
Group Model Order for
Sugiyama Layouts

Max Philipp Wilhelm Riepe

Masters’s Thesis
March 2024

Prof. Dr. Reinhard von Hanxleden
Real-Time and Embedded Systems
Department of Computer Science

Kiel University

Advised by
Sören Domrös

Selbstständigkeitserklärung

Hiermit erkläre ich, dass ich die vorliegende Arbeit selbstständig verfasst und keine anderen als die
angegebenen Quellen und Hilfsmittel verwendet habe.

Kiel,

iii

Abstract

Automatic visualization of graphs for modeling languages is very beneficial for the development
time, as it eliminates the task of manually creating clear and readable layouts which can be tedious.
Especially models in development that are evolving and changing requiring constant new layout
creation.

The Sugiyama algorithm is a commonly used layout algorithm for synthesized graphs from a textual
modeling language. Recent research on the layered algorithm shows that the order of declaration in
the textual model has an intention that may be used to improve the layout creation. However, for
modeling languages with multiple node types which are grouped by their type in the textual model,
the use of the raw textual order has problems. Connections between different node types cannot
be evaluated based on the textual order, as the strict order induced by the textual grouping creates
artifacts that go against common graph drawing practices, e.g., reducing the number of edge crossings.

This thesis aims to find a way of incorporating the initial order for languages with restrictions
on the order of component declarations, by grouping node types. For this multiple approaches for
the first and third phase of the layered approach have been implemented and evaluated. This thesis
proposes Group Model Order sensitive strategies, an approach to evaluate nodes from different groups
of the textual order. Furthermore, one aspect of working with hierarchical graphs is the ability to work
with certain sections or subgraphs by expanding and collapsing nodes. An approach is suggested that
improves the stability of the layout for these actions.

v

Acknowledgements

First, I want to thank Prof. Dr. Reinhard von Hanxleden for the opportunity to write this thesis and
his feedback. I want to express gratitude to Sören Domrös, who advised this thesis, and for the
generous and swift feedback he provided, not only for this thesis but also for my Bachelor’s thesis. The
Real-Time and Embedded Systems group provided feedback to advance this thesis in an atmosphere I
will miss after completing it. Finally, I want to thank my family and friends for supporting me.

vi

Contents

Abbreviations xiii

1 Introduction 1
1.1 Input Variants . 2
1.2 Related Work . 4
1.3 Control . 4

1.3.1 Model Order . 5
1.4 Group Model Order . 6
1.5 Outline . 7

2 Preliminaries 9
2.1 Terminology . 9
2.2 Multi-Edge Connections . 10
2.3 Layout Quality Metrics . 11
2.4 Eclipse Layout Kernel . 12
2.5 Kiel Integrated Environment for Layout Eclipse Rich Client 13
2.6 Lingua Franca . 13
2.7 Layered Algorithm . 16
2.8 Detecting Cycles using Tarjan’s algorithm . 16
2.9 Stability . 16

3 Cycle Breaking 21
3.1 Fundamentals . 21
3.2 Greedy Cycle Breaker . 22
3.3 Breadth-First Cycle Breaker . 24

3.3.1 Sources and Sinks . 24
3.3.2 Cycle Detection Pre-processing . 24
3.3.3 Edge- or Node-Order . 25
3.3.4 Complexity . 26

3.4 Depth-First Cycle Breaker . 27
3.5 Model Order Cycle Breaker . 27
3.6 Strict Type Cycle Breaker . 28
3.7 Model Order Look Ahead Cycle Breaker . 29

3.7.1 Reducing Edge Reversals . 29
3.7.2 Preferred Type For Order . 29
3.7.3 Skip Sequential Edges . 30
3.7.4 Fallback Edges . 31
3.7.5 Complexity . 32

3.8 Strongly Connected Component Cycle Breaker . 32
3.8.1 Node Selection . 32
3.8.2 Complexity . 34

vii

Contents

4 Crossing Minimization 35
4.1 Layer Sweep Crossing Minimizer . 36
4.2 Model Order In Crossing Minimization . 36
4.3 Enforcing Node Order . 37
4.4 Introducing New Behavior For Node Types . 38

4.4.1 Model Order For One Type . 38
4.4.2 Barycenter For Different Types . 39

4.5 Enforcing Port Order . 40

5 Analysis 43
5.1 Evaluation Basics . 43

5.1.1 The Dataset(s) . 43
5.1.2 Data Normalization . 44
5.1.3 Kruskal-Wallis Test . 44
5.1.4 Willcoxon Test . 44
5.1.5 Node / Edge Count Analysis . 45
5.1.6 Multi-Edge Connections . 46

5.2 Cycle Breaking Evaluation . 47
5.2.1 Matching Layouts . 47
5.2.2 Backward Edge Analysis . 49
5.2.3 Edge Crossing analysis . 49
5.2.4 Aspect ratio Analysis . 50
5.2.5 Execution Time Analysis . 52

5.3 Crossing Minimization Evaluation . 54
5.3.1 Matching Layouts . 54
5.3.2 Edge Crossing Analysis . 55
5.3.3 Aspect-ratio . 56

