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Abstract

Reactive systems need determinate concurrency which is provided by synchronous languages such as
Esterel. Their downside is a heavy restriction on programs that are accepted. By ordering statements
sequentially, a programmer who is used to imperative programming languages gives information on
how he wants them to be executed. This extra information is used by the Sequentially Constructive (SC)
Model of Computation (MoC), which is a conservative extension of the classical synchronous MoC and
Esterel, to allow more programs. The Sequentially Constructive Language (SCL) implements the SC

MoC and it is possible to transform Esterel to SCL. Furthermore, the SC MoC is used by Sequentially
Constructive Esterel (SCEst), which is an extension of Esterel and is grounded in SCL, which reflects
in a minimal set of statements to which all complex Esterel/SCEst statements can be transformed to.
These transformation rules are already defined and implemented in a monolithic transformation from
Esterel to SCL following a structural approach.

In this thesis the defined transformation rules are used for an incremental compilation of SCEst

programs. This allows the user to focus on the transformation of smaller parts of the program, which
is more comprehensible than a monolithic compilation. For this task a meta-model which includes
SCEst and SCL statements is used. The new transformations and SCEst are integrated into the KIELER

framework, which allows a user to translate a SCEst program to an SCL program while being able to
inspect the intermediate models of each compilation step, and subsequently SCL to target code.

iv



Contents

List of Acronyms vii

1 Introduction 1
1.1 Esterel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Sequentially Constructive Languages . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.2.1 Sequentially Constructive Language . . . . . . . . . . . . . . . . . . . . . . . . . . 6
1.2.2 Sequentially Constructive Esterel . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

1.3 From Esterel to SCL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
1.4 Single-Pass Language-Driven Incremental Compilation . . . . . . . . . . . . . . . . . . . 8
1.5 Problem Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
1.6 Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2 Used Technologies 15
2.1 Eclipse . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.1.1 Eclipse Modeling Framework . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.1.2 Xtext . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
2.1.3 Xtend . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.2 KIELER . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
2.2.1 KIELER Compiler . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
2.2.2 KIELER Model View . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

3 Related Work 21
3.1 Visual Languages for the Synchronous MoC and SC MoC . . . . . . . . . . . . . . . . . 21
3.2 Esterel Compiler . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

4 Incremental Compilation 25
4.1 Structure of Meta-Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

4.1.1 Separate Meta-Models for Esterel and SCEst . . . . . . . . . . . . . . . . . . . . . 28
4.1.2 New Structure with One Meta-Model for Esterel and SCEst . . . . . . . . . . . . 29
4.1.3 New Structure with Two separate Meta-Models for Esterel and SCEst . . . . . . 29

4.2 Transformations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
4.2.1 Existing Transformation Rules . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
4.2.2 Preserving Declarations for Incremental Compilation . . . . . . . . . . . . . . . . 34

5 Implementation 37
5.1 Underlying Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

5.1.1 Annotation Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
5.1.2 KExpression Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
5.1.3 KEffects Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
5.1.4 KExt Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
5.1.5 SCL Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

5.2 Esterel Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

v



Contents

5.2.1 EMF Meta-Model of Esterel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
5.2.2 Esterel Xtext Grammar . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

5.3 SCEst Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
5.3.1 EMF Meta-Model of SCEst . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
5.3.2 SCEst Xtext Grammar . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

5.4 Assisting Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
5.4.1 Formatting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
5.4.2 Scoping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
5.4.3 Code Validation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

5.5 Incremental Compilation Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
5.5.1 SCEst Extension . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
5.5.2 Initialization Transformation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
5.5.3 SCL Transformation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
5.5.4 Label Renaming Transformation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
5.5.5 Block Transformation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
5.5.6 SCEst Transformation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

6 Evaluation 65
6.1 ABRO Step by Step Compilation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
6.2 Size Comparison to the Approach of Rathlev . . . . . . . . . . . . . . . . . . . . . . . . . 73
6.3 Self-Contained Intermediate Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
6.4 Nested Aborts and Suspends . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

7 Conclusion and Future Work 81
7.1 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
7.2 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

7.2.1 Alternative Transformations using Kernel Translations . . . . . . . . . . . . . . . 82
7.2.2 Transformation of Signals and referencing Statements . . . . . . . . . . . . . . . 82
7.2.3 Grammar Improvement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
7.2.4 Structural Incremental Compilation with a New Compiler . . . . . . . . . . . . . 83

Bibliography 85

vi



List of Acronyms

ANTLR Another Tool For Language Recognition

BLIF Berkeley Logic Interchange Format

CEC Columbia Esterel Compiler

DSL Domain Specific Language

ebt emit-before-test

EMF Eclipse Modeling Framework

EBNF Extended Backus-Naur Form

ELK Eclipse Layout Kernel

GRC graph code

IDE Integrated Development Environment

INRIA French Institute for Research in Computer Science and Automation

iur initialize-update-read

KiCo KIELER Compiler

KIELER Kiel Integrated Environment for Layout Eclipse Rich Client

KLighD KIELER Lightweight Diagrams

M2M Model-to-Model

ENSMP École nationale supérieure des mines de Paris

MoC Model of Computation

PDG Program Dependence Graph

SC Sequentially Constructive

SCCharts Sequentially Constructive Statecharts

SCEst Sequentially Constructive Esterel

SCG Sequentially Constructive Graph

SCL Sequentially Constructive Language

SLIC Single-Pass Language-Driven Incremental Compilation

vii





List of Figures

1.1 Transformation of the halt statement of Esterel to kernel statements. . . . . . . . . . . . 3
1.2 ABRO example with derived statements and only with kernel statements. . . . . . . . . . 4

a ABRO with derived statements. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
b ABRO in kernel statements. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.3 An example of constructive and not constructive Esterel programs. . . . . . . . . . . . . 5
a A constructive Esterel program. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
b An Esterel program which is not constructive. . . . . . . . . . . . . . . . . . . . . 5

1.4 An example for the initialize-update-read (iur) discipline in SCL and as Sequentially
Constructive Graph (SCG). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.5 Illustration of the relation between SCEst, Esterel and SCL. . . . . . . . . . . . . . . . . . . 8
1.6 ABRO transformation by Rathlev [Rat15]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
1.7 ABRO transformation by Rathlev [Rat15]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
1.8 Single-Pass Language-Driven Incremental Compilation as an incremental model-based

compilation strategy [Mot17]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
1.9 Example SLIC features f1, f2, f3, SLIC transformations τf 1, τf 11 , τf 2, τf 3 and their expand

(e and dotted line), produce (p and solid line), and not-handled-by (nhb and dashed
line) order relations are shown. Also, a transformation choice TS for a selection S of
transformations is visualized [Mot17]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

1.10 A Single-Pass Language-Driven Incremental Compilation (SLIC) schedule for the example
of Figure 1.9 and the transformations τf 11 , τf 2 and τf 2 [Mot17]. . . . . . . . . . . . . . . 12

2.1 The two different editors for the Eclipse Modeling Framework (EMF) meta-model. . . . 16
a Ecore tree editor of the book store example. . . . . . . . . . . . . . . . . . . . . . 16
b Ecore diagram editor of the book store example. . . . . . . . . . . . . . . . . . . 16

2.2 The KIELER Compiler (KiCo) View with the different transformations for an SCL program. 17
2.3 The previous threads example for the iur discipline as an SCG with the Kiel Integrated

Environment for Layout Eclipse Rich Client (KIELER) Model View. . . . . . . . . . . . . . 19

3.1 Initial SyncCharts transformation of the ABRO example [Rüe11]. . . . . . . . . . . . . . . 22
3.2 ABRO example representation in SyncCharts [Rüe11]. . . . . . . . . . . . . . . . . . . . . . 22
3.3 ABRO example with and without extended features of SCCharts [HDM+14]. . . . . . . . . 23

a Extended SCCharts. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
b Core SCCharts. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

4.1 Illustration of the relation between SCEst, Esterel and SCL. . . . . . . . . . . . . . . . . . . 26
4.2 Difference for modeling using traditional compilation and interactive model-based

compilation [Mot17]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
a Traditional compilation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
b Interactive compilation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

4.3 The different results which a user can inspect: While just the Block statement being
selected leads to the second listing, the Block and Halt statement being selected leads to
the third listing. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

ix



List of Figures

4.4 The previous structure of the meta-models, needed for the incremental compilation of
SCEst. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

4.5 The structure of the three approaches of the meta-models. . . . . . . . . . . . . . . . . . 30
a Separate meta-models for Esterel/SCEst and SCL. . . . . . . . . . . . . . . . . . . . 30
b One meta-model for Esterel and SCEst. . . . . . . . . . . . . . . . . . . . . . . . . . 30
c Two separate meta-models for Esterel and SCEst. . . . . . . . . . . . . . . . . . . . 30

5.1 Hierarchical structure of the different meta-models. . . . . . . . . . . . . . . . . . . . . . 37
5.2 Class diagram of the annotations meta-model. . . . . . . . . . . . . . . . . . . . . . . . . 38
5.3 Class diagram of the KExpressions meta-model. . . . . . . . . . . . . . . . . . . . . . . . 39
5.4 Class diagram of the KEffects meta-model. . . . . . . . . . . . . . . . . . . . . . . . . . . 40
5.5 Class diagram of the SCL meta-model. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
5.6 Adjustment of the TrapExpression in the new Esterel grammar implementation. . . . . 44
5.7 Adjustment of the OrExpression in the new Esterel grammar implementation. . . . . . 45
5.8 Tree editor view of the Esterel meta-model. . . . . . . . . . . . . . . . . . . . . . . . . . . 46
5.9 Tree editor view of the SCEst meta-model. . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
5.10 Example program before and after formatting. . . . . . . . . . . . . . . . . . . . . . . . . 52
5.11 An example for code validation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
5.12 The KiCo View with all single transformations for a SCEst program. . . . . . . . . . . . . 57
5.13 Transformation of an example Esterel program with an Abort and Suspend statement. . 61

a The example after InitializationTransformation is used. . . . . . . . . . . . . . 61
b The example after AbortTransformation and SuspendTransformation is used re-

spectively. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
5.14 The KiCo View for the previous example of a step by step transformation while the

Esterel program includes an Abort and a Suspend statement. . . . . . . . . . . . . . . . . 62
a The selection of InitializationTransformation. . . . . . . . . . . . . . . . . . . . 62
b The selection of InitializationTransformation and AbortTransformation. . . . . 62
c The selection of InitializationTransformation, AbortTransformation and also

SuspendTransformation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

6.1 Illustration of the incremental steps of the compilation of ABRO. . . . . . . . . . . . . . . 66
6.2 Illustration of the data of Table 6.1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
6.3 Illustration of the correct and incorrect order of the Abort and Suspend transformation

for Listing 6.12 and Listing 6.13. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

7.1 Transformation up to the Parallel statement with the new compiler. . . . . . . . . . . . 84
7.2 Example illustration of the new Compiler View for structural1 of Figure 7.1. . . . . . . 84

x



List of Listings

2.1 The book store grammar in Xtext. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
2.2 Creating a book store with a list of books in Xtend. . . . . . . . . . . . . . . . . . . . . . 17
4.1 Transformation of an unemit. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
4.2 Transformation of a pure emit. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
4.3 Transformation of a valued emit. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
4.4 Transformation of a Set statement of SCEst. . . . . . . . . . . . . . . . . . . . . . . . . . . 32
4.5 Transformation of a Parallel statement of Esterel. . . . . . . . . . . . . . . . . . . . . . . 32
4.6 Transformation of a loop statement of Esterel. . . . . . . . . . . . . . . . . . . . . . . . . 33
4.7 Transformation of a delayed await statement of Esterel. . . . . . . . . . . . . . . . . . . . 33
4.8 Transformation of a strong delayed abort. . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
4.9 Transformation of an input signal. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
4.10 Transformation of an output signal. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
4.11 Transformation of a local signal. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
4.12 Transformation of a valued local signal. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
5.1 Specification on how to build a Declaration, provided in KExt. . . . . . . . . . . . . . . 40
5.2 The basic structure of an SCL program. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
5.3 The implementation of the Conditional statement of SCL in Xtext. . . . . . . . . . . . . . 43
5.4 The previous Xtext implementation of an Esterel Module. . . . . . . . . . . . . . . . . . . 45
5.5 The basic structure of an Esterel program. . . . . . . . . . . . . . . . . . . . . . . . . . . 47
5.6 The implementation of the IfTest statement of Esterel in Xtext. . . . . . . . . . . . . . . 48
5.7 An extract of the SCEst grammar in Xtext which shows the root object. . . . . . . . . . . 50
5.8 A second extract of the SCEst grammar in Xtext which shows the declaration of statements

in SCEst. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
5.9 Two example parts of Esterel’s formatter. . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
5.10 An example Esterel program for scoping where the output signal A should be shadowed

by the local signal declaration of A. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
5.11 A few lines of the EsterelScopeProvider. . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
5.12 The method getAllSignals of the EsterelScopeProvider. . . . . . . . . . . . . . . . . . . 53
5.13 An extract of the SCEstValidator class. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
5.14 An extract of the LoopTransformation class. . . . . . . . . . . . . . . . . . . . . . . . . . . 56
5.15 Variables and a map of the SCEstExtension class. . . . . . . . . . . . . . . . . . . . . . . . 57
5.16 The method createConditional of the SCEstExtension class. . . . . . . . . . . . . . . . . 58
5.17 Example code which does not have access to the extension class. . . . . . . . . . . . . . 58
5.18 Example code which has access to the extension class. . . . . . . . . . . . . . . . . . . . 58
5.19 The method checkGoto of the SCEstExtension class. . . . . . . . . . . . . . . . . . . . . . 59
5.20 Beginning of the transformation of the InitializationTransformation class. . . . . . . . 60
5.21 The Run statement transformation of the InitializationTransformation class. . . . . . . 63
5.22 Extract of the BlockTransformation class. . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
6.1 The ABRO example ... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
6.2 ... after the initialization transformation, ... . . . . . . . . . . . . . . . . . . . . . . . . . 66
6.3 ... after the signal transformation, ... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
6.4 ... after the loop transformation, ... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

xi



List of Listings

6.5 ... after the halt transformation, ... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
6.6 ... after the await transformation, ... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
6.7 ... after the abort transformation, ... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
6.8 ... after the emit transformation, ... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
6.9 ... after the block transformation, ... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
6.10 ... after the parallel transformation, ... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
6.11 ... after the labelrenaming and SCL transformation. . . . . . . . . . . . . . . . . . . . . . . 73
6.12 An Abort statement is inside a Suspend statement. . . . . . . . . . . . . . . . . . . . . . . 76
6.13 A Suspend statement is inside an Abort statement. . . . . . . . . . . . . . . . . . . . . . . 76
6.14 An Abort statement is inside a Suspend statement and the Abort transformation is

executed before the Suspend transformation. . . . . . . . . . . . . . . . . . . . . . . . . . 79
6.15 An Abort statement is inside a Suspend statement and the Suspend transformation is

executed before the Abort transformation. . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
6.16 A Suspend statement is inside an Abort statement and the Suspend transformation is

executed before the Abort transformation. . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
6.17 A Suspend statement is inside an Abort statement and the Abort transformation is

executed before the Suspend transformation. . . . . . . . . . . . . . . . . . . . . . . . . . 80

xii



List of Tables

1.1 Mapping from SCL to SCG [RSM+15]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

6.1 Six test programs and their number of statements in SCEst and the respective generated
representation in SCL for both, the incremental compilation of this thesis and Rathlev’s
approach [Rat15]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

xiii





Chapter 1

Introduction

Nowadays embedded, reactive systems can be found almost everywhere, e.g., a smart phone, a digital
watch, a car, or an airplane. Their goal is to establish a connection to the physical environment and the
possibility to react to it. While dealing with the environment over sensors, they need to compute their
responses and therefore it is frequently advantageous to run concurrent processes/programs, e.g.,
to effectively use the time that would otherwise be spent on waiting for input or output operations.
There are embedded, reactive systems for which a slight deviation from their intended behavior can
be tolerated, for example, when a camera should be activated by movement to capture a picture of a
wild animal. Furthermore, there are so called safety-critical systems [MP95], which must guarantee
determinism, for example, in cars or airplanes, to be predictable. But along with concurrency comes the
problem of non-determinism; however, for a specific input the system must react the same way every
time, or as formulated by Gérard Berry, a system is said to be deterministic if the same sequence of inputs
always produces the same sequence of outputs [Ber00]. While normal programming languages like C do not
offer that kind of guarantee by default (for example, with their use of threads and the produce of race
conditions [Lee06]), synchronous languages like Esterel do. They divide the execution into discrete ticks.
Each tick starts with an input (e.g., read over sensors), followed by a computation (e.g., calling a tick
function), and ends with an output reaction over actuators. The downside of synchronous languages
is a heavy restriction on programs that can be excepted, which comes from blocking concurrent
and non-concurrent variable accesses as part of their semantic foundation instead of considering the
sequential order in non-concurrent executions. Therefore, a better combination of expressiveness
and determinism is needed, which allows for a wider range of programs to be excepted, while still
guaranteeing predictability. This led to the definition of sequentially constructive languages [HMA+13],
which make use of the sequential ordering of a program.

In the following, the programming languages Esterel, including a definition of the Berry Con-
structiveness, Sequentially Constructive Esterel and Sequentially Constructive Language, as well as
the graphical representation, the SCG, of the latter are described. Additionally, the respective MoC is
explained. Further, an overview of the previous approach of structural compilation of Esterel in KIELER

by Rathlev [Rat15] is given and the SLIC approach is explained. Lastly, the problem statement is given
as well as an outline for this thesis.

1.1 Esterel

A Model of Computation (MoC) defines which operations are valid in a computation [BLL+05].
The classical synchronous MoC divides execution into discrete ticks, which are an abstraction of

physical time. The ticks define the ordering of computations. While each tick holds a macro step, the
whole execution in it, this macro step consists of a finite amount of micro steps [BCE+03]. A main
part of synchronous languages are signals, which are either present or absent in each tick, the latter by
default and the former only if they are emitted. This is defined under the signal coherence law [Tar05].

Also, a finite reaction is executed in an instant, which means an execution takes conceptually no

1



1. Introduction

time and therefore the result is instantly available. While this is a valid abstraction, a computation
in zero time is impossible to achieve. It suffices that the results are ready before the next execution
begins [Ber91].

G. Berry et al. developed the synchronous programming language Esterel. It is stable and in constant
evolution [Ber00], an imperative language, and based on the synchronous MoC [Ber00]. It is intended
to be used for programming control-dominated software or hardware reactive systems [Ber00]. The latest
versions are Esterel v5 and Esterel v7. Since Esterel v7 extends Esterel v5 by including a weak suspend

statement that is complicated to transform, which will be explained in a moment, the focus of this
thesis lies on the transformation of the Esterel v5 statements.

Pure and valued signals are primarily used for communication in Esterel. While pure signals just
have one state, which can be absent or present, a valued signal also has a persistent value across ticks.
In addition, a combine function can be defined for a valued signal, which makes it possible to emit the
signal multiple times with different values during one tick by using the combine function to fuse the
different values. An input signal is set by the environment, while an output signal is absent by default
at the beginning of every tick.

To assume signal coherence, Esterel follows the emit-before-test (ebt) discipline, which means that
the first emission of a signal has to be done before any present test of the signal. Further emissions
can be scheduled arbitrarily since they do not change the presence state of the signal. Furthermore,
a variable can be used in the standard way, which means its value can be sequentially overwritten
multiple times in one tick. However, to guarantee determinism there are two ways a variable can be
accessed by concurrent threads. In the first case, all concurrent threads have read-only access. In the
second case, only one alone can read and write the variable.

The Esterel language can be divided into kernel statements and derived statements. The following
variables are used to display the Esterel statements: s stands for a signal, while p stands for a single or
compound statement. Esterel’s kernel statements are [Ber93]:

signal s in p end A local declaration of signal s, which covers possible previous signal
declarations with the same name.

emit s Set the signal s to present in the current tick.

p; q The sequence operator. Execute q after p is finished.

p || q The parallel operator. Execute p and q in parallel and finish the
parallel statement after p and q have terminated.

present s then p else q end Execute p when s is present in this tick; otherwise, execute q.

loop p end p is executed infinitely often.

suspend p when s When s is present in a tick, suspend the execution of p for this tick.

exit T Exit the surrounding trap statement by jumping to the end of it. In
case of nested traps, the outermost trap has priority. The execution
of a concurrent thread stops its execution not until the next tick
boundary.

trap T in p end p is executed normally or until an exit statement invokes T.

nothing An empty statement which does nothing.

pause For the current tick the execution stops.

