
Model Order and Cycle Breaking
in SCCharts

Max Philipp Wilhelm Riepe

Bachelor’s Thesis
March 2022

Prof. Dr. Reinhard von Hanxleden
Real-Time and Embedded Systems
Department of Computer Science

Kiel University

Advised by
Sören Domrös

Selbstständigkeitserklärung

Hiermit erkläre ich, dass ich die vorliegende Arbeit selbstständig verfasst und keine anderen als die
angegebenen Quellen und Hilfsmittel verwendet habe.

Kiel,

iii

Abstract

Graphical abstraction comes with a lot of benefits, such as being easy to read and understand with
minimalistic knowledge required. Creating an aesthetically pleasing layout for a given textual model
is often achieved with an automatic layout algorithm.
The Sugiyama algorithm, also known as the layered or the hierarchical algorithm, is known to produce
crossing minimal drawings. It is separated into five phases. This thesis will focus on comparing
different strategies for the first stage, known as cycle removal or cycle breaking. While there are certain
aesthetic criteria such as edge crossings or drawings size, which are well-defined scales to measure the
quality of the layout, the results presented show that these sometimes are outweighed by other criteria.

v

Acknowledgements

I would like to express my gratitude to Sören Domrös for advising this thesis and offering constant
feedback, ideas, and support. I am especially grateful for the swiftness of communication. Furthermore,
I would like to thank Prof. Dr. Reinhard von Hanxleden for the valuable feedback and opportunity to
write my thesis. The environment in the Real-Time and Embedded Systems Groups was extremely
supportive. The daily virtual tea meetings helped me to find a daily routine in the times of exclusively
working from home.

Finally, I would like to extend my gratitude to my family and friends, who not only provided
encouragement, but also took the time to complete the survey used in this thesis.

vii

Contents

Abbreviations xv

1 Introduction 1
1.1 Related Work . 2
1.2 Outline . 2

2 Preliminaries 3
2.1 KIELER . 3

2.1.1 KiCodia . 3
2.1.2 GrAna . 3

2.2 Graph Definitions and Terminology . 4
2.3 Layered Algorithm . 6

2.3.1 Cycle Breaking . 6
2.3.2 Layer Assignment . 6
2.3.3 Crossing Minimization . 6
2.3.4 Node Placement . 7
2.3.5 Edge Routing . 7
2.3.6 Intermediate Processors . 7

2.4 Sequentially Constructive State Charts . 7

3 Cycle Breaking 9
3.1 Breadth-First Cycle Breaker . 9
3.2 Depth-First Cycle Breaker . 10
3.3 Greedy Cycle Breaker . 10
3.4 Model Order Cycle Breaker . 11

4 Implementation 13
4.1 Breadth-First Cycle Breaker . 13
4.2 Backward Edge Analysis . 14
4.3 Layer Count Analysis . 15

5 Quantitative Evaluation 17
5.1 Aesthetic Criteria . 17
5.2 The Dataset . 17
5.3 Evaluation Methodology . 18

5.3.1 Normalization . 18
5.3.2 Kruskal-Wallis Test . 19
5.3.3 Willcoxon Test . 19

5.4 Node Count Analysis . 19
5.5 Area Analysis . 19
5.6 Backward Edge Analysis . 21
5.7 Edge Crossing Analysis . 22

ix

Contents

5.8 Edge Length Analysis . 22
5.9 Layer Count Analysis . 23
5.10 Model Order . 24
5.11 Combined Analyses . 24
5.12 Unique Layout Analysis . 25

6 Empirical Study 27
6.1 The Survey and Participants . 27
6.2 Question Structure . 27
6.3 Introductory Graph Questions . 28
6.4 Graph 1 . 28
6.5 Graph 2 . 29
6.6 Graph 3 . 30
6.7 Evaluation of the Remaining Graphs and Comparison with the First Three Graphs . . 31
6.8 Graph 4 . 32
6.9 Graph 5 . 32
6.10 Graph 6 . 33
6.11 Graph 7 . 33
6.12 Graph 8 . 34
6.13 Analysis for All Graphs . 34
6.14 Importance Ranking of the Criteria . 36

7 Conclusion 37
7.1 Points of Criticism . 37
7.2 Conclusion of the Comparison . 37
7.3 Future Work . 38

A Additional Data for the Objective Analysis 39
A.1 Area Raw Data . 39
A.2 Backwards Edge Raw Data . 39
A.3 Edge Crossing Raw Data . 40
A.4 Edge Length Raw Data . 40

B Additional Data for the Survey 43
B.1 Graph 2 . 43
B.2 Graph 3 . 44
B.3 Graph 4 . 46
B.4 Graph 5 . 47
B.5 Graph 6 . 49
B.6 Graph 8 . 50

Bibliography 53

x

List of Figures

1.1 Graph used in First Survey Question . 1

2.1 GrAna Analysis Structure and Example .grana File . 4
2.2 Simple Layered Graph . 5
2.4 SCChart Textual and Graphical Representation . 8

3.1 Cycle Breaking Example . 9
3.2 Mental Map of a Graph, Breadth-First and Depth-First 10
3.3 Visualization of Model Order Construction . 12

4.1 Different Approaches to the Breadth-First Cycle Breaking 14
4.2 Visual representation of Sequential and Simultaneous BF-CB 14

5.1 Node Count Analysis . 20
5.2 Normalized Area Consumption . 20
5.3 Normalized Backward Edge Analysis . 21
5.4 Normalized Edge Crossing Analysis . 22
5.5 Normalized Edge Length Analysis . 23
5.6 Normalized Layer Count Analysis . 23
5.7 Strategy Comparison for Identical Layouts with MO-CB 24

6.1 Comparison of the Initial Rating and the Final Rating . 29
6.2 Second Graph used in the Survey . 30
6.3 First Impression Ordering of Graph 2 . 30
6.4 Final Impression Ordering of Graph 3 . 31
6.5 Fourth Graph used in the Survey . 32
6.6 Graph 6 of the Survey . 33
6.7 Graph 7 of the Survey . 34
6.8 Unbiased Ranking of All Graphs . 35
6.9 Strategy Rank per Graph . 35

xi

List of Tables

5.1 Aesthetic Criteria Names and Explanations . 17
5.2 Raw Statistical Data for Normalized Area Consumption 21

6.1 Results of the participants confidence in the topic of automated layout creation. 27
6.2 Importance of the Introduced Criteria . 36

xiii

Abbreviations

SCChart(s) Sequentially Constructive State Charts
KIELER Kiel Integrated Environment for Layout Eclipse Rich Client
KLay KIELER Layout Algorithms
CB Cycle Breaker
ELK Eclipse Layout Kernel
GrAna Graph Analyses
BF-CB Breadth-First Cycle Breaker
DF-CB Depth-First Cycle Breaker
G-CB Greedy Cycle Breaker
MO-CB Model Order Cycle Breaker

xv

Chapter 1

Introduction

Graphical abstraction of textual data is ubiquitous, be it node-based editors instead of textual scripting
languages, drag and drop website editors, or Unified Modeling Language (UML) diagrams describing
simple or complex processes in a specification book. The objective is to create an abstraction, which is
easier to read or gives a better comprehension of a problem. Some visual abstraction languages, like
the UML, come with countless rules and guidelines to reduce uncertainties in the graph. However,
there are rules that apply to most types of visual representations. Edge crossings, for example, can
lead to critical misunderstandings. For example, in a circuit diagram edge crossings if misunderstood
can lead to shortcuts.
Manually constructing a layout with minimal edge crossings is time-consuming [Pet95]. This is be-
coming increasingly problematic as the number of abstractions and, in some situations, the size of
these graphs increases. This is particularly problematic for graphical abstractions that are frequently
modified, demanding a new layout. The use of automatic layout algorithms removes this tedious task
and they have, therefore, become a widely adapted approach for layout creation.
One approach to creating layouts for statecharts is known as the layered algorithm, which is explained
in Section 2.3. This algorithm is divided into five phases, the first of them is called cycle breaking. This
thesis proposes different strategies for cycle breaking, and evaluates the differences. The different
strategies are the Breadth-First Cycle Breaker, Depth-First Cycle Breaker, Greedy Cycle Breaker and Model
Order Cycle Breaker. Different strategies lead to different sets of layers, as seen in Figure 1.1

(a) Breadth-First Cycle Breaker (b) Depth-First Cycle Breaker

(c) Greedy Cycle Breaker (d) Model Order Cycle Breaker

Figure 1.1. Graph used for the First Set of Questions in the Survey.

The graphs used for the evaluation are state charts, specifically SCCharts [HDM+14a]. These graphs
are automatically synthesized from a textual input model, as shown in Figure 2.4. This text file might

1

1. Introduction

hold additional information, as the model creator might have a mental model of the layout while
creating this file. Therefore, one research question is if the model creator has a mental model of the
diagram while creating the textual model and if a specific strategy represents this mental model better
than another alternative. Additionally, the question arose whether there is a cycle-breaking strategy
that performs consistently “better” than the remaining strategies. Better may be related to any aesthetic
criterion mentioned in Section 5.1 or any combination of these.
Two evaluation methods were applied in this work.

� Quantitative Analysis: Evaluation of the aforementioned strategies, with clearly defined metrics.
This might expose inherited features for certain strategies. This analysis is presented in Chapter 5.

� Qualitative Analysis: For the qualitative analysis, a survey was conducted. The research question
was to expose if certain strategies achieve higher overall acceptance in the test group, despite having
some quantitative flaws. Results are presented in Chapter 6.

While the quantitative analysis gives a strong base on which cycle-breaking strategy performs best,
the aforementioned empirical survey evaluates if the metrics used for this analysis have an impact on
the perception. This survey was designed to see if some of the quantitative criteria may be neglected
in favor of a different criterion.

1.1 Related Work

The layered algorithm used here is based on the approach proposed by Sugiyama et. al. [STT81]. This
algorithm is also known as the hierarchical or the Sugiyama approach.
There are several aesthetic criteria for determining how well a layout algorithm performs. These
criteria are based on well defined metrics [Pur02]. One aesthetic criterion found to have a big impact
on clarity is the number of edge crossings [Pur97].
The underlying phase of the cycle-breaking step is also known as the feedback arc set problem
[ELS93a].
Another approach to improve the connection of textual model and the synthesized graph is explained
in “Preserving Order during Crossing Minimization in Sugiyama Layouts” [DH21].

1.2 Outline

This thesis is structured as follows. Chapter 2 introduces fundamental knowledge, such as terminology
and the automatic layout algorithm, and the framework used in this thesis. In Chapter 3, the cycle
breaking phase of the algorithm is explained in detail. The aforementioned cycle breaking strategies
are introduced in this chapter as well. Chapter 4 shows the implementations produced for this
thesis. Chapter 5 presents the quantitative evaluation of the different strategies. This evaluation uses
automated graph analysis. In Chapter 6 the results of the survey are evaluated. In Chapter 5, provides
a conclusion, some points of criticism and points towards future work.