5.4 Feedback . 57

6 Conclusion 61
6.1 Summary . 61
6.2 Evaluation Revision . 62
6.3 Future Work . 62

6.3.1 Wireless Connections . 62

A Appendix 65
A.1 Tarjan’s Algorithm . 65
A.2 Edge Count Analysis . 66

Bibliography 67

viii

List of Figures

1.1 Large scale mecanim model. 1
1.2 The force and layered layout algorithms. 2
1.3 Drag And Drop (D&D) editor for graphs vs synthesizing a textual mode. 3
1.4 Comparing different layouts of the same graph with a minor adjustment. 4
1.5 Example for secondary notation. 6
1.6 Prioritizing edge order. 6
1.7 Limitations of strictly using model order. 7

2.1 A Lingua Franca model where every connection is a multi-edge connection. 11
2.2 SCCharts used in a empirical study in [Rie22]. 12
2.3 Structuring of layout algorithms in Eclipse Layout Kernel (ELK). 13
2.4 Example Lingua Franca model and diagram. 14
2.5 General structure of a Lingua Franca (LF) file. 15
2.6 All ELK Layered processors, and the different options for the main layout phases [DHS+23]. 17
2.7 Enforcing port order and increasing stability. 19

3.1 Two different options of cycle breaking, with highlighting for the reversed edges and
their starting nodes and annotation of the model order of the actions. 21

3.2 Limitations of the standard Greedy Cycle Breaker (G-CB). 23
3.3 Limitations of the G-CB with a fixed group order. 23
3.4 Difference of filtering edge reversals for sink and source connections. 24
3.5 Improving the layout by filtering edge reversals for connections that are not part of a

(same) cycle. 25
3.6 Comparison of layouts that prefer node or edge order using the Breadth-First Cycle

Breaker (BF-CB). 26
3.7 A small model that shows problems for the Model Order Cycle Breaker (MO-CB) 28
3.8 Issues of the Strict Type Cycle Breaker (ST-CB) for languages like LF. 29
3.9 Layouts using the basic Model Order Look Ahead Cycle Breaker (MOLA-CB) or using the

skip sequential edges option or with a Tarjan’s algorithm pre-processor. 31
3.10 Reversal conflicts for the MOLA-CB. 31
3.11 Illustration of the Strongly Connected Component Cycle Breaker (SCC-CB), using mini-

mum model order selection. 33
3.12 Illustration of the SCC-CB, using maximum model order selection. 33
3.13 Illustration of the SCC-CB, using connectivity model order selection. 34

4.1 Illustration of crossing minimization. 35
4.2 Reason with for fixing node order based on model order and the problems this brings. 38
4.3 Enforcing node order for one specific node type. 39
4.4 Using model order between different node-types or only for nodes of the same node-type. 39
4.5 Reducing edge crossings and fixing model order violations for reactions by modifying

the fixed port order. 40
4.6 Using a fixed port order without node order constraints to reduce crossings. 41

ix

List of Figures

5.1 Node count distribution and statistics for the entire dataset. 45
5.2 Comparison of the node count in the different datasets. 46
5.3 Comparison of the multi-edge connection percentage in the different datasets. 47
5.4 Comparing how often different cycle breaking strategies create the same layout for all

datasets. 48
5.5 Analysis data for the backwards edge analysis . 49
5.6 Normalized data for edge crossings. 50
5.8 Different Integrated Development Environment (IDE) layouts and their estimated aspect

ratio for the diagram view. 51
5.7 Relation of the drawing area aspect ratio and the graphs aspect ratio. 51
5.9 Results of the aspect ratio analysis. 52
5.10 Visualization of execution times capped at 0.001s. 53
5.11 Differences induced by the crossing minimization option, for different cycle breaking

strategies. 54
5.12 Differences induced by the crossing minimization option, when using different cycle

breaking strategies. 55
5.13 Normalized edge crossings, grouped by the crossing minimization options. 55
5.14 Affects of changes to crossing minimization for different cycle breakers. 56
5.15 Aspect ratio comparison for different combinations of cycle breaking and crossing

minimization . 57
5.16 Diagram options in the VSCode extension. 58

6.1 Wireless Broadcasters and Wireless Recievers in Origami Studio1. 63

A.1 Comparison of the edge count in the different datasets. 66

x

List of Tables

2.1 List of metrics used in the analysis. 11
2.2 Input and output of the layered algorithm phases. 16

5.1 The datasets used in the analysis. 43
5.2 System specifications for the execution time analysis. 53
5.3 Exact values for key statistics of the execution time values in seconds. 53

xi

Abbreviations

GUI Graphical User Interface

FSM Finite State Machine

D&D Drag And Drop

WYSIWYG What You See Is What You Get

ELK Eclipse Layout Kernel

ONO Obviously Non-Optimal

NONO Nothing is Obviously Non-Optimal

OYES Obvious Yet Easily Superior

SCChart Sequentially Constructive Statechart

LF Lingua Franca

KIELER Kiel Integrated Environment for Layout Eclipse Richt Client

SCC Strongly Connected Components

IDE Integrated Development Environment

VS Code Visual Studio Code

WCET Worst-Case Execution Time

G-CB Greedy Cycle Breaker

BF-CB Breadth-First Cycle Breaker

BFS Breadth-First Search

DF-CB Depth-First Cycle Breaker

DFS Depth-First Search

MO-CB Model Order Cycle Breaker

ST-CB Strict Type Cycle Breaker

MOLA-CB Model Order Look Ahead Cycle Breaker

SCC-CB Strongly Connected Component Cycle Breaker

CSV Comma-Separated Value

SCC_CON-CB Strongly Connected Components Connectivity Cycle Breaker

SCC_NODE-CB Strongly Connected Components Node Type Cycle Breaker

CPU Central Processing Unit

RAM Random-Access Memory

xiii

Chapter 1

Introduction

Two formats exist for presenting information on paper, textually or with diagrams. While textual
specifications have the benefit of precision, this precision with words can be very long, especially
when describing graphical information like a GUI or complex system designs. Showing dependencies
or connections is much easier in a graphical way. Graphical abstraction of information can reduce the
required time to understand the information. Comparing large datasets of raw data in a table format
is disadvantageous compared to data in a diagram.