All derived statements of Esterel v5 can be transformed to kernel statements [Ber93]; therefore,
they are syntactic sugar, which make it possible to write a more compact program that is also
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1.1. Esterel

1 halt 	 1 l1:

2 pause;

3 goto l1;

Figure 1.1. Transformation of the halt statement of Esterel to kernel statements.

more comprehensible. Examples are the abort, await or halt statement. The halt statement pauses
indefinitely and thus stops the execution. It is shown in Figure 1.1. halt is transformed to a label,
followed by a pause statement and lastly a goto statement, which activates a jump back to the label.

Figure 1.2 shows the ABRO example as an Esterel program with derived statements (Figure 1.2a) and
with kernel statements (Figure 1.2b). The advantage of the former is its comprehensibility compared
to the latter. When input signal A and B have been present at least once, output signal O is emitted. The
input signal R stands for reset and therefore, in case of being present in a tick, O is not emitted despite
of the states of the signals A and B and the whole behavior is reset because of the strong preemption.

Esterel can be compiled to a host language, for example Java or C. A problem is in guaranteeing
deterministic behavior despite of concurrency. Therefore, the interaction between threads is handled
statically at compile time. By using a host language, it is possible to use the host languages features,
for example when compiled to Java, the data types of Java can be used in addition to the few types of
Esterel.

In Esterel v7 the new statement weak suspend is added. When activated, the current state of the
execution is saved, so the execution in the next tick can start at this point, but the current tick is
completely executed as if the weak suspend statement was not activated. Since tick boundaries depend
on signals, they can not be determined statically in conjunction with the new weak suspend and
therefore it is quite obvious that weak suspend can not be transformed to the already existing kernel
statements.

Berry Constructiveness

The constructive coherence law [Ber02] reads as follows:

Ź A signal is declared present if and only if it must be emitted.
Ź A signal is declared absent if and only if it cannot be emitted.

They define the constructive semantics of Esterel. The constructive semantics also consider an unknown
state beside absent and present. It is sufficient to determine all states of the output signals to be either
present or absent to consider a program B-constructive, or in short constructive, by realizing which
signals must or cannot be present.

Figure 1.3 shows two examples for constructiveness. The program in Figure 1.3a is excepted as
it is a constructive Esterel program since the output signal B must be emitted because of line 3. The
program in Figure 1.3b is rejected since the output signal B can be emitted but does not have to be
emitted as no speculation of which branch has to be taken is allowed.
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1 module ABRO_derivedS:

2 input A,B,R;

3 output O;

4 loop

5 [

6 await A

7 ||

8 await B

9 ];

10 emit O

11 each R

12 end module

(a) ABRO with derived statements.

	

1 module ABRO_t1:

2 input A,B,R;

3 output O;

4 loop

5 trap T1 in

6 suspend

7 [

8 trap T3 in

9 loop

10 pause;

11 present A then

12 exit T3

13 end present

14 end loop

15 end trap

16 ||

17 trap T4 in

18 loop

19 pause;

20 present B then

21 exit T4

22 end present

23 end loop

24 end trap

25 ];

26 emit O;

27 halt

28 when R;

29 exit T1;

30 ||

31 trap T2 in

32 loop

33 pause;

34 present R then

35 exit T2;

36 end present

37 end loop

38 end trap;

39 exit T1;

40 end trap

41 end loop

42 end module

(b) ABRO in kernel statements.

Figure 1.2. ABRO example with derived statements and only with kernel statements.
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1 module constructiveness_1:

2 output B;

3 emit B;

4 present B then

5 emit B

6 else

7 emit B

8 end present

9 end module

(a) A constructive Esterel pro-
gram.

1 module constructiveness_2:

2 output B;

3 present B then

4 emit B

5 else

6 emit B

7 end present

8 end module

(b) An Esterel program which is
not constructive.

Figure 1.3. An example of constructive and not constructive Esterel programs.

1.2 Sequentially Constructive Languages

The Sequentially Constructive (SC) Model of Computation (MoC) is a conservative extension in that
programs considered constructive in the common synchronous MoC are also SC and retain the same seman-
tics [HMA+13]. The information of the sequential ordering of a program is used to amplify the amount
of programs which are allowed while still guaranteeing determinism. SCL uses variables instead of
signals, which are used by Esterel, for the primarily use of communication. By taking the sequential
order of variable assignments in account, one variable can hold different values during a tick.

The SC MoC uses the initialize-update-read (iur) discipline, similar to ebt, which is used by Esterel.
As the name suggests, first, initializations are done, followed by updates, and completing with reads.
In the ebt discipline the first emission of a signal has to be done before any present test of the signal.
Additional emissions in the current tick can be scheduled arbitrarily since they do not change the
presence state of the signal. In the iur protocol, writes are handled as initializations by default, or
updates. The order of updates can be scheduled arbitrarily. Two variable accesses are confluent if their
order of scheduling does not matter [RSM+15]. While ebt applies to concurrent and non-concurrent accesses,
independent of their sequential order, iur just applies to concurrent variable accesses.

Figure 1.4 shows an example for the scheduling with iur. The fork par join construct visualizes
the creation of concurrent threads. As indicated by the comments, this example has four concurrent
threads. All of them consist of one assignment and all want to access the variable a. Therefore, the
order of the accesses has to be set by a scheduler. First, the initialization in thread 3 will be scheduled,
followed by the updates of thread 1 and 4 in a random order, and lastly the read of variable a in thread
2 will be scheduled, resulting in a and b having the value 8. The variables will hold this value every
time since iur guarantees determinism. The SCG (in-depth explanation in Section 1.2.1) in Figure 1.4
visualizes the before-mentioned example program and its dependencies. The statement at which an
arrow points has to be scheduled after the statement at which an arrow starts.

Without iur, different values would be possible (race condition). For example, when scheduled in
the order of the threads, b would hold the value 5, while a would hold the value 3.
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1 fork

2 a+=5 // thread 1

3 par

4 b=a // thread 2

5 par

6 a=0 // thread 3

7 par

8 a+=3 // thread 4

9 join

entry

fork

join

exit

entry

a = a + 5

exit

entry

b = a

exit

entry

a = 0

exit

entry

a = a + 3

exit

Figure 1.4. An example for the iur discipline in SCL and as SCG.

1.2.1 Sequentially Constructive Language

R. v. Hanxleden et al. proposed the Sequentially Constructive Language (SCL), designed as a minimal
language [HMA+13] which is based on the SC MoC. For the description of the statements, the following
letters are used. While x stands for a variable, e for an expression, p for a single or compound
statement, d stands for a variable declaration. The eight statements of which SCL consists are the
following.

fork p1 par p2 join Parallel statement. Concurrent execution of p1 and p2.

l: p A label l before a statement p.

pause The execution is paused for the current tick.

x = e Variable x gets assigned the value of expression e.

p1; p2 Sequence operator. Execute p1 first and then p2.

if e then p1 else p2 If expression e is true, execute p1; otherwise, execute p2.

goto l Jump to Label l and continue the execution there. Label l has to be in the
same thread as the goto statement.

{d; p} A declaration d declares a variable for this scope and therefore the execution
of p. The declaration overshadows outer declarations with the same name.

Sequentially Constructive Graph

The Sequentially Constructive Graph (SCG) is the graphical representation of SCL. While the solid black
edges of the graph represent the control flow, the nodes represent SCL statements. Table 1.1 shows the
mapping of SCL statements to SCG components. The beginning of a thread is displayed by an entry

node and the end by an exit node, both of which are illustrated as an ellipse. While a triangle stands
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Thread Parallel Sequence Conditional Assignment Delay

SCL t fork t1 par t2 join p1 ; p2 if ( c ) s1 else s2 x = e pause

SCG

Table 1.1. Mapping from SCL to SCG [RSM+15].

for a fork, an inverted triangle displays a join. A rectangle stands for an assignment and a diamond
represents an if statement. The tick boundaries are represented by a surface and depth node which
are connected by a dotted line. Figure 1.4 shows an SCG with dependencies as mentioned previously.

1.2.2 Sequentially Constructive Esterel

Sequentially Constructive Esterel (SCEst) is an extension of Esterel. It was proposed by Rathlev et
al. [RSM+15] and it includes the language features of Esterel v5 with SC semantics. It builds on SCL as
its features are formally defined by transformations to SCL. SCEst extends Esterel in two ways. Foremost
it uses the SC MoC, which reduces the number of rejected programs. A big difference to Esterel is
its data handling since it allows variables to be shared and sequentially modified across threads.
Therefore, the possibility to allow signals and their values to be reinitialized is given. This leads to
an enhanced expressiveness of SCEst compared to Esterel and SCL. The second part is an extension of
Esterel’s statements by three new statements. As Esterel v5 is based on kernel statements to which
all derived statements can be transformed to, SCEst makes use of this concept by reducing its Esterel
statements and its new statements to its own set of kernel statements, which is SCL. The transformation
rules are formally defined by Rathlev et al. [RSM+15]. In that paper all SCEst statements are wrapped
up in the following five groups to provide a comprehensible structure.

control flow statements nothing, goto, pause, ; (the sequence operator), loop and parallel

signal handling statements pure local signal, pure emit, unemit and present

data handling statements valued local signal, set and valued emit

preemption statements suspend and trap/exit

derived statements await and abort in all their variants and loop each

For optimization, some transformations of derived statements are written as a direct transformation
to SCL instead of transforming them to Esterel kernel statements first and the kernel statements to SCL

statements second. The before mentioned three new statements are shown in the following:

unemit The counter part to the emit statement, which sets the state of a signal to absent.

set A valued signal is initialized with a given value.

goto A restricted form of a standard goto. It jumps to the specified label or to the enclosing
threads end label, when the first is not inside the thread.

Figure 1.5 displays the relation of Esterel, SCL and SCEst, as SCEst is an extension of Esterel but also
based on SCL.
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SCEst

Esterel SCL

Figure 1.5. Illustration of the relation between SCEst, Esterel and SCL.

1.3 From Esterel to SCL

K. Rathlev presents an approach for a transformation from Esterel to SCL in KIELER in his master
thesis [Rat15]. Rathlev showed that Esterel programs can be transformed to SCL programs while
retaining their semantics and therefore that a smaller set of statements than the kernel statements of
Esterel suffices to express Esterel programs. The transformation is done in one step by a structural
approach. The transformation runs through all statements and begins its transformation at the
bottom of the syntax tree (inside-out). Depending on the next enclosing statement, the corresponding
transformation rule is used until a module is reached. For this approach it is essential to apply the
transformation rules inside-out, since the outermost statement has priority over all inner statements,
which leads to priority depended placements of conditionals after a pause statement for example,
described in Section 5.5.2 in depth. This way the correct behavior of the resulting program is ensured.
Since the whole program is given as an instance of the Esterel meta-model and the transformation
produces an instance of the SCL meta-model, the transformation is an exogenous Model-to-Model (M2M)
transformation, explained in Chapter 4 in detail. Mostly, the used transformation rules make it
possible to apply the SC MoC to Esterel as the sequentially constructive structure is obtained by the
transformation rules. Thus, many programs, which would be rejected by most Esterel compilers, are
accepted.

Figure 1.7 shows the ABRO example from Section 1.1 in Esterel, before the transformation, and in
SCL, after the transformation is done. Note that this ABRO example differs slightly from the previous
one (ABRO_derivedS) to demonstrate the transformation of the loop each statement as an example and
to clarify its meaning. A loop each statement is transformed to an abort and a halt statement inside
a normal loop statement as shown in Figure 1.6. It is visible that the SCL program is more extensive
than the Esterel program and also much less comprehensible. That lack of intelligibility motivated this
thesis.

1.4 Single-Pass Language-Driven Incremental Compilation

The purpose of Single-Pass Language-Driven Incremental Compilation (SLIC) [Mot17] is to give a
different approach to transform a source model to target code like C or Java. It performs an incremental
compilation on a given source model, which consists of multiple M2M transformations in sequence.
Its main characteristics are four in total. First, a specific transformation can only be used once on the
model (single-pass). Second, a language feature can have multiple transformations at choice, but a
transformation must only expand one feature. The transformation is so to speak an increment of the
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1 module loop_each:

2 input R;

3 loop

4 nothing;

5 each R;

6 end module

	
1 module loop_each_t1:

2 input R;

3 loop

4 abort

5 nothing;

6 halt;

7 when R;

8 end loop;

9 end module

Figure 1.6. ABRO transformation by Rathlev [Rat15].

compilation (increment). The second to last characteristic describes the order of the transformations,
which is specific to the features of the language which should be transformed (language-driven). Lastly,
after each transformation the result is a valid, self-contained model, ready to be inspected by the user
(intermediate models).

A positive effect of SLIC is the possibility to inspect the intermediate model after each transformation
and therefore being able to ease the process of certification for safety-critical systems. Also a complex
transformation can be broken down into multiple transformations; therefore, the compiler is able
to have a divide-and-conquer validation and maintenance strategy [Mot17]. Since the compilation is
modularized, a language/compiler subsetting is made easier.

Figure 1.8 shows the general strategy of SLIC. Starting with a source model, an intermediate model
will be generated, which is a valid, self-contained model, ready to be inspected by the user. Therefore,
no extra information is saved outside of the model. After an arbitrary number of transformations and
intermediate models respectively, the compilation ends in a fully transformed model, which can be C
or Java code.

A SLIC schedule is a sequence of SLIC transformations, as shown in Figure 1.8. It is not trivial to
determine that since the design of every single transformation has to be taken into account, which
is explained in depth in Motika’s dissertation [Mot17]. A transformation has the two properties
not-handled-by and produce and can only expand one feature as mentioned before. A feature can
be expanded by multiple transformations but at least one, which gives a user the choice, which
transformation should be used. However, just one of the transformation alternatives can be executed.

Figure 1.9 shows properties for a SLIC schedule. It visualizes the feature f1 which is expanded by
the transformations τf 1 and τf 11 for example (arrows with dotted lines). The outgoing arrows from τf 11 ,
labeled with p, indicate that τf 11 may produce the features f2 and f3. Therefore, the transformation
must be scheduled before the transformation of f2 and f3, since every feature can only be transformed
once. The arrow with the dashed line, labeled with nhb, indicates that transformation τf 3 can not handle
the feature f1. Thus, feature f1 must be transformed before f3 since τf 3 is the only transformation
alternative for f3. The gray area marked as TS displays the used transformations during this example
for a SLIC schedule.

Considering Esterel as an example, each statement type can be a feature, but a statement can
be transformed in multiple ways. For example, an await statement can be transformed to Esterel’s
kernel statements first and then later with an other transformation to SCL statements. It can also be
transformed directly to SCL statements [RSM+15]. If both transformations were implemented, each
would expand the await feature and therefore the user would have the choice which transformation
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1 module ABRO:

2 input A,B,R;

3 output O;

4 loop

5 abort

6 [

7 await A;

8 ||

9 await B;

10 ];

11 emit O;

12 halt;

13 when R;

14 end loop;

15 end module

	

1 module ABRO_SCL:

2 input bool A,B,R;

3 output bool O;

4 bool f_term=false;

5 fork

6 l8:

7 O = false;

8 if !f_term then

9 pause;

10 goto l8

11 end

12 par

13 l7:

14 fork

15 l1:

16 pause;

17 if R then

18 goto l4

19 end;

20 if !A then

21 goto l1

22 end;

23 l4:

24 par

25 l2:

26 pause;

27 if R then

28 goto l5

29 end;

30 if !B then

31 goto l2

32 end;

33 l5:

34 join;

35 if R then

36 goto l6

37 end;

38 O = O | true;

39 l3:

40 pause;

41 if R then

42 goto l6

43 end;

44 goto l3;

45 l6:

46 goto l7;

47 f_term = true

48 join

49 end module

Figure 1.7. ABRO transformation by Rathlev [Rat15].
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Original 
Model 

Intermediate 
Model 

Fully trans- 
Formed Model 

Figure 1.8. Single-Pass Language-Driven Incremental Compilation as an incremental model-based compilation
strategy [Mot17].
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f1 

f2 
f1’ 

f3 f2 

f3 

TS 
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p 

Figure 1.9. Example SLIC features f1, f2, f3, SLIC transformations τf 1, τf 11 , τf 2, τf 3 and their expand (e and dotted
line), produce (p and solid line), and not-handled-by (nhb and dashed line) order relations are shown. Also, a
transformation choice TS for a selection S of transformations is visualized [Mot17].
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f1’ f2 f3 

Figure 1.10. A SLIC schedule for the example of Figure 1.9 and the transformations τf 11 , τf 2 and τf 2 [Mot17].

should be used. However, in case of option one, the corresponding kernel statements would have to be
transformed after the await statement.

To determine a sequence of transformations, a few questions have to be answered first. Does a
feasible SLIC order exist? If it exists, how does the SLIC schedule look like? Lastly, does an artificial
production dependency exist, which determines the order of the elimination of two features that do not
have not-handled-by and produce dependencies?

1.5 Problem Statement

It has been shown by K. Rathlev [Rat15] that an Esterel program can be transformed to SCL, done in
one single step using a structural approach, as mentioned before. The question remains if, following
the SLIC approach, described in Section 1.4, it is also possible to transform a SCEst program step by step,
producing intermediate self-contained models, which are valid by themselves with no information
hidden. Those intermediate models could be inspected by the user. Therefore, the user would be able
to understand the transformation of a single language feature better, which provides the opportunity
to choose the right one for a given task. Also, the development or maintenance of the compilation chain
would be easier since a single transformation could be easily replaced by a new one, or a possible error
could be narrowed down to a single, more compact transformation and thus be fixed relatively fast.

This incremental compilation might seem as an easy modification of the structural approach, but it
is by far not trivial, since the transformations can affect each other when they modify third statements.
For example, when transforming the Abort and Suspend statements, conditionals have to be placed at
tick boundaries. However, the transformation of those statements are independent and therefore it
must be examined if the correct order of the conditionals can be retained.
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1.6 Outline

In Chapter 2, used technologies for the implementation of the incremental compilation of SCEst are
presented. The implementation of the step by step transformation is part of the KIELER project, which
consists of Eclipse plugins. Furthermore, a general description of Eclipse including the usage of
plugins and their structure, the grammar language Xtext, the programming language Xtend and the
EMF are given.

In Chapter 3, two visual languages, the SyncCharts and the Sequentially Constructive Statecharts
(SCCharts) for the synchronous MoC and the SC MoC respectively, are being explained as related work.
Additionally, an overview of available Esterel compiler is given.

Chapter 4 presents the main part of this thesis. It is a description of the adjusted meta-model struc-
tures of Esterel and SCEst as well as the concept of the step by step transformation from Esterel/SCEst

to SCL.
Building up on the previous structure, in Chapter 5, the implementation of the incremental

compilation is described, as well as some features like code validation, formatting and scoping are
presented.

It follows an evaluation of the implementation in Chapter 6 by displaying the step by step
compilation of ABRO and discussing the size of the produced SCL code of some example programs.
Additionally, emerged problems will be discussed.

It ends with a summary of the outcome of this thesis and possible future work in Chapter 7.
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Chapter 2

Used Technologies

Since the implementation of the incremental compilation of SCEst is not a standalone one, other
technologies were used, namely, Eclipse and KIELER, which are explained in this chapter to impart a
basic knowledge.

2.1 Eclipse

The Eclipse Foundation released Eclipse1 in 2001. Its intended use was an Integrated Development
Environment (IDE) for Java, but since then, it has developed into an application for different areas [RB06].
It is an easy extendable system of plugins and offers the possibility to create a domain specific IDE.

The plugin system can be extended quite easily [Bol03]. Due to the plugins, a modular structure of
projects can be achieved. An interaction can be defined as an extension point in a specific plugin and
later used by other plugins. For example, Eclipse provides an extension point for new applications, so
its appearance can be adjusted. One can decide which plugins should be used for a specific application
when starting a new instance of Eclipse instead of loading all plugins.

In this section the Eclipse Modeling Framework, Xtext and Xtend will be explained to impart a
basic knowledge of technologies used during this thesis, which is needed to understand Chapter 5.

