reinhard von Hanxleden as head of the Real-Time
and Embedded Systems Group for providing me with the opportunity to work on this
interesting and innovative topic, and for the helpful and constructive feedback he gave to me.

I would also like to thank Niklas Rentz, who proposed the initial idea of top-down graph
visualization, for supervising my thesis and helping me prioritize the right areas. He was
always available for quick discussion when I needed to decide the next steps.

I would also like to thank the whole working group for providing a welcoming and
friendly virtual office environment, especially considering the challenges related to the
ongoing pandemic.

A special thanks goes to Soren Domros for helping me get started with the development
in ELK, which ended up becoming an important part of my thesis.

Contents

1 Introduction 1
1.1 Outline e e e e 2
1.2 Background 2

121 Graphs 3
1.2.2 Automatic Graph Layout 4
123 Aesthetics e 4
124 MentalMap 5
1.2.5 Principles of Responsive Web Design 6
12.6 Layoutin KIELERand KEITH 7
1.3 A Top-Down Perspective on Graph Visualization 8
1.4 Related Work e 9
1.4.1 Visualization of Very Large Graphs 9
14.2 Online Dynamic Graph Drawing 9
1.4.3 Temporal Granularity in Dynamic Graph Visualization. 10
144 Usability Measurement 10

2 Top-Down Architecture 11

2.1 Current KEITH Architecture 11
211 WebClient. e e 11
212 Language Server e 13
2.1.3 Kieler Lightweight Diagrams 13
214 Eclipse LayoutKernel, 14

2.2 [Iterative Architecture Concept 15

2.3 Bottleneck Identification 15
231 Benchmark Tests 15
232 Timing Analysis 17

2.4 Top-Down Approach for Client-Server Communication 18
241 On-Demand SGraph Construction 18
2.4.2 Incremental Client-Server Communication 19
243 C(lient-Side Request Ordering 22

2.5 Performance Analysis L oL 24
251 InitialRequest. 24
252 PieceRequests o 24
2.5.3 Overview of Performance Impacts 24

vii

Contents

3 Top-Down Layout

3.1 Hierarchical Graph Layoutin ELK
311 LayoutofSCCharts.
3.2 Top-Down Layout Concept
321 Top-Down Layout Engine
322 Hybrid Layout
3.3 Configuration Options
33.1 LayoutEngine.
332 ConstraintType
3.3.3 Dynamic Constraints
3.3.4 Automatic Layout Direction
3.4 Top-Down Layout Evaluation
3.41 Performance Impacts.
3.4.2 Aesthetics Comparison
3.4.3 Comparison of a Navigational Task
4 Discussion
41 SummaryofResults
411 Top-Down Architecture
412 Top-DownLayout
42 Top-Down Graph Visualization
421 Integration of Top-Down Solutions
422 Hybrid Solutions o 0L
43 TheFuture
5 Conclusion
51 FutureWork
51.1 Asynchronous Piece Requests
51.2 Architectural Improvements
513 Top-down Layout Tweaks
5.1.4 Rendering Optimization
515 NavigationTasks
51.6 Layout of Unbounded Graphs
5.1.7 Integration with the Google Maps for Models Project
Bibliography

viii

55
55
56
56
56
56
57
57
57

59

1.1
1.2

2.1
2.2
23
24
2.5

2.6

27
2.8

3.1
32
3.3

3.4
3.5

3.6
3.7

3.8

39

3.10
3.11
3.12
3.13

3.14
3.15
3.16

List of Figures

Hierarchical graph and its hierarchy function.
Collection of example visualizations of several graphs created using different
layout algorithms. o o

Overview of KEITH's architecture.
Overview of Sprotty’s architecture., .
Overview of KLighD’s architecture.
Visualization of the length of each step of the diagram generation process.

Class diagram excerpt showing how the piece requests are handed off to the
incremental diagram generator. L L L
Incremental message protocol used to transfer the diagram model from the
language server to the web client using theLsp.
Node location to grid cell mapping.
Label bug in incremental communication.

Different layout algorithms combined to create the overall SCCharts layout. . . .
Top-down layout concept. oo
Class diagram excerpt illustrating how the optional switching of layout engines
isrealized.
Comparison of legibility of labels in large states.
Comparison of resulting layouts when very large states are next to very small
states.
Reference for comparison. Diagram laid out using bottom-up approach.
Diagram laid out using top-down approach with size constraint type set to
fixed width.
Diagram laid out using top-down approach with size constraint type set to
fixed height.
Diagram laid out using top-down approach with size constraint type set to
optimized.
Square constraint option concept.o
Dimensions of a single, atomic SCCharts state.
Comparison of effect of changing the node size constraint values.
Comparison of the effect of having dynamic node size constraint disabled and
enabled.
Comparison of a diagram drawn with and without shadows.
Comparison of aesthetics within a hierarchy level.
Wagon model laid out using bottom-up approach with all regions collapsed. .

20

21
23
25

29
30

31
33

34
36

37
37
38
39
39
40
41

43
44

ix

List of Figures

3.17 Comparison of the navigation through a large diagram.

List of Tables

xi

API Application Programming Interface

cpru Central Processing Unit

DAG Directed Acyclic Graph

DOM Document Object Model

ELK Eclipse Layout Kernel

GPu Graphics Processing Unit

HCI Human-Computer Interaction

IDE Integrated Development Environment

JSON JavaScript Object Notation

KEITH Kiel Environment Integrated in Theia

KIELER Kiel Integrated Environment for Layout Eclipse RichClient

KLighD KIELER Lightweight Diagrams

LoC Lines of Code

LsP Language Server Protocol

Acronyms

xiii

List of Tables

QUIM Quality in Use Integrated Measurement

SCCharts Sequentially Constructive Charts

SVG Scalable Vector Graphics

VS Code Visual Studio Code

Xiv

Chapter 1

Introduction

Visual media are a useful tool in conveying complex information with many connected
components concisely. Therefore, visualization of complex systems lends itself naturally to
all areas of system design and engineering. Traditionally these diagrams had to be created
manually, which is a very time-consuming process and requires a lot of extra work when
changes occur.

With the growing use of computers as tools much of this work could be automated.
Specifically for this thesis, automatic graph layout is of special interest. This means taking a
description of the components of a graph as input and computing a suitable layout of these
components in order to create a drawing of the graph.

Stemming from the times when these diagrams were often printed out on large sheets
of paper, a typical constraint has been that the smallest components of a graph dictate how
much space larger components require. Therefore, the typical approach for laying out deep
hierarchical graphs is working bottom-up, laying out the small internal parts first and then
the surrounding pieces. The result is that drawings of large graphs will use a large area,
which can make it difficult to find details or even to get an overview. A way this clutter of
information can be alleviated is filtering parts of the diagram.

While this is a necessary method for printed diagrams, nowadays most work is done on
computer screens, where users can enlarge or shrink visualizations as much as they want. So
instead of sticking to the bottom-up approach, it might be beneficial to explore the advantages
of a top-down perspective. What this means more specifically is that instead of making outer
components larger so that their internals have enough space, we just give them a certain
amount of space and make the internals smaller to fit.

Sequentially Constructive Charts (SCCharts) is a visual programming language developed
and maintained by the Real-Time and Embedded Systems Group of the Department of
Computer Science at Kiel University [HDM+13]. Currently two tools exist which implement
the language. The first is the Kiel Integrated Environment for Layout Eclipse RichClient
(KIELER), an extended Eclipse client, and the second is the Kiel Environment Integrated in
Theia (KEITH), which aims to bring the KIELER Integrated Development Environment (IDE)
experience to the web [Dom18; Ren18]. These tools implement automatic graph generation
from textual descriptions and the subsequent automatic layout computation necessary to
render visualizations of these models. These systems are where the theoretical ideas of this
thesis are put into practice.

A particular challenge posed by the bottom-up approaches implemented in both systems
concerns responsive performance, especially as graphs get bigger. This is particularly pro-

1. Introduction

nounced in KEITH, since it reuses a large part of the existing architecture also used by KIELER
and then adds its own overhead in several places.

A benefit of a top-down paradigm is being able to process a graph bit by bit. Implementing
this fully would require re-designing the entire diagram visualization process, which is a
significant undertaking. As part of this thesis this idea is applied to the part of the process
which was the most significant bottleneck. This proof-of-concept helps demonstrate feasibility
and highlights the challenges that come with the idea.

The other part of this thesis applies the top-down idea directly to the layout process itself.
Several variations and approaches of how to do this are explored and the benefits regarding
usability and aesthetics criteria are evaluated as well as general implementation feasibility
within the existing system architecture.

1.1 Outline

The thesis is structured as follows. After covering the necessary background knowledge and
state of the art in Chapter 1, Chapter 2 will take a deeper look at the architectural design
used in KIELER and KEITH. This is used as the foundation for analyzing how the process
could be modified to support an incremental top-down data flow. This idea is applied to the
communication between KIELER Lightweight Diagrams (KLighD) and the KEITH client. Finally,
the performance and usability impact is evaluated.

Chapter 3 delves into the other end of the system, the Eclipse Layout Kernel (ELK), where
we look into using a top-down perspective to create new types of graph layout. The results
are evaluated according to aesthetics criteria.

In Chapter 4 the concepts are brought back together to return to the overall theme of
top-down visualization. How well do the developed ideas work in the existing system? How
well can they be expanded further and what immediate benefits do we have?

In Chapter 5 the findings are summarized and further areas that need work or are of
research interest are highlighted.

1.2 Background

Before going into the details of top-down visualization, we need to lay foundations and
define the terminology used throughout this thesis. In Section 1.2.1 necessary graph theo-
retical concepts are introduced. Section 1.2.2 covers the general concept of graph drawing,
Section 1.2.3 introduces the measures used to evaluate the quality of these drawings, and in
Section 1.2.4 the concept of a mental map and why it is important is introduced. Because
part of the motivation of this entire topic is the question of how to improve usability of the
KEITH web platform, some of the relevant core principles of building responsive web pages
are discussed in Section 1.2.5. How all these concepts are tied together and implemented
within KIELER and KEITH is explained in Section 1.2.6.

1.2. Background

1.2.1 Graphs

1.1 Definition. (Graph). A graph G is a pair (V, E), where V is a set of vertices (or nodes) and
E is a set of edges with E < V2.

> A pair of vertices (u,v) € V is called adjacent if and only if Je € E with e = (u,v) or
e= (v,u).

> A vertex v € V is incident to an edge e € E if and only if Je € E,3x € V with e = (v, x) or
e= (x,0).

Our main topic of interest is drawing diagrams. These diagrams are represented more
abstractly by graphs. A drawing of a graph is an embedding of the graph in a plane, where
nodes have specific positions and dimensions and edges are drawn along a path between
their incident nodes.

1.2 Definition. (Hierarchy function). Let G = (V,E) be a graph. The hierarchy function
T:V — V u{Ll} maps each node v € V to its parent node or to L if it does not have a parent
node. If 7(v) = w is the parent, then v is known as the child of w. A valid hierarchy function
T has the requirement that there is no sequence of nodes vy, ..., v, with 7(v;;1) = v; for all
i <nand T(v1) = vy, i.e., the parent-child relation is acyclic.

A certain type of graph that we are particularly interested in are hierarchical graphs. A
hierarchical graph is a graph that is extended by a hierarchy function. A hierarchy function
defines a parent node for each node in a graph. This corresponds to a drawing where a
child node is drawn within the bounds of its parent node. Figure 1.1 shows an example
visualization of a hierarchical graph as well as a visual representation of its hierarchy function.
If there is only one root node the hierarchy graph is also called an inclusion tree.

(a) Visualization of hierarchical graph G (b) Hierarchy graph visualizing .

Figure 1.1. Hierarchical graph G = (V,E) with V = {a,b,c,d,e},E = {(d, f), (b,c)} and hierarchy
functiont={a — L,b > a,c —>a,d > b, f — b}.

1. Introduction

1.2.2 Automatic Graph Layout

1.3 Definition. (Graph layout). Let G = (V,E) be a graph. A layout T (or drawing) of G is a
function that maps each vertex v € V to a point I'(v) € R? in a plane and each edge (u,v) € E
to a mapping I'(u,v) € (R?)* between two endpoints I'(u), T (v) with no repeated points.

The problem of automatic graph drawing aims to find algorithmic solutions for a specific
class of data presentation problems of modeled data such as circuit schematics and software
engineering diagrams or also data analysis results. In general, a graph drawing algorithm
takes a graph G as input and produces a layout I' such that the drawing may be rendered
on a screen or printed on physical media. As stated in Definition 1.3, each vertex is mapped
to a single point. In practice, however, each node will usually be drawn as some shape with
two-dimensional bounds. The details of this are up to the algorithm.

There is a wide array of different algorithms which aim for a certain look or expect certain
constraints on their input. Some algorithms are designed for trees while others consider
hierarchical graphs [DET+94; Sch19]. Several examples of graph visualizations created using
different layout algorithms can be seen in Figure 1.2.

We will mainly be concerned with hierarchical graphs, as these are where top-down
concepts may be applied. The typical bottom-up approach to dealing with layout on multiple
hierarchy levels is to take a layout algorithm that works on a normal graph, i.e., a graph with
a hierarchy function where 7(v) = L for all v € V, and recursively apply that algorithm to
each set of nodes V with a common parent 7(v) = w for all v € V. The space taken up by
the layout of these child nodes then determines the drawing size of the parent node, which
can then again be used in its own layout step. The benefit of this approach is that atomic
elements of a diagram, that is, elements with no own children, can all have a similar scale.
Before dealing with these innermost parts of a hierarchical graph we have no way of knowing
how much space they will require.

1.2.3 Aesthetics

In order to evaluate the quality of an automatic layout algorithm, we need quantitative
measures that can be applied to the resulting drawing. These metrics are called aesthetics
criteria as they attempt to objectively measure how pleasing a visualization is.

There are many different metrics which can be grouped into several categories such as
node metrics, edge metrics and overall layout metrics. Some of the metrics can be used in
conjunction with each other while others contradict each other [BRS+07]. An interesting
observation we can make right away is that SCCharts have so far had the goal of being readable
at one zoom level, meaning texts generally have the same size and node sizes are consistent.
This ensures that they can be read on printed media.

In this thesis a new method of handling layout for hierarchical graphs building upon the
already existing layout algorithms is considered. What this means is the underlying layout
algorithms remain the same, but they are applied differently or their outputs are modified.

(a) A radial tree drawing of an organization
chart [Oys14].

EEE—
> E —
B
>
< F
>
A
—
> D —

(0) Drawing of a Directed Acyclic Graph
(DAG) laid out using a layered algorithm in
KEITH.

1.2. Background

(b) A visualization of a social network
graph drawn using a force-based layout al-
gorithm [Gral5].

ABRO
input bool A
input bool B
input bool R
output bool O = false

Main

WaitAandB
HandleA

1/ 0 = true

done

—

(d) SCCharts diagram drawing, an example of
a hierarchical graph, drawn by KEITH. Several
layout algorithms are combined to create the
final layout.