One fundamental concept in computer science are Finite State Machines (FSMs). A FSM consists of
nodes (or states) and edges (or transitions) that connect different nodes. These can be used to simulate
behavior based on the current state, with conditional transitions to change the behavior of the system.
A large field in computer science that utilizes these state machines heavily is game development, where
FSMs can be used to modify the animation of a character based on the current scenario (i.e., falling,
running, idle) or to change the behavior of a character in general (i.e., chasing, running away, fighting).
One of the most significant problems when working with large state machines is the creation of a
readable layout. Figure 1.11 shows a state machine for animating a character in the game development
engine Unity2. The model uses the Drag And Drop (D&D) editor for animation states contained in Unity,
called mecanim3.

Figure 1.1. Large scale Mecanim model for animating the states of a character.

1https://www.reddit.com/r/Unity3D/comments/7bvy81/using_mecanim_as_a_general_purpose_state_machine/
2https://unity.com/
3https://docs.unity3d.com/462/Documentation/Manual/MecanimAnimationSystem.html

1

https://www.reddit.com/r/Unity3D/comments/7bvy81/using_mecanim_as_a_general_purpose_state_machine/
https://unity.com/
https://docs.unity3d.com/462/Documentation/Manual/MecanimAnimationSystem.html

1. Introduction

This editor lacks an automatic layout functionality. As a result, many similar models may be found
online, with frequent questions in the Unity community on reddit4 how to properly create layouts in
this editor.

Creating a clear layout is tedious and time consuming [Pet95]. The task of creating a good layout
is especially frustrating for FSMs that are still in development and, as a result, require changes and
possibly a significant restructuring of the layout. The solution for this problem are automatic layout
algorithms. Similar to the editor in Unity, the game engine Unreal Engine5 has a low code option for
developing games by connecting behavior nodes called Blueprints6. This editor had the same problem
of missing an automatic layout functionality. However, a solution for this is available as a plugin7.

Figure 1.2 shows the two different layout algorithms. The force-based layout algorithm [FR91] and
the layered algorithm [STT81]. Figure 1.2b shows a layered graph with three layers L ={{Source},{node_-
1},{Sink,node_2}}, contained within a root node with the label layered.

(a) A network layout using the force-
based layout approach [Gra14].

(b) A graph with the layered layout algorithm.

Figure 1.2. The force and layered layout algorithms.

While the force-based approach is perfect for showing connected groups, working with a FSM that
uses this approach is insensible, as this approach does not focus on reducing edge crossings. The
force-based approach generally does not differentiate between directed and undirected graphs, not
utilizing additional information and intention in the graph. The version of the layered approach for
this thesis follows a general layout direction, which can show the flow of a graph. Edges that go
against this layout direction are called backward edges. Additionally, a fundamental principle for the
layered approach is the reduction of visual artifacts like edge crossings [STT81]. These principles for
the layered approach allow easier tracking of edges.

1.1 Input Variants

Generally, there are two approaches to the creation of diagrams:

� Drag And Drop Editors: This form of graph creation typically presents a palette of graphical
elements the user can choose from. The chosen element is placed in the drawing area, where
the user can freely move this element to the desired location. Connections between elements are

4www.reddit.com/r/Unity3D/search/?q=Mecanim
5https://www.unrealengine.com/de
6https://docs.unrealengine.com/4.27/en-US/ProgrammingAndScripting/Blueprints/GettingStarted/
7https://github.com/howaajin/graphformatter

2

www.reddit.com/r/Unity3D/search/?q=Mecanim
https://www.unrealengine.com/de
https://docs.unrealengine.com/4.27/en-US/ProgrammingAndScripting/Blueprints/GettingStarted/
https://github.com/howaajin/graphformatter

1.1. Input Variants

manually created. Figure 1.3a shows such a D&D Editor for the modeling language Ptolemy II8. These
editors are often called What You See Is What You Get (WYSIWYG) editors.

� Graph synthesis: In this approach, a graph is synthesized from a textual definition. For this input
variant, a notation is specified that declares the rules and terminology to define different types
of nodes and the connections between nodes. Listing 1.1 shows a simple textual definition in the
Eclipse Layout Kernel (ELK)9 [DHS+23] Text format10 (file format: .elkt). Figure 1.3b shows the
synthesized graph for this definition.

(a) Ptolemy II GUI and sample model. The element picker is shown in the left of the image,
with the drawing to the right of it.

1 algorithm: layered

2

3 node n1

4 node n2

5 node n3

6

7 edge n1 -> n2

8 edge n1 -> n3

Listing (1.1) Graph definition in the elkt format. (b) The synthesized diagram for Listing 1.1

Figure 1.3. D&D editor for graphs vs synthesizing a textual mode.