2.1.1 Eclipse Modeling Framework

The Eclipse Modeling Framework (EMF)2 provides the possibility to declare models which structure is
described in abstract meta-models. An Ecore model sets the layout of these meta-models. There are two
editors, a diagram editor and a tree editor, for the creation and modification of a meta-model included in
EMF. Figure 2.1 shows a book store as an example and the two different editors. Figure 2.1b shows the
diagram editor and Figure 2.1a shows the tree editor.

In the tree editor, the 1 under the attribute name of BookStore means that a book store must have a
name. The 1..* under books stands for an arbitrary number but at least one. In contrast to the attribute
name, books is a list of references to Book objects. Behind a colon the respective type is given. For name it
is EString.

In the diagram editor, each square stands for an object type. Here they are BookStore, Book and
Author. While the attributes of each object type are listed in the respective squares, a list included in
an object is indicated by an arrow, which points to the type of object which it contains. The [1..*]

books at the arrow from BookStore to Book means that a book store can have an arbitrary number of
books but at least one, the same property compared to the tree editor since both editors represent the
same model.

1http://www.eclipse.org
2http://eclipse.org/emf
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(a) Ecore tree editor of the book store example. (b) Ecore diagram editor of the book store example.

Figure 2.1. The two different editors for the EMF meta-model.

2.1.2 Xtext

To be able to develop a Domain Specific Language (DSL) (e.g., programming languages in general),
Xtext3 is used, as it extends EMF. It is an open source framework. The Extended Backus-Naur Form
(EBNF) is used in many cases to define the grammar of a language and likewise Xtext uses a similar
form. Xtext can not handle left recursion since it produces LL-parsers by using the Another Tool
For Language Recognition (ANTLR) parser generator and therefore most of the grammars can not
be copied straight to Xtext. Left recursion means that a nonterminal symbol A exists in a given
grammar which can be derived to Aα where α is an arbitrary combination of nonterminal and terminal
symbols [Pow99]. When reading from the left to the right, it can not be decided which rule should
be applied. Since LL-parsers do exactly that, left recursion has to be removed in Xtext grammars. As
mentioned, ANTLR is used to create a parser on the basis of a Xtext grammar. Other tools like an editor,
code validation and highlighting are automatically generated, which are described in Chapter 5 to
some extent, for an integration into Eclipse.

Going back to the previous example of a book store, Listing 2.1 shows its grammar definition in
Xtext. To define a new book store, the keyword store has to be written. Followed by the name of the
store, which is saved in the attribute name. The store must have one book but can have an arbitrary
number of books, from 1 to infinity, which are separated by a comma. An arbitrary number, from 0
to infinity, is indicated by *, the second to last character in line 6, but since the term is preceded by
books+=Book, which means that one book must be added, the arbitrary number is restricted to 1 to
infinity. A book starts with the keyword book, followed by the title, multiple authors, but at least one
author, indicated by + after Author in line 9, and a price. The price is optional as indicated by the ?

character. An author starts with the keyword author followed by the name.

2.1.3 Xtend

The programming language Xtend4 is similar to Java. The discontinuation of unnecessary syntax
overhead is the big difference to Java. Since Xtend compiles to Java code, it is possible to use a Xtend
class in Java and a Java class in Xtend. Listing 2.2 shows an example method for creating a book store

3http://www.eclipse.org/Xtext
4http://www.eclipse.org/xtend
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1 grammar de.cau.cs.kieler.BookStore with org.eclipse.xtext.common.Terminals

2

3 generate bookStore "http://www.cau.de/cs/kieler/BookStore"

4

5 BookStore:

6 "store" name=ID books+=Book ("," books+=Book)*;

7

8 Book:

9 "book" title=STRING authors+=Author+ price=INT?;

10

11 Author:

12 "author" name=ID;

Listing 2.1. The book store grammar in Xtext.

1 def createBookStoreWithPredefinedBooks(EList<Book> oldBooks) {

2 var store = BookStoreFactory::eINSTANCE.createBookStore => [

3 name = "exampleStore"

4 books += oldBooks

5 ]

6 }

Listing 2.2. Creating a book store with a list of books in Xtend.

and adding a predefined list of books to it. The keyword def is used to define a method. The return
type does not have to be declared explicitly since it can be derived. In this case the last object in this
method is store and since it is of type BookStore, the return type of the method is also BookStore. Also
the Java keyword return does not have to be written. In line 2, starting the declaration of the variable
with the keyword var, the previously mentioned type of store is also not declared explicitly, but it
can be derived from the method of the right hand side. The method createBookStore in line 2 was
generated by the book store meta-model and returns an object of type BookStore as mentioned before.
The newly created BookStore object is instantly initialized with the => operator in line 2 by passing the
BookStore object into the lambda expression, indicated by the square brackets. In line 3, the name of
the new store is set to exampleStore and the predefined list of books is added to the list of books of
the new store, line 4.

Figure 2.2. The KiCo View with the different transformations for an SCL program.
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2.2 KIELER

The Kiel Integrated Environment for Layout Eclipse Rich Client (KIELER)5 is developed by the Real-Time
and Embedded Systems group at Kiel University, Germany. It is a research project that focuses on
designing complex systems with an improved graphical model-based approach. Two components,
namely, KIELER Compiler and KIELER Model View, which are used during this thesis, are explained in
this section.

2.2.1 KIELER Compiler

The KIELER Compiler (KiCo) is an Eclipse plugin and a framework providing transformations on EMF

models using the SLIC approach as described in Section 1.4. It can be used by other plugins since it
provides an extension point, described in Section 2.1, to register new transformations. A transformation
itself has to be written in Xtend or Java. Therefore, it is possible to set up a hierarchical structure in
which multiple transformations are ordered. This is done by defining dependencies.

Figure 2.2 shows a screenshot of the KIELER Compiler View, a graphical representation which is
also integrated into KIELER, for an SCL file. It provides the possibility to transform an SCL program to
target code like C or Java. Single transformations can be grouped for a better comprehensibility. In this
specific KiCo View SCGraph would be an example of a group which includes the single transformations
SCG, Dependency, BasicBlock, Expressions and so on. Each arrow displays a dependency. In this example
the transformation SCG has to be done before every other transformation in the group SCGraph.

2.2.2 KIELER Model View

As KiCo, the KIELER Model View is an Eclipse plugin. It displays the current working model and can be
a graphical representation, when possible, or just code. This is useful when applying a step by step
transformation, since every step can be inspected in a clear way. Therefore, corrupt transformations
can be identified a lot easier. The view is updated every time changes to the code are saved, another
transformation is added, or a transformation is unselected.

As part of the KIELER Model View, KIELER Lightweight Diagrams (KLighD) is used to display any
EMF model automatically. For this visualization KLighD is using a diagram synthesis which is specified in
Xtend or Java [SSH13]. Key points are automatically providing an efficient way of browsing rendered
diagrams, interactivity (e.g., highlighting) and the reduction of time used to create a graphical
representation of a design.

Additionally, Eclipse Layout Kernel (ELK)6 is used to provide a connection between diagram
editors/viewers on the one hand and automatic layout algorithms on the other hand. A few standard
layout algorithms are already included.

Figure 2.3 shows the example threads for the iur discipline, as mentioned in Section 1.2. Executing
the transformation chain up to SCG, which is selected in the KiCo View, the KIELER Model View displays
the SCG, as it is the representation of the current working model.

5http://rtsys.informatik.uni-kiel.de/kieler
6http://www.eclipse.org/elk
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Figure 2.3. The previous threads example for the iur discipline as an SCG with the KIELER Model View.
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Chapter 3

Related Work

In this chapter related work that motivated this thesis is described. On the one hand, there are
SyncCharts, which are a visual language for the synchronous MoC, and an interactive transformation
from Esterel to the former is implemented in KIELER. On the other hand, there are SCCharts, which are a
visual language for the SC MoC, and an interactive compilation of those using the SLIC approach is also
implemented in KIELER. Additionally, a description of three different compiler for Esterel and their
compilation approaches is given.

3.1 Visual Languages for the Synchronous MoC and SC MoC

In this section the two before mentioned visual languages for the synchronous MoC and the SC MoC,
SyncCharts and SCCharts respectively, are described in the context of transforming Esterel to the former
and the general compilation of the latter. Thereby, the motivation behind this thesis and the general
approach of the incremental compilation of SCEst is being explained.

SyncCharts

SyncCharts are a graphical, synchronous language and representation of Esterel, since they are
defined by a transformation from Esterel [PTH06]. They are based on the synchronous MoC. U. Rüegg
covers in his bachelor thesis Interactive Transformation for Visual Models [Rüe11] a transformation from
Esterel to SyncCharts [And03]. The transformation by Rüegg is implemented in KIELER and allows
the user to visualize the transformation, which can be done step-wise. Each intermediate step can be
inspected visually. In contrast to SCL, SyncCharts is not a minimal language and therefore provides the
possibility of a direct transformation since almost all Esterel statements have a representing statement
in SyncCharts. Thus, the step by step transformation covered in this thesis is more complex. However,
the approach taken and its implementation are a motivation for this thesis. The transformation from
Esterel to SyncCharts is done as follows.

Figure 3.1 shows the initial transformation on the ABRO example from Esterel to SyncCharts. This is
done by creating a root macro state named Esterel State and copying the Esterel program’s module
in text form to the state’s body. In addition, a reference to the actual module is saved in the state.
Afterwards, the SyncCharts editor is opened and the user is able to select specific parts of the program
to be transformed. When a selected transformation is done, a not yet transformed part of the program
is copied in text form to the respective state’s body, as shown with the initial transformation.

Therefore, this approach is quite similar to the one of this thesis. It produces a valid intermediate
model after each transformation and lets the user choose which parts should be transformed. However,
instead of allowing textual source code in the intermediate models, the incremental compilation of
this thesis creates representing objects for every SCEst statement.

Figure 3.2 shows the ABRO example, described in Figure 1.2a, in SyncCharts. While states with a
bold border are initial, the ones with double borders are final. The arrows with continuous lines are
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Figure 3.1. Initial SyncCharts transformation of the
ABRO example [Rüe11].

Figure 3.2. ABRO example representation in Sync-
Charts [Rüe11].

delayed transitions. Transitions have a trigger and an effect, separated by the / sign on top of a transition.
In this example the trigger of the transition from wB to dB is B, while the effect of the transition from
WaitAB to done is O. Note that the sign / can be omitted when the transition does not have an effect. A
normal termination is indicated by a green triangle at the beginning of a transition, which is visualized
in this example from WaitAB to done. Normal termination means that all parallel regions in the source
state of a transition have reached a final state, here dB and dA. In this example A and B have to be
present at some point after the initial tick. A strong abort is indicated by a red dot at the beginning of a
transition. Here, the signal R triggers the strong abort of the state ABO, which leads to a reset of the
state.

SCCharts

R. v. Hanxleden et al. proposed the visual language Sequentially Constructive Statecharts (SCCharts)
[HDM+14], which is a conservative extension of SyncCharts and based on the SC MoC. The language
features are separated into the Core and Extended SCCharts. While the core SCCharts contain the key
ingredients of statecharts, namely concurrency and hierarchy [HDM+14], the extended SCCharts include all
features of SyncCharts among others.

The compilation of SCCharts in KIELER uses the SLIC approach and is done by transforming the
extended features to core features first, followed by a normalization, which makes the SCCharts ready to
be transformed to an SCG. From there the implemented compile chain from SCG to target code is used.
The transformation of signals leads to a transformation of all features that are dependent on a signal,
and also to a rewrite of all expressions which reference the signals to the representing variables.

By using the SLIC approach, this compilation motivated this thesis’s topic and the procedure is
therefore quite similar to the step by step transformation of this thesis from Esterel/SCEst to target code
over SCL. The latter differs from the former in not needing to transform all derived statements (resp.
extended features) into kernel statements (resp. core features), since it uses direct transformation rules
to SCL. This is done for optimization reasons, since this way the resulting code is more compact, e.g.,
shown for the await statement of Esterel [RSM+15], and additionally the compilation runtime can be
reduced. Both, the compilation of SCCharts and the incremental compilation of SCEst of this thesis, are
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(a) Extended SCCharts. (b) Core SCCharts.

Figure 3.3. ABRO example with and without extended features of SCCharts [HDM+14].

using the SLIC approach and therefore every single transformation specified is just used once during
the compilation, the single-pass constraint of SLIC.

Figure 3.3a displays ABRO as an example for extended SCCharts. Despite a slightly different interface,
it looks similar to the SyncChart of ABRO. A dotted transition is immediate. Figure 3.3b displays ABRO

as an example for core SCCharts. It is the same program but only with core features. In the superstate
ABthenO a second region _Ctrl is added, which sets the flag _S to true if R is present, to simulate the
strong abort. If _S is true, a termination of ABthenO is triggered and immediately restarted with its
immediate normal termination transition.

3.2 Esterel Compiler

Berry supervised a joint team at French Institute for Research in Computer Science and Automation
(INRIA)1 and École nationale supérieure des mines de Paris (ENSMP) starting the development of the
official Esterel compiler. It has therefore the name INRIA Esterel compiler. While using the circuit- or
automaton-based approach, the compiler compiles Esterel programs to either hard- or software. By
using the circuit approach, the resulting netlist code as well as the needed time is almost linear to the
source code size, which makes it advantageous for complex programs. However, the code is inefficient,
since it also computes irrelevant results during the simulation of the circuit. The automaton approach
generates a final state machine. The size of the code makes it only suitable for small programs, since it
is exponentially bigger than the source code [Bt00]; however, it is much faster than the code of the

1https://www.inria.fr/
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circuit approach. Both approaches admittedly do have intermediate formats which can be inspected
by the user, but as stated in the manual:

The Esterel v5 91 compiler is made out of several internal processors controlled by a single esterel command.
Normally, the user should only call this command and should never call directly the internal processors [Bt00].

By default, the intermediate code files are not given to the user. Whereas the approach of thesis
uses SCL/SCG as an intermediate format ready to be inspected and makes use of the compilation chain
from SCL/SCG to target code.

Edwards et al. started in 2001 the development of the open source Esterel compiler Columbia Esterel
Compiler (CEC)2 at the University of Columbia [PEB07]. Its intended use was for research in generating
hard- or software from Esterel. The CEC can be used to generate a C Program from Esterel. In addition,
it can generate a Verilog or Berkeley Logic Interchange Format (BLIF) circuit description. This can be
done by three different methods, namely, the Program Dependence Graph (PDG), the dynamic list and
the virtual machine code generation, which are explained in the article Code Generation in the Columbia
Esterel Compiler by Edwards et al. [EZ07]. The CEC uses a variant of Potop-Butucaru’s [Pot02] graph
code (GRC) as the intermediate representation and supports just a subset of Esterel v5. The GRC is quite
similar to an SCG and therefore the CEC compilation is like the compilation of SCEst to target code of
this thesis, since both have a similar intermediate representation, GRC and SCG respectively. An SCG

has additionally multiple kinds of dependencies and allows an arbitrary control flow with loops.
Another compiler project is the Freesterel3 compiler proposed by Coadou and Ferrero at INRIA for

education and research purposes by cloning the genuine Esterel Compiler, since no other free Esterel
v7 compiler exists, but as of now, no finished compiler or updates have been presented. As it was
proposed in 2010, one can assume that the project has stopped. This compiler was meant to give a user
just the target code as the INRIA compiler and therefore is different to the incremental compilation of
SCEst of this thesis.

A more detailed but also compact explanation of the compilers and especially of the GRC and the
PDG is given in Rathlev’s master thesis [Rat15].

2http://www.cs.columbia.edu/ sedwards/cec
3http://freesterel.sourceforge.net/
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Incremental Compilation

The difference between Rathlev’s structural approach and the step by step approach of this thesis is
that in the structural approach a given Esterel program will be transformed completely in one step to
an SCL program. The transformation starts at the innermost statement and after that the next enclosing
statement will be transformed and so on. The process stops when the next enclosing object is the
root object of the program. So for every possible statement there is a transformation ready to be used.
Since everything is done in one step, it is not clear which statement in the source program led to
which statement or statements in the target program. In case of a slightly more comprehensive source
program, the transformation itself is therefore not as easy to understand as it could be.

Figure 4.2a displays the user experience when the traditional compilation approach is used. The
compiler gets a program in text or graphical model form, performs its transformations, and returns the
program in target code. In this case the compiler is a black box that gives no inside on its intermediate
results. When the user does not have the knowledge to understand the intermediate results, this is not
a problem.

Figure 4.2b shows an interactive compilation using SLIC. It is a white box compiler, which displays
intermediate results to the user. The interactive compiler takes additionally an interactive user compiler
selection besides the source model as input. Therefore, the user is actively able to modify the compiler.
Thus, as described in Section 1.4 , SLIC allows the user to apply a self-chosen set of transformations to
the source model. A few advantages of SLIC as an interactive compilation compared to the traditional
compilation are the following. Since the user is able to see intermediate results, which means that a
feature is displayed by an other more basic feature, the understanding of the semantics of language
features is improved. Further, the knowledge of the models is improved since it is more likely that a user
is able to understand the language features being used while seeing intermediate models. Therefore,
the user can realize how to use language features in a correct way, which eases the development of
correct safety-critical systems, which depends on a reliable model and compiler. Additionally, the user
might have a set of multiple transformations for one feature. Depending on the wanted result, the user
is able to pick the best transformation to accomplish it. Moreover, the development of the compiler is
easier, since it is modularized. If an error is found, it is most likely easier to fix it, since it is already
known in which specific transformation it occurs. Also, a transformation of a feature can easily be
deleted and replaced by a new one.

The other side of the coin is the probable deceleration of the compilation, since a run through the
whole program for every transformation is initiated in contrast to one run-through. However, weighing
the benefits against this drawback, the interactive SLIC compilation is better suited for designing
safety-critical systems, since it provides a more reliable compiler and models.

Figure 4.1 displays the relation of Esterel, SCL and SCEst and the strategy for the incremental
compilation of SCEst used in this thesis. In Section 4.1, the structure of the underlying SCEst meta-model,
which represents a SCEst program during a compilation, will be explained in detail. But for now it
suffices that in Figure 4.1 SCEst is displayed as a superset of Esterel and SCL. This means that the
implementation of the model of SCEst not only includes the features stated in its formal definition
but also all SCL statements. This implementation simplifies the incremental compilation of SCEst as
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SCEst

halt ≡ loop pause end

Esterel

present
emit

SCL

ifp|| q ≡ fork p par q join

unemit
set

Figure 4.1. Illustration of the relation between SCEst, Esterel and SCL.
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(b) Interactive compilation

Figure 4.2. Difference for modeling using traditional compilation and interactive model-based compila-
tion [Mot17].
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described later in detail. For example, while the transformation of the halt statement will be within
Esterel’s statements, since it is a derived statement which is transformed to Esterel’s kernel statements
loop and pause, the transformation of the parallel statement leads to a fork par join construct of
SCL. The new SCEst statement unemit will be transformed directly to a representation in SCL. However,
during the compilation of an arbitrary statement, the scope of SCEst is not left and therefore the
transformations can be done on one underlying model, which benefits will be explained in depth later.

The transformation of a SCEst program to an SCL program is done by transforming a given instance
of the SCEst meta-model to an instance of the SCL meta-model. Only if all Esterel/SCEst statements have
been transformed to SCL statements, the transformation to the SCL meta-model is done. The single
transformations of the different SCEst statements are done on an instance of the SCEst meta-model.
Thus, there are two different kinds of Model-to-Model (M2M) transformations, the exogenous and the
endogenous M2M transformation [MG06]. An exogenous transformation has different target and source
meta-models. In contrast, an endogenous transformation has the same target and source meta-model.

To implement the incremental compilation of SCEst in KIELER, the following strategy is used. The
incremental compilation of SCEst is divided into the following features needed for the SLIC approach, as
described in Section 1.4. 27 features represent each an Esterel statement, which has to be transformed.
One feature provides an initialization mechanism, which is described in Section 5.5.2 in detail, an
other feature provides an optimization for the chosen names of labels, and lastly a feature is used to
do the exogenous M2M transformation from an instance of the SCEst meta-model to an instance of the
SCL meta-model. Each feature has just one transformation. Therefore, the possibility to choose between
alternative transformations for a given feature, as described in Section 1.4, is not provided. After each
transformation the intermediate model is a valid one and can be inspected by the user by using the
KIELER Model View, described in Section 2.2.2. Some transformations have not-handled-by and/or
produce dependencies, which give KiCo information on the order in which the transformations have to
be scheduled. If KiCo can choose between different features, since their dependencies are not on each
other, it can choose an arbitrary order, which can be different for every execution of the compilation
chain.