Figure 1.2. Collection of example visualizations of several graphs created using different layout

algorithms.

For this reason we are specifically interested in how the resulting visualizations are different

and can be interacted with in new ways.

1.2.4 Mental Map

Another important point of consideration will be the preservation of the mental map [MEL+95],
also known as dynamic stability [Nor96]. The mental map is the internal abstract model a
person viewing a diagram has. A viewer’s mental map contains information such as the
relative positions of nodes. For example, if two nodes A and B are drawn so that A is to the

1. Introduction

left of B, the viewer will expect A to also be left of B after viewing or when making changes
to other parts of the diagram.

When updating a diagram, for example when the underlying model is updated, it is
important to help the viewer maintain their mental map. Large changes, such as mirroring
parts of the diagram or changing the ordering of elements, can disrupt the viewing experience
and require the viewer to completely re-parse the diagram [ELM+91].

It is important not to confuse the term mental map with the concept of a mental model. A
mental model describes internal visualizations as tools which must be functional whereas men-
tal maps are a viewer’s abstract representation of the layout of the graph being viewed [LS10].

For the case of top-down layout it is interesting to determine whether updating the new
top-down layout preserves the mental map just as well or better than the existing bottom-up
approach. Of particular interest will be the effects of scaling parts of the diagram.

1.2.5 Principles of Responsive Web Design

Since part of this thesis will be looking into how to make KEITH more user friendly by
becoming more responsive when handling very large graphs, we also need to take a look at
some of the important principles of responsive web design. Some of this is more generally
true for any user interface, but web technology poses its specific set of challenges.

Before looking at the specific case of web pages, we can look at the more general case
of Human-Computer Interaction (HCI). There have been investigations of what constitutes
a reasonable delay for different types of interactions such as responses to activation, identi-
fication, simple and complex inquiries and more. For tasks that should be perceived to be
instantaneous the response time should be less than 0.1 seconds. Delays up to about one
second are acceptable when interaction does not have to feel instantaneous, but continuity of
thought should not be interrupted. Once delays start taking longer than about 10 to 15 seconds
users may start doing secondary tasks, leaving their problem-solving state of mind [Mil68].

We can easily apply these concepts to web pages in general and more specifically to KEITH.
Interactions with user interface controls should feel instantaneous, meaning for example
when a checkbox is ticked, there should be no noticeable delay. Similarly opening menus and
typing in text areas should give an immediate visual update. When editing a model in KEITH
the diagram for that model is updated whenever a change is made. In an ideal world this
update should take no longer than one second. In certain cases it could be argued that up to
10 seconds might also still be acceptable. Since for large models this is currently not possible,
we need to find a way to reduce the perceived delay.

A way to improve responsiveness when loading a lot of data that needs to be displayed is
to split the data and load it in parts or, to go a step further, to decrease the data density so that
coarse data can be shown quickly and details can be fetched afterwards. This way the user can
already see and potentially interact with some of the requested data. Specifically in online map
services this is a typically necessary practice to obtain a fast and responsive service [GKW14;
Kar11]. Splitting up a single large request into many small requests introduces an overhead
and a compromise has to be found for which method is better in which circumstance.

1.2. Background

1.2.6 Layout in KIELER and KEITH

Before diving into new ideas we need to first take a closer look at how the whole visualization
process currently works in KIELER and KEITH. Since the focus of this thesis is on SCCharts
we will go through the transformation process, from model to rendered diagram, they go
through. Other types of supported graphs do, however, generally go through mostly the same
steps.

After some pre-processing SCCharts models are transformed into a KGraph structure using
the KLighD framework [SSH13]. This KGraph is then transformed into an ElkGraph so that
ELK can compute a layout for the graph, which is then applied to the KGraph. SCCharts are
hierarchical graphs and layout is currently computed recursively bottom-up. Different types
of elements use different layout algorithms. Specifically, SCCharts consist of regions and states.
Regions are arranged using a rectangle packing algorithm and states are laid out by the ELK
Layered algorithm [DLH+21; Sch19]. The layered approach itself was first introduced by
Sugiyama, Tagawa and Toda in 1981 [STT81].

In KIELER the graph is then rendered with Piccolo2D!. In KEITH, the process is a little more
involved. KEITH is architecturally split into two parts: a web client, which serves as the user
interface, and a language server, which provides the client with functionality such as syntax
highlighting through the Language Server Protocol (LSP)?. This design is used in Theia®, the
underlying web IDE that KEITH is based on.

KLighD and ELK are encapsulated in the language server and the process is analogous to
KIELER. The laid out graph now has to be sent to the web client and rendered. Sprotty [Koh17]
is used to render diagrams in KEITH and it internally uses an SGraph data structure. Sprotty
extends the LSP to support messages regarding diagram generation. KLighD translates the
KGraph to an SGraph, which is then sent to the client using the JavaScript Object Notation
(JSON) format to be rendered as Scalable Vector Graphics (SVG) in the Document Object
Model (DOM) of the browser. Additionally, for correct layout, the text sizes in the diagram are
dependent on the browser used and have to be calculated by the client. This means prior to
the server-side layout calculation an extra communication step is needed. This text bounds
calculation is the client-side portion of the layout process.

In all of these steps, the entire graph is always completely processed and passed on to the
next stage. The weakness of this system design is that with growing input sizes, i.e., larger
models and subsequently larger diagrams, the system hits a limit when the performance is
no longer fast enough to meet the requirements of an interactive diagram tool. The goal is
to break this process up and explore what advantages alternative approaches can give as
well as examining their feasibility in the existing systems. Specifically, this thesis explores the
concept of top-down graph visualization in the context of potential performance and usability
improvements and also new visualization methods which better utilize the medium of the
computer screen.

1http://www.cs.umd.edu/hcil/piccolo
2https://microsoft.github.io/language-server-protocol/specifications/specification-current/

3https://www.theia-ide.org/

http://www.cs.umd.edu/hcil/piccolo
https://microsoft.github.io/language-server-protocol/specifications/specification-current/
https://www.theia-ide.org/

1. Introduction

1.3 A Top-Down Perspective on Graph Visualization

As we have now established, there are good reasons why graph visualization is often tackled
using a bottom-up approach. However, an iterative top-down approach opens the door to
many other advantages, and the goal of this thesis is in part to demonstrate feasibility of
applying this philosophy to the existing process and also to explore the limitations and
benefits of this alternative concept.

For a full conversion to a top-down system, where each part of a diagram goes through
the entire process one-by-one, we would need to re-design large parts of KIELER, KEITH, KLighD
and ELK from scratch. Because this is a very large undertaking, what we can do instead is make
certain modules internally top-down or adapt some interfaces to communicate iteratively.

In KEITH there is a bottleneck in the communication between the language server and the
client. The graph structure is sent using JSON and as graphs grow larger this delay becomes
very noticeable. A concrete example is the model “Environment_expanded”, which is part of
the virtual model of a model railway used by the working group. In this thesis this model
will also be referred to as “Environment” for brevity. This model is very large, and in KEITH
it can take more than 40 seconds for the diagram to be drawn. Therefore, this interface was
chosen as the first entry point to apply incremental communication to, since an improvement
here would also provide immediate benefits. Going further the idea would be to extend this
iterative communication throughout the system.

Incremental communication between KEITH and KLighD was achieved by constructing the
SGraph iteratively instead of recursively on the language server and then letting the client
request individual pieces of the graph instead of the entire graph all at once. This lets the
client already render parts of the diagram, so the user can immediately see something rather
than waiting for everything to arrive. Additionally, a simple strategy was implemented to
ensure that pieces within the user’s viewport were requested before others, so that areas of
interest could be shown as soon as possible.

Another idea that is less geared towards how the visualization is created and more
oriented to how the result looks. We have two main reasons for approaching this problem
from a new perspective.

Firstly, some of the typical constraints for graph visualization stem from the assumption
that things need to be on the same zoom level. This means for example that all texts and
labels are the same size. However, because we are viewing our graphs on computer screens
and can pan freely around in them as well as zoom in and out, we can make the graph more
compact and readable at any zoom level.

The second reason is related to the overall system architecture and graph visualization
process. If we want a fully iterative process, we need to be able to do that for all parts
including layout.

In general, the top-down concept for layout that was for this thesis implemented shrinks
nodes using some fixed size constraint and visually scales down its contents to make them fit.

1.4. Related Work

1.4 Related Work

This thesis focuses on the application of graph drawing for dynamically constructing graph
drawings of small to large sizes with the particular perspective of exploring top-down
techniques. There are several related areas of study with different primary goals. This section
will cover some notable examples which share common ideas with this thesis.

1.4.1 Visualization of Very Large Graphs

Kasyanov and Zolotuhin [KZ18] introduce a system for visualizing and navigating very
large graphs. The graphs considered were usually too large to efficiently store in memory
and computing the layout of them fast enough was another challenge. To address the
memory limitation they utilized caching with an embedded SQLite database*. This differs
from the KEITH system, because we are dealing with a segregated client-server architecture.
Furthermore, even the largest graphs we are dealing with are still less than one hundred
megabytes large in their serialized JSON form.

What is more interesting for us is their method used to speed up layout time. They use a
concept called multi-aspect layout. Their use case is interactive exploration of large graphs. To
facilitate this with their large input graphs, they construct a multi-aspect layout which is a set
of drawings of some subgraphs of the graph. They then use tabs to present these different
subgraphs to the user.

Another graph visualization system handling very large graphs with up to 16 million
edges is ASK-GraphView [AHKO6]. The focus here lies again on navigation of large graphs.
In this system clustering algorithms are used to construct a hierarchy on arbitrary input
graphs. Navigation works in a top-down manner, allowing the user to expand clusters as they
descend in the hierarchy.

Although we are also interested in navigating graphs, a major difference in our use case is
still there. We are editing the underlying models of the graphs live and want these updated
changes to be reflected in the drawn diagram as seamlessly as possible. This is a stark contrast
in requirements when compared to only the problem of exploring a fixed, albeit large, model.

1.4.2 Online Dynamic Graph Drawing

Dynamic graph drawing narrows the requirements of the more general problem of graph draw-
ing by requiring that the graph may be modified. This subsequently requires a compromise
between fulfilling the expected aesthetics criteria and preserving the viewer’s mental map.

Frishman and Tal [FT08] tackled the online version of this problem, meaning the sequence
of changes made to the graph were not known beforehand. This means that subsequent layout
has to happen very fast.

They build upon the force-directed layout in which nodes are modeled as having springs
with attractive and repulsive forces between them [FR91]. Their contribution is an algorithm

4http://www.sqli’ce.org

http://www.sqlite.org

1. Introduction

that uses the Graphics Processing Unit (GPU) to perform layout. On a GPU parallel computation
is the norm, as opposed to a traditional Central Processing Unit (CPU) where single-threaded
computation is used. The challenge in leveraging this lies in transforming the calculations
needed for the layout into tasks that can be computed in parallel.

An optimization used is the partitioning of nodes to reduce the input size of the algorithm.
This is conceptually similar to the top-down concept of applying layout only to outer nodes
first, before considering any contained children.

1.4.3 Temporal Granularity in Dynamic Graph Visualization

As already discussed, dynamic graphs are a sequence of graphs representing changes in the
graph over time. The work of Burch and Reinhardt [BR17] is an example of offline dynamic
graph visualization with an interesting focus. They wanted to show dynamic graphs with
variable temporal granularity in one visualization.

The background is that typically a time-to-space mapping is used in which the goal
is to preserve the mental map so that subsequent graphs can be easily compared. The
downside of time-to-space mappings is that space limitations are reached sooner than a time
limit in corresponding time-to-time mappings i.e., animations of the changing graph. Their
visualization tool facilitates showing a dense amount of information in the space available as
well as enabling a more fine view of the changes across time without breaking the mental
model.

1.4.4 Usability Measurement

Part of evaluating software quality is the so called usability. Especially of interest for the field
of HCI, usability is mainly concerned with how well users can interact with and use a software
to fulfill their goals [Bev01].

There are many different standards and models of how to approach the topic of usability
during the software development process, and it can be difficult to select an appropriate
method fitting the requirements. Models such as Quality in Use Integrated Measurement
(QUIM) [SDK+06] aim to consolidate these differences into one unified model which can help
to develop a usability measurement theory.

The work done for this thesis only partially deals directly with the interaction between
humans and computers and a full usability analysis of the software could be an entirely
individual project. It is still important to consider the usability factors though and how
additional features may affect them.

10

Chapter 2

Top-Down Architecture

This chapter gives a detailed overview of the existing architecture and then introduces an
alternative top-down concept. We identify where bottlenecks are in the existing system and
apply the new ideas to the biggest bottleneck. We will mainly consider the KEITH architecture,
because that is where the top-down concepts are applied.

2.1 Current KEITH Architecture

The Kiel Integrated Environment for Layout Eclipse RichClient (KIELER) and the Kiel Envi-
ronment Integrated in Theia (KEITH) are IDEs with the main purpose of developing SCCharts.
KEITH is the newer project, which takes the technologies to the web. This opens the doors to a
better accessibility, but comes at the cost of a more complex architecture than KIELER.

First we will take a close look at how the current diagram generation process works
in KEITH. This is important to understand where the hurdles are in integrating a different
approach. KEITH is split into a web client and a language server. The web client serves as the
user interface for the IDE letting users edit code and view diagrams. The language server
provides so-called language support to the client. This lets the client use features such as
syntax highlighting. In our case we use an extended version of the original LSP that supports
diagram related communication.

This general architecture is shown in Figure 2.1. The web client part of KEITH makes
use of Sprotty to render models. Editing of the textual models also happens on the client.
Diagram synthesis and layout are managed by the KLighD framework. The client and server
communicate changes in the models and laid out diagram using the LSP. In the following
sections the individual components will be introduced in more detail.

2.1.1 Web Client

At the core of the KEITH client is Theia, a web-based IDE. Theia was designed to be an
extensible platform for developing products and it shares similarities with Visual Studio
Code (VS Code)!. The version KEITH is currently based on relies on a language server and
utilizes the LSP. Sprotty is a diagramming framework for the web and drives the diagram
rendering in KEITH by extending the functionality of the LSP. It uses a unidirectional cyclic
event flow as shown in Figure 2.2 [K6h17].

1https://code.visualstudio.com/

11

https://code.visualstudio.com/

2. Top-Down Architecture

Web Client Server
Sprotty I R = S - Language
Server Extension

|

KLighD

| |

Layout
(ELK)

Synthesis

Figure 2.1. Overview of KEITH's architecture.

SModel

ActlonHan dler] Command § Command ,| Command

’ Action
ActionDispatcher J

g
Action 1 SModel
\ Action
ModelSource Viewer l
_ Action

VDOM VDOM | SModelElement

Stack

~N

[DiagramServer] DOM

Figure 2.2. Overview of Sprotty’s architecture.