2

Chapter 2

Preliminaries

The focus of this chapter is to explain the basic methodologies, principles and frameworks used in this
thesis.
Implementations mentioned in Chapter 4 are integrated into the Kiel Integrated Environment for
Layout Eclipse Rich Client (KIELER)1 environment [FH10; HFS11]. Consequently, there will be a quick
overview of KIELER. After that, the graph terminology used in the following chapters and sections
will be given. The layered algorithm will be introduced. Finally, a quick introduction to SCCharts will
be given, as the graphs used in the evaluation in Chapters 5 and 6 are SCCharts.

2.1 KIELER

KIELER is a research project run by the Kiel University’s Real-Time and Embedded Systems group.
The goal of this project is to improve model-based complex system design. The layered algorithm
used for the synthesis of SCCharts is modified for this thesis. While KIELER supports a wider range
of graphical languages than SCCharts, this thesis will concentrate on SCCharts.
KIELER allows for on-the-fly modifications to the layout creation. The following sections introduce
two powerful assets of KIELER used for the analysis.

2.1.1 KiCodia

KiCodia is a full-featured command-line compiler and is part of the KIELER Compiler and Command-
Line Interfaces. It may be used to render graphs in various formats. These images are used in the
survey evaluated in Chapter 6. Additionally, with some modifications to it, it is able to export graphical
models in the elkg format, which is the required format for the graph analysis tool GrAna. The elkg
format is one of the formats for a Elkgraph, the others are elkt and json. These are convertible using a
conversion tool2.

2.1.2 GrAna

The integrated graph analysis tool GrAna is one of KIELER’s most valuable assets for this thesis. This
allows the batch analysis of graphs. An in-depth explanation of GrAna may be found in the bachelor’s
thesis by Martin Rieß [Rie10]. The analysis method receives the node containing the graph, as seen
in Listing 2.1. Two additional analysis criteria will be integrated into KIELER, these are covered in
Section 4.2 and 4.3. GrAna creates easy-to-use files in the CSV format, with the analysis criteria as
columns and a row for each graph analyzed. These are then evaluated using R in Chapter 5.

1www.rtsys.informatik.uni-kiel.de/en/research/kieler
2https://rtsys.informatik.uni-kiel.de/elklive/conversion.html

3

www.rtsys.informatik.uni-kiel.de/en/research/kieler
https://rtsys.informatik.uni-kiel.de/elklive/conversion.html

2. Preliminaries

1 @Override

2 public Object doAnalysis(final ElkNode

parentNode, final AnalysisContext context,

3 final IElkProgressMonitor progressMonitor)

{

4 [...] // Analysis

5 return resultObject;

6 }

Listing (2.1) Grana Analysis Method

1 globalResources

2 logs "input/path" filter "filename" recurse

3

4 globalOutputs

5 csv "output.csv"

6 execute all

7

8 job jobName

9 resources

10 ref logs

11 analyses

12 de.cau.cs.kieler.grana.edgeCrossings

13 output ref csv

Listing (2.2) Example .grana File

Figure 2.1. GrAna Analysis Structure and Example .grana File

2.2 Graph Definitions and Terminology

The majority of the definitions that follow are basic graph theory terminology. They are meant to
provide the foundational knowledge used in the following sections.
The following definitions introduce graphs and graph subtypes. Each definition in this chain, in
general, refines the previous graph and introduces new rules or restrictions. Some refinements require
the introduction of other terms. Therefore these terms are defined in this chain as well.

2.2.1 Definition (Graph). A graph G is a pair (V, E), where V is a finite set of nodes and a set of edges
E � {(u, v)|u, v P V} connecting the nodes.

2.2.2 Definition (Directed edges). Let u, v P V and e P E with e = (u, v). For directed edges the pair
(u, v) is ordered and indicates the direction of the edge, starting in u and ending in v. Conversely an
undirected edge does not have a direction, the pair has no ordering and (u, v) = (v, u).

2.2.3 Definition (Directed graph). A graph G = (V, E) is a called directed graph, if all edges e P E are
directed edges. A directed graph is also called digraph.

2.2.4 Definition (Path). Let G = (V, E) be a graph. A path of length n is defined as a tuple (v1, ..., vn)
with v1, ..., vn P V and it holds that @i, 0 i n : (vi, vi + 1) P E.

2.2.5 Definition (Cycle). A cycle is a path for which v1 = vn holds.

2.2.6 Definition (Acyclic graph). A directed graph G = (V, E) is called acyclic if the graph does not
contain any cycles.

2.2.7 Definition (Layered graph). A layered graph is defined by the triple G = (V, E, L), where V, E are
defined as in 2.2.1 and L is defined as a finite ordered set, which partitions V into non-empty layers.
For all v P V holds that v is assigned to exactly one layer.

4

2.2. Graph Definitions and Terminology

Figure 2.2. Simple Layered Graph This simple example shows a layered graph with 3 layers and 4 nodes.

Some general terms, which are not required for the previous chain, are required in the later sections
and chapters.

2.2.8 Definition (Out-degree). The out-degree of a node v is the number of edges that start in v.

The out-degree of “Node 1” in Figure 2.2 is 2.

2.2.9 Definition (In-degree). The in-degree of a node v is the number of edges that end in v.

The in-degree of “Node 3” in Figure 2.2 is 2.

2.2.10 Definition (Source). A node is called source, if its in-degree is 0.

“Node 1” of Figure 2.2 is a source.

2.2.11 Definition (Sink). A node is called sink, if its out-degree is 0.

“Node 3” of Figure 2.2 is a sink.

2.2.12 Definition (Hierarchical node). A node is called hierarchical, if it contains child nodes. In the
graphical representation, this is displayed by drawing child nodes inside of the hierarchical node,
which in this case, we call parent node.

2.2.13 Definition (Hierarchical depth). Let v P V be a hierarchical node in the graph G = (V, E). Let d
be the hierarchical depth of v. The children of v have the hierarchical depth of d + 1. The lowest depth is
0.

Graphs for the KLay layered algorithm are essentially hierarchically nested nodes.

2.2.14 Definition (Root node). The root node is a hierarchical node that contains every other node of
the graph.

As mentioned in the introduction, the underlying problem of the cycle breaking is known as the
feedback set problem:

2.2.15 Definition (Feedback set). Let F be a subset of nodes of a given cyclic graph G = (V, E). F is
called feedback set if reversing all edges contained in F results in G being acyclic.

5

2. Preliminaries

2.3 Layered Algorithm

The layered algorithm has been improved to allow for a wider range of graphs to be accepted, e.g.
cyclic graphs [SFH09; Sch11]. It has five different phases in the following order: Cycle Breaking, Layer
Assignment, Crossing Minimization, Node Placement, and Edge Routing.
As previously stated, the layered algorithm uses a very modular approach. The modularity of the
KLay layered algorithm is improved further, allowing for easy code replacement or the addition of
Intermediate Layout Processors [SSH14] before, between, or after any phase. For this thesis a new cycle
breaking strategy has been implemented, covered in Section 4.1.
The following sections provide a quick overview of the algorithm’s phases. The layout direction used
here is RIGHT, meaning that the layers are created from left to right.

2.3.1 Cycle Breaking

The Cycle Breaking phase, as previously stated, is added to allow for a wider range of input graphs
and is not part of the Sugiyama approach. This phase is introduced to enable cyclic graphs for the
layered approach, by removing cycles. As this phase is the main part for this thesis, it is explained in
more detail in Chapter 3.

2.3.2 Layer Assignment

The input to the Layer Assignment phase is an acyclic digraph, and the output is a layered digraph. The
Longest Path Layering method is a simple way to do this [SFH09].

1 Find length of longest path lp

2 Assign all sinks to layer Layer Llp

3 While there are vertices without layer assignment:

4 Find a vertex whose successors have been assigned to layers (lj, ..., lk)
5 Assign this vertex to layer min(li)-1

Listing 2.3. Longest Path Pseudo Code

There are other approaches implemented for layering in the KLay layered algorithm, for example,
the Network Simplex Layering [Döh10] or a layer assignment approach as described by Coffman and
Graham [CG72].

2.3.3 Crossing Minimization

This phase focuses on minimizing edge crossings in a layered graph. To achieve this, the node order
in each layer is altered using a barycenter approach. The algorithm for this phase is the Layer Sweep
Crossing Minimizer. Simplified, this works by sweeping the layers from both directions and adjusting
the node order, in the so-called free layer, if this results in fewer crossings. The ordering of the free
layer is determined by the barycenter of the connected nodes of the previous layer.

6

2.4. Sequentially Constructive State Charts

(a) Graph with avoidable crossings (b) Unnecessary crossing resolved

Figure 2.3. Crossing Minimization Visualization In this example the second layer is the free layer and the sweep
is from left to right. If the sweep would be from right to left, the first layer ordering would be adjusted.

2.3.4 Node Placement

This phase decides the final y-position of the node. The final position is given by two coordinate
values. For the x-position the Layer Assignment decided the layer, essentially the group of nodes
with the same x-position. Later, these layers are moved to create enough space for the edges to be
drawn, determining the final x-position. The y-position is constrained by the node order decided in
the previous step. There are two aesthetic goals for this phase. The first goal is to create compact
drawings, not using more space than necessary. The other goal is to reduce edge bends. An in-depth
explanation may be found in the master’s thesis by John Carstens [Car12] or in the work “Fast and
Simple Horizontal Coordinate Assignment” by Brandes et. al. [BK02].

2.3.5 Edge Routing

After the nodes are placed, the edges are drawn. There are different approaches for this phase, with
varying complexity and goals. The simplest way to route edges is the Polyline Edge Router, creating
sections of straight lines to create the edge.

2.3.6 Intermediate Processors

One of the main advantages of the KLay layered algorithm is the extreme modularity of the phases.
The phases only perform the core actions for their phase. Additional steps like the edge reversal, used
to reverse the edges to their correct direction, are applied in-between phases. The phases may indicate
that they depend on certain intermediate processors to be run before or after the phase.