As explained, the step by step approach’s purpose is to provide a transformation which is
understandable for the user. It allows the selection of a specific kind of a statement, which then will
be transformed for the whole program. The example in Figure 4.3 shows the transformation of all
Block statements. If the Block statement is selected to be transformed, a run through the whole source
program is triggered in which every time a Block statement is found, the Block statement will be
transformed to a ScopeStatement. After the transformation the user is able to look at the produced code
and thus can realize how a specific statement is being transformed and therefore is able to understand
the transformation (the second listing in Figure 4.3). When additionally another type of statement is
selected as displayed with the Halt statement in Figure 4.3, the transformation for both statements is
done in one big step from the viewpoint of the user, consisting of the two separate transformations.
The order is dependent on the constraints of the selected transformations. Afterwards, the result is
shown to the user (third listing in Figure 4.3). Note that in this mini example the transformation of the
whole program at once is understood quite easily, but for more complex ones it is not.

To be able to do these transformations in KIELER, first the formally defined language SCEst [RSM+15]
has to be implemented and integrated in KIELER and since it is an extension of Esterel and therefore
those two implementations are closely connected, the already integrated Esterel grammar and meta-
model are updated as well. The single transformation rules are already defined and described [Rat15;
RSM+15]. However, they are not complete and therefore a few modifications of the rules are explained
in this chapter.

For accomplishing the implementation of the incremental compilation of SCEst, the best possible
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1 module sBs_1:

2 input A;

3 [

4 emit A;

5 [

6 pause;

7 ];

8 halt;

9 ];

10 end module

Block

	
1 module sBs_2:

2 input A;

3 {

4 emit A;

5 {

6 pause;

7 }

8 halt;

9 }

10 end module

Halt

	

1 module sBs_3:

2 input A;

3 {

4 emit A;

5 {

6 pause;

7 }

8 l1:

9 pause;

10 goto l1;

11 }

12 end module

Block / Halt

Figure 4.3. The different results which a user can inspect: While just the Block statement being selected leads to
the second listing, the Block and Halt statement being selected leads to the third listing.

structure of the different meta-models has to be found, which is done in Section 4.1. Additionally, it
must be seen how the incremental compilation of SCEst can be implemented to follow the principles of
SLIC, described in Section 1.4, which is done in Section 4.2.

4.1 Structure of Meta-Models

There are a few possibilities to structure the implementation of the SCL, Esterel and SCEst meta-models.
Figure 4.4 shows the previous structure of SCL and Esterel and their needed components. While SCL

uses expressions of the KExpressions plugin, which is used by multiple other plugins, Esterel uses its
own implementation of KExpressions, since it needs more components than the ones provided by
KExpressions, for example, sensors are used in Esterel but not provided by KExpressions.

Therefore, three different approaches on how to structure the meta-models are explained in this
section. The main objectives are providing a structure, which is as lean as possible by making use of
already implemented features, e.g., the fusion of the two KExpressions implementations, providing
the possibility to have intermediate models, as explained in Section 1.4, and making the transition to
an instance of the SCL meta-model as easy as possible.

4.1.1 Separate Meta-Models for Esterel and SCEst

A first approach is shown in Figure 4.5a. The previous structure is adopted and the new meta-model
of SCEst is added as an extension of the Esterel meta-model. This is a simple approach since nothing
would have to change and just a new small meta-model needs to be added. However, the simple
implementation of the meta-models leads to a more complex implementation of the transformations,
in particular the last exogenous M2M transformation. Every instance of an expression in SCEst would
have to be transformed to a corresponding instance of a KExpression. Since multiple SCL statements
are not included in the formally defined language SCEst, it leads to a limitation of possible single
transformations within the SCEst meta-model. For example, the Block and EsterelParallel statements
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Annotations

KExpressions

SCL

Esterel-
KExpressions

Esterel

Figure 4.4. The previous structure of the meta-models, needed for the incremental compilation of SCEst.

of Esterel as well as the transformation of the signals would have to be done together in the last step,
the exogenous M2M transformation. Since it does not serve a good step by step transformation, it leads
to the following approach of a combined meta-model for Esterel and SCEst.

4.1.2 New Structure with One Meta-Model for Esterel and SCEst

The second approach is shown in Figure 4.5b. It is just one meta-model for Esterel and SCEst which
extends SCL. Thus, it is connected to the definitions in SCL. Since SCL extends KExpressions, SCEst

can also use those definitions. Having a combined meta-model for Esterel and SCEst would lead to
the following problem. If users want to write a pure Esterel program, there has to be a mechanism
which makes sure that only Esterel statements are accepted. Therefore, a special comment at the
beginning of the program could be used, so the editor can recognize if just pure Esterel statements
are allowed or SCEst and SCL statements are allowed also. For example, the comment %SCEst could be
placed in the first line of a SCEst program and if the first line does not include this comment, only pure
Esterel statements are allowed by default. If a user enters a SCEst statement without having placed the
comment, the editor would display an error and would not accept the program. Since this approach
would primarily use KExpressions and therefore the structure of the existing Esterel and its own
KExpressions meta-model and grammar would need to be adjusted, this approach would not be as
simple as the first one in implementing the meta-model, but it would make the implementation of the
step by step transformation easier because not every expression would have to be transformed as in
the first approach. Since all SCL statements are known, it is possible to allow also SCL statements in
this new meta-model of Esterel and SCEst, which is described more detailed in the following approach.
Those advantages makes this approach superior to the first one for the task of implementing a step by
step transformation.

4.1.3 New Structure with Two separate Meta-Models for Esterel and SCEst

The third approach is shown in Figure 4.5c. It differs from the second approach in the way of a
distinction between the Esterel and the SCEst meta-model. Like the previous approach, the Esterel
meta-model extends the SCL meta-model. But now a new meta-model, the SCEst meta-model, extends
the Esterel meta-model. Therefore, the Esterel meta-model could use defined components of SCL, but it
does not. Only in the SCEst meta-model the definitions of SCL are being used. The implementation of
the SCEst meta-model and grammar differs from the formally defined language SCEst. Not only Esterel
statements plus the three added statements of SCEst are included in the implementation of SCEst, but
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Annotations

KExpressions

SCL

Esterel +
Expressions

SCEst

(a) Separate meta-models for Esterel/SCEst and SCL.

KExpressions

SCL

Esterel
SCEst

Annotations

(b) One meta-model for Esterel and SCEst.

KExpressions

SCL

Esterel

SCEst

Annotations

(c) Two separate meta-models for Esterel and SCEst.

Figure 4.5. The structure of the three approaches of the meta-models.

also all SCL statements are allowed. This leads to the benefit of being able to transform every statement
on its own and not like the first approach having to do multiple transformations in one step. For
example, all Block statements of an Esterel program can be transformed to ScopeStatement statements
of SCL and they can be represented in the SCEst meta-model. Also the Esterel and the SCEst meta-model
make use of the KExpressions. Just the expressions which can not be represented with KExpressions
have their own definition in the Esterel meta-model. The Esterel meta-model is more comprehensive
since it is not a minimal language as SCL. The SCEst meta-model is very small because it extends the
Esterel meta-model only by two statements, the set and unemit statement, and the SCL statements.
The latter are obviously already defined in the SCL meta-model. Because of having two meta-models
for Esterel and SCEst, the disadvantage of the previous approach, the programmatically distinction
between an Esterel and a SCEst program, is dissolved. In addition, by having a distinction between
those two meta-models, the structure is clearer. Out of the three approaches this third approach is
therefore the most suited for the task of implementing a step by step transformation.
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4.2. Transformations

4.2 Transformations

The structural approach for a transformation of an Esterel program to an SCL program has been
implemented in KIELER by Rathlev in his master thesis [Rat15]. While most transformation rules
are already described there, Rathlev et al. proposed SCEst [RSM+15] with additional transformation
rules. This section describes a fraction of those transformations as well as some modifications to the
transformations needed for the incremental compilation with the SLIC approach.

For a better understanding the following short forms are used.

p A single or compound statement.

l<number> A generated unique label. For example l1, l2 or l99.

gotoj l3 A restricted form of goto, which jumps either to l3 if the label is not outside its
enclosing thread or to the surrounding threads end label.

p [s1 Ñ s2|s3 Ñ s4] Every s1 in p is replaced by s2 and every s3 by s4.

4.2.1 Existing Transformation Rules

For a better understanding, an extract of the transformation rules, already defined by Rathlev [RSM+15],
are repeated in this subsection. The ones mentioned are on one hand the transformation rules for the
new SCEst statements unemit and set and on the other hand the transformation rules used for the ABRO

example for which a step by step transformation is shown later.

UnEmit

1 unemit A 	 1 A = false;

Listing 4.1. Transformation of an unemit.

An UnEmit statement is transformed straight forward to an absolute write to the corresponding
variable, as shown in Listing 4.1. The absolute write ensures that unemits are scheduled before emits.

Pure Emit

1 emit A 	 1 A = A || true;

Listing 4.2. Transformation of a pure emit.

An Emit statement is transformed straight forward to a relative write to the corresponding boolean
variable, as shown in Listing 4.2. The relative write is used to ensure that every UnEmit statement is
executed before Emit statements.
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Valued Emit

1 emit A(v) 	 1 A = A || true;

2 A_cur = f(A_cur, v);

Listing 4.3. Transformation of a valued emit.

A valued emit is transformed to a relative write of the corresponding boolean variable, line 1 in
Listing 4.3, and the new value is combined with the current signal value and the combine function f
and saved in A_cur, line 2.

Set

1 set A(v) 	 1 A = A || true;

2 A_set = A_set || true;

3 A_cur = v;

Listing 4.4. Transformation of a Set statement of SCEst.

As shown in Listing 4.4 line 3, the transformation of a Set statement differs from the Emit statement
in that it replaces the relative write to A_cur with an absolute write to A_cur. Therefore, all emits are
executed after any concurrent set.

Halt

The halt statement stops the execution permanently. As shown in Figure 1.1, the halt statement is
transformed to a label, followed by a pause statement and lastly a goto statement, which initiates a
jump back to the label.

Parallel

1 p

2 ||

3 q 	
1 fork

2 p

3 par

4 q

5 join

Listing 4.5. Transformation of a Parallel statement of Esterel.

The Parallel statement of Esterel stands for concurrency. The transformation to SCL is straight on
since the || operator is replaced by a fork par join construct, as shown in Listing 4.5, where p and q

are concurrently executed.
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Loop

1 loop

2 p

3 end 	 1 l1:

2 p;

3 goto l1;

Listing 4.6. Transformation of a loop statement of Esterel.

The loop statement is transformed straight forward as well to a label before the loop’s body and a
goto after the body, which initiates a jump back to the label, shown in Listing 4.6.

Delayed Await

1 await A 	
1 l1:

2 pause;

3 if !A {

4 goto l1;

5 }

Listing 4.7. Transformation of a delayed await statement of Esterel.

The delayed await statement allows for the execution to continue only if a specified signal is present
after the initial tick. Therefore, as shown in Listing 4.7, it is transformed to a label, followed by a pause

statement and a conditional after the pause, which checks for the previously mentioned signal not to
be present. If the signal is not present, a goto statement is executed which initiates a jump back to the
label; otherwise, the execution continues.

Strong Delayed Abort

1 abort

2 p

3 when A 	
1 {

2 bool abort_flag = false;

3 p [ pause -> pause; if A {abort_flag=true; gotoj l1;}

4 | join -> join; if abort_flag {gotoj l1;}]

5 l1:

6 }

Listing 4.8. Transformation of a strong delayed abort.

A strong delayed abort indicates a preemption of the execution of its body when its condition
holds true. It is transformed as shown in Listing 4.8. The body, in this case p, is transformed in the
way that after each pause statement a conditional is added, which therefore checks at the beginning
of each tick, except the initial one, if its condition holds true, and if so, an abort flag is set to true,
here abort_flag, and a goto statement is executed, which initiates a jump to the label placed after p. If
the goto statement is inside a thread, which is inside p, the goto initiates a jump to the thread’s end
label. Therefore, the additional flag is needed, which is tested after each join to determine if a thread
terminated by a preemption, and if so, a jump to the label after the body or to the enclosing thread’s
end label is initiated.
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4.2.2 Preserving Declarations for Incremental Compilation

The following transformation rules are a slight modification of the already defined ones. The only
difference is, for the incremental compilation the old signals are being kept while creating new
variables for their representation in SCL since other statements depend on them. For example, the
Emit, UnEmit and Set statements need an actual signal. In case of the deletion of the old signals, all
of them would need to be transformed as well, but this would lead to a coarser partition of single
transformations. Additionally, this would come at the cost of not being able to create a set of features,
each representing a statement of SCEst, and transforming each feature just once during the compilation,
which is also part of the SLIC approach. To provide this finer distinction, the signals are being kept
until the last exogenous M2M transformation to an instance of the SCL meta-model.

Signals

1 module inputExample:

2 input A;

3 p 	
1 module inputExample_t:

2 input A_sig;

3 {

4 input bool A;

5 p;

6 }

Listing 4.9. Transformation of an input signal.

The initial state of an input or inputoutput signal in each tick is set by the environment. The input
signals are transformed straight forward to boolean variables.

1 module outputExample:

2 output B;

3 p 	

1 module outputExample_t:

2 output B_sig;

3 {

4 output bool B;

5 bool f1_term;

6 fork

7 l1:

8 B = false;

9 if (! f1_term) {

10 pause;

11 goto l1;

12 }

13 par

14 p;

15 f1_term = true;

16 join

17 }

Listing 4.10. Transformation of an output signal.

An output signal is absent by default in every tick, which means the initial value of the correspond-
ing boolean variable has to be set to false in every tick. Creating two threads, with the first being used
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to do that and the second being used to execute p, is a solution to this problem. After the execution of
p, the boolean variable f1_term is set to true to indicate that p is completely executed and therefore
the first thread, which is setting the initial value of the representation of the output signal, can be
terminated. Note that f1_term is a flag with an arbitrary number. If an other termination flag is needed,
e.g., for a local signal, it would be named f2_term. In the first thread the boolean variable, which
represents the output signal, is set to false by an absolute write, following by a check of the variable
f1_term. If p has been executed completely and therefore f1_term is true, the thread terminates, and
if not, the thread pauses and starts the same execution again in the next tick. Note that the absolute
write is scheduled before a relative write, as described by Rathlev [RSM+15], and therefore setting the
output signal’s corresponding boolean variable to false is scheduled before any emit, which is done
with a relative write.

A local signal, as shown in Listing 4.11, is transformed in the same way as an output signal, except
that in line three of the second listing the representing boolean variable is not declared as output and
the local signal still surrounds the transformed body.

1 signal B in

2 p

3 end signal 	

1 signal B_sig in

2 {

3 bool B;

4 bool f1_term;

5 fork

6 l1:

7 B = false;

8 if (! f1_term) {

9 pause;

10 goto l1;

11 }

12 par

13 p;

14 f1_term = true;

15 join

16 }

17 end signal

Listing 4.11. Transformation of a local signal.
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Valued Signals

1 signal A := A_init :

2 combine TYPE with f in

3 p

4 end signal 	

1 signal A_sig := A_init :

2 combine TYPE with f in

3 {

4 bool A, A_set;

5 bool f1_term;

6 TYPE A_cur, A_val = A_init;

7 fork

8 l1:

9 A = false;

10 A_set = false;

11 if (! A_set) {

12 A_cur = f_neutral;

13 }

14 if (A) {

15 A_val = A_cur;

16 }

17 if (! f1_term) {

18 pause;

19 goto l1;

20 }

21 par

22 p;

23 f1_term = true;

24 join

25 }

26 end signal

Listing 4.12. Transformation of a valued local signal.

A valued signal will be transformed into two boolean variables and two variables of the signal’s
type, shown in Listing 4.12. Note that TYPE is a placeholder for a type in Esterel, for example integer

or boolean. The first boolean variable A displays if the signal itself is absent or present, with being
false or true, like the transformation of a pure signal. The second variable A_set is set to true when
a Set statement of SCEst is executed in this tick. Its initial value is false in every tick, like the first
boolean variable. The first variable of the signals type, A_cur, holds a temporarily value, which will be
explained in a moment. The second variable of the signals type, A_val, holds the actual value of the
signal. Since the value is not reseted in each tick, the value in A_val must be the same for the next tick
if no valued emit, unemit or set occurs in the current tick. A_cur is set to the neutral element f_neutral
of the combine function f in each tick, second listing line 12, if no Set statement is executed on A in the
current tick. So in case of an emit of A, the new value is combined with the current signal value. But as
mentioned before, the value of the signal should stay the same across ticks if no operation occurs on
the signal. To solve the problem of overwriting the value of the signal with the neutral element, the
new value is build in A_cur and copied to A_val only if an emit occurs. A reference to the value of a
signal (?A) is replaced by A_val.
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Chapter 5

Implementation

In this chapter the implemented features that are needed for the incremental compilation of SCEst

are described. The Annotations, KExpressions, KEffects, KExt and SCL implementation were already
part of KIELER, but for a better understanding they are described in the following. Within this thesis
the implementation of Esterel in KIELER was modified, as explained in Chapter 4. Additionally, SCEst

and the incremental transformation were implemented in KIELER during this thesis. The hierarchical
structure of the meta-models can be seen in Figure 5.1. Note that the structure differs from the one
in Figure 4.5c, because for the previous chapter, it was not needed to display the inner structure of
KExpressions, which consists of the three meta-models KExpressions, KEffects and KExt.

KExpressions

SCL

Esterel

SCEst

Annotations

KEffects

KExt

Figure 5.1. Hierarchical structure of the different meta-models.

37



5. Implementation

Figure 5.2. Class diagram of the annotations meta-model.

5.1 Underlying Models

The meta-models in this section were already implemented in KIELER and are just explained for a
better understanding of the whole underlying structure.

5.1.1 Annotation Implementation

The base of all necessary plugins is the Annotations plugin. Annotations are implemented in KIELER in
Xtext and the EMF framework. The Annotations meta-model, which is shown in Figure 5.2, includes
the basic language feature of annotating an object to store extra information. The class diagram can be
read as follows: While a square indicates a class, a black arrow indicates that the class at which the
arrow starts has a list of objects of the class’ type at which the arrow points, or just a single attribute of
that class. The arrow has also a label which shows the list’s or attribute’s name and also an indication
on how many objects can be added to the list, e.g., one to infinity[1..*] or zero to infinity [0..*],
or if an instance of the attribute must exist, e.g., the attribute may exist [0..1] or must exist [1..1].
A gray arrow with the not filled out arrow head indicates that the source class at which the arrow
starts is derived from the target class. The derived class has all the attributes and methods of its parent
class. In this example TypedStringAnnotation has also a list of values, which it has inherited from
StringAnnotation. Also, it has a name because StringAnnotation inherited it from Annotation, which
inherited it from NamedObject. The color of the Annotable square at the top indicates that the Annotable

class is an abstract class, which means that it can not be instantiated. It specifies that all classes that
are derived from it have the three methods mentioned in the square. After a colon the type of the
attribute or list is indicated.
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Figure 5.3. Class diagram of the KExpressions meta-model.

5.1.2 KExpression Implementation

The KExpressions meta-model, which is shown in Figure 5.3, expands the annotations meta-model
in the way that it provides expressions like simple values (1, true, etc.), valued operator expressions
(addition, subtraction, multiplication, etc.), or boolean operator expressions (logical or, logical and, not,
etc.). The KExpressions are not purely used for SCL, Esterel and SCEst, they are also used for example for
SCCharts. A VlauedObjectReference is an Expression, indicated by the arrow with the empty arrow head
from ValuedObjectReference to Expression for example. It must contain a reference to a ValuedObject,
indicated by the label [1..1] next to the arrow from ValuedObjectReference to ValuedObject. Also, an
OperatorExpression is an Expression, has an OperatorType, which is an enumeration, displayed at the
left in the green box, and contains a list subExpression which itself contains an arbitrary number from
zero to infinity of objects of the type Expression, indicated by the arrow with the black diamond and
the label [0..*].
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Figure 5.4. Class diagram of the KEffects meta-model.