The ActionDispatcher interacts with the ModelSource through Actions. The ModelSource can
be the locally stored model or a DiagramServer. In KEITH for example, a RequestModelAction is
dispatched to the language server, which responds with a SetModelAction that contains an
SModelSchema (serializable form of an SModel). The ActionDispatcher passes the Action to an
ActionHandler, which returns a corresponding command. In this case SetModelCommand is
then pushed onto the CommandStack, which is then responsible for executing any commands

12

2.1. Current KEITH Architecture

that have been pushed onto it. In this case the SModel is passed to the Viewer, which is
then responsible for rendering the individual elements of the model in the browser’s DOM.
Interactions by the user with the viewer can be sent as new Actions to the ActionDispatcher
and the cycle continues.

Work done for this thesis in KEITH builds upon this architecture and expands the existing
implementations through new Actions and Commands.

2.1.2 Language Server

The Language Server Protocol (LSP) was conceived as a way to make it easier to support new
programming languages in different tools. Traditionally, for each tool the work had to be done
individually, because each tool provides its own Application Programming Interface (API).
The idea of a language server is to provide the language-specific features and communicate
with the development tool over a simple protocol. The LSP provides a standardized protocol
for the communication between a language server and development tools. This way the
language support only has to be implemented once for a language server, and that language
server can be re-used many times for different development tools.

For KEITH, Sprotty extends the LSP with actions specifically for generating diagrams. Part
of this diagram generation is the automatic layout of the graph, which can be done directly
on the client, on a language server, or a mix of both. The final rendering step is performed on
the client. The intended usage is that diagrams are generated in one pass.

Sprotty comes with a server-side component that can also handle the Sprotty-specific
actions and data structures. These server components can be extended to support new types
of diagrams. For KEITH, KLighD contains the extensions of Sprotty and handles the connection
to the other components of the system.

2.1.3 Kieler Lightweight Diagrams

KIELER Lightweight Diagrams (KLighD) provides diagramming services and is used by both
KIELER and KEITH. In general it provides a framework to connect model sources, diagram
synthesis, layout algorithms and viewers. Figure 2.3 shows the architecture and the process
used to create model visualizations. Specifically, a textual description is synthesized into a
model (Steps 1 and 2). The model is handed back to KLighD (Step 3), which then passes it on
to the ELK framework to compute a layout (Step 4). The layout result is then applied to the
view model (Steps 5 and 6), which can then be rendered in a viewer. The view model may
be changed for example through the use of synthesis options. These changes may require a
re-run of the synthesis or the layout and the following process steps (Step 7). It is also possible
to modify options that only require a new layout run with the same synthesis. For all these
communication steps between the different components KLighD serves as an intermediary
framework.

The principles remain the same for the client-server application of KEITH. There is an
additional challenge though. The server cannot accurately determine how much space the

13

2. Top-Down Architecture

Model Source Viewer
1 7 6
e T
! KLighD }
[‘y \
A A
2 3 4 5
Y
Synthesis ELK

Figure 2.3. Overview of KLighD’s architecture based on a diagram made by Christoph Daniel
Schulze [Sch19].

rendered texts of the diagram will take up on the client and therefore this part of the layout
is done by the client in our case. It is also possible to synchronize fonts between the client
and the server, which would let the server compute the required text sizes independently.

2.1.4 Eclipse Layout Kernel

The Eclipse Layout Kernel (ELK) provides tools to connect diagram editors or viewers to
automatic layout algorithms. The basic process is as follows. First the graph from the editor
must be extracted and converted to an ElkGraph. Then the selected layout algorithm is called
and the result applied to the graph. Finally the resulting layout is applied back onto the
original graph structure.

ELK can be used by tool developers who want to add layout capabilities to a viewer or
editor and algorithm developers who want a graph framework in which they can develop
new automatic graph layout algorithms.

ELK itself already comes with a number of standard layout algorithms, such as force-
based [FR91], layered [STT81], radial [BET+98], rectangle packing [DLH+21], and more.

Layout of hierarchical graphs is handled by ELK using its recursive layout engine. For
each node of the graph, a property is set which specifies what layout algorithm should be
applied on the node’s direct children. The layout engine then recursively computes the layouts
bottom-up. Once the children of a node are laid out, the dimensions of that node are known
and it can be laid out.

The recursive layout engine can also handle algorithms that can directly lay out hierarchical
graphs. For these cases the usual recursive layout calls are not done, and instead the algorithm
may manage how the hierarchical layout is calculated.

14

2.2. Iterative Architecture Concept

2.2 Iterative Architecture Concept

The goal of this thesis is the exploration of a top-down approach for creating visualizations,
and one aspect of that is the feasibility of applying that abstract idea to the concrete existing
solutions implemented in KIELER and KEITH.

In this section a high-level concept of such a fully iterative top-down architecture is
described. The system changes that are needed and the solutions that are necessary are
discussed.

In principle the idea is to change the pipeline so that instead of performing the synthesis
on the entire model, computing the layout on the resulting graph and sending that entire
graph back to the client, each step of the process is able to do its job on only a subset of the
normal input. This allows to go through the entire process with each individual piece of the
diagram.

This concept remains abstract, and in practice we need to identify what parts are able to
handle this iterative input. We also need to identify where in the system we would see benefits
from this alternative architecture. The quantitative analysis will be covered in Section 2.3.

As has already been touched upon in Chapter 1, we can differentiate between two different
types of iterative top-down mechanisms that are necessary to transform the system. Firstly,
individual sub-procedures such as layout in ELK, SGraph construction or KGraph synthesis
in KLighD could internally be re-designed to work in an iterative manner. The second step
is to transform the APIs between the components into ones that also support piece-wise
communication and to allow result-merging of partially completed processes.

Because the components are separated, it is possible to only do these transformations in
selected parts of the overall system.

2.3 Bottleneck Identification

In order to determine which part of the system could receive the most immediate benefit
from an iterative approach, we need to take a closer look at how long each step takes for
models of growing sizes.

2.3.1 Benchmark Tests

For this analysis three sample models are used to benchmark these timings. The sizes of the
models are given in the number of Lines of Code (LoC). Since the models are synthesized
from textual descriptions, LoC are closely correlated to the actual model sizes. Of course,
the models themselves can contain different structures that may have smaller impacts in
each step, but this is not an extensive analysis. Instead, we are interested in the bigger
picture, where the obvious time losses and shortcomings are, so that the right steps can be
targeted for improvements. In Table 2.1 the times used for each step of the diagram generation
process in KEITH are shown. The steps are grouped by where they take place: client, server or
communication between the two.

15

2. Top-Down Architecture

Table 2.1. Time required in the diagram generation process in KEITH.

ABRO Wagon Environment

Size (LoC) 25 1541 35573
Times inms in percent inms inpercent inms in percent
Initial Request 209 7857 709 46.64 19287 44.04
Server Steps 17 6.43 185 12.17 4698 10.73
Synthesis 6 2.26 80 526 1821 4.16
SGraph 1 0.38 16 1.05 341 0.78
Layout 10 3.76 89 586 2536 5.79
Client Steps 24 9.02 258 16.98 4948 11.3
Text Bounds 2 0.75 29 1.91 749 1.71
Rendering 22 827 229 15.07 4199 9.59
Communication 16 6.01 368 24.21 14863 33.93
Text Bounds Request 7 2.63 135 8.88 1187 271
Text Bounds Response 2 0.75 12 0.79 610 1.39
Model Response 7 263 221 14.54 13066 29.83
Total 266 100 1520 100 43796 100

Initial Request

The Initial Request covers the time from when the textual file of the model is first opened on
the KEITH web client until the synthesis on the server begins. This includes sending the textual
model to the server and all the SCCharts-specific processing before the diagram generation
begins. In the more usual use case that the model has already been opened, this step shrinks
down. Instead of sending the entire model upon changes being made, only a change set is
sent to the server and applied to the stored model. The SCCharts model, once generated, is
also stored on the server, which means that re-triggering the diagram generation process can
begin immediately with the synthesis.

Server Process Steps

Synthesis refers to the transformation from domain model to KGraph. Here the domain model
is an SCCharts model. SGraph refers to the construction of the SGraph on the basis of the
KGraph. Layout refers to the layout calculation by ELK as well as the mapping of of the layout
onto the KGraph and the SGraph. Technically, there are some more steps that happen on the
server, but they are not directly part of the diagram generation process, and are therefore
included in the Initial Request step of the communication category.

16

2.3. Bottleneck Identification

L Synthesis
ABRO I - ™ SGraph

B Text Bounds Request
Wagon NI | o o Bounds

B Text Bounds Response

. = Layout
Environment [N | | | Model Response
(] Rendering

Figure 2.4. Visualization of the length of each step of the diagram generation process beginning with
the synthesis on the server.

Client Process Steps

Text Bounds refers to the calculation of the text bounds on the client when the server requests
them for its layout computation. Rendering refers to the time used to create the SVG renderings
used to display the diagram.

Communication Process Steps

The text bounds request and corresponding response steps cover the time used for sending the
data between client and server. The Model step is the step of the process when the full diagram
model is sent to the client to be rendered. In these communication steps the serialization to
and from JSON is included in the measurements.

2.3.2 Timing Analysis

As is evident from the data, not all steps of the process are equal. For most of the steps we
get roughly linear growth. However, the time required to send the final model to the client
grows a lot quicker than the other steps. For the small ABRO model this step only constitutes
2.63% of the entire process, whereas for the largest model this step takes up 29.83% of the
process. Another interesting observation is the large overhead of the initial request, which
actually drops off significantly as the model grows. This overhead is in practice, however, not
particularly relevant, as a model’s diagram generation is usually not triggered only once per
session. A visualization showing the relative length of the individual steps of the diagram
generation process where the initial request is omitted is shown in Figure 2.4.

We are not only going to focus on the time complexity here, but also the absolute numbers
to help determine problematic areas of the process. This is because we are most interested
in the practical application of reactive live diagram generation, and in this application there
are some practical considerations. There is a certain scope of typical diagram sizes that are
used, so while scalability is important, we can also just look at the times used and make
the observation that 40 seconds wait time until a change to the model is reflected in the
diagram is simply not acceptable in this context. To feel responsive, the time until something

17

2. Top-Down Architecture

happens should really be closer to one second. The second model (Wagon) analyzed here
already exceeds that boundary and represents a rough model size limit using the traditional
bottom-up process.

Even if each step is continuously heavily optimized, there will always remain a limit to
the graph size. The iterative concept presented in this thesis opens the door to responsive
visualization of large graphs as well.

SGraph generation itself is a fairly fast process, but it provides the entry point to the model
transmission step which is the major performance drain. For the largest model investigated
here communication takes up 33.93% of the total time used. Therefore, the focus is placed on
incremental SGraph generation and piece-wise model transmission.

24 Top-Down Approach for Client-Server Communication

This section will give a detailed description of the solutions implemented for this thesis. As
already discussed, the main bottleneck where performance is lost is the interface between
KLighD and client-side Sprotty, or to put it more precisely, the network communication
necessary for sending the model to the client.

The solution presented here consists of several components. On the server the SGraph
has so far been constructed recursively. This process is re-designed so it can be performed
top-down, which allows a partial on-demand construction of the SGraph. In order to send
the model in small pieces rather than all at once, the communication protocol is extended to
support requesting and sending specific parts of a graph. Finally, there is the question of how
the client should manage its piece requests. For this problem, a naive solution is presented as
well as a slightly more sophisticated algorithm which aims to request diagram pieces in an
ordering following a prioritization based on the viewport position.

24.1 On-Demand SGraph Construction

The SGraph is only required for the final server-side step of sending the model to the client.
This means we do not actually need to fully construct it if we are sending the graph in smaller
pieces. Only the parts that should be sent need to exist. Layout is calculated on the KGraph
and that data is mapped back onto the SGraph afterwards. Because of this, it makes sense to
create the SGraph on demand.

Incremental Generator

The SGraph construction process is essentially a traversal of the KGraph, where for each
element in the KGraph a corresponding SGraph element is created. The original implementa-
tion uses a depth-first traversal. Here, we will use a breadth-first traversal instead. For the
most part this is trivial, because the order of visiting the different KNodes does not affect the
creation of their SNode counterparts. However, due to the slightly different data structures
and specifically how edges are stored in them, special handling of edges is required. In the

18

2.4. Top-Down Approach for Client-Server Communication

original implementation this solved by simply generating all the edges at the very end of
the construction. This is obviously not a viable approach for the top-down concept. This
problem is instead solved by maintaining a list of edges that need to be created. After a piece
is created, all these edges are checked and if both nodes incident to an edge already exist it is
also created.

Piece Request Manager

The incremental SGraph generator maintains the same interface as the original generator,
but it actually has to work differently, because instead of returning the complete SGraph we
require the capability to only create one piece per invocation. More specifically, we would
like to get specific pieces as requested.

The generator itself is implemented so that it can only generate the next piece of the
diagram in a breadth-first traversal. A piece in this case corresponds to a node of the SGraph.
In theory pieces could also be larger units containing larger sub-graphs, but in this work a
piece is always a single node. With each call to its toSGraph() method the next piece is added
to the existing SGraph structure.

In order to handle the requests for specific pieces an additional manager class is added.
Every time a request comes in, that request is forwarded to the manager, which returns the
desired piece. It maintains a queue of the incoming requests and does several checks. First
it checks whether the desired piece has previously been generated. If that is the case, it is
simply returned. If it has not been generated before, it lets the generator create pieces until
the requested piece is created and returns that.

The piece request manager does not notify its users when all pieces have been requested
as maintaining that state information is the responsibility of the using class and in this case
specifically the KEITH web client.

2.4.2 Incremental Client-Server Communication

In order to actually realize the incremental communication of pieces between server and
client, new Sprotty actions are introduced and the protocol handling the messages on both
server and client is expanded. On the client-side the following functionality is necessary.

The client needs to identify pieces to request and to send the those requests to the server.
When responses containing pieces arrive, they need to be added to the internal model stored
on the server and the diagram has to be re-rendered.

This communication is currently implemented synchronously within the LSP. However,
many piece requests are independent of each other and could theoretically also be performed
asynchronously. The interfaces on client and server already support this in principle as they
both use queues to handle incoming messages and to send responses when they are ready.

Normally, the server does not maintain the state of the diagram generator, but with this
incremental approach this becomes necessary. With the initial request of the client the entire
process of the synthesis and layout can already be performed as well as the first invocation

19

2. Top-Down Architecture

org.eclipse.sprotty.xtext

«Interface» DiagramUpdater
IDiagramGenerator

JAN JaN

de.cau.cs.kieler.klighd.Isp

KGraphDiagramUpdater

\VA
KGraphDiagramPieceRequestManager

+processRequest(action : RequestDiagramPieceAction) : SModelElement
+requestDiagramPiece(action : RequestDiagramPieceAction) : void

«use»

KGraphlncrementalDiagramGenerator

Figure 2.5. Class diagram excerpt showing how the piece requests are handed off to the incremental
diagram generator.

of the diagram generator. Afterwards, the piece requests are answered until the client sends
the final request. If no further child reference stubs are added to the client’s queue the client
knows that it has received all the pieces it needs.