A graph created from a textual model requires an automatic layout algorithm if the editor does not

8https://ptolemy.berkeley.edu/index.htm
9https://eclipse.dev/elk/

10https://eclipse.dev/elk/documentation/tooldevelopers/graphdatastructure/elktextformat.html

3

https://ptolemy.berkeley.edu/index.htm
https://eclipse.dev/elk/
https://eclipse.dev/elk/documentation/tooldevelopers/graphdatastructure/elktextformat.html

1. Introduction

supply a drag-and-drop functionality. However, both versions of input graphs can utilize automatic
layout algorithms.

The term pragmatics [FH10] is used to describe the benefits of separating the textual and graphical
views. The textual version can be used for code synthesis and simulation, while the diagram view helps
with the development and documentation. Pragmatics has been a key principle in the development of
Lingua Franca (LF) [HLF+22]. LF is the modeling language used for this thesis, further introduced in
Section 2.6.

1.2 Related Work

This thesis aims to improve the layout creation using the layered approach [STT81] for models with
textual node type grouping, as explained in Section 1.4.

The term secondary notation, as defined by Marian Petre [Pet95], describes additional information in
models that are not part of the syntax and how it can be used to create better layouts. This additional
information can be used to increase the connection between the textual definition of a graph and the
structure of the final layout. An example of achieving this connection is utilizing the declaration order
of the textual file, as described in Section 1.3.1.

Additionally, this thesis aims to reduce layout decisions that lead to Obviously Non-Optimal (ONO)
solutions. ONO layouts break the Nothing is Obviously Non-Optimal (NONO) principle for good layouts
[KDM+16]. A layout can be considered ONO for a multitude of reasons. I.e., Figure 1.4a shows a layout
which is ONO concerning edge crossings, however it retains the declaration order of the ports, making
the layout optimal for the use of model order, as defined in Section 1.3.1. A slight difference in the
layout may create an Obvious Yet Easily Superior (OYES) layout concerning edge crossings, as shown
in Figure 1.4b. However, this variant ignores the inherent port order making it ONO concerning the
utilization of model order.

(a) Model layout with edge crossing, retaining in-
herent port order.

(b) Model layout without edge crossing, ignoring
inherent port order.

Figure 1.4. Comparing different layouts of the same graph with a minor adjustment.

1.3 Control

Control is defined as the impact the developer of a model can have on the final layout. For D&D editors,
the developer has complete control, freely manipulating the layout in the drawing area. This control
may come with the drawback of requiring more time from the developer, especially for very fine grain
decisions. It may seem that this relation between control and workload is generally the case, as higher
control means fewer autonomous decisions are possible. However, the inability to modify the layout
easily may be frustrating if a layout is not clear. Additionally, autonomous decisions may be faulty
and result in bad layouts. While some layout algorithms remove the control, which might be okay for

4

1.3. Control

some graphs, this is undesirable for layout algorithms used for models where the visualization is not
only used as an abstraction but is used for development and debugging. Without any control, the
developer is at the mercy of the layout algorithm to create a result that is clear and readable. The recent
explorations of integrating model order into the layout process introduced a method for retaining
control with the benefits of autonomous decisions. [Rie22]

1.3.1 Model Order

The model order is defined as the inherent order of the model. This can be the order of the original
placement of the elements in the graph, or the order of declaration in the textual file creates the
model order. This inherent ordering is a form of secondary notation that is often neglected, as layout
algorithms usually do not consider the initial order. The intentional ordering of nodes in the textual
file represents a mental map of the nodes, an abstract layout the model creator has. Using model order
may help with finding nodes quicker in the diagram, as the textual structure is represented in the
layout. Additionally, the use of model order increases the control of the model creator. Model order is a
one-dimensional order that is mapped onto a two dimensional drawing plane. However, the decisions
on this plane are also one-dimensional, i.e., the relative placement of hypothetical nodes n1 and n2

can be interpreted as two one-dimensional model order comparisons to determine the relative x or y
position.

Different elements have a different model order, i.e., the port order is independent from the model
order for nodes or the edge order. The port order of different nodes is incomparable, as the port
order is only relevant for ports of the same node. The same applies to edges. Furthermore, some
modeling languages may not declare an order for a specific element. E.g., in Sequentially Constructive
Statecharts (SCCharts) ports are not declared explicitly but are created implicitly and inherit the order
from the explicitly defined edge. The same applies to all node type in LF, except for reactors. Therefore,
one challenge for model order is to create sensible solutions to either artificially extract a model order
or to utilize different strategies if an element with model order is compared to another element without
fitting model order.

Figure 1.5 shows an example of utilizing model order compared to random decisions. Listing 1.2
shows the textual file for a simple model with two nodes. Figure 1.5a shows the synthesized graph
for the textual file in Listing 1.2, and utilizes the model order to order the nodes. Figure 1.5b shows
the same graph with a layout that does not utilize model order and employs decisions to find the
best layout regarding edge crossings. However, a problem arises if the textual file has conflicting
declaration orders. Figure 1.6 shows an example of crossing declaration order, meaning the declaration
order of different graphical elements and the elements they connect to are not identical or even inverse.
The node and edge definitions, shown in Listing 1.3, show this: n1, n2 and the edges in reverse order
(init,n2), (init,n1). Figure 1.6a shows the layout if the node order is prioritized and Figure 1.6b shows
the layout with prioritized edge order. Enforcing both orders would create an edge crossing.