2.4 Sequentially Constructive State Charts

This section covers the basics required to work with Sequentially Constructive State Charts (SCCharts).
SCCharts is a visual language [HDM+14b] that uses state chart notation. An example of the textual
representation and the synthesized graph are shown in Figure 2.4. The labels used here represent
nodes of this graph. Nodes might have child-nodes, which in the visual representation are drawn
inside of the parent node, also known as hierarchical nodes, seen in the “hierarchical_node”. The layout
algorithm is applied to each hierarchical depth independently. If a certain hierarchical depth contains
edges this depth requires exactly one initial node, marked with a bold outline, the two nodes named
“initial_node”. Edges are ordered by the textual representation of the graph, if the appropriate setting

7

2. Preliminaries

1 scchart Name_Of_The_SCChart {

2 bool condition, condition2

3

4 initial state initial_node

5 if condition go to hierarchical_node

6 if condition2 go to normal_node

7

8 state hierarchical_node {

9 initial state initial_node

10 if condition go to normal

11

12 state normal

13 if condition go to final_node

14

15 final state final_node

16 }

17

18 state normal_node

19 if condition go to initial_node

20 }

(a) Textual Representation

(b) Graphical Representation

Figure 2.4. SCChart Textual and Graphical Representation The textual representation of the SCChart is in the
sctx format. The keyword initial marks the node as an initial node for this layer. If a state has a block with curly
braces, this node is hierarchical and the states declared inside of this block are its children, as seen in the graphical
representation. Finally, connections between nodes are created with if-conditions and the go to keyword.

is used in KIELER. This not only increases the connection of the textual and visual representation,
also known as secondary notation [Pet95], the edge conditions are processed in the order given by the
textual representation. This inherited ordering of the graph is something worth preserving because it
increases the link between the textual and graphical representation. SCCharts have a lot more to offer,
but for this thesis, the information provided suffices.

8

Chapter 3

Cycle Breaking

In this chapter, the cycle-breaking phase is explained. Furthermore, there will be an introduction to
four different cycle-breaking strategies.
A reason to adjust the cycle breaking is that this step has a major influence on the layers that the
next step will form. This phase requires a digraph as input and returns an acyclic digraph. Although
removing cycles from a digraph does not appear to be difficult, finding minimal feedback sets has
been proven to be NP-complete [CTY07; GJ79]. As a result, the cycle-breaking strategies explained
in the following sections work with a heuristic approach. They do not seek a minimal feedback
set; instead, they reverse selected edges until there are no cycles left. These edges are remembered
and then reversed back to their original state after the layer assignment. Figure 3.1 shows a simple
cycle-breaking example.

Figure 3.1. Cycle Breaking Example The edge marked red is reversed to break the cycle. For this simplistic
example, any edge of the three might be reversed to break the cycle.

The different cycle-breaking strategies form feedback sets containing different edges and therefore
the nodes are assigned to different layers. One of the cycle-breaking strategies, the Model Order Cycle
Breaker (MO-CB), focuses on increasing the connection between textual and graphical representation
[DH21]. This is a big difference between this strategy and the remaining three strategies. For the
remaining strategies, the altering of the textual model for a graph has minimal, and seemingly arbitrary,
influence on the final layout result. This leaves few options for a graph creator to influence a layout.

3.1 Breadth-First Cycle Breaker

The Breadth-First Cycle Breaker (BF-CB) was implemented as a part of this thesis. The implementation is
shown in Section 4.1. As the name suggests, this strategy uses the breadth-first search approach for
graph traversal. The heuristic approach utilizes that the breadth-first search remembers previously
visited nodes. Edges are reversed if the end node is a node that was previously visited. As a result,
this strategy has the same approximate runtime as the breadth-first search, which is O(V + E). If this

9

3. Cycle Breaking

strategy and the MO-CB result in the same layout, it would imply that the mental model of the creator
was in the style of the breadth-first search, meaning that the mental model is derived from a node
with a layer of subsequent nodes, as represented with the colored boxes in Figure 3.2a.

3.2 Depth-First Cycle Breaker

The Depth-First Cycle Breaker (DF-CB), like the Breadth-First Cycle Breaker, is based on the eponymous
depth-first search algorithm. Again while checking the outgoing edges of the current node, if the
ending node reached by such an edge was already visited, this edge is reversed. Like the BF-CB
this also has the runtime approximation of the underlying concept with O(V + E). Likewise, if this
strategy and the MO-CB result in the same layout, it would imply that the textual ordering represents
a depth-first approach, meaning the mental model might by constructed of nodes with multiple
branches rooting in it. This would reflect the graph traversal of the depth-first search, as represented
with the colored boxes in Figure 3.2b.

(a) Breadth-First Mental Map (b) Depth-First Mental Map

Figure 3.2. Mental Map of a Graph, Breadth-First and Depth-First (a) represents the breadth-first visualization,
with groups of layers. (b) shows the depth-first visualization, having a root with branches. The blue box is the
first group, the red box the second group and the green box the last group. If these two graphs were SCCharts,
they would use the same textual input model, but use different cycle breaking strategies. The textual input for
this graph starts with the Root node and then the remaining states in alphanumeric ordering.

3.3 Greedy Cycle Breaker

The Greedy Cycle Breaker (G-CB) is implemented in KIELER using the approach described in “A fast
and effective heuristic for the feedback arc set problem.” [ELS93b], which has a runtime approximation
of O(E). The main objective of this strategy is to reduce backward edges. This algorithm uses a metric
called outflow, which is defined as follows.

3.3.1 Definition (Outflow). Let din be the in-degree of a node and let dout be the out-degree. The
outflow is defined as dout � din.

This metric is used to determine the most sensible incoming edges to reverse. For example,
reversing the outgoing edges of a source or the incoming edges of a sink should never be considered,
as these nodes will never induce a cycle. This approach creates a layering for the graph, where each
layer contains exactly one node. These layers are ordered by the nodes outflow, ordering the highest
outflow to the left and the lowest outflow to the right. Sources are put in the starting layers regardless
of their outflow. Sinks are put in the last layers regardless of their outflow. Edges that point to the left
are now reversed, therefore, breaking all cycles.

10

3.4. Model Order Cycle Breaker

3.4 Model Order Cycle Breaker

The Model Order Cycle Breaker (MO-CB) is designed to increase the correlation between textual and
graphical representation, as mentioned this is also known as secondary notation.
This cycle breaker works as follows. Each node is assigned an integer value (the model order) according
to the placement in the textual representation. If an edge starts in a node with a higher model order
than the node it ends in, it is reversed. However, if the designer chooses, there is the possibility to set
layer constraints for nodes. These overrule the model order created from the textual ordering. There
are five layer-constraint options to achieve the desired ordering, however, it suffices here to distinguish
between three: FIRST < NONE < LAST. Therefore, nodes with the constraint FIRST are to be placed
in the first possible layer. However, let us assume the nodes v, w have the layer constraint FIRST and
there is an edge e = (v, w). The node with the lower model order is now placed in a prior layer, and if
this node is w, e is reversed. This algorithm has a runtime approximation of O(V + E).
The Model Order Cycle Breaker, even without the constraints, is able to produce any desired and
possible set of edge reversals. This includes the sets that the other strategies produce. The layer a
node is assigned to is directly influenced by the edges that are reversed during cycle breaking, as
described in Section 2.3. Therefore, a construction method is given, with which it is possible to create
any possible valid edge reversal set by using the MO-CB and altering of the textual ordering. A valid
set of edges to reverse mainly is constraint by edges that cannot be reversed independently. Let a, b be
nodes in a graph and there are multiple edges that start in a and end in b. If any of these edges is
reversed, all of these edges have to be reversed.

Proof: Create any valid set of edges to reverse using the Model Order Cycle Breaker.
Hypothesis: Any valid set of edges to reverse may be created using the MO-CB.
Proof:
Let G = (V, E, L) be a layered graph. The order within a layer is neglected for this proof, as this is
decided by the crossing minimization phase. To simplify matters all edges in E that are backward
edges are reversed.
Constructing the textual order:
Recall L is a ordered set containing (ordered) sets of nodes. Let |L| = n be the count of layers and
l0...ln, li P L be the layers.
Let M be an empty list of nodes.
Append all nodes, contained in layers li : 0 = i = n, to M. The layers are appended according to
their order in L. Now that all nodes are in M, it may be used to create the textual order. Order the
textual representation according to the nodes position in M.
Let mj P M be the node at position j. Using the MO-CB, all edges e for which the following applies are
reversed: ma, mb P M : e = (ma, mb)^ a ¡ b. This results in a graph G1 = (V1, E1)
It is to be shown that the edges in E1 have the same direction as the edges in E.
Both G and G1 only have forward edges, therefore all edges in E start in a layer with a smaller index
and end in a layer with a bigger index. All edges in E1 start in a node that has a smaller index in
M than the ending node. As the order of M is given by the layers of G, it is certain that a node in a
previous layer compared to another node in a later layer also has a smaller index in M.

A visualization of this construction is shown in Figure 3.3.

11

3. Cycle Breaking

Figure 3.3. Visualization of Model Order Construction Extracting a Model Order that will result in the same
Backward Edges using the Model Order Cycle Breaker. The dashed blue lines show the extraction of the model
order into the list M. The dashed green line shows the link of position in M and the ordering in the textual
definition. The dotted lines represent the edge directions that the Model Order Cycle Breaker would create.

12

Chapter 4

Implementation

This chapter is separated into two sections. The first section will present the implementation of the
Breadth-First Cycle Breaker (BF-CB).
Certain types of graphical layouts inherit certain features, which might result in additional aesthetic
criteria. Two of those features applicable for layered graphs are presented in the second section. These
criteria are part of the quantitative evaluation in Chapter 5.

4.1 Breadth-First Cycle Breaker

As mentioned previously, the BF-CB utilizes the graph traversal of the breadth-first search. This is
shown in Listing 4.1.

1 private void bfs(final LNode n) {

2 if (visited[n.id]) {

3 return;

4 }

5 visited[n.id] = true;

6

7 for (LEdge out : n.getOutgoingEdges()) {

8 if (out.isSelfLoop()) {

9 continue;

10 }

11 LNode target = out.getTarget().getNode();

12 if (visited[target.id]) {

13 edgesToBeReversed.add(out);

14 } else {

15 bfsQueue.add(target);

16 }

17 }

Listing 4.1. Breadth-First Cycle Breaker The bfs method is run for each node in a given queue, the bfsQueue.

Starting the breadth-first cycle breaking from each source simultaneously or performing it se-
quentially produces varying results, as seen in Figure 4.2. However, SCCharts and most other graphs
contain at most one source per hierarchical depth, the initial node for this graph. If there would be
more than one source node or if the source node would not be the initial node, these nodes would not
be reachable. Therefore, syntactically correct SCCharts are unaffected by this difference. The sequential
approach was chosen here.

13

4. Implementation

1 for (LNode source : sources) {

2 bfs(source);

3 }

4 bfsLoop();

(a) Simultaneous Breadth-First Search.

1 for (LNode source : sources) {

2 bfsQueue.add(source);

3 bfsLoop();

4 }

(b) Sequential Breadth-First Search.

Figure 4.1. Different Approaches to the Breadth-First Cycle Breaking
(a) shows the simultaneous approach, which starts by enqueuing all source nodes, before starting the breadth-first
search. (b) shows the sequential approach, which runs the breadth-first search for each source sequentially.

(a) Simultaneous Breadth-First Cycle Breaking
(b) Sequential Breadth-First Cycle Breaking

Figure 4.2. Visual representation of Sequential and Simultaneous BF-CB
For this example a syntactically wrong graph is used to show the differences in (a) the simultaneous approach or
(b) the sequential approach.