1 Declaration returns kexpressions::Declaration:

2 (annotations+=Annotation)*
3 (const?=’const’)?

4 (extern?=’extern’)?

5 (volatile?=’volatile’)?

6 (input?=’input’)?

7 (output?=’output’)?

8 (static?=’static’)?

9 (((signal?=’signal’)? type = ValueType) | (signal?=’signal’))

10 valuedObjects+=ValuedObject (’,’ valuedObjects+=ValuedObject)* ’;’;

Listing 5.1. Specification on how to build a Declaration, provided in KExt.

5.1.3 KEffects Implementation

The KEffects meta-model, derived from KExpressions and shown in Figure 5.4, provides a range of
effects for deriving grammars. A KEffect is namely an assignment, a postfix effect, an emission, a host
code effect or a function call.

5.1.4 KExt Implementation

KExt, derived from KEffects, provides a connection between KExpressions/KEffects and a grammar,
which wants to use them, in the way that KExt offers a declaration mechanism, which is written in
Xtext. It is shown in Listing 5.1. In lines 3 to 8 possible additional information on the declaration can be
added by writing const, input or output for example. In line 10 variables as ValuedObjects are added
to the declaration. An arbitrary number of variables, but at least one, have to be declared, separated
by a comma.
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5.1. Underlying Models

Figure 5.5. Class diagram of the SCL meta-model.

5.1.5 SCL Implementation

SCL is implemented in KIELER in Xtext and the EMF framework. Even though scoping, formatting and
code validation is used in SCL, scoping and formatting are described in Section 5.4 for Esterel, while
code validation is described in Section 5.4 for SCEst, since it is the same concept.

EMF Meta-Model of SCL

Since SCL is needed to transform an Esterel/SCEst program to target code with the already existing
compilation chain from SCL over SCG to target code, the meta-model of SCL is displayed in this
subsection. Figure 5.5 shows the meta-model of SCL. SCLProgram is the root object, which is visualized
by no incoming arrows. It is a Scope which itself is a StatementContainer, which contains a list of
zero to an arbitrary number of statements, indicated by the black diamond with its range [0..*].
A Statement is either an InstructionStatement or a MetaStatement. Figure 5.5 does not include every
inheritance which can be seen with the Assignment statement, as it has all of its attributes in light grey,
which indicates that they are all inherited, but only the annotations from Statement can be derived in
this view. The Assignment statement is derived from the assignment of KEffects. Within this thesis just
a few small adjustments were made to the SCL meta-model. For example, the StatementContainer was
moved from the Esterel meta-model to the SCL meta-model, to be able to apply it to SCL statements
also.
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1 SCLProgram returns SCLProgram:

2 (annotations += Annotation)*
3 ’module’ name = ID ’:’?

4 (declarations+=Declaration)*
5 ( (statements += InstructionStatement’;’) |

6 (statements += MetaStatement)

7 )*
8 (statements += Statement)?;

9

10 Statement returns Statement:

11 InstructionStatement | MetaStatement;

12

13 InstructionStatement returns Statement:

14 Assignment | Conditional | Goto | Parallel | Pause;

15

16 MetaStatement returns Statement:

17 Label | ScopeStatement;

Listing 5.2. The basic structure of an SCL program.

SCL Xtext Grammar

The grammar of SCL is described in Xtext, which is described in Section 2.1.2. To facilitate a better
understanding of valid SCL programs and the basic structure of the SCL grammar implementation,
an extract of the SCL grammar implementation is shown in Listing 5.2, including the root object of
an SCL program, an SCLProgram, and the two different kind of statements, the InstructionStatement

and the MetaStatement. An SCLProgram begins with optional annotations, stored in its list annotations,
followed by the keyword module and its ID, which is stored in its attribute name. After an optional colon,
Declaration objects, which are provided by KExt, can be added to its list declarations. Its last part is a
sequence of statements which are separated by semicolons, unless its a Label or a ScopeStatement, and
stored in its list statements. A Statement is either an InstructionStatement or a MetaStatement, it is
just an abstract class with no attributes. It is the superclass of all statements. An InstructionStatement

is either an Assignment, a Conditional, a Goto, a Parallel or a Pause. A MetaStatement is either a Label

or a ScopeStatement.

Listing 5.3 shows another extraction of the SCL grammar, the Conditional statement. A Conditional

begins, like the SCLProgram, with a list of annotations, followed by the if keyword, an Expression

which is provided by KExpressions and stored in its attribute expression. The body of a Conditional

starts with an optional then keyword, followed by the keyword {. It follows a list of declarations
and thereafter a list of statements, similar to the SCLProgram. The body is closed by the keyword }.
The last part is an optional ElseScope, which is stored in the attribute else. The ElseScope starts,
again, with a list of annotations, followed by the keywords else and {. It follows a list of declarations
and subsequently a list of statements. It is closed by the keyword }. Note that there is no else if

in a Conditional statement in SCL. Therefore, Conditionals have to be nested when needed, which
means in the ElseScope of a Conditional another Conditional has to be placed and when desired in
the ElseScope of the second Conditional a third Conditional has to be placed. With this approach an
arbitrary number of else if cases can be generated. As with the meta-model of SCL, the grammar of
SCL was just barely modified during this thesis.
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5.2. Esterel Implementation

1 Conditional returns Conditional:

2 (annotations += Annotation)*
3 ’if’ expression = Expression

4 (

5 ’then’? ’{’

6 (declarations+=Declaration)*
7 ( (statements += InstructionStatement’;’) |

8 (statements += MetaStatement)

9 )*
10 (statements += Statement)?

11 ’}’

12 )

13 (else = ElseScope)?;

14

15 ElseScope returns ElseScope:

16 {ElseScope}

17 (annotations += Annotation)*
18 ’else’ ’{’

19 (declarations+=Declaration)*
20 ( (statements += InstructionStatement’;’) |

21 (statements += MetaStatement)

22 )*
23 (statements += Statement)?

24 ’}’;

Listing 5.3. The implementation of the Conditional statement of SCL in Xtext.

5.2 Esterel Implementation

Esterel is implemented in KIELER in Xtext and the EMF framework. Esterel uses the implementation of
KExpressions for its expressions, but since it needs a few extra options, the KExpressions are extended
within the Esterel meta-model. For example, Esterel has a SignalExpression which does not include a
standard ValuedObjectReference object but a SignalReferenceExpr object.

As described before, an implementation of Esterel in KIELER already existed. The meta-model
adjustment, that the Esterel meta-model is derived from the SCL meta-model, was mentioned in
Chapter 4. A main objective was the reduction of the number of objects, since it was inconvenient for a
programmer to produce multiple instances of objects just for a single statement.

An example is shown in Listing 5.4. It displays the Xtext implementation of the previous Esterel
Module, whereas Listing 5.5 displays the new implementation. When a programmer needed a new
module, an instance of a Module had to be created. Additionally, an instance of ModuleBody and
EndModule had to be created since they were mandatory for a valid Esterel Module, lines 1 and 2 in
Listing 5.4. If, for example, a signal declaration was wanted, which usually is, also an instance of
ModuleInterface was needed. Therefore, a programmer had to create at least 3 instances, but most of
the time 4 instances, to be able to have a valid Esterel Module. The new implementation in Listing 5.5
from line 4 to 17 lets a programmer create just one instance of an Esterel Module to have a valid module.
This implementation makes a module instantiation much easier for a programmer; therefore, the new
approach should be superior to the previous one.

The same pattern, the minimization of rules, was used for all Esterel Xtext grammar rules. This lets
a programmer write a more compact and comprehensible program.
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1 TrapExpression returns kexpressions::Expression:

2 {TrapExpression} "??" trap=[kexpressions::ISignal|ID];	

1 TrapExpression returns kexpressions::Expression:

2 {TrapExpression} "??" trap=[ISignal|ID];

Figure 5.6. Adjustment of the TrapExpression in the new Esterel grammar implementation.

In addition, as mentioned in Chapter 4, the KExpressions of Esterel were adjusted in the way that
the expression rules in the Esterel grammar create KExpressions of which the SCL grammar is derived
from. The different implementations of the TrapExpression in Figure 5.6 do not seem different, except
that in line two kexpressions::ISignal in the first listing and ISignal in the second listing indicate
that ISignal is now implemented in the Esterel Xtext grammar and not in an extern Xtext grammar
as before. However, kexpressions:: in line 1 of both listings reference different meta-models. In the
previous grammar implementation, the KExpression just for Esterel were referenced, whereas in the
new grammar implementation the KExpressions, shown in Section 5.1.2, are referenced.

Further, Figure 5.7 shows the adjustment of an OrExpression. As mentioned with TrapExpression,
kexpressions:: differ in the referenced meta-model. The main difference here is best displayed with
the following example. If the expression A or B or C or D was written in the Esterel editor, it led to
an instance of the OrExpression for C and D. Additionally, this instance was part of a second instance
of the OrExpression together with B. Lastly a third instance of the OrExpression was created, including
the second instance and A. The new implementation leads to the intended creation of an OrExpression,
just one instance, having references to A, B, C and D in its list subExpressions.

Lastly, the possibility to annotate each object was added within the new Esterel grammar imple-
mentation, which can be seen in line 5 of Listing 5.5 for example.

5.2.1 EMF Meta-Model of Esterel

To compare the size of the SCL meta-model to the Esterel meta-model, Figure 5.8 shows the meta-model
of Esterel in the tree editor view, since the diagram view is not comprehensible. This figure gives just
an overview of the different objects included in the Esterel meta-model. The arrow after the object’s
name indicates that the object is derived from the object after the arrow. For example, at the top
left, a Module is derived from StatementContainer, indicating that it has a list of statements. At the
bottom right, the before mentioned additions to the KExpressions meta-model can be seen, indicated
by deriving the KExpressions rules ValuedObjectReference and Expression. Program is the root object.
It has zero to an arbitrary number of modules, eight declarations lists, explained in Section 5.2.2, and
an attribute name.

5.2.2 Esterel Xtext Grammar

The grammar of Esterel is described in Xtext, which is described in Section 2.1.2. For a better
understanding on how a valid Esterel program can be written, the overall pattern of the Esterel Xtext
grammar and the interaction between the Esterel, SCL and KExpression grammar implementations, the
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5.2. Esterel Implementation

1 BooleanExpression returns kexpressions::Expression:

2 OrExpression;

3

4 OrExpression returns kexpressions::Expression:

5 AndExpression

6 ( {OperatorExpression.subExpressions+=current}

7 operator=Esterel_OrOperator

8 subExpressions+=AndExpression

9 )*; 	
1 BooleanExpression returns kexpressions::Expression:

2 OrExpression;

3

4 OrExpression returns kexpressions::Expression:

5 AndExpression

6 ( {kexpressions::OperatorExpression.subExpressions+=current}

7 (operator=Esterel_OrOperator subExpressions+=AndExpression)+

8 )?;

Figure 5.7. Adjustment of the OrExpression in the new Esterel grammar implementation.

1 Module:

2 "module" name=ID ":" (interface=ModuleInterface)? body=ModuleBody end=EndModule;

3

4 EndModule:

5 "end" "module"

6 | ".";

7

8 ModuleBody:

9 statements+=Statement;

10

11 ModuleInterface:

12 (intSignalDecls+=InterfaceSignalDecl

13 | intTypeDecls+=TypeDecl

14 | intSensorDecls+=SensorDecl

15 | intConstantDecls+=ConstantDecls

16 | intRelationDecls+=RelationDecl

17 | intTaskDecls+=TaskDecl

18 | intFunctionDecls+=FunctionDecl

19 | intProcedureDecls+=ProcedureDecl)+;

Listing 5.4. The previous Xtext implementation of an Esterel Module.
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5. Implementation

Figure 5.8. Tree editor view of the Esterel meta-model.

rules for a Program, a Module, an EsterelStatement and an AtomicStatement, as well as an IfTest are
described in the following.

Listing 5.5 visualizes a part of the Esterel grammar. It shows the root object of an Esterel program,
a Program. It consists of a list of zero to an arbitrary number of modules. A module, Module, starts with
zero to any number of annotations, which are stored in the list annotations, followed by the keyword
module and the module’s ID, which is stored in its attribute name. After the colon keyword, an arbitrary
number of declarations follow. There are eight kinds of declarations and therefore eight lists for
different declarations, a list for signals, for types, for sensors, for constants, for relations, for tasks, for
functions and for procedures. After the declarations follows a sequence of statements, which are stored
in the list statements. The end of a statement is indicated by a semicolon, except for the last statement
of the sequence, which can but does not have to end with a semicolon. A Module statement ends with
the keyword . or the keywords end module. An EsterelStatement is either an AtomicStatement or an
EsterelParallel. As indicated by returns scl::Statement, an EsterelStatement is a descendant of the
abstract Statement of SCL, which is useful for SCEst. The distinction had to be made since the definition
of EsterelParallel, a sequence of statements divided by the keyword ||, combined with the used
approach of a sequence of statements, would end in a left recursive grammar, which is not allowed in

46



5.3. SCEst Implementation

1 Program hidden(SL_COMMENT, ML_COMMENT, WS):

2 (modules+=Module)*;

3

4 Module:

5 (annotations += Annotation)*
6 "module" name=ID ":"

7 ( intSignalDecls+=InterfaceSignalDecl

8 | intTypeDecls+=TypeDecl

9 | intSensorDecls+=SensorDecl

10 | intConstantDecls+=ConstantDecls

11 | intRelationDecls+=RelationDecl

12 | intTaskDecls+=TaskDecl

13 | intFunctionDecls+=FunctionDecl

14 | intProcedureDecls+=ProcedureDecl

15 )*
16 ( (statements+=EsterelStatement ";")* statements+=EsterelStatement? )

17 ("end" "module" | ".");

18

19 EsterelStatement returns scl::Statement:

20 EsterelParallel | AtomicStatement;

21

22 AtomicStatement returns scl::Statement:

23 Abort | EsterelAssignment | Await | Block | ProcCall | Do | Emit | EveryDo |

24 Exit | Exec | Halt | IfTest | LocalSignalDecl | Loop | Nothing | Pause | Present |

25 Repeat | Run | Suspend | Sustain | Trap | LocalVariable ;

Listing 5.5. The basic structure of an Esterel program.

Xtext.

Listing 5.6 shows the IfTest statement of Esterel. It starts with an optional list of annotations,
followed by the keyword if and thereafter an Expression, which is provided by KExpressions and
stored in its attribute expression. The following body is optional. It starts with a list of annotations,
followed by the keyword then and ends with a list of statements. If there is more than one Expression

which needs to be tested, at this point the IfTest statement provides a list of ElsIf objects, which
are defined like the IfTest up to this point, except for the keyword if, which is replaced by the
keyword elsif. After the ElsIf objects the optional else case follows, which starts again with a list of
annotations, followed by the keyword else and ends with a list of statements. The IfTest ends with
the keyword end or the keywords end if.

5.3 SCEst Implementation

SCEst extends Esterel in a few small ways, as described previously in Section 1.2.2. However, the
implementation of SCEst differs from the formal definition of SCEst by also including SCL statements as
shown in the following.
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1 IfTest:

2 (annotations += Annotation)*
3 "if"

4 expression=Expression

5 (

6 (thenAnnotations += Annotation)*
7 "then"

8 ( (thenStatements+=EsterelStatement ";")* thenStatements+=EsterelStatement? )

9 )?

10 (elseif+=ElsIf)*
11 (

12 (elseAnnotations += Annotation)*
13 "else"

14 ( (elseStatements+=EsterelStatement ";")* elseStatements+=EsterelStatement? )

15 )?

16 "end" "if"?;

17

18 ElsIf:

19 (annotations += Annotation)*
20 "elsif"

21 expression=Expression

22 (

23 "then"

24 ( (thenStatements+=EsterelStatement ";")* thenStatements+=EsterelStatement? )

25 )?;

Listing 5.6. The implementation of the IfTest statement of Esterel in Xtext.

5.3.1 EMF Meta-Model of SCEst

For a comparison between the SCEst meta-model, its different objects and its size, to the Esterel meta-
model, Figure 5.9 shows the meta-model of SCEst. SCEstProgram is the root object. In contrast to the
meta-model of Esterel, the meta-model of SCEst is very small. That is, because SCEst expands Esterel only
in two new statements, the UnEmit and the Set statement, and the new definition of the SCEstProgram

and the SCEstModule. A SCEstProgram has zero to an arbitrary number of modules, which is declared
in the Esterel meta-model, since the SCEstProgram is derived from the Esterel Program, indicated by the
arrow after SCEstProgram to Program. A SCEstModule is derived from Module but in addition, it contains
a list declarations to store declarations of type Declaration, shown in Section 5.1.4. An UnEmit is of
type Statement and contains a reference to an ISignal. The Set statement is the same, except that it
also has a reference to an expression.

5.3.2 SCEst Xtext Grammar

The grammar of SCEst is described in Xtext, which is described in Section 2.1.2. As with the Esterel
grammar, in the following an extract of the SCEst grammar implementation is described to give
a better understanding on how a valid SCEst program can be written, the overall pattern of the
SCEst Xtext grammar, and the interaction between the SCEst, Esterel, SCL and KExpressions grammar
implementations.

Listing 5.7 shows an extract of the SCEst grammar. The root object of a SCEst program, a SCEstProgram
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5.3. SCEst Implementation

Figure 5.9. Tree editor view of the SCEst meta-model.

consists of a list of zero to an arbitrary number of modules. It also returns a Program which is
implemented in Esterel, defined by ProgramInterface. A SCEstModule returns a Module, which is
implemented in Esterel, defined by ModuleInterface. A SCEstModule consists of an arbitrary number of
annotations, followed by the keyword module, an ID which is saved in its attribute name, and a colon.
The body of a SCEstModule is either like the body of a Module, which means it starts with an arbitrary
number of declarations - the eight different declaration types are for signals, types, sensors, constants,
relations, tasks, functions and procedures - which are saved in its eight different declaration lists,
followed by an arbitrary number of statements, which are saved in the list statements and separated
by a semicolon except for MetaStatements, and ends with the keyword . or the keywords end module,
or the body of a SCEstModule is like the body of an SCLProgram. The latter means that it starts with an
arbitrary number of declarations, which are saved in its list declarations, followed by the keyword {,
an arbitrary number of statements, stored and written like in the previous case, and ends with the
keyword }.

Listing 5.8 shows the definition of a SCEstStatement and a SCEstAtomicStatement as well as the
StatementContainerInterface. Latter returns a StatementContainer, which is implemented in SCL,
and it is either a SCEstModule, a Conditional, an ElseScope, a Thread or a ScopeStatement. Except for
the first statement, the statements are just redefinitions of the SCL statements in the way that they
allow SCEstStatements in their list of statements. A SCEstStatement is either an EsterelParallel or a
SCEstAtomicStatement and returns a Statement, which means that it extends Statement, implemented
in SCL. A SCEstAtomicStatement also returns a Statement and it differs from an AtomicStatement, which
is implemented in Esterel, in the way that it also is an UnEmit, a Set, a Goto, an Assignment, a Parallel

and a Conditional statement. The first two are new statements, which are part of the definition of SCEst,
the last four are statements from SCL. Since the implemented SCEst language integrates all statements of
SCL, it differs from the formal definition of SCEst [RSM+15]. But it simplifies the use for programmers.
It is also necessary for the step by step transformation, because it allows to have one model on which
the transformations take place.
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1 SCEstProgram hidden(SL_COMMENT, ML_COMMENT, WS):

2 (modules+=SCEstModule)*;

3

4 ProgramInterface returns esterel::Program:

5 SCEstProgram;

6

7 ModuleInterface returns esterel::Module:

8 SCEstModule;

9

10 SCEstModule:

11 {SCEstModule}

12 (annotations += Annotation)*
13 "module" name=ID ":"

14 (

15 ( intSignalDecls+=InterfaceSignalDecl

16 | intTypeDecls+=TypeDecl

17 | intSensorDecls+=SensorDecl

18 | intConstantDecls+=ConstantDecls

19 | intRelationDecls+=RelationDecl

20 | intTaskDecls+=TaskDecl

21 | intFunctionDecls+=FunctionDecl

22 | intProcedureDecls+=ProcedureDecl

23 )*
24 ( ( statements+=SCEstStatement ";" | statements+=MetaStatement)*
25 statements+=SCEstStatement? )

26 ("end" "module" | ".")