The first approaches to utilizing this order for the layered algorithms were presented by Domrös
et al. [DH21]. These proposals have been pushed to more parts of the layered algorithm, and recent
research has shown that using the textual ordering to aid the layout creation can lead to better layouts
[DRv23; Rie22].

5

1. Introduction

1 algorithm: layered

2

3 node n1{

4 port p1

5 port p2

6 }

7 node n2

8 node n3

9 node n4

10

11 edge n1.p1 -> n3

12 edge n1.p2 -> n4

13 edge n2 -> n3

Listing (1.2) Simple model in elkt
format.

(a) Using model order. (b) Random decision to reduce cross-
ings.

Figure 1.5. Example for secondary notation.

1 algorithm: layered

2

3 node init {...}

4 node n1 {...}

5 node n2 {...}

6

7 edge init -> n2

8 edge init -> n1

Listing (1.3) Crossing declaration
order.

(a) Prioritize node order. (b) Random decision to reduce cross-
ings.

Figure 1.6. Prioritizing edge order.

1.4 Group Model Order

Previous works on model order have mainly worked with Sequentially Constructive Statecharts SCCharts

[HDM+14]. In SCCharts, the declaration order of nodes is freely adjustable. While edge declaration
is also freely adjustable, the order of edges indicates the order of execution. Edges in SCCharts have
conditions, and if the condition is fulfilled, the transition is executed, changing the state and executing
any possible action the edge defined. As SCCharts are designed to be deterministic, only one transition
condition should be fulfillable. Therefore, the edge order is used as a priority, taking the transition
with the highest priority that is fulfilled.

LF has multiple node types, one of which has a constraint similar to that of edges in SCCharts. The
different node types in LF are primarily defined in an order where the different types are grouped,
with edges freely connecting between nodes of any type. This group order impairs the model order
and creates a restricted model order. Figure 1.7 shows the limitations of utilizing the model order
cycle-breaking approach used for SCCharts. In Figure 1.7a the first phase of the layered approach uses a
strict model order approach, but since reactions are defined after the other node types, edges from
reactions to other types are reversed. Figure 1.7b shows how the distinction of node groups can help

6

1.5. Outline

with the layout creation, by reducing edge crossings. Listing 1.4 shows the textual model, where a
blank line separates the different groups of node-types. This grouping of node types restricts the use
of model order.

(a) Strict model order cycle-breaking. (b) Cycle-breaking considering group order.

1 reactor load_balancer<T1, T2> (...) {

2 input[n_inputs] in_request:T1;

3 output[n_inputs] out_response:T2;

4 output[n_outputs] out_request:T1;

5 input[n_outputs] in_response:T2;

6 output cache_out: p_cdn_cache_entry_t;

7

8 logical action send_out_request(0);

9 logical action send_out_response(0);

10

11 reaction (startup)

12 reaction (send_out_request) -> out_request, send_out_request

13 reaction (in_request) -> send_out_request

14 reaction (send_out_response) -> out_response, send_out_response

15 reaction (in_response) -> send_out_response

16 reaction (shutdown)

17 }

Listing (1.4) LF declaration file.

Figure 1.7. Limitations of strictly using model order.

1.5 Outline

The following chapter introduces basic graph terminology and introduces the technologies that are
utilized. Following that, Chapter 3 and Chapter 4 explore different phases of the layered algorithm
and how group model order may be employed to improve the layout creation. These chapters show
implementations for different strategies of resolving the restricted model order and keeping the
benefits of utilizing model order. Following this, the different strategies are evaluated in Chapter 5.
The analysis uses quality metrics for this, which are defined in 2.3. Finally, a conclusion to the results
of this thesis is given in Chapter 6.

7

Chapter 2

Preliminaries

In this chapter, basic terminology, methodologies, principles, and frameworks for this thesis are
introduced and explained.

We begin with some fundamental terminology of graph theory and additional terms for graph
drawing. This is followed by layout quality metrics and the introduction of the relevant frameworks,
such as the ELK and the Kiel Integrated Environment for Layout Eclipse Richt Client (KIELER)1 environ-
ment [HFS11]. This chapter concludes with a brief introduction into the modeling language Lingua
Franca2, an overview of the different layout phases of the layered algorithm, an introduction of an
algorithm to find Strongly Connected Components (SCC) and the definition of stability.

2.1 Terminology

Most of the following terms and their definitions are standard in graph theory. Some additional terms
will be defined to enhance the flow and facilitate a better understanding of the following chapters.

Beginning with the most general terms:

2.1 Definition (Graph). A graph G is a pair (V, E), where V is an unordered finite set of nodes and an
unordered set of edges.

2.2 Definition (Directed edges). Let u, v P V and e P E with e = (u, v). For directed edges the pair
(u, v) is ordered and indicates the direction of the edge, starting in u and ending in v. Conversely, an
undirected edge does not have a direction. The pair has no ordering and (u, v) = (v, u).

2.3 Definition (Out-degree). The out-degree of a node v is the number of edges that start in v, written
vout.

2.4 Definition (In-degree). The in-degree of a node v is the number of edges that end in v, written vin.

2.5 Definition (Source). A node is called source, if its in-degree is 0. An example is the node labeled
Source in Figure 1.2b.

2.6 Definition (Sink). A node is called sink, if its out-degree is 0. An example is the node labeled Sink
in Figure 1.2b.