Protocol

The diagram request process is initiated by the client using the same action to request the
model as in the old method. The response, however, does not contain the full diagram model,
but only the root with references to its children. The requests for the individual pieces of the
graph are sent using a new piece request action. The responses to those requests contain an
SGraph model with the specified piece as the root.

Additionally, the text bounds required for the layout still need to be calculated by the
client. For this a new incremental text bounds request is used. This additional communication

20

2.4. Top-Down Approach for Client-Server Communication

RequestModelAction
SetModelAction
] RequestDiagramPieceAction
|5 g
6 IncrementalRequestTextBoundsAction 5
N

Incremental Computed TextBoundsAction

SetDiagramPieceAction

Figure 2.6. Incremental message protocol used to transfer the diagram model from the language server
to the web client using the LSP.

happens whenever a diagram piece is requested.

Figure 2.6 shows the messages sent in the incremental protocol. RequestModelAction and
SetModel Action are pre-existing actions from Sprotty. Here the semantics of SetModelAction
are changed though. It no longer sends the complete model, but only a root stub and it
triggers the incremental process. The other actions are all newly introduced, and how they
are handled on the client and on the server is explained in the following sections.

Client

After requesting the model from the server, the client receives the first piece of the model, the
root. The model is then stored internally by Sprotty. The root contains its child nodes, but
without any deep information. Only the IDs of the nodes are stored. The client pushes these
references onto an internal queue, which is used to prepare the next piece requests. Then
the client gets the next piece reference from the queue and requests the corresponding piece
from the server. Arriving pieces again have references to their children, which are added to
the queue. Pieces are requested until the queue is empty. Every time a new piece arrives the
diagram has to be re-rendered. This has the effect that the initial wait time is short and the
user can observe the diagram being built up top-down.

Server

Upon receiving the initial request for the model from the client, the steps up to the SGraph
generation are identical to the non-incremental approach. The KGraph is synthesized and
layout is performed on it. The incremental concept could still be expanded for these steps

21

2. Top-Down Architecture

though, and this exactly what needs to be done in order to realize a fully incremental
architecture. The piece requests are handled as explained in Section 2.4.1.

At this point we are isolating processes and treating them mostly as black boxes. There is
an issue with that, however. As part of the layout, the text bounds need to be calculated so that
the layout algorithm knows how much space the texts will occupy on the client. This step is
dependent on the SGraph construction. Because SGraph construction now happens iteratively,
we would need to get the text bounds for each piece and recalculate the layout every time.
Here, layout is not performed repeatedly, because that would defeat the purpose of trying to
find performance improvements. This currently means that there are some remaining issues
with text sizes and positioning. There are two possible solutions for this though. Long term,
if the remaining processes can also be performed top-down, this would no longer be an
issue. A more short term solution is to move text bounds calculation back to the server by
synchronizing the fonts.

2.4.3 Client-Side Request Ordering

With the capability of requesting the diagram pieces node by node from the server comes the
question of what order the requests should come in. Since our goal is to use the incremental
communication to decrease the wait time until the user can see something, it would be ideal
to request whatever should be rendered within the user’s viewport.

There are, however, some limitations to what is possible. Whenever a diagram piece
is received it comes with references to its children. Because the piece requests work by
referencing specific pieces we can only ever request pieces whose parent we have already
received. So we need to find a way to determine what piece needs to be requested next to get
us closer to the desired viewport location.

Once we have successfully received the pieces that fit in the viewport we are not done.
There should be no idling time while building up the diagram. Ideally we request the next
pieces in an ordering that maximizes the probability that after a viewport transformation, such
as a pan or zoom operation, the pieces in that location are already visible. In the following,
two request ordering strategies are introduced, with the grid-based request ordering aiming
to fulfill the goal of loading the best pieces first.

Breadth-First Request Ordering

The naive approach is to simply use a breadth-first strategy. As the diagram pieces arrive the
child references are simply pushed to a queue of remaining pieces and for every request, the
front element of the queue is used until the queue is empty.

This method ensures that all pieces of the diagram will arrive at some point and the
diagram will be built up level by level. This solution works well enough when there is no
panning or zooming involved, because we can see the entire diagram being constructed
uniformly. If we do want to take movement of the viewport into account, a more sophisticated
strategy is required.

22

2.4. Top-Down Approach for Client-Server Communication

1,1
3,1

Figure 2.7. Node location to grid cell mapping.

Grid-Based Request Ordering

In this next approach the diagram canvas is divided into a grid with equally sized cells
that have a width and height w. The drawing space is mapped to the grid by a function
f:R* > Z% We use f(x,y) = (|x/w], |y/w]). c;; refers to the cell containing all points
x,y € R that satisfy f(x,y) = (i,]). As diagram pieces arrive the coordinates of their midpoint
are determined as m = (my,my) and the piece is assigned to the cell c(,,). Figure 2.7 shows
how nodes are mapped to grid cells in a simple example.

Because children of a piece are smaller and located within the bounds of the parent
piece, we assume that children should also be assigned to the same cells as their parents.
In reality this is not necessarily true and depends on how w is chosen, but it is a good
enough estimation in practice. For each cell a queue is created that is initially empty. The
child references are stored in the queues of the cells which contain their parent.

When it is time to request the next piece of a diagram, the cell containing the midpoint
of the viewport is first computed. Then the first element of the queue corresponding to that
cell is requested. If the queue is empty, we first want to get any other pieces that are nearby.
The assumption is that the user will be more likely to stay in the region than to move to a
very different part of the diagram. In order to determine what pieces are nearby we check
the queues of cells in a ring around our center cell. We can check a configurable number of
rings, but in any case the first reference found will be requested. If still no child references
are found we resort to the breadth-first method until a viewport transformation makes other
pieces available again.

It is not trivial to find a good choice for w and the number of rings to check, because the
overall size of the diagram, the sizes of the smallest nodes, and the current zoom level all
have an impact on the effect of these settings. With this particular solution the settings have
to be set once at the beginning and cannot be adjusted while moving around the viewport. A
good rule of thumb for choosing w is that medium sized nodes should fit inside the cell.

23

2. Top-Down Architecture

2.5 Performance Analysis

In this section the performance impact of using an incremental client-server communication
is analyzed and evaluated. The new process is analyzed and the differences between the
classical approach and the new method are highlighted.

First and foremost it should be clear that with the top-down approach we cannot achieve
overall faster times than with old method. This is simply due to the fact that we still need to
do the same calculations and send the same amount of data in the end. In addition to that,
the incremental top-down approach adds a fair amount of overhead, because for each piece
of the graph we are now passing data around. With that preliminary consideration we can
take a closer look at where we are saving time and where there are still redundancies left.

2.5.1 Initial Request

After the initial model request by the client the KGraph is synthesized and the root of the
SGraph is created. Layout is then calculated and applied to the KGraph. This layout data
is then mapped onto the SGraph (in this first step just the empty root) and the SGraph is
then sent back to the client. The client stores the received model and queues up the child
references in the root for future piece requests. The diagram is then rendered and the next
piece in the queue is requested.

2.5.2 Piece Requests

For each piece request the following steps happen. Upon receiving a piece request the server
generates or retrieves that piece of the SGraph. The text bounds for the current SGraph are
requested from the client. The client computes them and sends them back. Then the already
existing layout is mapped onto the now larger SGraph structure and the piece that was just
generated is sent to the client.

2.5.3 Overview of Performance Impacts

Summarizing, these are the steps and how often they are performed in the top-down approach.
> Synthesis Performed once at the beginning.
> Layout Performed once at the beginning.

> SGraph construction Performed iteratively. The total time used will be a little higher due to
additional overhead.

> Text bounds calculation Performed for every piece request. Currently performed for the
entire stored SGraph every time. This can be optimized by remembering the texts that
have already been sent and only actually transmitting new texts.

24

2.5. Performance Analysis

eEEEEEEEEEN, chart
n .
m | Mamed region .

'Illlllllll'

EEEEEER\sEEEEEN

Y

parallel_one parallel tw

Figure 2.8. The region labels are the most prominent example of the text sizes not being handled
correctly. Using a unified font so that the text bounds calculation can happen on the server is solution
that would eliminate a lot of the problems related to this process step.

> Rendering Performed for every piece request, but this is also performed for every viewport
transformation. This requires optimization, but this is a different problem.

> Communication Text bounds related communication is a large additional overhead, since
it is performed fully for every piece request. The model sending communication is split
apart like the SGraph construction.

As can be seen the major remaining redundancy lies in the text bounds calculation. As
already mentioned in Section 2.4.2 the text bounds calculation is dependent on the SGraph
construction and the layout step is technically also dependent on the text bounds calculation.
This tight coupling of components makes it difficult to individually create top-down solutions
for the individual process steps. The compromise made here is to accept small visual bugs, as
shown in Figure 2.8, in return for a more performant system.

The solutions already implemented in the scope of this thesis reduce the wait time for
the largest diagram, from requesting the diagram until something useful is presented, from
over 40 seconds to only a few seconds, which although still not quite the target of one second

25

2. Top-Down Architecture

is a significant step in the right direction. It is important to keep in mind that at this point
only the communication is performed incrementally. The transmission of each individual
piece now takes up a very small amount of time. This means that the wait time is mostly
determined by the other steps in the diagram process that still consume relatively large
amounts of time. Further work making more of the time consuming parts of the process also
work in a top-down manner, could help realize this performance goal.

26

Chapter 3

Top-Down Layout

The layout step of automatic graph visualization is an isolated component that is a core
contributor to the end result. Since the topic of this thesis is top-down visualization and we
have now discussed what that means architecturally, a perhaps more intuitive aspect is the
visual impact of calculating layout itself in a top-down manner.

In this chapter the current approach in place in ELK is explained in Section 3.1. In
Section 3.2 several layout methods for hierarchical graphs with a top-down idea as their
focus are introduced. Several variations and their configuration options are explained in
Section 3.3. The results are then evaluated in terms of performance impacts and how they
compare visually and aesthetically to the old bottom-up approach in Section 3.4.

3.1 Hierarchical Graph Layout in ELK

Many layout algorithms are designed for graphs that are not hierarchical. Layout algorithms
that specifically support hierarchical graphs are a lot more complex to develop and may also
only support special cases. Luckily, it is quite straightforward to use normal graph layout
algorithms within the process of hierarchical graph layout. This allows building upon the
large amount of work that has already been done in the general field of automatic graph
layout for the special case of hierarchical graphs.

The simplest approach and the one used in ELK is a recursive graph layout procedure.
We define the function ApplyLayoutAlgorithm(v). It computes a layout I' on the children
of v and calculates the size requirements of v. If v has no children, then no further layout
is computed at this stage. When the parent of v is laid out, the size of v is determined by
externally set size attributes and the micro layout of v. This means for example a node is
wide enough so that its label fits in the drawing. Which specific algorithm is applied is not
important here and can be set either externally or attached as meta data to the node. With this
definition we can now define the layout procedure for hierarchical graphs. This procedure is
given in Algorithm 1.

3.1.1 Layout of SCCharts

In the case of SCCharts, which is the graph drawing application this thesis focuses on, diagrams
are constructed out of states and regions. States are inside regions and regions are inside states.
There are some differences in how layout of states versus how layout of regions is handled.
Applying a layout algorithm to a node means computing the layout of the children of that

27

3. Top-Down Layout

Algorithm 1: RecursiveGraphLayout

Input :Graph G = (V, E) with hierarchy function T
Output: Layout I' of graph G

1 begin
Choose r € V such that 7(r) = L
foralln e {ve Vit(v) =r} do
T(n) < L
G G
T 1
remove all vertices from G’ and 1’ which are not n and not descended from n
RecursiveGraphLayout(G', ')

®W g SN U os W N

9 | ApplyLayoutAlgorithm(r) // layout determines dimensions of r

node. The layout algorithm applied within regions is a layered algorithm. This means the
states within a region are laid out in layers. The layout algorithm applied within states, on
the other hand, is a rectangle packing algorithm. This means that the regions within the
state are arranged to fit inside the state while preserving their order in the reading direction.
Whitespace is removed by enlargening the regions after they have been positioned.

For the layered algorithm there is a further option available which controls the direction of
the layout. This can in general be any one of four directions (up, down, left, right). For SCCharts
this is restricted to several configurations. The simple approach is to set the algorithm to
horizontal or vertical layout. In these cases the layered algorithm is set to always use the right
or down directions respectively. Alternatively, the direction can be set to alternate between
right and down. This gives us two more options: HV-layout and VH-layout. HV-layout is the
default SCCharts look.

Figure 3.1 shows the result of this layout.

3.2 Top-Down Layout Concept

There are two separate concepts that top-down layout could refer to and therefore we need to
make clear distinctions about what is talked about where, especially as the concepts are not
mutually exclusive.

First of all, coming from the topics discussed so far, especially in Chapter 2, top-down
layout can be understood as simply a different implementation than the existing bottom-up
method. The goal might be that the resulting diagram looks the same using both solutions. The
top-down method would then primarily provide the architectural advantages and flexibility
as highlighted in the previous chapter. However, a top-down algorithm which provides the
same output as the bottom-up approach is simply not possible, due to layout steps higher up
in the hierarchical graph requiring computed layout information of lower nodes.

28

3.2. Top-Down Layout Concept

ABRO
Main
R

ABO

Horizontal Layered

WaitAandB

fandleB ‘/ Rectangle Packing

|/ O = true | Vertical Layered
U

 J
done

Figure 3.1. Different layout algorithms combined to create the overall SCCharts layout.

There is another aspect of top-down layout that is heavily focused on in this chapter. One
of the goals of the bottom-up layout strategy is to use common size for elements such as texts
and small nodes so that it can be easily read at a constant zoom level. For the applications
of editing SCCharts this is generally not actually a necessary constraint, because the work is
happening on computer screens, where we can zoom to arbitrary detail. So with this in mind
we can explore what kind of layouts can be created when ignoring nodes lower down in the
hierarchy while laying out top-level elements.

On paper these two ideas go hand in hand, but due to the nature of the existing system
where the concepts are applied, there are some limitations especially regarding actually
performing full top-down layout, which will be covered later. The focus is therefore rather on
what the resulting diagrams can actually look like, partially using top-down implementations
and also utilizing the existing frameworks.

Figure 3.2 shows a visualization of the top-down concept. Nodes that are located lower
down in the hierarchy are scaled down to fit within their parent nodes. The ratio of node
dimensions to their label sizes remains similar which lets the user view the entirety of a node
while at the same timing being able to read its label or other text attached to that node.