27

28 |

29

30 (declarations+=Declaration)*
31 ’{’

32 ( ( statements+=SCEstStatement ";" | statements+=MetaStatement)*
33 statements+=SCEstStatement? )

34 ’}’

35 );

Listing 5.7. An extract of the SCEst grammar in Xtext which shows the root object.

1 StatementContainerInterface returns scl::StatementContainer:

2 SCEstModule | Conditional | ElseScope | Thread | ScopeStatement;

3

4 SCEstStatement returns scl::Statement:

5 EsterelParallel | SCEstAtomicStatement;

6

7 SCEstAtomicStatement returns scl::Statement:

8 Abort | EsterelAssignment | Await | Block | ProcCall | Do | Emit | EveryDo |

9 Exit | Exec | Halt | IfTest | LocalSignalDecl | Loop | Nothing | Pause | Present |

10 Repeat | Run | Suspend | Sustain | Trap | LocalVariable | Goto | UnEmit | Set |

11 Assignment | Parallel | Conditional ;

Listing 5.8. A second extract of the SCEst grammar in Xtext which shows the declaration of statements in SCEst.
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1 for (Keyword at : f.findKeywords("@")) {

2 c.setNoSpace().after(at);

3 }

4

5 // Block statement

6 c.setLinewrap().before(f.getBlockAccess().getLeftSquareBracketKeyword_2());

7 c.setLinewrap().before(f.getBlockAccess().getRightSquareBracketKeyword_4());

8 c.setIndentation( f.getBlockAccess().getLeftSquareBracketKeyword_2(),

9 f.getBlockAccess().getRightSquareBracketKeyword_4());

Listing 5.9. Two example parts of Esterel’s formatter.

5.4 Assisting Features

In this section three assisting features for formatting, scoping and code validation are being discussed.

5.4.1 Formatting

For comprehensibility reasons it is necessary to format a generated code. Without formatting, a
generated code would just be a one line string without extra blank characters. For this reason
Xtext provides a formatter which extends the AbstractDeclarativeFormatter class. An instance of the
formatter, which has the information on how the code should be formatted, together with an instance
of the GrammarAccess class, which includes methods to find specific elements such as keywords of the
language, are used to correctly format the generated code. In the first part of Listing 5.9, it shows how
annotations are formatted. First all @ keywords of a given code are collected by the use of the method
findKeyword of the GrammarAccess class, followed by setting no space after each @ keyword with the
setNoSpace method of the formatter class. The second part of Listing 5.9 shows the formatting of a
Block statement, which begins with the [ keyword. Therefore, a line wrap should be set before this
keyword, which is done by calling the method setLinewrap. Also it is possible to set an indentation
with the method setIndentation which requires a start and an end point. The first listing in Figure 5.10
shows an Esterel program which is valid but not formatted. After using the formatter, the code looks
like the one shown in the second listing in Figure 5.10.

5.4.2 Scoping

Since Esterel needs some kind of scoping, which determines for example which signals can be
referenced from a specific point, it comes in handy that Xtext provides a scoping API. An example
is shown in Listing 5.10. Even though output signal A is emitted in line 4, B will be absent, since the
present test for A in line 7 references the first enclosing signal of that name, which is the local signal
declaration in this case. If the Present statement tested for the signal C, B would be emitted, since the
local signal declaration does not include a signal with the name C and therefore the next enclosing
scope would be tested for a declaration for this name.

The EsterelScopeProvider extends the AbstractDeclarativeScopeProvider. The previous Esterel
meta-model implementation had a scope provider which was extended during this thesis to facilitate
a correct behavior after the modification of the meta-model. Listing 5.11 shows that an Emit statement
triggers the method getAllSignals of the EsterelScopeProviderUtil class to determine which signal
should be referenced. Listing 5.12 shows the definition of this method. First, in line 3, the method
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1 module test: input A;[ if A then pause end if] end module	

1 module test:

2 input A;

3 [

4 if A then

5 pause

6 end if

7 ]

8 end module

Figure 5.10. Example program before and after formatting.

1 module scoping:

2 output A, B, C;

3 [

4 emit A;

5 emit C;

6 signal A in

7 present A then

8 emit B

9 end present

10 end signal

11 ]

12 end module

Listing 5.10. An example Esterel program for scoping where the output signal A should be shadowed by the local
signal declaration of A.

getLocalSignals will be triggered which collects all enclosing local signals. In line 13 it is checked
if Module is reached or if there is another enclosing statement to check for local signal declarations.
Inside the loop, in line 15, it is checked if the enclosing statement is a local signal declaration and if so,
all its signals are added to the list scopeElems. Therefore, the first element in the list scopeElems will be
the closest occurrence of a local signal. After the search for local signals, a list of all signals from the
modules interface are added to scopElems by calling getAllSignals. Since the first element of the list
with the right name will be used for the Emit statement, a local signal will be prioritized over a signal
in the module’s interface.

5.4.3 Code Validation

Xtext automatically generates an abstract class providing an interface for the SCEstValidator class,
which is a collection of methods which check for errors in a given SCEst program inside of the SCEst

editor to indicate or highlight errors or warnings. Debugging can be simplified that way since the user
sees errors and warnings directly and therefore is able to write a valid program in the first place.
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1 public class EsterelScopeProvider extends AbstractDeclarativeScopeProvider {

2 public IScope scope_Emit_signal(final Emit context, final EReference ref) {

3 return new SimpleScope(getAllSignals(context));

4 }

5 }

Listing 5.11. A few lines of the EsterelScopeProvider.

1 public final class EsterelScopeProviderUtil {

2 public static List<IEObjectDescription> getAllSignals(final EObject context) {

3 List<IEObjectDescription> scopeElems = getLocalSignals(context);

4 scopeElems.addAll(getAllElements(context, COLLECT_SIGNALS));

5 return scopeElems;

6 }

7

8 public static List<IEObjectDescription> getLocalSignals(final EObject context) {

9 ArrayList<IEObjectDescription> scopeElems = new ArrayList<IEObjectDescription>();

10

11 EObject parent = context.eContainer();

12 // Go up in the Structure until Module/MainModule

13 while (!(parent instanceof Module)) {

14 // Get the local signals into the scope

15 if (parent instanceof LocalSignalDecl) {

16 EList<ISignal> signals = ((LocalSignalDecl) parent).getSignals();

17 for (ISignal s : signals) {

18 scopeElems.add(new EObjectDescription(QualifiedName.create(s.getName()),

19 s, getEmptyMap(String.class)));

20 }

21 }

22 parent = parent.eContainer();

23 }

24

25 return scopeElems;

26 }

27 }

Listing 5.12. The method getAllSignals of the EsterelScopeProvider.
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Listing 5.13 shows two example methods of the SCEstValidator class. The @Check annotation
indicates that it should be checked if an object of the method’s parameter type exists and if so,
the method should be initiated on this object. A @Check annotation can have three different types,
indicating how often a check should be activated. First, @Check(CheckType.FAST) indicates that the
check is initiated every time the file is modified. Second, @Check(CheckType.NORMAL) just runs the check
when the file is being saved. Lastly, @Check(CheckType.EXPENSIVE) is only run when the user explicitly
starts a validation check. The first method emitSignal is invoked for every Emit statement and checks
in line 4 if the emitted signal is a pure signal. If so, the emit can not be a valued emit. But if it is, an
error will be displayed, lines 6 and 7. The first argument of the error message is the message itself,
while the second argument defines the faulty statement. By setting the third argument to null and the
last to -1, the whole statement will be highlighted. If the signal is a valued signal, the emit must be a
valued emit; otherwise, an error will be displayed, lines 12 and 13. An example for an error is shown
in Figure 5.11. The error is marked in red and when the cursor is on top of the error mark, the black
box with a message appears.

The second method expressionEmit is also invoked for every Emit statement. If it is a valued emit,
line 20, it is checked if the expression fits the type of the valued signal. If not, a warning will be
displayed, line 22 or 26 and 27. An example for a warning is shown in Figure 5.11. The warning is
marked in yellow and when the cursor is on top of the warning, the black box with a message appears.

5.5 Incremental Compilation Implementation

The implementation of the incremental compilation of SCEst is integrated in the Esterel plugin with the
name de.cau.cs.kieler.esterel. The current approach is to combine related implementations in one
plugin.

As explained in Chapter 1, KiCo and the SLIC approach are used for that task. All transformations
extend the AbstractExpansionTransformation class for the interaction with KiCo1 as shown in line 1 of
Listing 5.14, a sample of the LoopTransformation class. While the method getId provides the ID of a
specific transformation, getName provides the name of a specific transformation, in this example lines 2
to 4 and lines 5 to 7 respectively. The method getExpandsFeatureId returns the ID of the corresponding
feature of a specific transformation, lines 8 to 10. There are two methods that specify which transfor-
mations should be done before the given transformation, the getNotHandlesFeatureIds method, and
which objects might be created during the given transformation and therefore which transformations,
the corresponding transformations to the created objects, should be done after the given transforma-
tion, the getProducesFeatureIds method. In this example the LoopTransformation can produce Abort

and Halt statements, lines 11 to 13, and therefore should be scheduled before those transformations.
Additionally, it must be scheduled after the Initialization and Run transformation, indicated in lines
14 to 16. In general, a specific transformation is called by the method transform(SCEstProgram prog),
line 17, while the return value is a SCEstProgram, except for the last transformation which gets an
instance of a SCEst meta-model, a completely transformed SCEstProgram which only consists of SCL

statements, and returns the given program as an instance of the SCL meta-model.
In de.cau.cs.kieler.esterel.scest.extensions the class SCEstExtension is located, which is writ-

ten in Xtend. It is a collection of helper methods for the single transformations and some variables
and a map for the communication between transformations, since one transformation for example can
transform signals to new variables, but another transformation is used to transform a statement which
references the old signal. Therefore, the second transformation needs a mapping from the old signals

1https://rtsys.informatik.uni-kiel.de/confluence/display/KIELER/Kieler+Compiler
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1 class SCEstValidator extends SCEstJavaValidator{

2 @Check

3 def void emitSignal(Emit emit) {

4 if (emit.signal.type.isPure) {

5 if (emit.expression != null) {

6 error(emit.signal.name +

7 " is not a valued signal!", emit, null, -1)

8 }

9 }

10 else {

11 if (emit.expression == null) {

12 error("Must be a valued emit since " +

13 emit.signal.name + " is a valued signal!", emit, null, -1)

14 }

15 }

16 }

17

18 @Check

19 def void expressionEmit(Emit emit) {

20 if (emit.expression != null) {

21 if (emit.signal.type.isBool && !emit.expression.isBoolExpr) {

22 warning("The expression should be of type BOOL.", null)

23 }

24 else if ( emit.signal.type.isCalculationType

25 && !emit.expression.isCalculationExpr) {

26 warning("The expression should be of

27 type INT/FLOAT/DOUBLE/UNSIGNED.", null)

28 }

29 }

30 }

31 }

Listing 5.13. An extract of the SCEstValidator class.

Figure 5.11. An example for code validation.
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1 class LoopTransformation extends AbstractExpansionTransformation implements Traceable{

2 override getId() {

3 return SCEstTransformation::LOOP_ID

4 }

5 override getName() {

6 return SCEstTransformation::LOOP_NAME

7 }

8 override getExpandsFeatureId() {

9 return SCEstFeature::LOOP_ID

10 }

11 override getProducesFeatureIds() {

12 return Sets.newHashSet(SCEstTransformation::ABORT_ID, SCEstTransformation::HALT_ID)

13 }

14 override getNotHandlesFeatureIds() {

15 return Sets.newHashSet(SCEstTransformation::INITIALIZATION_ID, SCEstTransformation::RUN_ID)

16 }

17 def SCEstProgram transform(SCEstProgram prog) {

18 prog.modules.forEach [ m | transformStatements(m.statements)]

19 return prog

20 }

21 }

Listing 5.14. An extract of the LoopTransformation class.

to the new corresponding variables.
The single M2M transformations are located in de.cau.cs.kieler.esterel.scest.transformations

and are written in Xtend, described in Section 2.1.3. Figure 5.12 is a screenshot of the KiCo View. It
shows all transformations, which can be selected by the user, and their dependencies. Transformations
can be grouped to make the KiCo View clearer, as it is done in the previously mentioned figure.

There are 30 transformation classes plus one transformation, which transforms a given instance of
an Esterel meta-model to an instance of a SCEst meta-model (which in concrete terms means that the
Program will be transformed to a SCEstProgram and every Module will be transformed to a SCEstModule),
and which is located in de.cau.cs.kieler.esterel.transformations. The latter is only included in the
Esterel editor in KIELER and done before all other transformations.

In the following, the extension class as well as the standard transformations, which are used
in every transformation, are being outlined. Since it would not be beneficial to expound on all 30
transformations of specific SCEst statements, this section explains just a few single transformations as
an example to show the general implementation pattern.

5.5.1 SCEst Extension

The SCEstExtension class provides a collection of methods for the single transformation classes;
therefore, methods are not written just for one specific transformation in its transformation class, but
rather they are written just once to be used by multiple transformation classes. Also the code of the
transformations is easier to comprehend this way.

Listing 5.15 shows nine counting variables. They are used to create unique names for newly created
variables of different types. It could have been just one counter, but this way the numbers and therefore
the new names do not have as many digits. Following the nine counting variables, there are three
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Figure 5.12. The KiCo View with all single transformations for a SCEst program.

1 var static labelSuffix = 0;

2 var static constantSuffix = 0;

3 var static variableSuffix = 0;

4 var static flagSuffix = 0;

5 var static abortFlagSuffix = 0;

6 var static depthFlagSuffix = 0;

7 var static trapSuffix = 0;

8 var static signalSuffix = 0;

9 var static moduleSuffix = 0;

10

11 final private static String generatedAnnotation = "depth"

12

13 final private static String interfaceScope = "IScope"

14

15 final private static String generatedModule = "generatedModuleForRun"

16

17 // for valued singals: signal S will be transformed to s, s_set, s_cur, s_val =>

18 // new NewSignals(s, s_set, s_cur, s_val)

19 var static HashMap<ISignal, NewSignals> newSignals = new HashMap<ISignal, NewSignals>()

Listing 5.15. Variables and a map of the SCEstExtension class.

String variables that set the name of specific annotations, which are used for communication between
single transformations. Lastly, the map newSignals includes a mapping from the old signals of Esterel
to the new variables which will represent the old signals in the newly created SCL program, again,
for communication between single transformations. The class NewSignals is just a collection of four
variables, because a signal will be transformed into one or four variables, described in Section 4.2.

Listing 5.16 shows the method createConditional of the SCEstExtension class. The method is called
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1 def createConditional(Expression expr) {

2 SclFactory::eINSTANCE.createConditional => [

3 it.expression = EcoreUtil.copy(expr)

4 ]

5 }

Listing 5.16. The method createConditional of the SCEstExtension class.

1 def Statement transformStatement(Statement statement) {

2 if (statement instanceof IfTest) {

3 var ifTest = statement as IfTest

4 var conditional = SclFactory::eINSTANCE.createConditional => [

5 it.expression = EcoreUtil.copy(ifTest.expression)

6 ]

7 ...

8 }

9 }

Listing 5.17. Example code which does not have access to the extension class.

with an Expression as parameter. The SclFactory instantiates a Conditional with its expression being
a copy of the given Expression. Therefore, the code in Listing 5.17, which would have to be written
without the helper method, can be written as the code in Listing 5.18. In this easy example it would still
be comprehensible, but nonetheless the written code is cleaner and easier to write when the extension
method is called multiple times. Note that in Xtend its possible to write in line 4 in Listing 5.18
ifTest.expression.createConditional instead of createConditional(ifTest.expression), although it
is not defined in the Expression class. It is called extension methods in Xtend.

Another example method is the checkGoto method, shown in Listing 5.19, which goes over a list of
statements and checks for every statement if it is a Goto statement by calling the method checkGoto

in line 3. If so, the method findClosestLabel(Label label, Statement statement) is called in line 10,
which returns either the given label or a label which is at the end of the enclosing thread when the
given label is outside of its enclosing thread.

1 def Statement transformStatement(Statement statement) {

2 if (statement instanceof IfTest) {

3 var ifTest = statement as IfTest

4 var conditional = createConditional(ifTest.expression)

5 ...

6 }

7 }

Listing 5.18. Example code which has access to the extension class.
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1 def void checkGotos(EList<Statement> statements) {

2 statements?.forEach [ s |

3 s.checkGoto

4 ]

5 }

6

7 def void checkGoto(Statement statement) {

8 if (statement instanceof Goto) {

9 var goto = (statement as Goto)

10 goto.target = findClosestLabel(goto.target, statement)

11 }

12 else if (statement instanceof StatementContainer) {

13 ...

14 }

15 }

Listing 5.19. The method checkGoto of the SCEstExtension class.

5.5.2 Initialization Transformation

The InitializationTransformation class is called in the beginning of every transformation chain. It
makes sure that all counting variables are reset to 0 and the signals map is cleared, shown in lines 2 to
5 in Listing 5.20. Afterwards, every SCEstModule that was not generated for a Run statement is being
transformed in the following way by calling the method transformStatements in line 9.

For some transformations it is necessary to know if another statement has priority. An example
is being shown in Figure 5.13. Both, the Suspend and the Abort statement, will transform the Pause

statement, but the Abort statement has priority. Since they can change places and therefore the Suspend

statement will be the outermost statement which has priority, there can not be a predefined order
of the transformations. Thus, the priority of each statement has to be saved in the meta-model. This
is accomplished by adding an annotations to each statement, which saves the depth of the given
statement. The first level, the statements in the list statements of a module, starts with a depth of 1.
Is at the first level a statement which includes other statements, they will have the depth 2. When
a statement of the latter has a statement list, the statements in this list will have the depth 3 and so
on. The result can be seen in Figure 5.13a. If the Abort transformation transforms the Pause statement
first, the Suspend transformation will recognize that the conditional, which has the priority of the
Suspend statement and which it wants to place after the Pause statement, has a higher depth and
therefore a lower priority than the conditional behind the Pause statement. Thus, the conditional of the
transformed Suspend statement will be placed after the conditional of the transformed Abort statement.
Which means in this example, which is shown in Figure 5.13b, after the transformation, the program
executes in its intended way. Hence, emit X will be executed when A is absent. On the other hand,
when A is present, emit X will not be executed. Figure 5.14 shows how the different transformations
are selected in the KiCo View.

During the previously mentioned procedure, a Run statement will be transformed in the way that
its module will be copied, because multiple Run statements can reference the same module and all of
them could be transformed differently since the transformation of a module depends on the context
of the Run statement. Listing 5.21 shows the transformation of a Run statement. In line 7 it is checked
if the given module is already generated. If so, nothing has to be copied. If not, the module will be
copied, line 8, the copy of the module will be set to be the module of the Run statement, line 9, the new
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1 def SCEstProgram transform(SCEstProgram prog) {

2 resetLabelSuffix

3 ...

4 resetModuleSuffix

5 clearNewSignalsMap

6 for (var i=0; i<prog.modules.length; i++) {

7 var m = prog.modules.get(i)

8 if (!m.annotations.isGeneratedModule) {

9 transformStatements(m.statements, 1)

10 }

11 }

12 return prog

13 }

Listing 5.20. Beginning of the transformation of the InitializationTransformation class.

module will get a unique name, line 10, and the module will get an annotation which indicates that it
has been generated, line 11. Afterwards Renaming has to be adjusted, line 12, and finally the generated
module has to be added to the SCEstProgram, the root object, in line 13.

5.5.3 SCL Transformation

The SCLTransformation class gets an instance of a SCEst meta-model, a SCEstProgram, removes the old
local signals and also the annotations which were used for the transformations and are no longer of
use, and returns an instance of the SCL meta-model, an SCLProgram.

5.5.4 Label Renaming Transformation

The OptimizationLabelRenamingTransformation class holds the last transformation before the SCL trans-
formation in a transformation chain. Because of multiple transformations, the first occurring label in
the generated program code is not always the one with the lowest number. Note that the generated
labels are named as followed: l<counter>. Examples are l1, l2 or l10. Thus, the code is not as compre-
hensible as it could be. So this transformation makes sure that a label in an arbitrary line has a higher
number in its name than a label in a previous line.