4.2 Backward Edge Analysis

The first additional aesthetic criterion is the number of backward edges. The layered algorithm has a
layout direction, let the direction be right for this example. A backward edge in this example would be
an edge where the start point would be to the right of the endpoint, meaning the starting node is in a
layer with a higher id than the node where the edge ends.
The analysis, which is presented in Listing 4.2, computes the sum of the backward edges for each
hierarchical depth, starting with the highest depth. There are some validity checks, as this analysis
does not deal with some types of edges, e.g. hyperedges (edges with multiple starting or ending
nodes).
This criterion is not only an aesthetic criterion, as it may also be used to determine the count of edge
reversals in the cycle-breaking stage. Finding a significant and reliably better cycle breaker concerning
edge reversals would indicate that this strategy might be a better heuristic for the feedback set problem.

14

4.3. Layer Count Analysis

1 public int evalBackwardsEdges(final ElkNode node) {

2 int backwardsEdges = 0;

3 if (node.isHierarchical()) {

4 for (ElkNode child : node.getChildren()) {

5 int backwardsEdgesInChild = evalBackwardsEdges(child);

6 switch (backwardsEdgesInChild) {

7 [...] // Checks for validity

8 default:

9 backwardsEdges += backwardsEdgesInChild;

10 }

11

12 }

13 }

14 for (ElkEdge edge : node.getOutgoingEdges()) {

15 [...] // Checks for validity

16 ElkNode src = (ElkNode) edge.getSources().get(0);

17 ElkNode target = (ElkNode) edge.getTargets().get(0);

18 [...] // Check if LAYERING_LAYER_ID is set

19 if (src.getProperty(LayeredOptions.LAYERING_LAYER_ID) > target.getProperty(LayeredOptions.

LAYERING_LAYER_ID)) {

20 backwardsEdges++;

21 }

22 }

23 return backwardsEdges;

24 }

Listing 4.2. Backward Edge Analysis This analysis uses the layer id assigned to the nodes. For every edge in the
graph it is evaluated if the layer id of the starting node is bigger than the layer id of the ending node. If this is the
case, this edge is a backward edge.

4.3 Layer Count Analysis

Another criterion for layered graphs is the number of layers created for the graph layout. For this
analysis, layers are counted for each hierarchical depth individually and summed up. For this, we find
the highest layer id in each hierarchical node. This analysis is similar to the area analysis. A lower layer
count means that the layers have more nodes in them. This in turn means that the graph has higher
compactness. The implementation is shown in Listing 4.3.

15

4. Implementation

1 public int evalLayerHierachical(final ElkNode node) {

2 int maxLayerID = 0;

3 Queue<ElkNode> hierarchicalChildren = new LinkedList<ElkNode>();

4

5 if (node.isHierarchical()) {

6 for (ElkNode child : node.getChildren()) {

7 if (child.isHierarchical()) {

8 hierarchicalChildren.add(child);

9 }

10 if(maxLayerID < child.getProperty(LayeredOptions.LAYERING_LAYER_ID)) {

11 maxLayerID = child.getProperty(LayeredOptions.LAYERING_LAYER_ID);

12 }

13 }

14 while (!hierarchicalChildren.isEmpty()) {

15 ElkNode child = hierarchicalChildren.poll();

16 int sumDeeperLayers = evalLayerHeiracical(child);

17 switch (sumDeeperLayers) {

18 [...] // Validity Checks

19 default:

20 maxLayerID += sumDeeperLayers;

21 }

22

23 }

24 }

25 return maxLayerID;

26 }

Listing 4.3. Layer Count Analyses
The analysis starts by calling this method with the root of the graph as the argument. This method recursively
sums the layercount for each hierachical depth.

16

Chapter 5

Quantitative Evaluation

In this chapter, the different aesthetic criteria evaluated will be introduced. Following that, there
will be a brief introduction to the dataset. The evaluation methodology will be explained. Following
that the results of the analysis will be provided, for which the R-project1 was used. The quantitative
evaluation results are presented, starting in Section 5.4. The first analysis presented is the Node Count
Analysis, as this yields the same results for all cycle breaking strategies. This analysis shows the variety
of the dataset. The remaining quantitative analysis will be presented in alphabetical order. At last, the
strategies are compared to the MO-CB. A conclusion will be drawn in Chapter 7. Some noteworthy
critics for this analysis will also be presented.

5.1 Aesthetic Criteria

The following table presents the analysis names, a short explanation, and the return values of the
analysis. The results are presented in the later sections of this chapter.

Table 5.1. Aesthetic Criteria Names and Explanations

KIELER Name Explanation
Area This analysis evaluates the area consumption of a layout, which is the same as the

size of the root node. Returns width, height and their product.
Backwards Edges Counts edges that go against the layout direction. Indicates the edges reversed

during cycle breaking, as described in Section 4.2.
Edge Crossings Counts the edge crossings in a graph.

Edge Length Measures the length of edges. Returns minimum, maximum and average edge
length.

Layer Count Counts the layers of the layout, as described in Section 4.3.
Node Count Counts all nodes in the graph, including the root.

5.2 The Dataset

The dataset contains 419 SCCharts. Most of these are models created as part of lectures by the Real-
Time and Embedded Systems group. These graphs contain as little as three nodes and up to around
300 Nodes. There are three outliers with 2300, 7000, and 29000 nodes. There are two things to know
about graphs with really small or high node counts. Graphs with very few nodes are usually too
small to result in different layout results based on cycle breaking strategy. Graphs with high node
count are often combinations of different subgraphs. The differences in these graphs in most cases
are only in small subgraphs. There are also graphs that do not contain any cycles and are, therefore,

1https://www.r-project.org

17

https://www.r-project.org

5. Quantitative Evaluation

of no use for this analysis. Therefore, for the analysis presented in this chapter, graphs that achieve
identical layouts for all cycle-breaking strategies are cut from the dataset. This leaves the dataset with
265 graphs, for which at least one strategy creates a different result. Of these 265 graphs, 47 are unique
for each cycle-breaking strategy. These are the most interesting graphs for the survey evaluated in
Chapter 6. The current default cycle breaking strategy is the Greedy Cycle Breaker and most SCChart
models have been created using this strategy.

5.3 Evaluation Methodology

There are three evaluation methods used for this chapter. This section will briefly introduce them.

5.3.1 Normalization

As the dataset varies a lot in graph size, the number of edges, and node count it is sensible to normalize
the results. The differences found in smaller graphs are otherwise outweighed and overshadowed by
the differences in larger graphs. This is especially noticeable for a metric like the edge crossing count,
as there are a lot of graphs that do not have any edge crossings. A graphical representation like a
box-plot would only show an indistinguishable line close to the x-axis.
For each graph G up to four different layouts are created, using the different cycle breaking strategies.
Let v1, v2, v3, v4 be the values returned by a given analysis for the different strategies. Normalizing vi
in this case would mean: norm(vi) =

vi
mean(v1, v2, v3, v4)

Most graphical representations presented in this section use this method. Raw data may be found in
Appendix A.
A normalized representation no longer shows the direct values for a specific metric but rather how it
compares to an average baseline of the four strategies, meaning the value 1 on the y-axis is the average
for this metric taken from all strategies. A value greater than this means that this sample performed
worse than the average and a value below means it performed better.
Some metrics might evaluate to zero, e.g. edge crossings. There are two conditions to differentiate here.
If at least one cycle breaking strategy (A) resulted in a value >0, then 0 means that this strategy (B) was
able to remove, e.g. edge crossings, while the other strategy required them. Mathematically this would
mean that strategy B is infinitely better than the other strategy, which is accurate for a singular metric.
The other situation comes with a problem. This problem arises if all strategies evaluate to zero, which
is the case for the majority of edge crossing samples (59%). Just keeping the zero for all strategies
would not be accurate, as this would mean all of them are performing infinitely better than their
combined average. This is not accurate, as all of them perform just like the average, without e.g. edge
crossings. There are two approaches to deal with this problem. Firstly, it would be possible to use the
following approach for normalization:

norm(vi) =


vi

mean(v1, v2, v3, v4)
, mean(v1, v2, v3, v4) ¡ 0

1 , otherwise

Using this approach these cases would be counted as if they all perform like the average, which would
be accurate. Consequently, the number of ones in the result would increase greatly, removing the
ability to see how often strategies perform on average if they produce different results.
The second approach is filtering the dataset, removing the examples where all strategies evaluate

18

5.4. Node Count Analysis

to zero. This feels less intrusive for the final result, as important data is not overshadowed by these,
mostly uninteresting, cases. As this problem only exists for edge crossings, this analysis will be done
on the smaller dataset, as detailed further in Section 5.7. As to not lose data, the number of cases
where this problem arises is given in the analysis.

5.3.2 Kruskal-Wallis Test

In addition to the graphs presented for each analysis, the results are evaluated with the Kruskal-Wallis
test [KW52]. The Kruskal-Wallis test by ranks is a non-parametric2 method for testing whether samples
originate from distibutions with the same median. It is used for comparing two or more independent
samples of equal or different sample sizes. It extends the Mann–Whitney U test 3, which is used
for comparing only two groups. It is used to compare the four datasets, to determine if there is a
statistically significant difference in these samples, starting with the null hypothesis: There is no
difference in the samples. If the p-value is smaller than 0.05, the test indicates there is a significant
difference for this metric.

5.3.3 Willcoxon Test

If the Kruskal-Wallis test indicates significant differences in a metric, the pairwise Willcoxon signed
rank test [Wil45] is used as a post hoc analysis test. The Willcoxon test may be used to analyze
paired data, which is the case for this dataset. To account for multiple comparisons when comparing
multiple sets of pairwise data, the Bonferroni correction [DWC+13] of the p-values was used. This
means that the significance between a set of data is given if the p-value is smaller than the p-value of
the Kruskal-Wallis test divided by the number of comparing tests (in this case six). The results of this
test do not return a relation, which is better or worse, they simply indicate a difference.

5.4 Node Count Analysis

Figure 5.1 shows the node count analysis of the dataset as a violin plot. The plot’s y-axis is limited to
roughly 300 nodes. Therefore, five graphs are not included in Figure 5.1. These graphs have a node
count of 29085, 6979, 2308 and 625. The median node count of the entire dataset is 17 and the mean is
182. Not including the outliers the mean drops to 46.27 and the median remains at 17 nodes. These
outliers deform the statistical graphs to a point where information extraction would not be possible.
Therefore, the statistical graph of this analysis does not contain these graphs. As the remaining graphs
utilize normalization they are unaffected by this problem. The raw data is presented in the appendix.