An important idea behind this top-down layout is the notion of compactness. Instead
of nodes that are on the same hierarchical level being spread far apart, they appear close
together and can be viewed together at a glance without extra viewport transformations being

29

3. Top-Down Layout

Root Node Node D

Node A Node B
N

iode B1

Leaf D2 Leaf D2

Node B1

Node D

Leaf D3 Leaf D4

Figure 3.2. Top-down layout concept. Inner nodes are scaled down to fit into their parents. Zooming
in closer makes their labels legible.

necessary. The motivation is that this helps make navigating a diagram much more efficient
than in the bottom-up approach, because panning back and forth between distant nodes is no
longer necessary and, while zooming in on a node, the next hierarchy level already becomes
visible and legible. This allows the user to more directly move from node to node.

3.2.1 Top-Down Layout Engine

In order to actually perform layout using a top-down ordering we need to replace the recursive
layout engine with something else. The solution is a top-down layout engine which externally
provides the same interface, but internally uses a different approach to compute layout for
hierarchical graphs. This new engine should complement rather than replace the recursive
engine so that both engines may be used depending on the settings chosen by the user.

Although the existing interface for layout engines is abstract, the system was not designed
to actually support switching layout engines during run time. The concrete engine that is
used is bound once upon start-up. In order to enable dynamic selection of the layout engine, a
third generic layout engine is introduced, which serves only the purpose of calling the correct
layout engine for a layout run. Which engine should be used is set via synthesis options in the
IDE and then as a property on the graph structure itself during the synthesis. The described
layout engine switching mechanism is illustrated in Figure 3.3.

From an abstract point of view it is now quite straight-forward to implement the top-down
layout engine, however, in practice it turns out it is not quite so simple. The existing algorithms
called during graph layout and the structures used for storing the graph and its metadata
generally assume that the graph is laid out bottom-up. This makes the implementation of
an actual working prototype using this engine quite complex. The challenge here is that the

30

3.2. Top-Down Layout Concept

org.eclipse.elk.core

«Interface»
IGraphLayoutEngine
+layout(layoutGraph : ElkNode, progressMonitor IEIkProgressMonitor) : void

JAN

I
| RecursiveGraphLayoutEngine
| <_ |
I I
| |
I I
! TopDownGraphLayoutEngine !
L <--- «delegate»
I I
: ConfigurableGraphLayoutEngine | _ _ _,
N\

I

|

I

«bind»

de.cau.cs kieler.klighd.internal. macrolayout

______ KlighdLayoutSetup

Figure 3.3. Class diagram excerpt illustrating how the optional switching of layout engines is realized.

layout of nodes’ positions is only part of the layout process. The label of a node also affects
the necessary size of a node, which in turn affects the overall layout. Because of this it is
not possible in ELK to simply set the child node sizes and then compute a layout, because
the result will be affected in the wrong order by these extra calculations. This is an example,
where creating a new system to perform this specific task top-down, would probably end up
being easier than trying to integrate the new concept into the existing system.

But since we are not only interested in the computation order, but also the potential visual
results, there is another method we can use which makes it possible to combine top-down
ideas with the working system.

3.2.2 Hybrid Layout

The method used to achieve a visualization with a top-down aesthetic within the the existing
system is a hybrid approach. The hierarchical layout is still performed recursively bottom-up
using the recursive layout engine, but on the way down the hierarchy, the node sizes are
constrained without knowing the size of the content. This mimics the process in a true
top-down ordering, where the layout of the high-level nodes has to be performed before

31

3. Top-Down Layout

Algorithm 2: HybridGraphLayout

Input :Graph G = (V, E) with hierarchy function T
Output: Layout I' of graph G

1 begin
2 | Choose r € V such that 7(r) = L
3 | forallne{veV|t(v) =r}do
4 T(n) « L
5 G G
6 T 1
7 remove all vertices from G’ and 1’ which are not n and not descended from n
8 RecursiveGraphLayout(G', ')
9 scale n according to its scale factor
10 | ApplyLayoutAlgorithm(r)
/* The size constraint is set for every node (usually all the same), the
desired size can be the width or height computed by the layout or can be
a more complicated metric describing the space required to draw the
layout. */
11 ¢ « size constraint of r
12 d < desired size of r
13 s<«—c/d // scale factor
14 attach s as property to r

their contents have been laid out. In order to then fit the laid out children into their parents
with restricted sizes, the entire child content area is scaled down to fit the given space. This
modified recursive layout is described in Algorithm 2.

The node size constraints are chosen in such a way that each node aims to be the same
size when viewed at its correct zoom level. This has the effect that text sizes always remain
legible while viewing the entirety of a node as opposed to a bottom-up layout, whereas in
large diagrams, top-level labels tend to get lost in the large node drawings, see Figure 3.4.
While this problem can also be approached using dynamic rendering techniques, which only
modify the resulting drawing depending on the current zoom level, dealing with this issue
directly during layout provides an elegant alternative to this issue.

In Figure 3.4b the top and and bottom regions don’t align and the region labels are also
different sizes. This is a consequence of scaling down the nodes to fit within a constrained
size. It is not possible to change this on the layout side, but this is something that could be
changed relatively easily during the rendering process.

The other benefit of this top-down layout is that it becomes much easier to parse a node
in its entirety and to get an overview of what it contains. This is due to two factors. Firstly,
because the contents are scaled down to fit into the parent it is possible to see the entire
node and its content at a legible zoom level without the need to pan or zoom the screen.

32

3.2. Top-Down Layout Concept

wagon
array_initialization

sy areagressy| MMM nit) @

—

= MLQ—:;, Ll ==

(a) Wagon model laid out using bottom-up approach. (b) Wagon model laid out using top-down approach.
Labels of large states are impossible to read while view- Labels of all states are always legible while viewing the
ing the entirety of the state. entirety of the state.

Figure 3.4. Comparison of legibility of labels in large states.

There are extreme cases where this is still necessary of course, but these cases are very rare.
These cases are when there are a large number of nodes on a single hierarchy level. At that
point the result is dependent on the layout algorithm responsible for arranging the nodes and
the influence of the hierarchical layout diminishes. For the use case of SCCharts that is being
considered here, this is not very common as they generally make a lot of use of hierarchy.

In the bottom-up approach, on the other hand, it is often the norm that the viewport
needs to be adjusted while parsing the diagram. The second factor is that the child nodes
themselves all have a similar size relative to each other regardless of the number of children
they themselves have. So nodes on the same hierarchy level can no longer be dwarfed by
neighbouring very large nodes as would be the case in a bottom-up layout, see Figure 3.5.

This is the solution chosen here, but there is another idea that we can look ahead into
only the next layer of a node to adjust the amount of space given to that node. For example a
node with five direct children might be given more space than a node with only two direct
children. In this hybrid approach this can be quite easily achieved by adjusting the node size
constraints dynamically. In the case of SCCharts this would not immediately have the desired
effect though. This is because of the way regions and states switch for every layer. Often there
is only one region in a state and what actually determines the space required by the state
is then not its child region, but rather that region’s children. This makes this heuristic not
generally applicable which is why the more general solution was chosen.

This covers the general concept, but there are a number of variation possibilities and
configuration options, which will be covered in detail in Section 3.3.

33

3. Top-Down Layout

/

(@) In the bottom-up case, larger nodes such as handle_KH_ST_6, highlighted in red, dwarf their neighbours
making it difficult to view several nodes next to each other. Besides that the labels are all hardly legible requiring
further zooming.

handle KH

/ / 4
k== KH ST 5 7 }ri(k ==KH ST 6 8: frack == KH_LN 0 9: frack == KH_LN_1

(b) In the top-down case, all the nodes on the same level are sized in a way that makes large and small nodes
legible at the same time.

Figure 3.5. Comparison of resulting layouts when very large states are next to very small states. Both
figures show a very similar portion of the wagon model.

3.3 Configuration Options

There are a variety of different ways to set the constraints for the top-down layout, and
evaluating the resulting diagram variations effectively requires flexible switching of the

34

3.3. Configuration Options

specific parameters and their combinations used. To this end several synthesis options are
introduced that control how top-down layout is computed. These configuration settings and
their effects are explained in this section.

3.3.1 Layout Engine

There is an option to toggle between the top-down layout engine and the recursive layout
engine. The remaining options are currently only supported by the recursive layout engine,
because as previously already stated, the top-down engine did not prove to be a suitable
solution and the hybrid approach was implemented as an extension of recursive layout. When
the recursive layout engine is selected, top-down layout can be turned on and off using a
separate setting.

3.3.2 Constraint Type

The constraint type defines what aspect of the nodes is used to calculate the scale factor to be
applied. In general the scale factor s is based on a size constraint ¢ which defines the amount
of space available for the layout of a node and a desired size d. What exactly the desired size
represents depends on the chosen constraint type. The scale factor is computed by s = c¢/d.
After the layout of a node is computed, all laid out elements are scaled with the factor s.

To better understand the effects of the available constraint options, example figures are
included. The same diagram is laid out each time using a different setting. As a reference,
Figure 3.6 shows the diagram laid out using the bottom-up approach. In the following
example figures for the different size constraints red bars are added to the diagrams to
illustrate, which dimension is constrained during the layout. These red bars are scaled along
with the part of the diagram they correspond to, but it is important to understand that they
represent a fixed unit length. How this unit length is chosen and what happens when it is
adjusted will be covered in Section 3.3.3.

Fixed Width

When fixed width is selected, all nodes on the same hierarchical level are scaled in such a way
that their final widths are the same. The main visual effect is that node labels become very
large. This has the downside that, when the labels are relatively longer than the constrained
width, extra whitespace is added to the child area to accommodate the larger label. Dynamic
constraints, which are introduced later, help alleviate this issue. In Figure 3.7 we can see how
the fixed width setting affects the layout. As can be seen quite well at the top-level node, due
to the constrained width, the label N becomes relatively large. The nodes A,B and C are all
the same width, but B is slightly taller, because its children require a little more space.

35

3. Top-Down Layout

A\
Z

Figure 3.6. Reference for comparison. Diagram laid out using bottom-up approach.

Fixed Height

Fixed height is analogous to fixed width only that heights are constant. For both fixed width
and fixed height the size of the non-fixed dimension depends on the actual contents of the
node. With this setting the label width issue is not a problem anymore, but a similar issue
happens when the child layout is tall and needs to be scaled down further to fit within the
limited height. An example diagram with fixed height can be seen in Figure 3.8. Since the
width can now stretch to accommodate the children, the N label is now smaller relative to
the overall size of the node. The child nodes A,B and C are all now constrained to the same
height, which means that B’s children need to be scaled down slightly more than before.

Optimized

When always fixing the width or the height, the result can often be that some nodes are
very tall or very wide compared to their neighbours. The optimized setting alleviates this by
dynamically constraining the width or the height depending on the resulting scale factor. The
constraint which results in a scale factor closer to 1 is chosen as this helps keep scales between
different hierarchy levels closer together and also reduces the amount of very tall or wide
nodes. This setting also reduces the issues with fixed width and height, as it usually selects
the setting that causes less problems. Besides considering the scale factor when deciding
which dimension to fix, it might also be useful to take the layout direction into account.
Figure 3.9 shows which constraint is chosen for each node. The important nodes to note here

36

3.3. Configuration Options

—

_ —

B C
—>—>

Figure 3.7. Diagram laid out using top-down approach with size constraint type set to fixed width.

® >
® w
® 0

®
&
®

Figure 3.8. Diagram laid out using top-down approach with size constraint type set to fixed height.

are N,A,B,C and B2. The other nodes are atomic nodes, which effectively means fixed width
and fixed height have the same effect. N and B2 are scaled using a fixed height, because this
results in less down-scaling. A,B and C are scaled using fixed width instead, because this
results in less down-scaling for them. This is also quite visible when comparing these nodes
directly between Figure 3.7 and Figure 3.8.

37

3. Top-Down Layout

Figure 3.9. Diagram laid out using top-down approach with size constraint type set to optimized.

Square

This option so far exists only as a concept and a solution to fully implement the idea still needs
to be developed. The aim of the square option is to more closely emulate a true top-down
layout process within the hybrid method used here. The idea is to fix both the width and
the height of a node at the same time, completely independent of the content of the node.
When the content of the node is laid out it has to then be scaled down according to the long
edge of its drawing space. The result would be more down-scaling and more whitespace than
with the other constraint types. Figure 3.10 illustrates what the layout result using this option
would look like.

Even though the option is called square here, a more general descriptor could be fixed
aspect ratio. The problem does not change when width and height are constrained to different
sizes so long as they are both constrained. For the use case of computer screens, a fixed aspect
ratio corresponding to the screen would probably be the most sensible restriction to create an
optimal viewing experience.

3.3.3 Dynamic Constraints

To fully understand what this option does we need to first go into a little more detail about
what exactly the size constraint does. The size constraint is a number that is set as a property
on a node and it tells the layout engine how many pixels the constrained dimensions should
occupy in the drawing. The ratio between this constraint and the space required by the node
content determines the scale factor applied to the nodes children.

By default the node size is set to the size of a minimal SCCharts state as shown in Figure 3.11.
This value of this size can be modified using a slider. The result is an interesting visual effect.
When the value chosen is smaller than the default, the scale of the internal nodes starts

38

3.3. Configuration Options

IO

(a) Hierarchical graph laid out bottom-up, (b) Hierarchical graph laid out top-down con-
where node size is dependent its children. straining all nodes on a level to the same
All leaf nodes are the same size. square size.

Figure 3.10. Square constraint option concept.

becoming smaller faster and nodes with some content will have smaller labels than nodes
with no content. To an extent this is exactly expected behaviour, because of the constraints.
When the size constraint is set higher than default, we can observe the opposite. Nodes with
child areas will become relatively larger than empty nodes. In Figure 3.12 a comparison
between the default size constraint, smaller and larger values is shown.

There may be benefits to using the non-default size constraints, but some further restric-
tions are probably necessary. For example, to restrict the magnifying effects described above,
the final scale factor that is applied can be capped. A simple method to achieve a good visual
result is explained in the following.

At the default size setting, nodes with no further children look as intended, that is, they
look the way would also look in a bottom-up layout. As originally explained, the idea of the
top-down layout is to make all nodes on the same hierarchy level the same size. In practice,
however, this can actually make it hard to read the contents of nodes containing children next
to atomic nodes. To alleviate this issue, an option called dynamic node size constraint can be
toggled and when enabled this simply doubles the size constraint of all nodes which have

3dpx

34px

Figure 3.11. Dimensions of a single, atomic SCCharts state.

39

3. Top-Down Layout

sizes sizes

(a) Size constraint set to 15. (b) Size constraint set to default (c) Size constraint set to 94.
value of 34.

Figure 3.12. Comparison of effect of changing the node size constraint values. Dynamic node size
constraints are disabled here. As can be seen, when we deviate away from the default size, an
undesirable distortion of the nodes relative sizes starts appearing.

children. The difference in the two appearances can be seen in Figure 3.13. The figure shows
the effect for both fixed width and fixed height. In both cases the result is a more balanced
overall look.