5.5.5 Block Transformation

The BlockTransformation class provides a transformation for an Esterel Block. For a given SCEstProgram

every SCEstModule is transformed in the form of going through all statements of this module and
checking if a given statement is a Block statement. Listing 5.22 shows how a Block statement is being
transformed. In line 2 it is checked if the given statement is a Block statement. If so, in line 3 a new
ScopeStatement of SCL is created. After the statements of the Block statement have been transformed,
the statements will be moved to the new ScopeStatement, line 4.

5.5.6 SCEst Transformation

The SCEstTransform class, located in de.cau.cs.kieler.esterel.transformations, provides a trans-
formation for an Esterel Program and its Esterel Modules to a SCEstProgram and SCEstModules. This
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5.5. Incremental Compilation Implementation

1 module abortSuspend:

2 input A,B;

3 output X;

4 abort

5 suspend

6 pause;

7 when B;

8 emit X;

9 when A;

10 end module

Initialization

	

1 module abortSuspend_t1:

2 input A,B;

3 output X;

4 @depth 1

5 abort

6 @depth 2

7 suspend

8 pause;

9 when B;

10 emit X;

11 when A;

12 end module

(a) The example after InitializationTransformation is used.

Abort

	

1 module abortSuspend_t2:

2 input A,B;

3 output X;

4 @depth 2

5 suspend

6 pause;

7 @depth 1

8 if A {

9 goto l1;

10 };

11 when B;

12 emit X;

13 l1:

14 end module

Suspend

	

1 module abortSuspend_t3:

2 input A,B;

3 output X;

4 l2:

5 pause;

6 @depth 1

7 if A {

8 goto l1;

9 };

10 @depth 2

11 if B {

12 goto l2;

13 }

14 emit X;

15 l1:

16 end module

(b) The example after AbortTransformation and SuspendTransformation is used respectively.

Figure 5.13. Transformation of an example Esterel program with an Abort and Suspend statement.

transformation is only called in the Esterel editor and not in the SCEst editor. It is the first transfor-
mation, even before the InitializationTransformation. Therefore, it is ensured that the following
transformations get a SCEstProgram to do their transformations on. Since a SCEstProgram extends an
Esterel Program and a SCEstModule extends an Esterel Module, the respective parts just have to be copied.
This means for an Esterel Module that its statements and its interface declarations will be copied to a
newly created SCEstModule. Since the InitializationTransformation will copy modules in case of a Run

statement, SCEstTransform copies a module of a Run statement and marks it as generated. Therefore,
during the following execution of InitializationTransformation it will be recognized that the module
is already generated.
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5. Implementation

(a) The selection of InitializationTransformation.

(b) The selection of InitializationTransformation and AbortTransformation.

(c) The selection of InitializationTransformation, AbortTransformation and also SuspendTransformation.

Figure 5.14. The KiCo View for the previous example of a step by step transformation while the Esterel program
includes an Abort and a Suspend statement.
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1 def Statement transformStatement(Statement statement, int depth) {

2 ...

3 else if (statement instanceof Run) {

4 // create a copy of the referenced module

5 // so that the original module will not be modified

6 // and update the renamings

7 if (!statement.module.module.annotations.isGeneratedModule) {

8 var moduleCopy = EcoreUtil.copy(statement.module.module)

9 statement.module.module = moduleCopy

10 moduleCopy.name = moduleCopy.name.createNewUniqueModuleName

11 moduleCopy.annotations.add(createModuleAnnotation)

12 statement.transformRenamingsAfterModuleCopy

13 scestProgram.modules.add(moduleCopy)

14 }

15 transformStatements(statement.module.module.statements, depth+1)

16 }

17 }

Listing 5.21. The Run statement transformation of the InitializationTransformation class.

1 def Statement transformStatement(Statement statement) {

2 if (statement instanceof Block) {

3 return createScopeStatement(null) => [

4 statements.add(transformStatements((statement as Block).statements))]

5 }

6 ...

7 }

Listing 5.22. Extract of the BlockTransformation class.
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Chapter 6

Evaluation

This chapter covers an evaluation of the incremental compilation of SCEst designed and implemented
during this thesis. A step by step transformation of the ABRO example from a SCEst program to SCL is
shown and described to demonstrate how each intermediate step is displayed. Hence, it is easier for
the user to understand how the resulting SCL program was generated. Also, the number of statements
of example SCEst programs is compared to the number of statements of the respectively generated
SCL programs for this thesis’ approach and for Rathlev’s approach. Additionally, two problems which
arose during the design and implementation of the incremental compilation are being discussed.

6.1 ABRO Step by Step Compilation

An example step by step transformation of ABRO is shown in Listing 6.1. Listing 6.2 to Listing 6.10 is
the generated code of the compiler for every step of the compilation chain. All single transformation
rules which are used in this section are described in Section 4.2. Their order is displayed in Figure 6.1,
as the compilation starts with an initialization and ends with the SCL transformation. In the following,
the more complex transformations will be explained. Note that every time a user transforms ABRO, a
different order of the single transformations might be used as far as the produce and not-handled-by
dependencies allow it, as described in Section 1.4.

The Initialization transformation adds annotations to the model, as shown in Listing 6.2, to save
extra information which is later used by single transformations to determine the placement of their
conditionals after/before pauses, as described in Section 5.5.2.

Before an Emit statement can be transformed, new representations of the signals have to be created.
Therefore, the transformation of the signals is the second, as shown in Listing 6.3. A ScopeStatement is
generated to represent a module of SCEst in SCL. The transformation marks the generated scope with
the annotation @IScope. Hence, if the transformation of sensors for example is next, the already existing
scope can be identified as the scope for the interface declarations of the module. Thus, it is also used
for the new declarations for the sensors. Note that the transformation of the signals generates an extra
thread which sets the output signals to false at the beginning of every tick. Since the whole program is
transformed to SCL, an SCL parallel statement is generated as shown in lines 11, 20 and 39 of Listing 6.3
and not a parallel statement of Esterel. Also, the old signals stay part of the generated program, as
mentioned in Section 4.2.2. Otherwise, this step would need to include the transformation of other
statements like the Emit statement, since an Emit statement needs to reference a signal. However, this
would lead to a transformation of many kinds of statements in one step.

The SCL transformation, as described in Section 5.5.3, transforms the instance of the SCEst meta-
model to an instance of the SCL meta-model, which leads to Listing 6.11.

It is shown for this example, that the transformation is done as intended. Each intermediate result
could be serialized and therefore shown to the user. Looking at this transformation step by step makes
it easier for a user to understand how the resulting SCL program emerged, in contrast to the previous
structural approach, where the user just got the final SCL program. Also, possible errors in the whole
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initialization
listing 6.2

signal
listing 6.3

loop
listing 6.4

halt
listing 6.5

await
listing 6.6

abort
listing 6.7

emit
listing 6.8

block
listing 6.9

parallel
listing 6.10

SCL
listing 6.11

Figure 6.1. Illustration of the incremental steps of the compilation of ABRO.

transformation can be narrowed down relatively fast by inspecting the intermediate steps. In addition,
the user can see which transformations are simple and which are more complex. For that reason, the
user might be able to reduce the number of statements in the resulting SCL program by choosing
Esterel statements in the source program that do not translate into as many SCL statements.

1 module ABRO:

2 input A, B, R;

3 output O;

4 loop

5 abort

6 [

7 await A

8 ||

9 await B

10 ];

11 emit O;

12 halt;

13 when R;

14 end loop

15 end module

Listing 6.1. The ABRO exam-
ple ...

initialization

	

1 module ABRO_01:

2 input A,B,R;

3 output O;

4 @depth 1

5 loop

6 @depth 2

7 abort

8 [

9 @depth 5

10 await A;

11 ||

12 @depth 5

13 await B;

14 ];

15 emit O;

16 halt;

17 when R;

18 end loop;

19 end module

Listing 6.2. ... after the
initialization transforma-
tion, ...
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signal

	

1 module ABRO_02:

2 input A_sig, B_sig, R_sig;

3 output O_sig;

4 @IScope

5 {

6 input bool A = false;

7 input bool B = false;

8 input bool R = false;

9 output bool O = false;

10 bool term1 = false;

11 fork

12 {

13 _l1:

14 O = false;

15 if !term1 {

16 pause;

17 goto _l1;

18 };

19 }

20 par

21 {

22 @depth 1

23 loop

24 @depth 2

25 abort

26 [

27 @depth 5

28 await A_sig;

29 ||

30 @depth 5

31 await B_sig;

32 ];

33 emit O_sig;

34 halt;

35 when R_sig;

36 end loop;

37 term1 = true;

38 }

39 join;

40 }

41 end module

Listing 6.3. ... after the
signal transformation, ...

loop

	

1 module ABRO_03:

2 input A_sig, B_sig, R_sig;

3 output O_sig;

4 @IScope

5 {

6 input bool A = false;

7 input bool B = false;

8 input bool R = false;

9 output bool O = false;

10 bool term1 = false;

11 fork

12 {

13 _l1:

14 O = false;

15 if !term1 {

16 pause;

17 goto _l1;

18 };

19 }

20 par

21 {

22 _l2:

23 @depth 2

24 abort

25 [

26 @depth 5

27 await A_sig;

28 ||

29 @depth 5

30 await B_sig;

31 ];

32 emit O_sig;

33 halt;

34 when R_sig;

35 goto _l2;

36 term1 = true;

37 }

38 join;

39 }

40 end module

Listing 6.4. ... after the loop

transformation, ...
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halt

	

1 module ABRO_04:

2 input A_sig, B_sig, R_sig;

3 output O_sig;

4 @IScope

5 {

6 input bool A = false;

7 input bool B = false;

8 input bool R = false;

9 output bool O = false;

10 bool term1 = false;

11 fork

12 {

13 _l1:

14 O = false;

15 if !term1 {

16 pause;

17 goto _l1;

18 };

19 }

20 par

21 {

22 _l2:

23 @depth 2

24 abort

25 [

26 @depth 5

27 await A_sig;

28 ||

29 @depth 5

30 await B_sig;

31 ];

32 emit O_sig;

33 _l3:

34 pause;

35 goto _l3;

36 when R_sig;

37 goto _l2;

38 term1 = true;

39 }

40 join;

41 }

42 end module

Listing 6.5. ... after the halt

transformation, ...

await

	

1 module ABRO_05:

2 input A_sig, B_sig, R_sig;

3 output O_sig;

4 @IScope

5 {

6 input bool A = false;

7 input bool B = false;

8 input bool R = false;

9 output bool O = false;

10 bool term1 = false;

11 fork

12 {

13 _l1:

14 O = false;

15 if !term1 {

16 pause;

17 goto _l1;

18 };

19 }

20 par

21 {

22 _l2:

23 @depth 2

24 abort

25 [

26 _l4:

27 pause;

28 if !A {

29 goto _l4;

30 };

31 ||

32 _l5:

33 pause;

34 if !B {

35 goto _l5;

36 };

37 ];

38 emit O_sig;

39 _l3:

40 pause;

41 goto _l3;

42 when R_sig;

43 goto _l2;

44 term1 = true;

45 }

46 join;

47 }

48 end module

Listing 6.6. ... after the await

transformation, ...
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abort

	

1 module ABRO_06:

2 input A_sig, B_sig, R_sig;

3 output O_sig;

4 @IScope

5 {

6 input bool A = false;

7 input bool B = false;

8 input bool R = false;

9 output bool O = false;

10 bool term1 = false;

11 fork

12 {

13 _l1:

14 O = false;

15 if !term1 {

16 pause;

17 goto _l1;

18 };

19 }

20 par

21 {

22 _l4:

23 {

24 bool abort1 = false;

25 [

26 _l2:

27 pause;

28 @depth 2

29 if R {

30 abort1 = true;

31 goto _l7;

32 };

33 if !A {

34 goto _l2;

35 };

36 _l7:

37 ||

Listing 6.7. ... after the abort

transformation, ...

38 _l3:

39 pause;

40 @depth 2

41 if R {

42 abort1 = true;

43 goto _l8;

44 };

45 if !B {

46 goto _l3;

47 };

48 _l8:

49 if abort1 {

50 goto _l6;

51 };

52 ];

53 emit O_sig;

54 _l5:

55 pause;

56 @depth 2

57 if R {

58 abort1 = true;

59 goto _l6;

60 };

61 goto _l5;

62 _l6:

63 }

64 goto _l4;

65 term1 = true;

66 }

67 join;

68 }

69 end module
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emit

	

1 module ABRO_07:

2 input A_sig, B_sig, R_sig;

3 output O_sig;

4 @IScope

5 {

6 input bool A = false;

7 input bool B = false;

8 input bool R = false;

9 output bool O = false;

10 bool term1 = false;

11 fork

12 {

13 _l1:

14 O = false;

15 if !term1 {

16 pause;

17 goto _l1;

18 };

19 }

20 par

21 {

22 _l4:

23 {

24 bool abort1 = false;

25 [

26 _l2:

27 pause;

28 @depth 2

29 if R {

30 abort1 = true;

31 goto _l7;

32 };

33 if !A {

34 goto _l2;

35 };

36 _l7:

37 ||

Listing 6.8. ... after the emit

transformation, ...

38 _l3:

39 pause;

40 @depth 2

41 if R {

42 abort1 = true;

43 goto _l8;

44 };

45 if !B {

46 goto _l3;

47 };

48 _l8:

49 if abort1 {

50 goto _l6;

51 };

52 ];

53 O |= true;

54 _l5:

55 pause;

56 @depth 2

57 if R {

58 abort1 = true;

59 goto _l6;

60 };

61 goto _l5;

62 _l6:

63 }

64 goto _l4;

65 term1 = true;

66 }

67 join;

68 }

69 end module
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block

	

1 module ABRO_08:

2 input A_sig, B_sig, R_sig;

3 output O_sig;

4 @IScope

5 {

6 input bool A = false;

7 input bool B = false;

8 input bool R = false;

9 output bool O = false;

10 bool term1 = false;

11 fork

12 {

13 _l1:

14 O = false;

15 if !term1 {

16 pause;

17 goto _l1;

18 };

19 }

20 par

21 {

22 _l4:

23 {

24 bool abort1 = false;

25 {

26 _l2:

27 pause;

28 @depth 2

29 if R {

30 abort1 = true;

31 goto _l7;

32 };

33 if !A {

34 goto _l2;

35 };

36 _l7:

37 ||

Listing 6.9. ... after the block

transformation, ...

38 _l3:

39 pause;

40 @depth 2

41 if R {

42 abort1 = true;

43 goto _l8;

44 };

45 if !B {

46 goto _l3;

47 };

48 _l8:

49 if abort1 {

50 goto _l6;

51 };

52 }

53 O |= true;

54 _l5:

55 pause;

56 @depth 2

57 if R {

58 abort1 = true;

59 goto _l6;

60 };

61 goto _l5;

62 _l6:

63 }

64 goto _l4;

65 term1 = true;

66 }

67 join;

68 }

69 end module
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parallel

	

1 module ABRO_09:

2 input A_sig, B_sig, R_sig;

3 output O_sig;

4 @IScope

5 {

6 input bool A = false;

7 input bool B = false;

8 input bool R = false;

9 output bool O = false;

10 bool term1 = false;

11 fork

12 {

13 _l1:

14 O = false;

15 if !term1 {

16 pause;

17 goto _l1;

18 };

19 }

20 par

21 {

22 _l4:

23 {

24 bool abort1 = false;

25 {

26 fork

27 {

28 _l2:

29 pause;

30 @depth 2

31 if R {

32 abort1 = true;

33 goto _l7;

34 };

35 if !A {

36 goto _l2;

37 };

38 _l7:

39 }

40 par

Listing 6.10. ... after the parallel

transformation, ...

41 {

42 _l3:

43 pause;

44 @depth 2

45 if R {

46 abort1 = true;

47 goto _l8;

48 };

49 if !B {

50 goto _l3;

51 };

52 _l8:

53 }

54 join;

55 if abort1 {

56 goto _l6;

57 };

58 }

59 O |= true;

60 _l5:

61 pause;

62 @depth 2

63 if R {

64 abort1 = true;

65 goto _l6;

66 };

67 goto _l5;

68 _l6:

69 }

70 goto _l4;

71 term1 = true;

72 }

73 join;

74 }

75 end module
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SCL

	

1 module ABRO

2 {

3 input bool A = false;

4 input bool B = false;

5 input bool R = false;

6 output bool O = false;

7 bool term1 = false;

8 fork

9 {

10 l1:

11 O = false;

12 if !term1 {

13 pause;

14 goto l1;

15 };

16 }

17 par

18 {

19 l2:

20 {

21 bool abort1 = false;

22 {

23 fork

24 {

25 l3:

26 pause;

27 if R {

28 abort1 = true;

29 goto l4;

30 };

31 if ! A {

32 goto l3;

33 };

34 l4:

35 }

36 par

Listing 6.11. ... after the
labelrenaming and SCL trans-
formation.

37 {

38 l5:

39 pause;

40 if R {

41 abort1 = true;

42 goto l6;

43 };

44 if ! B {

45 goto l5;

46 };

47 l6:

48 }

49 join;

50 if abort1 {

51 goto l8;

52 };

53 }

54 O |= true;

55 l7:

56 pause;

57 if R {

58 abort1 = true;

59 goto l8;

60 };

61 goto l7;

62 l8:

63 }

64 goto l2;

65 term1 = true;

66 }

67 join;

68 }

6.2 Size Comparison to the Approach of Rathlev

In this section the sizes of six test Esterel/SCEst programs and their representing SCL programs are
being discussed. The ABRO example is one of those.

For each test SCEst program the number of statements was counted by a function in the class
SCEstExtension, which goes through a list of EObjects and counts the number of Statements. After the
number was counted, the respective program was being transformed with the incremental compilation
implemented during this thesis to an SCL program. Afterwards the number of statements of the
resulting SCL program was counted. By statement an SCL Statement is meant, as SCEst statements are
derived of the SCL Statement, as described in Section 5.3.2.
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Name SCEst SCL

this thesis Rathlev this thesis Rathlev

1 test-pause1 1 2 1 8
2 test-suspend9 4 4 22 25
3 test-abro 6 7 38 38
4 test-trap12 8 10 22 25
5 test-trap15 12 15 43 47
6 test-weakabort2 33 38 146 216

Table 6.1. Six test programs and their number of statements in SCEst and the respective generated representation
in SCL for both, the incremental compilation of this thesis and Rathlev’s approach [Rat15].
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Figure 6.2. Illustration of the data of Table 6.1.

Table 6.1 shows the six test cases, which are additionally visualized in Figure 6.2. These are chosen
as they were also used by Rathlev [Rat15].

Note that Rathlev’s test included a few additional tests, which were affected by the problem
of nested aborts and suspends, which is being discussed in the next section, or had many nested
statements, which leads to the following. As explained in Section 2.1.2, the parser for the new Esterel
Xtext grammar is auto-generated. As it proves to be the case, it can not handle deep nested statements
in combination with Esterel’s EsterelParallel statement for this new grammar because the parallel
statement does not start with a keyword. Therefore, the parser does not recognize a parallel statement
from the beginning. Just as the || keyword is reached, it realizes that all previous statements should
have been in a thread. It results in a freeze of the Esterel/SCEst editor. Presumably, with the combination
of SCL and Esterel/SCEst statements in this one grammar, the parser can not handle the amount of
possibilities. In retrospect, this might have been already indicated by the long time needed for the
generation of the Esterel/SCEst parser. Therefore, the implemented Xtext grammars for Esterel and
SCEst needed to be improved regarding parser performance.

As part of the integration of this thesis’ work into the KIELER project, the meta-model and the Xtext
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grammar of Esterel have already been modified by A. Schulz-Rosengarten. Hence, the parser does not
have the before mentioned problem anymore. This was achieved by a less strict meta-model and a
modification of the Xtext grammar; however, postprocessing had to be added for that reason. Also, the
implemented transformations of this thesis must be adjusted to these modifications in the future.