5.5 Area Analysis

KIELER allows for easy adjustments regarding the spacing between graph components. An example
setting is the node-node spacing which determines the minimum distance between two nodes. The
default settings are used for this analysis. Figure 5.2 presents area consumption using normalized
values. Area consumption is closely related to node count. Usually, the higher the node count the
more space is required. Therefore, not normalizing would void the results of smaller graphs. 1.0 on
the y-axis is the average space consumption of each layout for this graph. The data represented in

2https://en.wikipedia.org/wiki/Nonparametric_statistics
3https://en.wikipedia.org/wiki/Mann-Whitney_U_test

19

https://en.wikipedia.org/wiki/Nonparametric_statistics
https://en.wikipedia.org/wiki/Mann-Whitney_U_test

5. Quantitative Evaluation

Figure 5.1. Node Count Analysis
This graphs shows the node count distribution in the dataset, excluding the four highest values.

Figure 5.2. Normalized Area Consumption
Comparison of the normalized space consumption per cycle breaking strategy.

20

5.6. Backward Edge Analysis

Figure 5.3. Normalized Backward Edge Analysis
Comparison of the normalized backward edge analysis per cycle breaking strategy.

Table 5.2 are the normalized key values of the analysis. Additional data, for this and all other metrics,
may be found in Appendix A.

Table 5.2. Raw Statistical Data for Normalized Area Consumption

BREADTH FIRST DEPTH FIRST GREEDY MODEL ORDER
median 0.990 0.996 1.012 0.990
mean 0.987 1.008 1.015 0.989
min 0.751 0.825 0.706 0.680
max 1.215 1.330 1.379 1.176

The data shows there is very little variance in area difference, which is supported by the Kruskal-
Wallis test, with a p-value of >0.98.

5.6 Backward Edge Analysis

Backward edges hinder the readability of a graph, as they break the linearity of the layout direction.
Therefore, the fewer backward edges the better. Additionally, fewer backward edges directly correlate
with a smaller feedback set. Consequently, this metric also evaluates the heuristic approach of the
cycle-breaking strategy. Figure 5.3 presents the normalized backward edge count.
The Kruskal-Wallis test indicates there is a clear difference between at least one set of samples, with a
p-value of 3.14 � 10�13. The Willcoxon test fails to show significant differences in the DF-CB, G-CB, and
MO-CB. However, the BF-CB scores significantly worse than the others.
This means that there is no significantly and reliably better heuristic for the minimal feedback set,
for this dataset. Further raw data, as well as the results of the Willcoxon test, may be found in the
appendix in Section A.2. As previously mentioned, problems could arise if a metric could return zero
for all strategies. This is possible for this metric as well, however, the entire dataset does not have an
example where this is the case. Therefore, this problem has no impact on this analysis.

21

5. Quantitative Evaluation

Figure 5.4. Normalized Edge Crossing Analysis
Comparison of the normalized edge crossing analysis per cycle breaking strategy.

5.7 Edge Crossing Analysis

As previously mentioned the edge crossing count is a criterion with a very high impact on clarity. Edge
crossings have been minimized by the corresponding phase of the layered algorithm. The Kruskal-
Wallis test fails to indicate a significant difference with a p-value of 0.302. However, the majority
of graphs (159 of 265) do not induce any edge crossings for any strategy. Therefore this analysis is
evaluated again for the remaining 106 graphs, for which at least one strategy contains crossings. The
Kruskal-Wallis test now has a p-value of 0.092, again failing to indicate that there is a significant
difference. Figure 5.4 shows the normalized evaluation of the smaller dataset. Despite the results of the
Kruskal-Wallis test, Figure 5.4 shows that the DF-CB and the MO-CB perform better than the BF-CB
and the G-CB. It additionally shows that there are samples for every strategy, where they perform
much worse than the average for this sample. There is no single best strategy for all graphs, however,
on average the DF-CB performs the best. Raw data may be found in Section A.3.

5.8 Edge Length Analysis

The KIELER Edge Length Analysis evaluates the input for three values minimum, average, and maximum
edge length. Figure 5.5 presents the normalized results of the average edge length analysis. The raw
data is given in Section A.4. Shorter edges tend to be easier to follow, therefore, the shorter the average
edge length the better. The Kruskal-Wallis test indicates a difference in the datasets with a p-value of
0.022. The Willcoxon fails to show differences in the DF-CB and MO-CB.
Figure 5.5 shows the best performing strategy is the BF-CB, followed by equally good DF-CB and
MO-CB. The G-CB performs the worst.
As previously mentioned, edge length might be influenced by settings in KIELER, e.g. the spacing
between layers.

22

5.9. Layer Count Analysis

Figure 5.5. Normalized Edge Length Analysis
Comparison of the normalized average edge length analysis per cycle breaking strategy.

5.9 Layer Count Analysis

The layer count is another metric for the layered algorithm. Fewer layers mean that the created layers
have a higher node count. For most SCCharts this is desirable, as this means compact drawings. How-
ever for some models and other graph types layers with a too many nodes may seem overwhelming.
There are some assumptions one could think of regarding the layer count, given by the nature of some
cycle-breaking strategies. The nature of the Breadth First approach should lead to a small number of
layers, while the nature of the Depth First approach should lead to a higher layer count.
The Kruskal-Wallis test fails to indicate are significant differences between the strategies, with a p-value
of 0.41. Figure 5.6 shows the normalized results of the layer count analysis. It also shows that the
DF-CB rarely performs better than the average, and on average performs worse.

Figure 5.6. Normalized Layer Count Analysis
Comparison of the normalized layer count per cycle breaking strategy.

23

5. Quantitative Evaluation

Figure 5.7. Strategy Comparison for Identical Layouts only with the MO-CB The first three bars show how often
each strategy creates identical layouts only with the MO-CB. The final three Bars show how often the different
strategies produce identical layouts with the MO-CB and one other strategy.

5.10 Model Order

As previously hinted, the question arose if the modeler has a mental model of the layout that is
represented in the textual representation. For this, the model order cycle breaker will be compared to
the other strategies.
Figure 5.7 shows how often a cycle-breaking strategy created an identical layout only with the MO-CB.
The last three bars show how often two strategies produce the same result as the MO-CB. As expected
the G-CB shows little to no correlation between the layout it creates and what the MO-CB creates from
the textual ordering. The G-CB is not designed to show this behavior. The BF-CB creates very few
identical layouts with the MO-CB as well. Both the BF-CB and G-CB, for the majority of the examples,
only create identical results with the MO-CB if they also create identical results with the DF-CB. The
DF-CB builds identical results as the MO-CB in over 61% of the graphs. As a reminder, this does not
include graphs where all the cycle breakers resulted in the same graph. Building this statistic across
the entire dataset results in identical graphs in over 75.8% of the graphs.
As previously mentioned, this could mean that a model creator thinks of the graphs in depth-first
search nature.

5.11 Combined Analyses

This section was planned to present findings like “Strategy A performs better for smaller but worse for
larger graphs than strategy B.” However, the results for such analysis were not providing any reliable
or consistent results. As SCCharts allows for multiple edges from one starting node to the same end
node, neither the node count nor the edge count is sensible for this kind of analysis. An additional
analysis that might be of interest for this would be an analysis that counts distinct node connections
and evaluates the previous analyses results against this. A reason for the lack of any correlation might
also be that an arbitrary increase in node count does not automatically result in larger graphs or in
graphs with more edge crossings.

24

5.12. Unique Layout Analysis

5.12 Unique Layout Analysis

As mentioned, graphs that produced identical layouts for all strategies were cut from the dataset.
While this eliminated over 50% of the dataset, this was done to emphasize the differences produced
by the different strategies. However, as Section 5.10 showed and as mentioned in the introduction to
the dataset, there are still many examples where at least two strategies create identical layouts. Each
analysis shown in this chapter was additionally run for the 47 graphs that result in unique layouts for
all strategies. As these results have very little power due to their small sample size and their results
are very similar to the results already presented in this chapter, these results will not be shown here.

25

Chapter 6

Empirical Study

This chapter presents the structure and analysis of the aforementioned empirical study. The survey is
split into three parts, starting with some questions about the participants, followed by three detailed
graph examination tasks and five short question rounds. The following sections present these stages
and present an exemplary question structure. Finally, evaluations about the entire set of responses will
be given. For this section a lot of data is available. Each question type will be evaluated in depth at
least once. For this, a statistical graph is given. Additional raw data and some graphs may be found in
Appendix B.

6.1 The Survey and Participants

The survey was created with the tool LimeSurvey1, which was provided by Kiel University. It contained
35 questions with an average time to completion of 30 minutes. Of the 33 participants, 27 finished the
survey. The remaining 6 partial submissions will be disregarded for the analysis. Of the 27 participants
17 work or study in the IT sector. 14 participants answered that they previously worked with statecharts.
8 participants worked with the layered layout approach prior to this survey. The final question about
the participants was how confident they feel in the topic of automated graph layout, using a five-level
Likert scale. The results are shown in Table 6.1. After the questions about the participants, some
terminology was introduced. As this survey was also targeted towards participants without any prior
knowledge, most terms were simplified.

Table 6.1. Results of the participants confidence in the topic of automated layout creation.

No confidence Not confident Neither nor Confident Very confident
Answers 9 4 6 4 4

6.2 Question Structure

The graphs used in this survey are graphs from the dataset presented in the previous chapter. However,
since the research goal is to differentiate between the different cycle-breaking strategies, only graphs
with a different layout for each strategy were used. All options for a graph were presented at the same
time in a grid. The position of the strategies in this grid was randomized. Figure 1.1 shows how the
options were presented in the survey. To compare the graphs, the participants were asked to order the
options. The survey contained an optional text response field for each graph.

1https://www.limesurvey.org/de/

27

https://www.limesurvey.org/de/

6. Empirical Study

6.3 Introductory Graph Questions

The first three graphs were used to introduce the topic. For these graphs, the following five questions
were asked.

� First Impression - Take a quick look (�30s) at the different layout options and rank them according
to your preference, starting with the best.

� Readability I - Do you feel like the states are too crowded or too far away from each other?

� Readability II - Evaluate for each graph: Edges are easy to follow?

� State Grouping - Take a look at the node labels. Do you feel like any layout option creates groups
of nodes that are thematically related?

� Final Impression - After working with this graph repeat the evaluation of your preference. Starting
with the best.

The first and last questions were ordering questions. The questions concerning readability were five-
level Likert scales. For Readability I the scale had the following labels: 1 - Too crowded , 2 - Crowded ,
3 - Good, 4 - A little too far, 5 - Too far. For Readability II the scale was labeled as follows: 1 - Strongly
disagree, 2 - Disagree , 3 - Neither agree nor disagree, 4 - Agree, 5 - Strongly agree. The question about
thematically related grouping was a multiple-choice question. For the ordering a performance metric
may be defined as follows:

6.3.1 Definition (Ordering Performance). Let ri, 1 ¤ i ¤ 4 be the amount of votes a certain strategy s
has received in rank i, with 1 representing the best rank and 4 the worst. Therefore, the average (mean)
performance of a strategy is given by

performance(s) = Σ4
i=1

ri � i
total votes

Even though there was no hard limit on how much time participants could spend on a question,
after a certain amount of time (30 seconds for the first and last question, 1 minute for the remaining
questions) a message would display that the intended time had passed. This time limit was meant
to help with the survey completion rate, because this should decrease the time to get more progress,
which was shown at all times.