3.3.4 Automatic Layout Direction

Part of the visual aesthetic of SCCharts comes from the layout direction. As explained in
Section 3.1.1, SCCharts use a layered algorithm to lay out states within a region. A layered
layout can be oriented either horizontally or vertically. To balance the aspect ratio of SCCharts
diagrams, the default approach is to use a so-called HV-layout which just means that the
direction used by the layered algorithm switches back and forth and starts with a horizontal
direction. The direction can also be set to alternate, but start with vertical and also use only
horizontal or only vertical.

This does not force a balanced aspect ratio though, and therefore in the spirit of top-down
layout a new setting is introduced. Automatic direction can be used with or without top-down
layout. When it is enabled the layout of a hierarchy level is first performed with the default
direction. The dimensions used by the resulting layout are saved and then layout is computed
again, but using the other direction. The aspect ratios of the resulting layouts are compared
and the one that is closer to a pre-defined ratio is used for the final layout.

Using the aspect ratio to decide which direction to use results in less long and thin nodes
and an overall more balanced look. The downside is that the uniform look achieved by
alternating the direction in every step is no longer there. However, part of the usefulness for
top-down layout is actually achieved by optimally using the available screen space, which this

40

3.3. Configuration Options

dyn

dyn -
7 Ol W=
> D @

(a) Dynamic node size constraint is disabled. Fixed (b) Dynamic node size constraint is enabled. Fixed
width. width.

dyn dyr

A
& ©
(c) Dynamic node size constraint is disabled. Fixed (d) Dynamic node size constraint is enabled. Fixed
height. height.

Figure 3.13. Comparison of the effect of having dynamic node size constraint disabled and enabled.

option helps with. Aspect ratio is a relatively simple method of determining the best direction
and there are other metrics that may be considered as well. One such more advanced measure
could be the max scale measure, which aims to make labels as legible possible by determining
the largest possible scale they can be displayed at [RES+17].

Enabling this option increases layout time by a small factor, because every time the layered
algorithm is normally executed it is now executed two or three times. This could in theory be
reduced to only a factor of two, but that would require more memory to cache the results and
the necessary copying of the data would introduce other additional performance costs. Since
layout is not such an expensive process and the time complexity is not significantly impacted,

41

3. Top-Down Layout

this is a reasonable solution for this experimental feature.

3.4 Top-Down Layout Evaluation

This section covers the performance implications top-down layout has and compares the
diagrams resulting from top-down layout with diagrams laid out using the traditional bottom-
up approach. We also take a look at how a use case of SCCharts is affected by using both
approaches. The use case that is examined is the navigation within a diagram.

3.4.1 Performance Impacts

While performance is not the main focus in this chapter, it is nonetheless important to
understand what a new process costs in terms of performance. This helps keep the system
fast and can also prevent unexpected problems showing up later.

In general the procedures used to create the top-down layouts use the existing system and
build upon that. The complexity of that system will serve as our baseline reference. While
calculating a top-down layout with any of the constraint types, the time complexity does not
actually increase as all that happens is a little extra calculation at each step to determine the
scale factor.

There are, however, two things which do have a considerable impact, the first is the option
to automatically choose the layout direction and the other is related to rendering with our
large scale differences.

Automatic Direction

Enabling the setting to automatically choose the layout direction for the layered algorithm
during the layout process comes with a performance cost. Both possibilities are computed in
every instance where the layered algorithm is called and if the first possibility is chosen, that
layout has to be recomputed. The result is that all the layered algorithm calls end up using
approximately twice as long in the best case and three times as long in the worst case. The
factor is not quite as high for the entire layout process, because SCCharts layout also includes
rectangle packing which is not affected here.

While the time used does increase, the time complexity actually does not. This is good,
because it makes this a viable experimental feature to view alternative diagram layouts, which
scales similarly to the normal layout process.

Shadow Rendering in KEITH

Part of the visual design of SCCharts includes a shadow drawn behind states to give them
a more three-dimensional look. See Figure 3.14 for a comparison of a diagram drawn with
shadows enabled and disabled. The way they are rendered in KEITH causes severe rendering
slowdowns when zooming in on them due to the current implementations of shadows using

42

3.4. Top-Down Layout Evaluation

node node node
/
(a) Shadows enabled in KEITH. (b) Shadows disabled in KEITH. (c) Shadows enabled in KIELER.

Figure 3.14. Comparison of a diagram drawn with and without shadows.

gradients requiring much more rendering time in current SVG renderers. Zooming in very far
is, however, a core navigational requirement for a top-down layout and therefore shadows
have to be disabled, when using top-down layout. This is also the reason the diagrams shown
in this thesis are drawn without shadows. In the future, a different implementation to render
shadows in KEITH could be used which does not slow down rendering time when zoomed in
closely. An implementation closer to the one currently used in KIELER could be more suitable.

3.4.2 Aesthetics Comparison

The concepts developed for this thesis were put into practice for SCCharts, therefore it makes
sense to compare the aesthetics and the look-and-feel of the bottom-up layout with the new
top-down ideas. This section will go over what remains similar and where the differences in
the layout results lie. Furthermore, the advantages of each approach are highlighted.

When viewing a top-down layout of an SCCharts diagram on a single hierarchy level, the
general look is analogous to a diagram laid out bottom-up, this is demonstrated in Figure 3.15.
This means that many aesthetics criteria are simply maintained when switching from the
bottom-up layout to the top-down layout. This includes measures such as the distances
between nodes, edges and combinations thereof. Edge labels in particular are still a little
different in their relative appearance. This is due to their hierarchical location within the
diagram model, which affects how they are scaled. This could be further adjusted in the
future, depending on what look is deemed best.

There are some differences though. The first most obvious difference is that similar
elements no longer have a similar size. The most prominent example of this are texts. This
look is of course intended, as hierarchy levels can now be visually differentiated by their scale
and the name of a state is always large enough to be readable in relation to the size of the
state, see Figure 3.4.

Figure 3.15b showcases a problem in the top-down layout implementation that still remains
to be fixed. Although edge labels are scaled down together with other elements on the same
hierarchy level they do not always end up in quite the right position.

43

3. Top-Down Layout

WaitAandB
HandleA
@
HandleB
@
Iy’ 0 = true
Y/ 0 = true ¢
l
v done
done
(@) Zoomed in excerpt of ABRO laid out (b) Zoomed in excerpt of ABRO laid out top-
bottom-up. down.

Figure 3.15. Comparison of aesthetics within a hierarchy level.

wagon
array_initialization

movement

Figure 3.16. Wagon model laid out using bottom-up approach with all regions collapsed.

The only way bottom-up layout can provide similar legibility as achieved by top-down
layout is by collapsing regions as shown in Figure 3.16. Collapsing and expanding regions
always shifts the layout slightly, which can conflict with the mental map of a user. While
using top-down layout it may not be necessary to collapse and expand regions to switch
between high-level and low-level viewing, therefore maintaining the mental map at the
highest possible degree by not changing the layout at all.

Another important difference also related to sizes on a hierarchy level is the size variation
of nodes drawn on the same hierarchy level. In a bottom-up diagram there are often cases
where very small nodes are drawn next to very large nodes. This makes it difficult to see them
together and to understand their relation at a glance. In a top-down diagram, on the other
hand, all nodes that share a parent are drawn with very similar sizes, depending on which
particular size constraint is chosen. This makes it easy for a viewer to quickly get an overview
of all the components inside a node and how they are connected. An example diagram
demonstrating this difference is shown in Figure 3.5. Looking at the internal workings of any

44

3.4. Top-Down Layout Evaluation

individual node is then achieved by zooming down into it.

Another measure which is influenced by this change is the overall compactness of the
drawing. In a top-down layout there is much less whitespace than in a bottom-up layout of
the same diagram. This means that elements are far less spread apart and can be viewed
easily on a screen with minimal panning of the viewport.

The differences between the two layout approaches help distinguish the different use cases
of the layout types. In bottom-up layout, the primary navigational tool is panning, which
makes it a great layout method for diagrams that are printed on physical media. A large sheet
of paper can only be panned. Zooming can be emulated by stepping away from or closer to
the paper, but this is very limited compared to the possibilities on a computer screen. The
resolution of a sheet of paper can be increased by increasing the physical size of the paper.
Top-down layout, in contrast, uses zooming as the more important navigational operation.
This makes it very suitable for screen-based applications.

Apart from differentiating the layouts by the medium on which they can be suitably
viewed we can also consider how a user interacts with a diagram. This can mean navigation
from one node to another, searching for specific nodes or understanding the connections
presented in the diagram. The layout and presentation of the diagram is crucial to make
these tasks easier or harder for a user to perform. Taking this into account when creating
a visualization to provide the user with a diagram that makes these tasks easy and do not
require additional cognitive load, should always be an important factor when evaluating the
quality of a diagram drawing.

3.4.3 Comparison of a Navigational Task

Navigation within a diagram is important, especially for diagrams which are large enough
that the details cannot all be taken in at a glance. This section will go over the differences
between bottom-up and top-down layout when faced with a relatively simple navigation task.
The focus here will be on the viewport transformations necessary during navigation. For a
full quantitative analysis and comparison average navigation times for different examples
would also be interesting, we will specifically be looking into the amount of panning and
zooming operations that are necessary.

Before constructing an artificial comparison we need to first consider how navigation
is usually done in bottom-up layouts, how it can be done using top-down layout and how
comparable these methods really are. In a large diagram laid out using bottom-up layout,
texts are usually too small to read when viewing the entire diagram. Users are forced to
hunt-and-peck for the nodes they want to navigate to. What this means is that the user will
make a guess about where they think the node they are looking for might be and zoom in to
check the labels at that location. If it is not the right place, they will zoom back out and try
somewhere else. In a diagram laid out using top-down layout, on the other hand, this is easier.
When viewing the entire diagram, the top-level nodes are legible and the user can directly
zoom in on the correct location. These different navigation styles can hardly be compared,
but what we can do is remove the random guessing part and assume a direct and known

45

3. Top-Down Layout

path to a goal. In this scenario we can get an estimate for distances in a diagram, which helps
illustrate the relative compactness of a top-down layout.

The task is a simple task of going from the top-level zoomed out view to a leaf node. Since
we are not so much interested in search times, but rather how directly the goal can be reached,
the list of parent nodes are known beforehand. This way, searching is limited to searching
for the next node on a hierarchy level. To keep the process comparable, the operations are
restricted in the way they may be used so that the process will alternate between a zoom
operation to make node labels legible and a pan operation to locate the correct next node.
In the case of the bottom-up layout, all node labels are legible on the same zoom level, so
there is essentially only one initial zoom required and all subsequent operations are pans.
The task is performed on the wagon model, because it is a relatively large model which forces
a certain amount of viewport transformations. Top-down layout here was computed with the
size constraint set to optimized and dynamic size constraints enabled.

We are interested in finding out how much zooming is necessary to make labels legible
and how much panning is required to center the viewport on the next node in the sequence
before the next zooming step. We can measure the distance between each step and compute
the sum to determine the total panning distance. The distance is always measured from the
midpoint of a node to the midpoint of the next node.

In the bottom-up case, since there is no zooming, determining the distance is simple.
In the case of top-down layout, there is a zoom operation between each pan operation and
therefore we need to ensure that distances use a standardized distance measure. The way
this is solved is by measuring distances relative to the zoom level with text sizes being the
defining standard measure. This also gives comparability between bottom-up and top-down
layout. The task compared here consists of the following path through the wagon model.

wagon — movement (region) — handle_IC — handle_IC_ST_4 — handle_switches — init

Here, movement is the only region listed, because it is the only named region. All other
states only have a single region which therefore do not have a large impact on the navigation
so the path can be simplified by combining them with their parent node.

The results of this navigational task are shown in Table 3.1. The units for measuring
the distance are the values as calculated by the layout of the diagram before any scaling is
applied to the renderings on the client. This ensures the comparison between bottom-up and
top-down is made at the same relative scale. The total pan distance is computed as the sum
of all individual steps and the total zoom distance as the product of all steps. The distances
always refer to the distance to the previous step, so in the first step the pan distance is 0 and
the zoom distance is 1. Internally, zooming is implemented by scaling down the inner nodes.
Here, we will use the inverse of the scale factor, the zoom factor, which represents the factor
by which nodes need to be enlarged in the viewport until they reach the size at which they
become legible.

To get an idea of what it feels like to navigate through this relatively large diagram,
Figure 3.17 shows the first few steps of the navigation task in both the bottom-up layout and

46

3.4. Top-Down Layout Evaluation

Table 3.1. Navigation distance measured in pan distance and zoom factor. Measurements are relative
to the previous step.

Node Bottom-Up Pan Top-Down Pan Top-Down Zoom
wagon 0 0 1
movement (region) 49.31 51.74 8.13
handle_IC 1779.82 165.6 1.5
handle_IC_ST_4 649.98 305.87 8.9
handle_switches 110.74 115.23 2.03
init 295.58 278.74 8.4

Total 2885.42 928.88 1854.51

the top-down layout. As can be seen quite clearly, at the zoom levels presented, the texts in
the bottom-up layout are not legible. This means when actually navigating the graph the
user is forced to zoom in close to read labels and then out again to reposition the viewport
appropriately. In the top-down layout, on the other hand, the labels become gradually visible,
which lets the user smoothly transition from one node to the next. The top-down layout also
helps to improve the readability of the diagram by minimizing the amount of visible extra
information. The focus is always more on the direct children of a node.

The first observation that can be made is that the total panning distance when navigating
the top-down layout is significantly shorter. Of course this distance does not just disappear,
but rather is converted into a zoom distance. While of course zooming is also possible on the
diagram laid out bottom-up, the top-down layout actually leverages this as a sort of third
dimension and through that shortens distances between points of interest.

The task chosen here leads to a node which is positioned fairly central on the diagram.
The bottom-up layout benefits a lot from this, because if we were moving to the edge of the
diagram in the case of the wagon model, we would see a total panning distance of around
10000. This is of course assuming there is no searching necessary, because the user already
knows exactly where to navigate to. In practice this is usually not the case.

What we can see is that the biggest benefits happen in the initial steps of the task. In the
top-down case a small pan is enough to locate the next node which can then be zoomed into,
whereas in the bottom-up case a lot of distance has to be covered. The benefits only really
start becoming significant after about three levels of nesting. Diagrams with less depth than
that do not benefit very much from top-down layout, because in those cases everything still
remains readable without having to zoom in.

47

3. Top-Down Layout

(a) Bottom-up layout. Entire
model in view.

wagon

array_initialization
@“ —.

(d) Top-down layout. Entire model
in view.

(b) Bottom-up layout. handle_IC
node is visible along with the
other nodes above and below it.

track <= KH_ST_6

track <= OC ST 4

(e) Top-down layout. handle_IC
node is visible along with the

other nodes above and below it.

Here all nodes occupy the same
amount of vertical space.