Column three and four of Table 6.1 show the number of statements in the Esterel/SCEst source
program for this thesis’ approach and also for the one by Rathlev. They differ because the underlying
meta-model was changed, as described in Section 4.1. In the previous meta-model every statement
container had just a field to include a single statement. If multiple statements were wanted in a
statement container, the statement Sequence was used, as it was the only statement which could
include more than one single statement. For example, if just a single pause was wanted in a Block

statement, it could be included in the Block statement directly. However, if, for example, an emit
and a pause were wanted, the Block statement would include a Sequence statement and the Sequence

statement then would include the emit and pause. Since Sequence was a statement, the total number of
statements is higher for the previous meta-model.

Column five and six show the number of statements in the resulting SCL program after this
incremental compilation was used and also for the structural compilation by Rathlev. As expected, the
number of resulting SCL statements for test two to five does just barely differ as the same transformation
rules were used. Since the resulting SCL programs of Rathlev’s tests were not included in his thesis, it
is not clear why test-pause1 were transformed to eight statements during his structural compilation
as it should include just one single pause. Also, why the transformation of test-weakabort2 led to
216 statements instead of the 146 statements generated by the incremental compilation of this thesis
can not be determined for certain. One possibility could be, that those are the numbers before his
optimizations, which were partly directly included in the incremental compilation of this thesis.
Nevertheless, a graph in his thesis shows that the optimized SCL code for test-weakabort2 still has
at least 200 statements. The meta-model of SCL has admittedly changed, but after comparing both
structures, it should not result in a difference for the counting of the statements.

In summary, it can be stated that the implementation of the incremental compilation of this
thesis does not produce more SCL statements than Rathlev’s structural compilation approach. This
was expected because the same transformation rules were used. However, in some cases this thesis’
approach produces considerably less SCL statements, which can partly be attributed to optimizations
that were directly included in the transformations of this thesis.

6.3 Self-Contained Intermediate Models

As described in Section 5.5.1, a mapping from the old signals to the new representing variables
are saved in the map newSignals of the SCEstExtension class in the implementation written within
this thesis. This extra information violates a part of the intermediate model condition of SLIC. While
each intermediate model is a valid model, it is not self-contained because of the extra information.
Again, this is specific to the implementation within this thesis. The mapping from the old signals to
the new variables could also be saved in a ReferenceAnnotation. Thus, each new variable could be
annotated with a reference to the old signal. Additionally, this could be circumvented, if during the
transformation of the signals, all statements which reference one of the signals are being transformed
as well, as described in Section 4.2.2. As mentioned there, this would come at the cost of not being
able to create a set of features, each representing a statement of SCEst, and transforming each feature
just once during the compilation, which is also part of the SLIC approach.
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6.4 Nested Aborts and Suspends

With the incremental compilation a problem arose, which did not occur with the structural approach
by Rathlev. The transformation of an Abort or Suspend statement adds conditionals after/before pauses
in the scope of their body. Since Suspend and Abort statements can both generate pauses in specific
cases, it is not achievable with the SLIC approach to transform the generated pauses in a correct way,
as each transformation of aborts or suspends can only be done once (the single-pass condition of SLIC,
Section 1.4). The following example visualizes the problem.

Listing 6.12 shows an Abort statement in a Suspend statement. The suspension is triggered if signal
A is present and the abort is initiated if signal B is present for the second time (abort when 2 B). Since
the Suspend statement surrounds the Abort statement, it has priority. This means, is signal A present
and simultaneously signal B is present for the second time, the execution of the body of the Suspend

statement will be suspended and the presence state of signal B will not count.

1 module SuspendAbort:

2 input A,B;

3 suspend

4 abort

5 pause;

6 when 2 B;

7 when A;

8 end module

Listing 6.12. An Abort statement
is inside a Suspend statement.

1 module AbortSuspend:

2 input A,B;

3 abort

4 suspend

5 pause;

6 when 2 B;

7 when A;

8 end module

Listing 6.13. A Suspend statement
is inside an Abort statement.

Listing 6.13 shows a Suspend statement in an Abort statement. The abort is initiated if signal A is
present and the suspension is triggered if signal B is present for the second time (suspend when 2 B).
Since the Abort statement surrounds the Suspend statement, it has priority. This means, is signal A
present and simultaneously signal B is present for the second time, the execution of the statements
inside the Abort statement’s body will be aborted and the counter for the presence state of signal B
does not matter anymore anyway.

Both listings show nested Abort and Suspend statements and indicate, that the order in which they
are nested can be different and therefore a produce or not-handled-by dependency, which would set a
fix order of the transformations for every future transformation, can not resolve the problem. This is
visualized in Figure 6.3. Only if the Abort transformation is done before the Suspend transformation,
Listing 6.12 is transformed in the intended way. On the other side, only if the Suspend transformation
is done before the Abort transformation, Listing 6.13 is transformed in the intended way.

Listing 6.14 shows the correct transformation of Listing 6.12, while Listing 6.15 shows an incorrect
transformation as explained in the following. The difference lies in the first thread, as the second
threads are the same. The two threads are created by the Abort statement, since it needs a thread to
count how many times signal B has been present. But if the Suspend statement is transformed first,
the threads and the pause inside the first thread do not exist at that time. Therefore, the needed
conditional, which is shown in lines 16 to 18 in Listing 6.14, can not be placed, as shown in Listing 6.15.
Since the Suspend statement surrounds the Abort statement, its expression has priority over the one of
the Abort statement. Therefore, both threads have to be suspended if signal A is present, otherwise the
first thread would still increment the variable v1, which counts how many times the signal B has been
present. In the next tick an incorrect abort could be activated that way.
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Listing 6.12

Listing 6.15

suspend abort

Listing 6.14

abort suspend

Listing 6.13

Listing 6.16

suspend abort

Listing 6.17

abort suspend

Figure 6.3. Illustration of the correct and incorrect order of the Abort and Suspend transformation for Listing 6.12
and Listing 6.13.

Listing 6.16 shows the correct transformation of Listing 6.13, while Listing 6.17 shows an incorrect
transformation, as explained in the following. The second threads are the same. Note that the first
four missing lines of Listing 6.16 are the same as the first four lines of Listing 6.17. The transformation
of the Suspend statement leads to the creation of two threads, since it has to count the times signal B is
present. This is done by incrementing the variable v1 (line 25 in Listing 6.16 and line 21 in Listing 6.17).
However, is the Abort statement being transformed first, the threads and especially the pause in the
first thread do not exist at that moment. Therefore, the conditional in lines 17 to 20 in Listing 6.16
for the abort will not be placed, as shown in Listing 6.17. This might end in thread 2 being aborted
before the termination flag f1 is set to true, line 37 in Listing 6.17, and therefore thread 1 would run
indefinitely, because it terminates only if f1 is true, lines 13 and 14 in Listing 6.17. Thus, the execution
of the whole program would not continue as intended. Additionally, the conditional after the fork par

join construct, lines 45 to 47 in Listing 6.16, can not be placed, as shown in Listing 6.17. This could
end in the execution of possible statements after the Suspend statement, which should not be executed
since an abort was activated by signal A being present.

As shown, a correct transformation of nested Abort and Suspend statements can not be guaranteed
by this implementation of the incremental compilation of SCEst. While following the SLIC approach,
this problem can not be solved satisfactorily. For example, if a Suspend statement is inside an Abort

statement, the Initialization transformation could save this information at every Suspend statement
by adding an annotation. Alternatively, before a Suspend statement is being transformed, the transfor-
mation could check if it holds an Abort statement in its body. If so, an annotation with extra information
on the conditional, which should be placed after/before pauses, could be added to the abort statement.
When the Abort statement is transformed in a following step, it could add the conditional after/before
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a generated pause. But this pattern would mix the different transformations and as mentioned, this
would go against the SLIC approach because each feature should be transformed just once. Just by
following the SLIC approach, this problem arose. However, it can be solved with an other structural
incremental compilation approach. It starts its transformation at the innermost statement. After this
single statement is being transformed, the intermediate model is saved to be inspected by the user
after the whole transformation. The next enclosing statement will be transformed next and afterwards,
again, the intermediate model is saved. Following that pattern, inner statements are being transformed
first and therefore the problem of nested aborts and suspends does not exist. This approach is being
explained in depth in the next chapter for future work (Section 7.2.4).
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1 module SuspendAbort

2 {

3 input bool A = false;

4 input bool B = false;

5 {

6 bool abort1 = false;

7 int v1 = 0;

8 fork

9 { // thread 1

10 l1:

11 if abort1 {

12 goto l3;

13 };

14 l2:

15 pause;

16 if A {

17 goto l2;

18 };

19 if B {

20 v1 = v1 + 1;

21 };

22 goto l1;

23 l3:

24 }

25 par

26 { // thread 2

27 l4:

28 pause;

29 if A {

30 goto l4;

31 };

32 if v1 >= 2 {

33 abort1 = true;

34 goto l5;

35 };

36 l5:

37 }

38 join;

39 l6:

40 }

41 }

Listing 6.14. An Abort statement
is inside a Suspend statement and
the Abort transformation is exe-
cuted before the Suspend transfor-
mation.

1 module SuspendAbort

2 {

3 input bool A = false;

4 input bool B = false;

5 {

6 bool abort1 = false;

7 int v1 = 0;

8 fork

9 { // thread 1

10 l1:

11 if abort1 {

12 goto l2;

13 };

14 pause;

15 if B {

16 v1 = v1 + 1;

17 };

18 goto l1;

19 l2:

20 }

21 par

22 { // thread 2

23 l3:

24 pause;

25 if A {

26 goto l3;

27 };

28 if v1 >= 2 {

29 abort1 = true;

30 goto l4;

31 };

32 l4:

33 }

34 join;

35 l5:

36 }

37 }

Listing 6.15. An Abort statement
is inside a Suspend statement and
the Suspend transformation is exe-
cuted before the Abort transforma-
tion.
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4 // [...]

5 {

6 bool abort1 = false;

7 {

8 int v1 = 0;

9 bool f1 = false;

10 fork

11 { // thread 1

12 l1:

13 if f1 {

14 goto l2;

15 };

16 pause;

17 if A {

18 abort1 = true;

19 goto l2;

20 };

21 if B {

22 if v1 == 2 {

23 v1 = 0;

24 };

25 v1 = v1 + 1;

26 };

27 goto l1;

28 l2:

29 }

30 par

31 { // thread 2

32 l3:

33 pause;

34 if A {

35 abort1 = true;

36 goto l4;

37 };

38 if v1 >= 2 {

39 goto l3;

40 };

41 f1 = true;

42 l4:

43 }

44 join;

45 if abort1 {

46 goto l5;

47 };

48 }

49 l5:

50 }

51 }

Listing 6.16. A Suspend statement is in-
side an Abort statement and the Suspend

transformation is executed before the
Abort transformation.

1 module AbortSuspend

2 {

3 input bool A = false;

4 input bool B = false;

5 {

6 bool abort1 = false;

7 {

8 int v1 = 0;

9 bool f1 = false;

10 fork

11 { // thread 1

12 l1:

13 if f1 {

14 goto l2;

15 };

16 pause;

17 if B {

18 if v1 == 2 {

19 v1 = 0;

20 };

21 v1 = v1 + 1;

22 };

23 goto l1;

24 l2:

25 }

26 par

27 { // thread 2

28 l3:

29 pause;

30 if A {

31 abort1 = true;

32 goto l5;

33 };

34 if v1 >= 2 {

35 goto l3;

36 };

37 f1 = true;

38 l4:

39 }

40 join;

41 }

42 l5:

43 }

44 }

Listing 6.17. A Suspend statement is in-
side an Abort statement and the Abort

transformation is executed before the
Suspend transformation.
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Chapter 7

Conclusion and Future Work

In this chapter a summary of the incremental compilation of SCEst and the evaluation of the implemen-
tation of former is given. Further, potential future work is proposed.

7.1 Conclusion

Within this thesis an incremental compilation of SCEst with the SLIC approach has been designed and
implemented in KIELER. Therefore, already defined transformation rules were adapted and used. Also,
an adjustment of the previously existing necessary meta-models as well as an additional meta-model
for SCEst were needed for the successful design of the incremental compilation. While the step by step
compilation of a SCEst program has in general been shown to be possible, two limitations arose.

First, when multiple abort and suspend statements are nested, the needed placement of conditionals
before/after newly generated pause statements could not be done entirely. Therefore, a triggered abort

or suspend might not be executed in its intended way.
Second, the intermediate model condition of the SLIC approach is not satisfied completely. While

each intermediate model is a valid model, extra information on which signals are represented by
which newly generated variables has to be saved in this implementation.

Four test cases showed that the number of generated SCL statements by the incremental compilation
of this thesis was similar to the number of SCL statements generated by Rathlev’s structural approach,
as his transformation rules were reused during this incremental compilation. Additionally, with
two test cases the produced SCL program had considerably less statements than the SCL program
generated with Rathlev’s approach. Since an interactive SLIC compilation approach was used, future
implementations of optimizations can be integrated quite easily in the compilation chain.

However, the incremental compilation of SCEst allows for user to better understand the compilation
as every intermediate model can be inspected.

7.2 Future Work

Before some new suggestions for future work are proposed, a few ideas for future work proposed by
Rathlev [Rat15] are briefly mentioned, because they are still valid possible tasks. Note that this thesis,
the incremental compilation of Esterel/SCEst, was one of his suggestions.

Besides types, functions and procedures, Esterel allows to import tasks from a host language. Since
SCL and the following code generation do not include tasks, a transformation is not possible at the
moment. Therefore, the code generation could be extended by a representing feature.

As mentioned in Section 1.1, the weak suspend statement of Esterel v7 can not be transformed to
Esterel v5 kernel statements. Therefore, it is not included in this incremental compilation of SCEst. An
inclusion would be nice to have since it adds expressiveness to Esterel, but it is by far not trivial as
explained in detail by Rathlev [Rat15].
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Lastly, a transformation from SCL to Esterel with the SLIC approach could be implemented in KIELER.
Rathlev proposed a separation into programs which are B-constructive on the one hand and into
programs which are not B-constructive but valid under the SC MoC on the other hand [Rat15]. The
latter, which was approached by Schulz-Rosengarten [Sch16], is a non-trivial task, since sequentially
constructive behavior would need to be expressed in a valid Esterel program.

7.2.1 Alternative Transformations using Kernel Translations

As described in Section 1.4, while using the SLIC approach, a source programming language is split into
features. Each feature itself can have an arbitrary number of alternative transformations but at least
one. As mentioned in Section 1.2.2, the implemented transformations of derived Esterel statements are
written as direct transformations to SCL statements. For all derived Esterel statements an additional
transformation could be added, which transforms the derived statement to Esterel kernel statements
first. It would have to have a produce dependency, indicating which kernel statements might be created.
This addition would provide alternative transformations for derived features for the user to choose
from. If a user did not understand a specific direct transformation, the alternative could help in
understanding the transformation of the statement and would therefore lead to a better understanding
of the language itself.

This approach was not used during this thesis since more transformation steps would lead
to an even more complex target code because it yields up the optimizations used in the direct
transformations.

7.2.2 Transformation of Signals and referencing Statements

As mentioned in Chapter 6, the implementation of the incremental SCEst compilation created during
this thesis does not satisfy the intermediate model condition of SLIC completely. This comes from extra
information which has to be saved when signals are being transformed.

A different approach would be to transform all signals to new variables, but during the trans-
formation, all statements that reference a transformed signal are being transformed as well. For
some statements like the sustain, emit, unemit, set and present statement this would mean a com-
plete transformation to SCL statements. For others, which reference a signal in an expression, the
ValuedObjectReference would need to be changed to referencing the corresponding, newly created
variable. This is the same approach used for SCCharts, as described in Section 3.1. However, as explained
in Section 4.2.2, this would lead to a coarser partition of single transformations. Nevertheless, it would
circumvent the problem of having to save a mapping from the old signals to the newly generated
variables as extra information, as mentioned in Chapter 6.

During this approach, the set of features for the SLIC approach has to be adjusted. For example, the
statements sustain, emit, unemit, set and present would be a single SLIC feature, e.g., a signal feature.

This could be implemented as an alternative compilation chain. Therefore, the user could decide
which approach should be used. Again, this would give the user the freedom of choice and a possibility
to compare the results of the different approaches and to choose the best result suited for a specific
task.
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7.2.3 Grammar Improvement

The implemented Xtext grammars for Esterel and SCEst needed to be improved regarding parser
performance. As stated in Section 6.2, the auto-generated parser was not able to successfully parse deep
nested statements in combination with Esterel’s EsterelParallel statement. This problem occurred
because the parallel statement does not start with a keyword, which resulted in the parser not being
able to recognize a parallel statement from the beginning. Only when the || keyword was reached,
it realized that all previous statements should have been in a thread. This problem made for future
work as the possibility of deep nested statements is desirable. However, as mentioned in Section 6.2, A.
Schulz-Rosengarten already modified the meta-model and the Xtext grammar of Esterel as part of the
integration of this thesis’ work into the KIELER project. Therefore, the implemented transformations of
this thesis must be adjusted to these modifications in the future.

7.2.4 Structural Incremental Compilation with a New Compiler

During this thesis the KIELER compiler version 3 (codename KiCool) has been developed. The new
compiler provides a more general configuration mechanism which does not depend on produce or
not-handled-by constraints. Extending the compile framework could result in a structural compilation
approach. The compiler is given a transformation rule for every SCEst statement, but the compiler
dynamically constructs the compilation chain while compiling. This is done by inspecting the innermost
statement (at the bottom of the syntax tree) first. A so called intermediate processor chooses the fitting
transformation for this statement. After the statement has been transformed, the intermediate processor
is activated again and inspects the next enclosing statement and chooses the proper transformation.
Following this pattern the transformation stops when the root object is reached. With this approach
a single transformation can be initiated multiple times. Following the whole transformation, every
single intermediate model, resulting after each single transformation, can be inspected by the user
since it has been saved.

This approach is not a single-pass approach as SLIC, because a single transformation can be activated
more than once, as mentioned before. Additionally, this approach is finer than the approach of this
thesis, since it allows the user to inspect transformations of single instances of statements.

A possible transformation of an example program is shown in Figure 7.1. The transformation
starts at the innermost statement, the Pause. Note that the first concurrent thread in the source
program is selected first and therefore the pause statement and not the halt statement is the first
statement to be transformed. The next enclosing statement is the upper inner Block statement, which is
therefore transformed at this point. After that, the Parallel statement is the next enclosing statement,
but not all parallel threads have been transformed yet. Thus the transformation continues at the
innermost statement of the second thread, the halt statement, which leads to the intermediate model
structural3. The halt statement’s enclosing statement is the lower inner Block statement, which is
therefore transformed. Because all parallel threads have been transformed, the Parallel statement is
transformed next, leading to structural5. Since the program is not fully transformed at this point,
other transformations are done on the model, but they are not further shown for this example. Note
that every listing displays a valid, self-contained intermediate model, which can be inspected by the
user after the whole transformation is done. As shown, a transformation can be initiated multiple
times (the Block statement in this example). This is additionally illustrated in Figure 7.2. It shows the
new compiler view for this example.

This structural approach would eliminate the problem of nested aborts and suspends, shown
in Chapter 6, as it was not a problem in Rathlev’s approach, since the transformation starts at the
innermost statement and goes from there step by step to the top of the syntax tree.
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1 module structural1:

2 [

3 [

4 pause;

5 ];

6 ||

7 [

8 halt;

9 ];

10 ];

11 end module

	
1 module structural2:

2 [

3 {

4 pause;

5 }

6 ||

7 [

8 halt;

9 ];

10 ];

11 end module

	

1 module structural3:

2 [

3 {

4 pause;

5 }

6 ||

7 [

8 l1:

9 pause;

10 goto l1;

11 ];

12 ];

13 end module

	

1 module structural4:

2 [

3 {

4 pause;

5 }

6 ||

7 {

8 l1:

9 pause;

10 goto l1;

11 }

12 ];

13 end module

	

1 module structural5:

2 [

3 fork

4 {

5 pause;

6 }

7 par

8 {

9 l1:

10 pause;

11 goto l1;

12 }

13 join;

14 ];

15 end module

Figure 7.1. Transformation up to the Parallel statement with the new compiler.

Block T

pTime: 34ms
mMetric: 1.24

Halt T

pTime: 34ms
mMetric: 1.24

Block T

pTime: 34ms
mMetric: 1.24

Parallel T

pTime: 34ms
mMetric: 1.24

Block T

pTime: 34ms
mMetric: 1.24

Figure 7.2. Example illustration of the new Compiler View for structural1 of Figure 7.1.
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