6.4 Graph 1

The first graph is shown in Figure 1.1. The examples differ in the number of backward edges and the
size. This graph was chosen because of its small size and its lack of complexity. Figure 6.1a shows the
responses to the first question (ordering the options) and Figure 6.1b shows the responses to the final
question of Graph 1. The performance taken from the first impression shows that the G-CB performs
the best with an average performance of 1.96. This also performs the best concerning backward edges,
with only one backward edge (together with the DF-CB). The smallest layout, which was created by the
MO-CB, performs the worst with an average of 2.96. Figure 6.1b shows how the ordering has changed
after asking further questions. The performance values of this ordering are much closer together. The
G-CB still performs the best, however, the difference to the remaining strategies is much smaller. Of
the 27 participants, only nine ordered the graphs the same way as before. The results of Question 3
directly oppose an objective metric. The smallest option appeared too crowded for the majority of the

28

6.5. Graph 2

(a) First Impression Rating.

(b) Final Impression Rating.

Figure 6.1. Comparison of the Initial Rating and the Final Rating

participants, scoring an average of 2.07 on the Likert scale.

6.5 Graph 2

The examples presented in Figure 6.2 were one of the starting points for this thesis. The BF-CB option
of this example was highly debated in the Real-Time and Embedded Systems group. This option
introduces four additional edge crossings compared to the remaining options, however, one could
argue that the BF-CB creates thematic node groups. For some, this is an acceptable trade-off. For
others, this breaks principle too much and the introduced edge crossings are unacceptable. The survey
results mirror this big disagreement for this example. The votes are almost entirely split 50-50 between
rank one and rank four, as seen in Figure 6.3. The final impression may be found in the appendix in
Figure B.1. This disagreement may be found in both groups of participants, the group working in the
IT sector and the ones who are not. Actually, there is little to no difference between these two groups
for this example. The BF-CB performed the worst for both Readability I and Readability II, with 2.37
and 2.59 respectively. 18 participants answered that the BF-CB created thematic groups and 11 of those
chose the BF-CB as first, confirming that for some this break in principle is justified by introducing

29

6. Empirical Study

Figure 6.2. Second Graph used in the Survey. Top Left - BF-CB, Top Right - MO-CB, Bottom Left - DF-CB, Bottom
Right - G-CB

thematic groups. The best performing option objectively and subjectively is the G-CB.

Figure 6.3. First Impression Ordering of Graph 2

6.6 Graph 3

The third graph used in the survey was chosen to introduce bigger graphs with higher complexity.
This example is too big to be presented well here, therefore the individual options are shown in the
appendix in Section B.2. Many free text responses mention that it is aesthetically pleasing to have error
states on the far right, which is something the G-CB and the DF-CB will do automatically with all sinks.
Additionally, the text responses showed that the initial state should be in the first layer, as this was a
big criticism for the G-CB. The ordering results presented in Figure 6.4 are very different compared to
those of Graph 1 and Graph 2. While the choices for the first two graphs seemed somewhat evenly

30

6.7. Evaluation of the Remaining Graphs and Comparison with the First Three Graphs

Figure 6.4. Final Impression Ordering of Graph 3

distributed the opposite is true for the third graph. For this graph, there is a clearly winning and
a clearly losing graph regarding performance. With an average of 1.6 the DF-CB scores best with a
performance difference of over 0.5 points ahead of the BF-CB with 2.25 points. Even larger is the gap
between the G-CB, which performs worst, with an average of 3.59 points, and the MO-CB with 2.48
points. This is in line with the objective evaluation of this graph. The DF-CB scores best for backward
edge count and for edge crossings, while the G-CB scores by far worst for edge crossings. The MO-CB
and the BF-CB score fairly similar. The Readability I & II answers reflect the ordering presented in
Figure 6.4 as well, as the G-CB scores worst in both. This graph introduces a feature for the G-CB,
which most participants seem to dislike. This feature is called dangling nodes and defined as follows:

6.6.1 Definition (Dangling Nodes). A node is called dangling node if a node, which is not the a source,
is placed in a layer without any incoming edges from a previous layer (a layer with a lower layer id).

Even though the free text responses do not mention this for this example it is reasonable to assume
that this also had a negative impact on this graph. In the later graphs this is mentioned frequently in
the free text responses.

6.7 Evaluation of the Remaining Graphs and Comparison with the
First Three Graphs

The following sections will present the results for Graphs 4 to 8. For these graphs, only the first
question (First Impression) of the five mentioned questions was asked. This was done to evaluate a
larger number of models without prolonging the survey too much. The assumption was taken that the
participants would incorporate the mentioned criteria after using them three times. Additionally, for
all the graphs a free text response was optional.
To compare the following graphs with the first graphs a decision has to be made to either take the
First Impression or the Last Impression of the first three graphs. On average 18 participants changed
their ordering for the first three graphs, however, there were no clear trends in this reordering. For

31

6. Empirical Study

Figure 6.5. Fourth Graph used in the Survey Top Left - MO-CB, Top Right - G-CB, Bottom Left - DF-CB, Bottom
Right - BF-CB

analysis across the entire dataset, the Final Impression results of the first three graphs will be used.
The following graph orderings are similar to the ordering of Graph 3 in their decisiveness.

6.8 Graph 4

The fourth example, which is presented in Figure 6.5, does not have any edge crossings and all have
the same backward edge count. The options differentiate mainly in edge length. Additionally, two
layouts (G-CB and BF-CB) create one layer less than the other two. The ranking, which may be found
in Figure B.6 in the appendix, shows that the G-CB and the BF-CB perform worse despite creating
fewer layers. As seen in Figure 6.5 the G-CB has a node dangling node “Interval3”. This is something
many free text responses give as a reason for their low rating for this option.
Generally, a consistent direction is something that most participants feel is important. The DF-CB and
the MO-CB perform very similarly, an indication that pure edge length has little impact on the final
decision.

6.9 Graph 5

The fifth graph introduces a new layout direction, from top to bottom. The options differentiate a lot
for this graph. As this graph is rather large the options are, together with the ordering, presented in
the appendix in Section B.4. Graph 6 shown in Figure 6.6 also has the DOWN layout direction. The
G-CB creates a small layout, however, it creates more edge crossings than the rest. The DF-CB creates
a tall layout with high symmetry in some parts of the graph. The result of the MO-CB is similar to
the result of the G-CB in size, however, it produces only one edge crossing like the DF-CB and it
has higher symmetry. The BF-CB creates a similar result to the DF-CB, however, it creates two edge
crossings and the textual responses mainly differentiate these two because of the lack of symmetry in
the BF-CB. For this example again the G-CB performs significantly worse than the remaining strategies,
with 80% of the participants selecting this strategy in the last place. This is the highest percentage for
any graph and any position. It achieves a performance of 3.74 points. The G-CB in creates multiple
dangling nodes for this example. Interestingly, despite dangling node (“empty”) that the MO-CB has
it still performs better than the BF-CB, with a respective performance of 2.04 points and 2.52 points.
The DF-CB performs the best with a performance of 1.70 points.

32

6.10. Graph 6

Figure 6.6. Graph 6 of the Survey The second graph in the survey that uses the DOWN layout direction. First -
BF-CB, Second - DF-CB, Third - G-CB, Fourth - MO-CB

6.10 Graph 6

The sixth graph shown in Figure 6.6 is, as mentioned, the second graph with the DOWN layout
direction. The G-CB and the MO-CB create layouts without any edge crossings, while the layout
created by the DF-CB has one edge crossing and the BF-CB creates two edge crossings. The worst
performing strategy is the BF-CB with an average of 3.4 points. The best performing option the DF-CB,
despite creating an unnecessary edge crossing. The edge crossings in this graph are, however, at a
great angle and therefore do not interrupt the flow too much. With a performance of 1.81 points, this
option is roughly 0.4 points ahead of the MO-CB with 2.19 points. The G-CB has a performance of 2.5.
Something the free-text responses mention again is that the G-CB has a dangling node in the same
layer as the initial node (the node “opening_Sec2”), which is something most participants seem to
dislike. The ordering may be found in Figure B.10

6.11 Graph 7

The seventh graph used in the survey, which is shown in Figure 6.7, emphasizes symmetry. The
option with the highest symmetry, the MO-CB, clearly wins this ranking with a performance of 1.59
points. The textual responses clearly indicate that the thematic groups created in this option had a big
impact. This is confirmed by taking a look at the BF-CB. This shows a little less symmetry and has a
performance of 2.00 points. This option is lacking the thematic group in the third layer, however, this
option only has four edge crossings instead of seven, which the MO-CB has. For this example, the
additional edge crossings are a reasonable trade-off for higher symmetry and better thematic grouping,
as the angle of these crossings is big enough to reliably follow the flow. The DF-CB shows very little
symmetry, however with a performance of 2.8 points it still performs significantly better than the G-CB
with 3.52 points. The G-CB again has additional nodes in the same layer as the initial node.

33

6. Empirical Study

Figure 6.7. Graph 7 of the Survey Top Left - DF-CB, Top Right - MO-CB, Bottom Left - BF-CB, Bottom Right -
G-CB

6.12 Graph 8

The last graph of the survey has an unusually high edge count compared to the node count. This is
because for most nodes multiple connections to the same node exist. This graph is too big to be shown
in a grid, therefore the individual options, together with the ordering, may be found in Section B.6.
The G-CB is quite different from the other strategies, as it does not strictly has a flow from left to right.
It again creates a dangling node (“evalDigit”), while the others do not. This option again performs
the worst with a performance of 3.37 points. The remaining options mainly differ in the placement
of the final node (“stop”) and the error node. The BF-CB has these nodes in the middle of the graph
and ranks third with a performance of 2.85 points. The MO-CB places the error node in the last layer
and has a total of 13 edge crossings. It performs second best with a value of 2.00 points. The DF-CB
performs the best with an average of 1.7 points. This option has the error state in the layer before the
final node. Textual responses show that it is a big benefit if an error state is somewhat segregated from
the remaining graph.

6.13 Analysis for All Graphs

In this section, some analysis for all graphs used in this survey will be given, first combining all
graph orderings, without looking at the quantitative statistics of the different graphs. This unbiased
combination ranking is shown in Figure 6.8. This shows that the average performance of the MO-CB is
the best, with a performance value of 2.11 points. This is very closely followed by the DF-CB with
an average performance of 2.17 points, which is a difference smaller than 3%. This small difference
does not indicate anything in a sample size as small as this survey provides. Therefore, the MO-CB
and the DF-CB share the first place. This is followed by the BF-CB with a performance of 2.62 points.
And finally, the G-CB with an average performance of 3.11 points. Figure 6.8 shows the results for
simply adding all ranking values per graph. This representation still holds information about the ratio
for each individual graph, Figure 6.9 simplifies this information. For this graph, a ranking has been
created from the average performance values. This second representation shows how often which
strategy ended up in what rank, ignoring the magnitude between ranks. It shows that the MO-CB,
which in this case has an average performance of 1.875 points, was never the worst-performing graph.
Also the BF-CB, with an average performance of 2.75 points, despite never creating the best option only

34

6.13. Analysis for All Graphs

Figure 6.8. Unbiased Ranking of All Graphs Ignoring the quantitative differences and adding the ranking votes
of each option per graph.