2.7 Definition (Outflow). For a node n the outflow vout f low is defined as vout f low = vout � vin.

2.8 Definition (Directed graph). A graph G = (V, E) is a called directed graph, if all edges e P E are
directed edges. A directed graph is also called digraph.

2.9 Definition (Path). Let G = (V, E) be a graph. A path of length n is defined as a tuple (v1, ..., vn)
with v1, ..., vn P V and it holds that @i, 0 i n : (vi, vi+1) P E.

Let P be the set of all paths of G, therefore @u, w P V, if a path from u to w exists, (u, w) P P

1https://rtsys.informatik.uni-kiel.de/en/archive/kieler
2https://www.lf-lang.org

9

https://rtsys.informatik.uni-kiel.de/en/archive/kieler
https://www.lf-lang.org

2. Preliminaries

2.10 Definition (Cycle). A cycle is a path for which v1 = vn holds.

2.11 Definition (Strongly connected component). A Strongly Connected Components (SCC) is a set of
nodes S for which the following holds. v P V, S � V : v P S ô @u P S : (v, u) P P^ (u, v) P P

2.12 Definition (Detached Parts). A detached part of a graph is a set of nodes D that is not connected to
the currently inspected section of the graph. In turn the currently inspected section is a detached part of
the detached part.

2.13 Definition (Acyclic graph). A directed graph G = (V, E) is called acyclic if the graph does not
contain any cycles.

2.14 Definition (Layered graph). A layered graph is defined by the triple G = (V, E, L), where L is
defined as a finite ordered set, of sets containing nodes, which partitions V into non-empty layers. For
all v P V holds that v is assigned to exactly one layer L(v).

2.15 Definition (Proper Layered Graph). Let G = (V, E, L) be a acyclic layered graph. G is called
proper layered graph, if the following holds: @v, w P V : D(v, w) P E ñ L(w) = L(v) + 1.

2.16 Definition (Hierarchical Node). A node is called hierarchical, if it contains child nodes. In the
graphical representation, this is displayed by drawing child nodes inside of the hierarchical node. The
containing hierarchical node is called parent node for all contained nodes. An example is the node
labeled node_1 in Figure 1.2b.

2.17 Definition (Feedback set). Let F be a subset of nodes of a given cyclic graph G = (V, E). F is
called feedback set if reversing all edges contained in F results in G being acyclic.

2.18 Definition (Graph Layout). For a given graph G = (V, E) a layout (or drawing) Γ is defined as a
function that maps each node v P V to a 2-dimensional point Γ(v) P R2 in the drawing plane. Edges
(u, v) P E are mapped to simple curves Γ(u, v) with the endpoints Γ(u) and Γ(v).

2.19 Definition (Dimensions). Each node v P V is associated with a width wv P R and a height hv P R.

2.20 Definition (Ports). Nodes may have ports that are attached to v’s boundaries and serve as start-
and endpoints for edges.

2.2 Multi-Edge Connections

The node count of a directed graph can be a bound for the maximum edge count. For a directed graph
G = (V, E), any node can be connected once to every other node and once to itself. This leads to an
upper bound of |E| = |V|2 if self-edges are allowed and |V| � |V � 1| otherwise. However, this limit
does not exist for directed graphs that allow multi-edge connections. An edge is a multi edge connection
if another edge in the graph starts in the same node and targets the same node, as shown in Figure 2.1,
where all connections are multi-edge connections. The count of the nodes and edges often determines
time complexity estimations for graph algorithms. Consequently, algorithms that have to evaluate
some conditions on all edges have a longer execution time. This bound on the edge count can be
reestablished for algorithms that apply the same changes for all edges of a multi-edge. This is shown
in-depth in Section 3.3.3.

10

2.3. Layout Quality Metrics

Figure 2.1. A Lingua Franca model where every connection is a multi-edge connection.

2.3 Layout Quality Metrics

The quality of graph layouts is generally referred to as aesthetics, and whether they are considered
“good” has been an ongoing research topic in the Graph Drawing community. Some of the earliest
researches on the topic of Graph Drawing focused on finding objective metrics for layouts [STT81;
TDB88; EHN+17].

The metric with the most significant impact on the readability of a layout is the count of edge
crossings [Pur97]. Additional criteria include the number of edge bends, white-space utilization, edge
length, and many more, with their effects extensively researched [PCA02b; WPC+02; PCA02a].

The different metrics used in the analysis in Chapter 5 are given in Table 2.1.

Table 2.1. List of metrics used in the analysis.

Metric Description

Aspect Ratio Analyses the dimensions of the diagram, by dividing the total width by the total height.

Backward Edges Counts the number of edges that go against the layout direction.

Edge Crossings Counts the number of edge crossings.

Execution Time Measures the execution time of one or more layout phases.

Multi Edge Connection Counts the number of edges, where another edge exists with the same start and end node.

Different types of data require different layout algorithms, each having specific use cases in which
they excel [DCS+23]. While generally layout algorithms are evaluated for the standard quality metrics,
secondary notation and with it the intention is often not evaluated. This complexity increases the
difficulty of objectively measuring layout quality, especially considering that some criteria may conflict
with others [BRS+07]. Additionally, while these objective measurements serve as a good starting point,
certain layout decisions contradict objectively measurable criteria. These decisions often stem from
the subjective preferences of individual users [Rie22]. An example of this is illustrated in Figure 2.2.
While the underlying model is the same, participants of a survey were evenly split between favoring or
disliking the option shown in Figure 2.2a. This graph represents the controls of a piston. The second
and third layers in Figure 2.2a create somewhat of a semantic grouping. The labels of these nodes seem
to be connected by meaning, with the second layer describing the motionless state of the piston, while
nested in the third layer are the nodes that describe the behavior of motion for the piston. Additionally,
symmetry is essential for human perception, and a study in 2018 showed the effects of symmetry in
graph drawing [LKP18].