(c) Bottom-up layout. The children
of handle_IC are in the center of the
image. handle_IC_ST_4 is the large
node.

handle_ IC

(f) Top-down layout. Zooming in
on the children of handle_IC. Sur-
rounding nodes are no longer in
view.

Figure 3.17. Comparison of the navigation through a large diagram laid out with bottom-up layout
and top-down layout. The figures aim to capture a very similar cutout of the diagram for each step.

48

Chapter 4

Discussion

In this chapter the results of chapters 2 and 3 are summarized and discussed. Going further
they are examined within the overall context of top-down graph visualization and how the
solutions developed help advance this overarching topic. Finally, we take a look how further

improvements could be made and what the strategy for extending the top-down concept
could be.

4.1 Summary of Results

This section will go over the individual areas of interest of the thesis and discuss the concepts,
solutions and results, as well as what can be learned from the work done. We will go over
some of the remaining issues, how they could be addressed, and what the next development
steps could be.

41.1 Top-Down Architecture

A major goal of this thesis is to provide alternate solutions to the scaling problems faced
by the current architectural solutions. The path chosen here is an incremental top-down
architecture design, which flips the existing paradigm on its head. The questions posed in
this research were concerned with the feasibility of implementing parts of the architecture in
a top-down manner and also what benefits this provides in practice.

The work of this thesis focused on two specific parts of the KEITH system, the SGraph
generation step and the communication between client and server when sending the diagram
model. For the SGraph generation, an incremental on-demand construction mechanism was
created which serves as the entry point for the incremental communication by only delivering
the parts of the SGraph that should be sent in any individual message. Instead of sending the
entire model in one request-response message exchange, the client now requests individual
pieces of the model and the server sends only that piece. This results in many small messages
rather than one large message. The client can decide in which order pieces of the diagram
should be requested and can render all pieces it has already received.

What we can see with these solutions is that the concept works in practice. It is possible
to transform parts of the overall architecture into an incremental pattern while treating the
rest of the system as a black box. This in principle is promising for taking the same approach
with other parts of the system, such as synthesis and layout.

49

4. Discussion

Is a top-down architecture useful? To answer this question we need take a look again at
the use cases. KEITH is an IDE primarily focused on the development of visual diagrams using
textual descriptions of models. When modifying a model, the corresponding diagram should
update quickly enough that the developer does not need to wait for change to show up. Based
on previous research from the field of HCI, one second is a fairly reasonable upper limit for
such an interaction. Models smaller than the wagon model examined in this research can
generally be updated in about one second or less using the old architecture. For these small
models the incremental solution does not provide any advantage over the traditional system.
Once models start getting larger though, the user experience just continually degrades. Here
the incremental approach helps by letting the web client begin rendering portions of the
diagram relatively quickly. So, to answer the question whether the incremental approach is
useful, we have to differentiate between small and large models. These are different use cases
and the top-down architecture definitely opens the door to making interactive exploration
and editing of larger models viable.

In order to extend the top-down architecture to the rest of the system, certain questions
need to answered. For steps like synthesis and layout it needs to be determined whether
working incrementally from the top is possible and if not what needs to change to make it
possible. At least for the layout portion we have already begun exploring this in this thesis
and will get back to it in the next section. If the entire process can eventually be performed
incrementally, diagrams could potentially become much larger and partial layout of a diagram
also becomes an option. It is important to note though, that implementing these solutions
and integrating them in the existing system which was not at all designed to support this
kind of process, may not be the easiest approach to creating a fully incremental system.

4.1.2 Top-Down Layout

Aside from the general architecture and the communication between client and server, this
thesis also explored the top-down concept in the context of automatic graph layout. This was
motivated by the architectural considerations, but also serves as an exploration into visually
different layout results when calculating layouts from the top downwards and not dependent
on the lower levels of hierarchical graphs.

Automatic graph layout of hierarchical graphs poses a unique set of challenges when
considering a top-down approach. The naive approach of treating layout as a black box and
redefining the interface does not actually work when you start getting into the implementation
details, at least not if the result should stay the same. This is due to the simple fact that layout
of hierarchical graphs as it is performed in existing solutions depends on lower level elements
being laid out before their parents.

This necessitates any solution for a top-down layout implementation to also create a
new different layout result. How to technically solve this and what these solutions might
look like was the focus in this thesis. For the architectural side, a top-down layout engine
was experimented with as a means to truly compute layout top-down. Because this did not
provide satisfactory results the focus shifted a little more to the visual side. The recursive

50

4.2. Top-Down Graph Visualization

layout engine was used, but certain constraints set top-down on the downwards pass of
the recursion. The resulting layout variations provide interactive usable concepts for what a
top-down layout can look like in practice.

Besides scalability for larger input graphs being a motivator of top-down visualization,
there is another aspect that makes top-down layout specifically interesting. Stemming from
the use case of live editing of models in software, the medium on which these diagrams are
visualized is a computer screen. An important feature is that we can very flexibly zoom in
and out on diagrams and that is something that bottom-up laid out diagrams do not leverage
very much. They rely much more heavily on panning, because a diagram is spread out over a
large space. Zooming here is used more to increase panning speed by zooming out, panning
and then zooming back in to the same zoom level. In a top-down layout as presented in
this thesis panning is kept to a minimum. Zooming is used not only to make small things
larger and texts readable, but in a navigational sense to reach points of interest in a diagram.
Panning is still useful when the layout on one level contains many elements that may be
difficult to fit onto one screen, but mostly the layout corresponding to the current zoom level
is concentrated within the boundaries defined by the viewport. A caveat of this is of course
that elements on different levels are difficult to see together. It can, however, be argued that
this is an acceptable trade-off compared to bottom-up layout, where neighbouring nodes can
often not be viewed together at a single zoom level.

The solutions presented in this thesis still rely on an all-in-one process, whereas for
the future development of fully incremental solutions, a truly top-down solution would be
desirable. Solving the problems of the top-down layout engine provides one path to reach
this goal. Since the layout algorithms used here operated on single non-hierarchical layers
this is not a problem in theory.

4.2 Top-Down Graph Visualization

After reviewing the individual ideas explored in detail in this thesis, this section will now
concentrate more on the overall topic of top-down graph visualization. This is a complex task
requiring coordination of many smaller components. Integrating these small components
into such a new overarching paradigm comes with challenges, some of which were already
encountered within this work. How to prepare for these problems and deal with them when
they come up is covered in this section.

421 Integration of Top-Down Solutions

So far we have considered the incremental communication and the top-down layout in
isolation. This makes sense during development, because a simplified component is easier to
understand, analyze and debug than a larger system. Eventually these individual components,
and also potential future top-down components, should be integrated and function smoothly
together. In this section we will take a closer look at what this entails for the case combining

51

4. Discussion

incremental communication with top-down layout and what new challenges arise. First we
will analyze what happens when we just naively use both new technologies together and
what works well and what does not. Then ideas to address the issues are presented.

On the surface, turning both top-down layout and incremental communication on works.
The layout will look as expected and the pieces arrive one after the other to complete the
diagram. Upon closer inspection though, somewhat unexpected behaviour occurs. The order
in which pieces appear does not seem to be related to the viewport position. This is not
the case, the viewport position is still relevant for determining which piece to request next.
However, due to the nature of top-down layout, pieces tend to all be in one or a few grid
cells. As we zoom further in the grid cells become larger relative to the node sizes. This is the
core problem, the grid based piece requesting strategy was developed under the assumption
that nodes are spread out over an area and that panning was the main way to reach them.
Because of this, the grid based approach works for bottom-up layout, but not for top-down
layout where nodes are more spread out over the zoom depth.

In the following a new piece requesting strategy concept is outlined, which aims to be
more layout agnostic and also does not require setting vague parameters such as grid size
and ring count.

First, the absolute positions of nodes are computed and stored upon piece arrival. This
is similar to what the grid based idea does, but requires a different data structure and is
more information. When a new piece needs to be requested, the viewport computes its
intersection with all pending pieces and uses this as the basis for selecting which piece to
request. The rough ordering would be: pieces completely enclosed by the viewport, pieces
partially covered by the viewport, any other pieces. When multiple pieces are completely
within the viewport, the distance between their midpoint and the midpoint of the viewport
can be used as a further differentiation.

The challenge of this concept is the performance. In the grid based method, there are also
a lot of checks, but data is stored in hash maps whose data access has a time complexity of
O(1). To achieve similarly quick results using the intersection method a solution could be to
define some kind of hash function which maps a bounding box to some value which can also
be directly compared to another hashed bounding box. The grid based approach is already
a very rough version of this idea, but it is a solution that does not adapt to arbitrary zoom
levels.

There is a good lesson to be taken away from this specific integration of components.
While developing components isolated from each other, this only works when their interfaces
remain stable. In this case the piece requesting strategy was developed with the original layout.
The software interfaces did not change with the top-down layout later, but the algorithm
output itself did. The diagram layout was now different enough to invalidate some of the
assumptions that the piece requesting mechanism was built on. This example just shows how
important it can be to define a clear specification of parts ahead of time, especially when
multiple components depend on these details. When this is not possible to do precisely, as
can arguably be said in the case of top-down layout, it should then be the focus to create

52

4.3. The Future

general purpose solutions such as the intersection method rather than the grid method, even
if that comes at a potential performance cost.

4.2.2 Hybrid Solutions

There are plenty of system components where there are good reasons why keeping a bottom-
up process can make sense. For example, a process is already very fast and requires a lot
of effort to change, or a process just plain does not work when using a different order of
operations. This is, to some extent, the case with layout, which is why we are looking at
alternative visualization options in the first place.

For components that fall into these categories we can apply hybrid solutions similar to
what was done for top-down layout in this thesis. These solutions provide a stepping stone in
transforming a process. They help in prototyping implementations that can provide working
results and can be integrated into the existing infrastructure.

There are of course some caveats. While such hybrid solutions can provide decent inter-
mediate results, they may also hinder overall progress by introducing new tech debt and
reinforcing dependence on old systems. At some point when reinventing a system it makes
more sense to rework parts from the ground up, rather than continuously modifying an
existing system. Particularly when the foundation is being reimagined, it can mean a lot more
work to make everything now also work well together with both the old and the new core
concept.

Furthermore, there are some specific future concepts that might not be viable to even
achieve when using hybrid solutions. One such example is visualization of unbounded graphs.
This by definition requires a completely incremental approach and is therefore incompatible
with a bottom-up method.

4.3 The Future

The implementation of incremental communication for sending a diagram model from
the language server not only improves the interface usability for very large graphs in the
current KEITH system, but it also serves as a working example demonstrating how top-down
incremental ideas can be integrated in the overall bottom-up architecture.

Going forward it is important to identify the correct development priorities. Following the
lessons learned while working on this thesis, there are some key takeaways that can help in
the continued development and improvement of the ideas of the thesis. Firstly, it is important
to note that a major architectural flip from a completely bottom-up system to an iterative
top-down system is a tremendous challenge that should not be underestimated. Even when
just focusing on specific parts, there are many dependencies that need to be well understood
in order to integrate a working solution. Working through this component by component is
definitely recommended while at the same time improved decoupling should be pursued as
well.

53

4. Discussion

Top-down layout showcases the challenges of reversing the layout process for hierarchical
graphs as well as presenting possible solutions. Furthermore, there are now working proto-
types that can be further refined to hone in on the desired final look of top-down layouts.
With these foundations the door is open to further improvements, expansions of the ideas
within the system or application of top-down visualization concepts in new contexts.

There are still quite a few open topics in the top-down layout part of this thesis, which
should be addressed and solved. One of the most useful aspects of the implementation
provided here is that it serves as a working example, which can be used for experimental
evaluation on its usability and also provides a clear picture of what is desirable and possible
as well as what should still be changed or revised.

54

Chapter 5

Conclusion

This thesis introduces the concept of top-down graph visualization and demonstrates a
practical application of the idea within the KIELER and KEITH projects. With the development
of an incremental communication protocol between client and server we accomplish two
goals. The short-term goal of improving the user interface responsiveness for large graphs is
improved by drastically reducing the wait times for changes within the diagram to become
visible to the user. For an interactive system this is crucial to provide a good user experience.
The new protocol also lays the foundation for further work expanding the top-down idea to
other parts of the diagram visualization process.

The top-down layout concepts and solutions presented in this thesis are showcase examples
for what top-down layouts can look like and where their strengths lie. Top-down layout
demonstrates a clear advantage in readability of deep hierarchical graph visualizations over
the classical bottom-up layout when viewing diagrams on a computer screen. Especially the
task of navigating a large diagram and finding specific nodes is made a lot easier. While
bottom-up layout requires users to hunt-and-peck for the labels by guessing where certain
nodes could be and then zooming in and out until they guess successfully, top-down layout
lets users gradually zoom in and is capable of always showing relevant labels at a readable
size.

The work done for this thesis opens the door to further exploration, development and
evaluation of top-down concepts with the focus of usability, performance and scalability. The
results presented in this thesis provide opportunities for future research and development,
and the features created so far demonstrate that further work in this topic is feasible, practical
and useful. While the focus here has been on the practical integration of top-down ideas into
the KIELER and KEITH projects, the concepts are very applicable to the more general context of
graph visualization.

5.1 Future Work

With Chapter 4 covering the overall evaluation of the work done for this thesis and an
abstract view of the road ahead, we can now identify some of the concrete steps necessary
for achieving those goals. This section briefly summarizes some concrete goals and desirable
next steps for continuing the work on top-down graph visualization.

55

5. Conclusion

5.1.1 Asynchronous Piece Requests

Currently, the incremental client-server communication uses a synchronous messaging proto-
col. This already provides a benefit in decreasing the time until the user can start interacting
with the diagram, but there is a relatively simple further improvement that can be made. An
asynchronous protocol would further increase speeds by further reducing idle time that is
spent waiting for messages to arrive. In order for asynchronous requests to work, we need
to consider the dependencies between messages. A new piece can only be requested if it is
parent has already been received and inserted into the model. Other than that, pieces can
be requested in an arbitrary ordering. This ordering is already completely handled on the
server and the client and therefore, for asynchronous messages, the only change that needs
to be made is to create and dispatch the correct Sprotty actions and handle synchronized
modifying of the queue data structures safely.

5.1.2 Architectural Improvements

Some of the challenges with creating a new process within an existing system come from
the architecture of the system, in particular from the coupling and dependencies between
components. The main example of difficulties caused by this in this thesis is the handling of
the text bounds calculation. It is a process that belongs to the layout step, but is dependent on
the client and is therefore intertwined with the other communication steps. In the bottom-up
architecture this is not a major problem, but when transforming the process to an iterative
approach we are suddenly faced with many co-dependent components, which all need to
be carefully taken care of to ensure the final system still functions as intended. Minimizing
or removing these couplings would be a major contributor to easing the development and
subsequent integration of individual top-down components.