Figure 6.9. Strategy Rank per Graph Taking the average performance and creating a ranking from this per graph.
The height difference is because the G-CB and MO-CB perform identical in Graph 2.

once created the worst option, leading to third place. The DF-CB shows mixed results with an average
of 2.125 points. It creates the highest count of best-performing options, however, it also creates some
worst-performing options. Interesting are the results for the current default cycle-breaking strategy,
the G-CB. This has the worst average performance of 3.125 points and it creates the worst options
for the survey in the majority of the graphs. Interestingly, the first places it creates are the first two
graphs, which are rather small. For the larger graphs, this strategy does not seem to create visually
pleasing results. Additionally, one of the first places of the G-CB is shared with the option created
by the MO-CB. This double first place is the reason for the height difference in the bars, as for this
example, two first places were assigned and no second place.

35

6. Empirical Study

Table 6.2. Importance of the Introduced Criteria

Very Unimpor-
tant

Unimportant Neither
nor

Important Very Important

Clear Edges 1 0 3 15 8
Crowdedness 2 4 8 8 5
Thematic Grouping 2 5 1 11 8

6.14 Importance Ranking of the Criteria

The final two questions concerned the decision driving criteria as perceived by the participants. Firstly
the participants were asked to rate how important the criteria mentioned in the first three graphs were
to them, using a five-level Likert scale. The results to this question are presented in Table 6.2. These
results show that while clear edges are the most valued metric for the majority of people, it is also
important that the nodes that have a similar theme should be grouped. This could be a reason why
the MO-CB performed as well as it did in this survey and why the G-CB performed as badly as it did.
Finally, the last question of the survey was a free text question asking for additional criteria, which
influenced the decision-making of the participant. The following list represents the top answers to this
question, ordered by the count of answers mentioning them:

� Initial Node in the First Layer and Final Node(s) in the Last Layer (7 Responses)

� Symmetry (5 Responses)

� Edge Crossings (4 Responses)

� Understandable Node Labels (3 Responses)

36

Chapter 7

Conclusion

This chapter presents some conclusions from the previous two chapters. First, however, some points of
criticism concerning the evaluation will be given.

7.1 Points of Criticism

For quantitative analysis to be meaningful, the dataset has to be very large. As previously stated, of
the 419 SCCharts of the original dataset, only 265 are useful for the quantitative analysis. Especially
as these graphs are vary so much in size it would be nice to rerun this analysis once an even larger
dataset is available. The same is true for the survey results. With 27 submissions the data is very
limited. A larger test audience would be great, however, it is very difficult to have a balance in this
group between people with and without prior knowledge in automatic graph layout. People with
prior knowledge are hard to find, and for people without prior knowledge the interest is very limited.
As stated previously, of the graphs in the dataset, only 47 graphs resulted in unique layouts for each
strategy. For most of these graphs, the different options have multiple differences, making it very hard
to distinguish what was the driving factor in the decision. The free text responses helped a lot for this.
The biggest point of criticism, however, concerns the creation of the graphs. They have been created
using the Greedy Cycle Breaker. This could lead to a better performance of the G-CB. A dataset with a
different default strategy or even in a dataset with evenly distributed used strategies the results might
be very different. There currently is no convenient option to change the cycle-breaking strategy in
KIELER.

7.2 Conclusion of the Comparison

The first strategy discussed here is the Greedy Cycle Breaker, as this is currently the default strategy
for SCCharts. The G-CB is designed to create minimal backward edges, which it does reliably, as the
quantitative analysis shows. However, this comes with some drawbacks, for the remaining quantitative
metrics, which showed some significant differences, this strategy performs poorly. On average it
creates more edge crossings than the MO-CB and the DF-CB, and on average it creates the longest
edges. The last major point of criticism is the total lack of secondary notation, as the edge reversal
seems rather arbitrary to a human. The model order of the textual input has no reliable influence on
the final layout. It performed significantly worse in the survey than the remaining options. This is
especially interesting regarding the criticism brought forth in the previous section. Additionally, this
strategy created layouts where nodes are placed in a layer without a connection to any previous layer,
the survey results show that this has a really big influence on the clarity of a layout.
Following that, the next strategy discussed is the Breadth-First Cycle Breaker. The only benefit of
this strategy is compactness. It creates graphs with fewer layers and shorter edges. However, this
compactness comes at a cost, resulting in more backward edges and more edge crossings. This strategy

37

7. Conclusion

might be best described as mediocre. It never creates the best and only once creates the worst option
in the survey. For most participants, compactness seems to have little effect on the decision, if it was
mentioned in the responses, it mostly was because the graph felt too crowded. However, there might
be some use-cases where space consumption is critical. The option for the second graph of the survey,
which sparked the idea for this strategy, may be created with the MO-CB and the correct ordering.
Next up are the Depth-First Cycle Breaker together with the Model Order Cycle Breaker. The DF-CB
and the MO-CB perform very well in the quantitative analysis, in most cases performing better than
the other options. As previously evaluated, these two strategies create identical layouts in the majority
of the graphs for this dataset. Again this could hint towards the hypothesis that a model creator thinks
about the graph in a depth-first way. These two strategies additionally perform very well in the survey.
It is again worth noting that the MO-CB never created the worst option in the survey. The major benefit
of the MO-CB over the DF-CB is the direct influence the creator can have on the layout. This of course
enables the creation of thematic groups of nodes.
Finally, the results of the quantitative analysis and the results of the survey show that the Greedy Cycle
Breaker may not be a good default option. While it is nice to decrease backward edges, these did not
seem to have such a big impact on the decision. The evaluation data presents a clear direction towards
choosing the Model Order Cycle Breaker as the default option for SCCharts.

7.3 Future Work

As mentioned, it would be interesting to repeat this analysis with a larger dataset, or even with other
models and not only SCCharts.
It would be nice to have clear differences in the different options. This could then be used to create a
ranking of the different criteria with a higher accuracy.
As the conclusion here presents some clear advantages for the Model Order Cycle Breaker, it would
be very interesting to see if this strategy would perform even better, if the graphs would have been
created using the MO-CB.
If there was an easy way to set the cycle breaking strategy in KIELER, an additional analysis would
be how often a model creator actively chose a certain strategy, which is not the default. It was not
possible to see if a certain strategy performs better for models with certain features like a higher node
count, as mentioned in Section 5.11. It would be interesting to test if there are different features that
show such a performance difference. Features that come to mind are connectedness of the graph or
the (average) number of edges per node.

38

Appendix A

Additional Data for the Objective Analysis

In this chapter of the appendix raw data of some quantitative analysis criteria is given.

A.1 Area Raw Data

Table A.1. Raw Statistical Data for Area Consumption

BREADTH FIRST DEPTH FIRST GREEDY MODEL ORDER
median 345011 351554.2 351554.2 349111.3
mean 23691232 23330748 34013900 24231488
min 46533.6 46533.6 48164.03 46533.6
max 4728596748 4612521029 7431536979 4877245845

A.2 Backwards Edge Raw Data

Table A.2. Raw Statistical Data for Backwards Edge Analysis

BREADTH FIRST DEPTH FIRST GREEDY MODEL ORDER
median 5 4 4 4
mean 7.392308 4.342308 4.111538 5.026923
min 0 0 0 0
max 42 20 25 22

Table A.3. Raw Statistical Data for Normalized Backwards Edge Analysis

BREADTH FIRST DEPTH FIRST GREEDY MODEL ORDER
median 1.176471 0.9230769 0.8888889 1
mean 1.35234 0.84074 0.8015928 1.005328
min 0 0 0 0
max 4 1.238095 1.6 4

39

A. Additional Data for the Objective Analysis

Table A.4. Evaluation Results for the Willcoxon Test for the Backwards Edge Analysis with a Kruskal-Wallis
p-value of 3.14 � 10�13, adjusted with the Bonferroni correction. Significant differences are marked with green
cells. The value does not express any relation for better or worse, it just indicates a significant difference.

BREADTH FIRST DEPTH FIRST GREEDY
DEPTH FIRST 2
 10�16 - -

GREEDY 2
 10�16 0.61 -
MODEL ORDER 4.1
 10�16 1.1
 10�12 2.5
 10�10

A.3 Edge Crossing Raw Data

Table A.5. Raw Statistical Data for Edge Crossing Analysis

BREADTH FIRST DEPTH FIRST GREEDY MODEL ORDER
median 0 0 0 0
mean 17.70189 8.173585 13.22264 9.864151
min 0 0 0 0
max 2541 682 1793 1012

Table A.6. Raw Statistical Data for Normalized Edge Crossing Analysis

BREADTH FIRST DEPTH FIRST GREEDY MODEL ORDER
median 0 0 0 0
mean 0.5752295 0.2679906 0.4305159 0.326264
min 0 0 0 0
max 4 4 4 4

A.4 Edge Length Raw Data

Table A.7. Raw Statistical Data for Average Edge Length Analysis

BREADTH FIRST DEPTH FIRST GREEDY MODEL ORDER
median 127.7435 148.5468 155.4871 143.7422
mean 198.1576 211.5645 221.7893 207.9055
min 45.5601 45.5601 54.82275 45.5601
max 2834.549 2834.549 2834.549 2835.743

Table A.8. Raw Statistical Data for Normalized Average Edge Length Analysis

BREADTH FIRST DEPTH FIRST GREEDY MODEL ORDER
median 0.9520167 0.9883364 1.058654 0.9832882
mean 0.9371895 1.005848 1.073359 0.9836027
min 0.5302196 0.6795208 0.7935748 0.7150965
max 1.381669 1.48605 1.594989 1.320479

40

A.4. Edge Length Raw Data

Table A.9. Evaluation Results for the Willcoxon Test for the Average Edge Length Analysis with a Kruskal-Wallis
p-value of 0.22, adjusted with the Bonferroni correction. Significant differences are marked with green cells. The
value does not express any relation for better or worse, it just indicates a significant difference.

BREADTH FIRST DEPTH FIRST GREEDY
DEPTH FIRST 6.8
 10�10 - -

GREEDY 2
 10�16 3.7
 10�8 -
MODEL ORDER 6.2
 10�6 0.028 2.8
 10�11

41

Appendix B

Additional Data for the Survey

In this chapter some additional data of the survey is presented. This includes graphs that are too big
to include in the main part of this thesis.