11

2. Preliminaries

(a) SCChart with unnecessary edge crossings, but higher
symmetry and semantic grouping.

(b) SCChart with reduced edge crossings, but less symme-
try.

Figure 2.2. SCCharts used in a empirical study in [Rie22].

2.4 Eclipse Layout Kernel

The Eclipse Layout Kernel (ELK) is a framework that provides a list of different standard automatic
layout algorithms (e.g. layered, force-based).

These data types for nodes and edges contain information like the dimensions or the placement
of the object. Additional data may be added by using definable properties stored in a map. In ELK,
a graph consists of a hierarchical root node that holds the actual graph. This root-node contains a
property that indicates the layout algorithm to use for the direct children of this node. Consequently, a
different layout algorithm may be employed for each hierarchy level. The layout is created recursively
following a bottom-up principle, creating the layout of the child nodes to get the required dimensions
of the parent node.

The layout algorithms in ELK are highly modular. This modularity is particularly beneficial
for algorithms divided into different layout phases. This modularity enables the easy exchange
of algorithms for these phases, as illustrated in Figure 2.33. In addition to the required layout
phases, Intermediate Layout Processors may be employed. These processors can perform calculations or
computations on a given graph that are not part of a specific algorithm. Layout phases may specify
the need for a specific layout processor to be executed before or after any given stage. While a phase
may create temporary changes to enable later phases to function as intended, these changes should
be reversed before the final result is created and presented to the developer. Consequently, the initial
phase declares the use of a processor to revert its changes after the phase that required those changes.
A representation of the layered algorithm and its phases is shown in Figure 2.6.

Generally, a layout phase and any processor has pre-conditions for the input and guarantees
post-conditions for the output. The conditions for the main layout phases of the layered approach are
listed in Table 2.2.

3https://eclipse.dev/elk/documentation/algorithmdevelopers/algorithmimplementation/algorithmstructure.html

12

https://eclipse.dev/elk/documentation/algorithmdevelopers/algorithmimplementation/algorithmstructure.html

2.5. Kiel Integrated Environment for Layout Eclipse Rich Client

Figure 2.3. Structuring of layout algorithms in ELK.

2.5 Kiel Integrated Environment for Layout Eclipse Rich Client

The Kiel Integrated Environment for Layout Eclipse Richt Client (KIELER) is a research project by the
Kiel University’s Real-Time and Embedded Systems group, aimed at enhancing graphical model-
based designs of complex systems. KIELER provides an Integrated Development Environment (IDE) for
different modeling languages, with a specific focus on Sequentially Constructive Statecharts (SCCharts)
[HDM+14]. KIELER also includes a GUI, which incorporates features for the layout algorithms of
ELK, like an interactive diagram viewer, editor, and many more. Additionally, it offers an integrated
graph analysis tool called GrAna [Rie10]. GrAna allows the creation of custom graph analysis options,
enabling objective measurements for different layout strategies and given aesthetic criteria, as described
in Section 2.3.

2.6 Lingua Franca

Lingua Franca (LF) is a polyglot reactor-oriented coordination language that facilitates the creation and
composition of reactive components. It is not a standalone programming language; instead, it enhances
targeted standard programming languages with deterministic reactive concurrency and enables the
specification of timed behaviors. Currently, the supported languages are C, C++, Python, TypeScript
and Rust. LF provides a model of time that incorporates a clear and precise notion of simultaneity.
This feature allows developers to concentrate on solving a specific task without concerning themselves
with thread management, synchronization, and race conditions.

Lingua Franca employs various types of nodes, such as reactors, reactions, actions and timers, as
depicted in Figure 2.4a4. The documentation5 of Lingua Franca lists the following description principles
for reactor-oriented programming:

� Components: Reactors can have any of the following elements, which are all triggers: input ports,
actions, timers. Additionally, they can have any number of the following elements: output ports,
local state, parameters, and an ordered list of reactions.

4https://www.lf-lang.org/docs/writing-reactors/actions
5https://www.lf-lang.org/docs/

13

https://www.lf-lang.org/docs/writing-reactors/actions
https://www.lf-lang.org/docs/

2. Preliminaries

(a) Example of a Lingua Franca Model, with labels for
different node types.

1 target C;

2 reactor Physical {

3 input x:int;

4 physical action a;

5 reaction(x) -> a {=

6 /* Host Code in C */

7 =}

8 reaction(a) {==}

9 }

10

11 main reactor{

12 p = new Physical();

13 timer t(200 msec, 200 msec)

14

15 reaction(t) -> p.x {==}

16 }

Listing (2.1) Textual definition of the Model. Line 12
declares the reactor "Physical" inside of the main reactor.

Figure 2.4. Example Lingua Franca model and diagram.

� Composition: Reactors may contain other reactors and define the connections of their ports. These
connections define a message flow in a one-to-many relationship between input and output ports.
Connections can be created for reactors contained in the same reactor or connections of a reactor
with the parent of the reactor.