5.1.3 Top-down Layout Tweaks

The top-down layout implementation still has some bugs that were already mentioned. The
edge label problem, where edge labels are not positioned where they should be, still needs to
be addressed and the presentation of regions that are scaled differently can be improved upon
at the rendering level. On the face these issues seem fairly simple, but the challenge comes
from the interplay of layout and rendering. The constraints used to created the top-down
layout can be further tweaked, particularly a more advanced approach to dynamic constraints
could create even better results. Lastly, a working top-down layout engine as a true top-down
layout solution is a desirable next step as the general concept, and the desired visual results
have now been covered quite thoroughly.

5.1.4 Rendering Optimization

Rendering as a process step is not covered very much in this thesis, but it plays an important
role in both performance optimization and the presentation of the laid out diagrams. From

56

5.1. Future Work

the results in Section 2.3 we can see that rendering is not the biggest bottleneck in terms of
scalability, but it still consumes a significant amount of time, which makes it interesting to
look into further optimization opportunities.

5.1.5 Navigation Tasks

Navigation is a key use case of large diagrams, and while it was not a core focus of this thesis,
top-down layout should be studied more in-depth specifically regarding its usefulness in
navigating graphs. Studies covering many different graphs and configurations could help
determine where precisely the advantages of top-down and bottom-up layout are with respect
to navigation. We have so far stipulated that top-down layout has advantages specifically on
the interactive computer screen medium, but further research is necessary to validate this
claim. Especially, the task of comparing the navigation within a bottom-up layout versus a
top-down layout in a quantitative manner is not trivial. Section 3.4.3 touches upon this topic,
but there is a lot left to investigate.

5.1.6 Layout of Unbounded Graphs

In a fully top-down architecture, graph size would no longer be a limiting factor, as we would
only need to handle the parts of the graph that are currently in view and could omit the rest.
Of course, there remain some layout specific challenges, which are not so easy to solve in this
manner and some dependency to other parts of the diagram will generally still be there. In
practice this does limit how much can be incrementally built up.

Incremental layout of unbounded graphs is, however, an interesting concept that deserves
some consideration when discussing top-down layout. While the case of SCCharts is not a
suitable use case, there are clear applications of it, for example the visualization of very large
or dynamically changing data. Any work done in the area of top-down visualization may
also provide benefits to unbounded automatic graph layout.

One specific example of a feature that could also be useful for top-down layout in KEITH is
incremental removal of pieces in addition to the piece insertion. This is useful when the space
on the client is limited. While this could be added to the current implementation relatively
easily, there remains a challenge, because the SGraph structure is built up incrementally
on the server while the pieces are requested. If pieces were now removed and then later
requested again, the server should only send that piece without any dangling children. This
requires some clever data structures to handle this without creating a lot of new overhead
with copying parts of the SGraph around.

5.1.7 Integration with the Google Maps for Models Project

The Google Maps for Models project is a master project offered to students by the Real-Time
and Embedded Systems Group. The aim of the project is to incorporate concepts used in

57

5. Conclusion

online maps such as Google Maps! into the visualization of models, in particular of SCCharts.

The most recent work by Blefimann, Johnk and Po6hls [BJP21] on this project has focused
client-side rendering improvements that make the user interface more responsive by reducing
the amount of rendered SVG elements. Instead of rendering elements that are too small to be
seen, they render a large readable title of higher level node. This achieves a similar effect as
top-down layout, helping users locating nodes quickly without having to zoom in and out.

Their solutions improve the performance once the full diagram is loaded in the client, but
the wait time is still an issue. Integrating the incremental diagram loading of this thesis with
their work would provide KEITH with an overall performance improvement. Furthermore, it
would be very interesting to not only compare their solution to top-down layout, but also to
see the effect of having both active at the same time.

1https://www.google.com/maps/

58

https://www.google.com/maps/

[AHKO6]

[BET+98]

[Bev01]

[BJP21]

[BR17]

[BRS+07]

[DET+94]

[DLH+21]

[Dom18]

[ELM+91]

Bibliography

James Abello, Frank van Ham, and Neeraj Krishnan. “Ask-graphview: A large
scale graph visualization system”. In: IEEE Trans. Vis. Comput. Graph. 12.5 (2006),
pp. 669-676. DOI: 16.1109/TVCG.2006.120.

Giuseppe Di Battista, Peter Eades, Roberto Tamassia, and Ioannis G Tollis. Graph
drawing: algorithms for the visualization of graphs. Prentice Hall PTR, 1998.

Nigel Bevan. “International standards for HCI and usability”. In: International
Journal of Human-Computer Studies 55.4 (2001), pp. 533-552. 1ssn: 1071-5819. por:
https://doi.org/10.1006/ijhc.2001.0483. URL: https://www.sciencedirect.com/science/article/pii/
$1071581901904835.

Bennet BlefSmann, Felix Johnk, and Mika Pohls. Project report for Google Maps for
models. Project Report. Kiel University, Department of Computer Science. Sept.
2021.

Michael Burch and Thomas Reinhardt. “Dynamic graph visualization on dif-
ferent temporal granularities”. In: 2017 21st International Conference Information
Visualisation (IV). IEEE. 2017, pp. 230-235.

Chris Bennett, Jody Ryall, Leo Spalteholz, and Amy Gooch. “The aesthetics of
graph visualization”. In: Proceedings of the International Symposium on Computa-
tional Aesthetics in Graphics, Visualization, and Imaging (CAe’07). Banff, Alberta,
Canada: Eurographics Association, 2007, pp. 57-64.

Giuseppe Di Battista, Peter Eades, Roberto Tamassia, and Ioannis G. Tollis.
“Algorithms for drawing graphs: an annotated bibliography”. In: Computational
Geometry: Theory and Applications 4 (June 1994), pp. 235-282.

Soren Domros, Daniel Lucas, Reinhard von Hanxleden, and Klaus Jansen.
“On order-preserving, gap-avoiding rectangle packing”. In: Proceedings of the
13th International Conference on Information Visualization Theory and Applications
(IVAPP’21), part of the 16th International Joint Conference on Computer Vision, Imag-
ing and Computer Graphics Theory and Applications (VISIGRAPP’21). INSTICC.
SciTePress, 2021, pp. 38-49. 1SBN: 978-989-758-488-6. DOL: 10.5220/0010186400380049.

Soéren Domros. “Moving model-driven engineering from Eclipse to web tech-
nologies”. https://rtsys.informatik.uni- kiel.de/~biblio/downloads/theses/sdo-mt.pdf.
Master’s thesis. Kiel University, Department of Computer Science, Nov. 2018.

Peter Eades, Wei Lai, Kazuo Misue, and Kozo Sugiyama. “Preserving the men-
tal map of a diagram”. In: Proceedings of the First International Conference on
Computational Graphics and Visualization Techniques. 1991, pp. 34—43.

59

https://doi.org/10.1109/TVCG.2006.120
https://doi.org/https://doi.org/10.1006/ijhc.2001.0483
https://www.sciencedirect.com/science/article/pii/S1071581901904835
https://www.sciencedirect.com/science/article/pii/S1071581901904835
https://doi.org/10.5220/0010186400380049
https://rtsys.informatik.uni-kiel.de/~biblio/downloads/theses/sdo-mt.pdf

Bibliography

[FRI1]

[FTO8]

[GKW14]

[Gral5]

[HDM+13]

[Karl1]
[K6h17]

[KZ18]

[LS10]

[MEL+95]

[Mil68]

[Nor96]

[Oys14]

60

Thomas M.]J. Fruchterman and Edward M. Reingold. “Graph drawing by force-
directed placement”. In: Software—Practice & Experience 21.11 (1991), pp. 1129-
1164. 1ssN: 0038-0644. DOT: nttp://dx.doi.org/10.1002/spe.4380211102.

Y. Frishman and A. Tal. “Online dynamic graph drawing”. In: IEEE Transactions
on Visualization and Computer Graphics 14.4 (July 2008), pp. 727-740. 1ssN: 1941-
0506. DOT: 10.1109/TvCG.2008. 11.

Michael Glueck, Azam Khan, and Daniel] Wigdor. “Dive in! enabling progres-
sive loading for real-time navigation of data visualizations”. In: Proceedings of the
SIGCHI Conference on Human Factors in Computing Systems. 2014, pp. 561-570.

Martin Grandjean. “Introduction a la visualisation de données : 1’analyse de
réseau en histoire”. In: Geschichte und Informatik 18/19 (Jan. 2015), pp. 109-128.

Reinhard von Hanxleden, Bjorn Duderstadt, Christian Motika, Steven Smyth,
Michael Mendler, Joaquin Aguado, Stephen Mercer, and Owen O’Brien. SCCha-
rts: Sequentially Constructive Statecharts for safety-critical applications. Technical
Report 1311. ISSN 2192-6247. Christian-Albrechts-Universitiat zu Kiel, Depart-
ment of Computer Science, Dec. 2013.

Marten Karlberg. “Mobile map client API: design and implementation for An-
droid”. In: LUMA-GIS Thesis (2011).

Jan Kohnlein. Sprotty — a web-based diagramming framework. https://www. typefox.io/
blog/sprotty-a-web-based-diagramming- framework.]une 2017.

V. Kasyanov and Timur Zolotuhin. “A system for visualization of big attributed
hierarchical graphs”. In: International Journal of Computer Networks & Communica-
tions 10 (2018), pp. 55-67.

Zhicheng Liu and John Stasko. “Mental models, visual reasoning and interaction
in information visualization: a top-down perspective”. In: IEEE transactions on
visualization and computer graphics 16.6 (2010), pp. 999-1008.

Kazuo Misue, Peter Eades, Wei Lai, and Kozo Sugiyama. “Layout adjustment
and the mental map”. In: Journal of Visual Languages & Computing 6.2 (June 1995),
pp- 183-210. DOT: 10.1006/jv1c.1995.1010.

Robert B Miller. “Response time in man-computer conversational transactions”.
In: Proceedings of the December 9-11, 1968, fall joint computer conference, part 1. 1968,
pp. 267-277.

Stephen C. North. “Incremental layout in DynaDAG”. In: Proceedings of the
Symposium on Graph Drawing. Vol. 1027. LNCS. Springer, 1996, pp. 409—418. 1sBN:
978-3-540-60723-6. DOL: 10.1007/BFb0621824.

Fred the Oyster. Radial tree - graphic statistics in management. Oct. 2014. URL: https:

//commons.wikimedia.org/wiki/File:Radial_tree_-_Graphic_Statistics_in_Management.svg.

https://doi.org/http://dx.doi.org/10.1002/spe.4380211102
https://doi.org/10.1109/TVCG.2008.11
https://www.typefox.io/blog/sprotty-a-web-based-diagramming-framework
https://www.typefox.io/blog/sprotty-a-web-based-diagramming-framework
https://doi.org/10.1006/jvlc.1995.1010
https://doi.org/10.1007/BFb0021824
https://commons.wikimedia.org/wiki/File:Radial_tree_-_Graphic_Statistics_in_Management.svg
https://commons.wikimedia.org/wiki/File:Radial_tree_-_Graphic_Statistics_in_Management.svg

[Ren18]

[RES+17]

[Sch19]

[SDK+06]

[SSH13]

[STT81]

Bibliography

Niklas Rentz. “Moving transient views from Eclipse to web technologies”. https:
//rtsys.informatik.uni- kiel.de/~biblio/downloads/theses/nir-mt.pdf. Master’s thesis.
Kiel University, Department of Computer Science, Nov. 2018.

Ulf Riiegg, Thorsten Ehlers, Miro Sponemann, and Reinhard von Hanxleden.
“Generalized layerings for arbitrary and fixed drawing areas”. In: Journal of Graph
Algorithms and Applications 21.5 (2017), pp. 823-856. DOI: 10.7155/jgaa.00441.

Christoph Daniel Schulze. Text in diagrams: challenges to and opportunities of
automatic layout. Kiel Computer Science Series 2019/4. Dissertation, Faculty of
Engineering, Kiel University. Department of Computer Science, CAU Kiel, 2019.
DOI: 10.21941/kcss/2019/4.

Ahmed Seffah, Mohammad Donyaee, Rex B Kline, and Harkirat K Padda.
“Usability measurement and metrics: a consolidated model”. In: Software quality
journal 14.2 (2006), pp. 159-178.

Christian Schneider, Miro Spénemann, and Reinhard von Hanxleden. “Just
model! — Putting automatic synthesis of node-link-diagrams into practice”.
In: Proceedings of the IEEE Symposium on Visual Languages and Human-Centric
Computing (VL/HCC 13). San Jose, CA, USA: IEEE, Sept. 2013, pp. 75-82. por:

10.1109/VLHCC.2013.6645246.

Kozo Sugiyama, Shojiro Tagawa, and Mitsuhiko Toda. “Methods for visual
understanding of hierarchical system structures”. In: IEEE Transactions on Systems,
Man and Cybernetics 11.2 (Feb. 1981), pp. 109-125.

61

https://rtsys.informatik.uni-kiel.de/~biblio/downloads/theses/nir-mt.pdf
https://rtsys.informatik.uni-kiel.de/~biblio/downloads/theses/nir-mt.pdf
https://doi.org/10.7155/jgaa.00441
https://doi.org/10.21941/kcss/2019/4
https://doi.org/10.1109/VLHCC.2013.6645246

	Introduction
	Outline
	Background
	Graphs
	Automatic Graph Layout
	Aesthetics
	Mental Map
	Principles of Responsive Web Design
	Layout in KIELER and KEITH

	A Top-Down Perspective on Graph Visualization
	Related Work
	Visualization of Very Large Graphs
	Online Dynamic Graph Drawing
	Temporal Granularity in Dynamic Graph Visualization
	Usability Measurement

	Top-Down Architecture
	Current KEITH Architecture
	Web Client
	Language Server
	Kieler Lightweight Diagrams
	Eclipse Layout Kernel

	Iterative Architecture Concept
	Bottleneck Identification
	Benchmark Tests
	Timing Analysis

	Top-Down Approach for Client-Server Communication
	On-Demand SGraph Construction
	Incremental Client-Server Communication
	Client-Side Request Ordering

	Performance Analysis
	Initial Request
	Piece Requests
	Overview of Performance Impacts

	Top-Down Layout
	Hierarchical Graph Layout in ELK
	Layout of SCCharts

	Top-Down Layout Concept
	Top-Down Layout Engine
	Hybrid Layout

	Configuration Options
	Layout Engine
	Constraint Type
	Dynamic Constraints
	Automatic Layout Direction

	Top-Down Layout Evaluation
	Performance Impacts
	Aesthetics Comparison
	Comparison of a Navigational Task

	Discussion
	Summary of Results
	Top-Down Architecture
	Top-Down Layout

	Top-Down Graph Visualization
	Integration of Top-Down Solutions
	Hybrid Solutions

	The Future

	Conclusion
	Future Work
	Asynchronous Piece Requests
	Architectural Improvements
	Top-down Layout Tweaks
	Rendering Optimization
	Navigation Tasks
	Layout of Unbounded Graphs
	Integration with the Google Maps for Models Project

	Bibliography