B.1 Graph 2

Figure B.1. Final Impressions of the second Graph

43

B. Additional Data for the Survey

B.2 Graph 3

Figure B.2. Graph 3 BF-CB

Figure B.3. Graph 3 DF-CB

44

B.2. Graph 3

Figure B.4. Graph 3 G-CB

Figure B.5. Graph 3 MO-CB

45

B. Additional Data for the Survey

B.3 Graph 4

Figure B.6. Graph 4 Impression Ranking

46

B.4. Graph 5

B.4 Graph 5

(a) Graph 5 BF-CB (b) Graph 5 DF-CB

47

B. Additional Data for the Survey

(a) Graph 5 G-CB (b) Graph 5 MO-CB

Figure B.9. Graph 5 Impression Ranking

48

B.5. Graph 6

B.5 Graph 6

Figure B.10. Graph 6 Impression Ranking.

49

B. Additional Data for the Survey

B.6 Graph 8

Figure B.11. Graph 8 BF-CB

Figure B.12. Graph 8 DF-CB

50

B.6. Graph 8

Figure B.13. Graph 8 G-CB

Figure B.14. Graph 8 MO-CB

51

B. Additional Data for the Survey

Figure B.15. Graph 8 Impression Ranking

52

Bibliography

[BK02] Ulrik Brandes and Boris Köpf. “Fast and simple horizontal coordinate assignment”.
In: Proceedings of the 9th International Symposium on Graph Drawing (GD ’01). Ed. by
Petra Mutzel, Michael Jünger, and Sebastian Leipert. Vol. 2265. LNCS. Springer, 2002,
pp. 33–36. isbn: 978-3-540-43309-5. doi: 10.1007/3-540-45848-4.

[Car12] John Julian Carstens. “Node and label placement in a layered layout algorithm”. https:
//rtsys.informatik.uni-kiel.de/~biblio/downloads/theses/jjc-mt.pdf. Master’s
thesis. Kiel University, Department of Computer Science, Sept. 2012.

[CG72] Edward G. Coffman. and Ronald L. Graham. “Optimal scheduling for two-processor
systems”. In: Acta Informatica 1.3 (1972), pp. 200–213. issn: 0001-5903. doi: 10.1007/
BF00288685.

[CTY07] Pierre Charbit, Stéphan Thomassé, and Anders Yeo. “The minimum feedback arc set
problem is np-hard for tournaments”. In: Combinatorics, Probability & Computing 16.1
(2007), pp. 1–4. doi: 10.1017/S0963548306007887.

[DH21] Sören Domrös and Reinhard von Hanxleden. Preserving order during crossing minimiza-
tion in sugiyama layouts. Technical Report 2103. ISSN 2192-6247. Christian-Albrechts-
Universität zu Kiel, Department of Computer Science, Nov. 2021.

[Döh10] Philipp Döhring. “Algorithmen zur layerzuweisung”. Bachelor thesis. Kiel University,
Department of Computer Science, Sept. 2010.

[DWC+13] Werner Dubitzky, Olaf Wolkenhauer, Kwang-Hyun Cho, and Hiroki Yokota, eds. Ency-
clopedia of systems biology. New York, NY and s.l.: Springer New York, 2013. isbn: 978-1-
4419-9862-0. doi: 10.1007/978-1-4419-9863-7. url: http://dx.doi.org/10.1007/978-1-
4419-9863-7.

[ELS93a] Peter Eades, Xuemin Lin, and W. F. Smyth. “A fast and effective heuristic for the
feedback arc set problem”. In: Information Processing Letters 47.6 (1993), pp. 319–323. issn:
00200190. doi: 10.1016/0020-0190(93)90079-o.

[ELS93b] Peter Eades, Xuemin Lin, and W. F. Smyth. “A fast and effective heuristic for the
feedback arc set problem”. In: Information Processing Letters 47.6 (1993), pp. 319–323. issn:
0020-0190. doi: 10.1016/0020-0190(93)90079-O.

[FH10] Hauke Fuhrmann and Reinhard von Hanxleden. “On the pragmatics of model-based
design”. In: Proceedings of the 15th Monterey Workshop 2008 on the Foundations of Computer
Software. Future Trends and Techniques for Development, Revised Selected Papers. Vol. 6028.
LNCS. Budapest, Hungary: Springer, 2010, pp. 116–140. doi: 10.1007/978-3-642-12566-
9.

[GJ79] Michael R. Garey and David S. Johnson. Computers and intractibility: a guide to the theory
of NP-completeness. New York: W. H. Freeman & Co, 1979.

53

https://doi.org/10.1007/3-540-45848-4
https://rtsys.informatik.uni-kiel.de/~biblio/downloads/theses/jjc-mt.pdf
https://rtsys.informatik.uni-kiel.de/~biblio/downloads/theses/jjc-mt.pdf
https://doi.org/10.1007/BF00288685
https://doi.org/10.1007/BF00288685
https://doi.org/10.1017/S0963548306007887
https://doi.org/10.1007/978-1-4419-9863-7
http://dx.doi.org/10.1007/978-1-4419-9863-7
http://dx.doi.org/10.1007/978-1-4419-9863-7
https://doi.org/10.1016/0020-0190(93)90079-o
https://doi.org/10.1016/0020-0190(93)90079-O
https://doi.org/10.1007/978-3-642-12566-9
https://doi.org/10.1007/978-3-642-12566-9

Bibliography

[HDM+14a] Reinhard von Hanxleden, Björn Duderstadt, Christian Motika, Steven Smyth, Michael
Mendler, Joaquín Aguado, Stephen Mercer, and Owen O’Brien. “SCCharts: Sequentially
Constructive Statecharts for safety-critical applications”. In: Proc. ACM SIGPLAN Con-
ference on Programming Language Design and Implementation (PLDI ’14). Edinburgh, UK:
ACM, June 2014, pp. 372–383.

[HDM+14b] Reinhard von Hanxleden, Björn Duderstadt, Christian Motika, Steven Smyth, Michael
Mendler, Joaquín Aguado, Stephen Mercer, and Owen O’Brien. “Sccharts: sequentially
constructive statecharts for safety-critical applications”. In: ACM SIGPLAN Notices 49.6
(2014), pp. 372–383. issn: 0362-1340. doi: 10.1145/2666356.2594310.

[HFS11] Reinhard von Hanxleden, Hauke Fuhrmann, and Miro Spönemann. “KIELER—The
KIEL Integrated Environment for Layout Eclipse Rich Client”. In: Proceedings of the
Design, Automation and Test in Europe University Booth (DATE ’11). Grenoble, France, Mar.
2011.

[KW52] William H. Kruskal and W. Allen Wallis. “Use of ranks in one-criterion variance analysis”.
In: Journal of the American Statistical Association 47.260 (1952), pp. 583–621. issn: 0162-1459.
doi: 10.1080/01621459.1952.10483441.

[Pet95] Marian Petre. “Why looking isn’t always seeing: Readership skills and graphical pro-
gramming”. In: Communications of the ACM 38.6 (June 1995), pp. 33–44.

[Pur02] Helen C. Purchase. “Metrics for graph drawing aesthetics”. In: Journal of Visual Languages
and Computing 13.5 (2002), pp. 501–516.

[Pur97] Helen C. Purchase. “Which aesthetic has the greatest effect on human understanding?”
In: Proceedings of the 5th International Symposium on Graph Drawing (GD ’97). Vol. 1353.
LNCS. Springer, 1997, pp. 248–261.

[Rie10] Martin Rieß. “A graph editor for algorithm engineering”. Bachelor Thesis. Kiel Univer-
sity, Department of Computer Science, Sept. 2010.

[Sch11] Christoph Daniel Schulze. “Optimizing automatic layout for data flow diagrams”.
Diploma Thesis. Kiel University, Department of Computer Science, July 2011.

[SFH09] Miro Spönemann, Hauke Fuhrmann, and Reinhard von Hanxleden. Automatic layout of
data flow diagrams in KIELER and Ptolemy II. Technical Report 0914. Christian-Albrechts-
Universität zu Kiel, Department of Computer Science, July 2009.

[SSH14] Christoph Daniel Schulze, Miro Spönemann, and Reinhard von Hanxleden. “Drawing
layered graphs with port constraints”. In: Journal of Visual Languages and Computing,
Special Issue on Diagram Aesthetics and Layout 25.2 (2014), pp. 89–106. issn: 1045-926X.
doi: 10.1016/j.jvlc.2013.11.005.

[STT81] Kozo Sugiyama, Shojiro Tagawa, and Mitsuhiko Toda. “Methods for visual under-
standing of hierarchical system structures”. In: IEEE Transactions on Systems, Man and
Cybernetics 11.2 (Feb. 1981), pp. 109–125.

[Wil45] Frank Wilcoxon. “Individual comparisons by ranking methods”. In: Biometrics Bulletin
1.6 (1945), p. 80. issn: 00994987. doi: 10.2307/3001968.

54

https://doi.org/10.1145/2666356.2594310
https://doi.org/10.1080/01621459.1952.10483441
https://doi.org/10.1016/j.jvlc.2013.11.005
https://doi.org/10.2307/3001968

	Abbreviations
	Introduction
	Related Work
	Outline

	Preliminaries
	KIELER
	KiCodia
	GrAna

	Graph Definitions and Terminology
	Layered Algorithm
	Cycle Breaking
	Layer Assignment
	Crossing Minimization
	Node Placement
	Edge Routing
	Intermediate Processors

	Sequentially Constructive State Charts

	Cycle Breaking
	Breadth-First Cycle Breaker
	Depth-First Cycle Breaker
	Greedy Cycle Breaker
	Model Order Cycle Breaker

	Implementation
	Breadth-First Cycle Breaker
	Backward Edge Analysis
	Layer Count Analysis

	Quantitative Evaluation
	Aesthetic Criteria
	The Dataset
	Evaluation Methodology
	Normalization
	Kruskal-Wallis Test
	Willcoxon Test

	Node Count Analysis
	Area Analysis
	Backward Edge Analysis
	Edge Crossing Analysis
	Edge Length Analysis
	Layer Count Analysis
	Model Order
	Combined Analyses
	Unique Layout Analysis

	Empirical Study
	The Survey and Participants
	Question Structure
	Introductory Graph Questions
	Graph 1
	Graph 2
	Graph 3
	Evaluation of the Remaining Graphs and Comparison with the First Three Graphs
	Graph 4
	Graph 5
	Graph 6
	Graph 7
	Graph 8
	Analysis for All Graphs
	Importance Ranking of the Criteria

	Conclusion
	Points of Criticism
	Conclusion of the Comparison
	Future Work

	Additional Data for the Objective Analysis
	Area Raw Data
	Backwards Edge Raw Data
	Edge Crossing Raw Data
	Edge Length Raw Data

	Additional Data for the Survey
	Graph 2
	Graph 3
	Graph 4
	Graph 5
	Graph 6
	Graph 8

	Bibliography