� Events: Messages between reactors, timer outputs or action events have a tag associated with them
(i.e., a timestamp). These tagged events may trigger reactions, with the previously defined triggers
having at most one event for a given tag. The event may contain a value that is passed along to the
reaction.

� Reactions: An event may trigger a procedure in the target language as a reaction. This procedure
can only be invoked by a trigger event and will never execute without one. A reaction may read
input ports, even if these ports are not the origin of the invoking trigger, and it may write to
output ports. These ports have to be predefined, as all inputs that are read and all outputs that are
produced bear the same timestamp, the timestamp of the triggering event. This simulates a logically
instantaneous reaction, meaning all output events are logically simultaneous with the trigger.

� Flow of Time: Any successive invocation of a reaction occurs at a strictly increasing timestamp.
Messages that are not read by the reaction they triggered at the timestamp of the message are lost.

� Mutual Exclusion: Any two reactions in the same reactor are mutually exclusive to guarantee
deterministic behavior. This means they execute as if they were atomic statements, with respect to
one another. To allow multiple reactions in the same reactor to be executed at the same timestamp
(simultaneously), the definition order of the reaction in the reactor decides which reaction is
executed first. This eliminates race conditions.

� Determinism: Lingua Franca is designed to be deterministic unless the design pattern is an
explicitly nondeterministic construct. For a given execution cycle of a reactor composition with the
same input, the output should always be identical. This results in an environment where distributed,
threaded components can be tested for correct behavior.

14

2.6. Lingua Franca

� Concurrency: With the dependencies of reactions being part of the explicit declaration of a reaction,
threaded execution of independent reactions is possible. With multi-core CPUs, this allows true
parallelism of independent code. A reactor may also be declared as federated, meaning that execution
may be distributed across a network while maintaining the same behavior.

For general readability, a general structure, or style guide, for Lingua Franca is introduced in the
documentation. Although not strictly enforced, it is generally adhered to. Figure 2.5 shows an annotated
example model in LF. While reactor declarations are more or less freely moveable, they tend to be
declared ahead of all reactions, as shown in this figure. This structure introduces a grouping of nodes,
where actions, reactions, and reactors are grouped by type. This represents the behavior explained
in the introduction and limits the ability to use model order in layout phases, as is utilized in cycle
breaking for SCCharts.

Figure 2.5. General structure of a LF file.

While developing programs with LF is possible in any text editor, an interactive diagram view is
very helpful, as reported by LF developers. Two options exist for working with Lingua Franca and a
dedicated diagram view:

� Visual Studio Code: Visual Studio Code (VS Code)6 is a source-code editing tool developed by
Microsoft. A Lingua Franca Plugin7 is available in the VS Code marketplace. This plugin depends on
the KLighD8 [SSH13; SSH12] project, which is part of KIELER.

� Epoch IDE: The Epoch IDE9 is an Eclipse-based IDE. Epoch also utilizes the KLighD project.
6https://code.visualstudio.com
7https://marketplace.visualstudio.com/items?itemName=lf-lang.vscode-lingua-franca
8https://github.com/kieler/KLighD
9https://github.com/lf-lang/epoch

15

https://code.visualstudio.com
https://marketplace.visualstudio.com/items?itemName=lf-lang.vscode-lingua-franca
https://github.com/kieler/KLighD
https://github.com/lf-lang/epoch

2. Preliminaries

2.7 Layered Algorithm

The layered algorithm, as originally proposed [STT81], has undergone significant improvements
[SFH09; Sch11; SSH14]. The variant utilized in this thesis comprises five main layout phases in the
following order: cycle breaking, layer assignment, crossing minimization, node placement, and edge routing.
Table 2.2 provides the input and output of these phases. Chapter 3 provides a detailed look into the
cycle-breaking phase, and Chapter 4 delves into the crossing-minimization phase.

Table 2.2. Input and output of the layered algorithm phases.

Layout Phase Input (and Pre-Conditions) Output (and Post-Conditions)

Cycle Breaking Directed graph G = (V, E) Directed acyclic graph G1 = (V, E1), edges may be reversed.

Layer Assignment Acyclic directed graph G = (V, E)
Layered graph G1 = (V1, E1, L) could contain additional

dummy nodes and dummy edges to break long edges.

Crossing Minimization Layered graph G = (V, E, L) G, where all l P L are ordered sets.

Node Placement

(horizontal layers)

Layered graph G = (V, E, L)

all layers are ordered sets.

x coordinates for all v P V

for u, v P Li and u is ordered ahead of v , it is required that xu + wu xv

Edge Routing

(horizontal layers)

Layered graph G = (V, E, L)

all nodes have x-coordinates

y coordinates for all v P V

routings for all e P E

In addition to these five layout phases, multiple Intermediate Layout Processors are incorporated.
Figure 2.6 shows a detailed presentation of the layered algorithm, with all its phases and intermediate
processors for ELK. One example here is the REVERSED_EDGE_RESTORER, which is used to reverse
the edges reversed by cycle breaking. The intermediate layout processor SORT_BY_INPUT_ORDER_OF_-

MODEL presorts the layers to adhere to the model order. The crossing minimization phase utilizes this
presorting as a initial “good guess” for in-layer sorting, as this is the order in the textual model.

2.8 Detecting Cycles using Tarjan’s algorithm

Some of the cycle-breaking strategies employ Tarjan’s algorithm for finding strongly connected
components [Tar72], which has a runtime complexity of O(V + E). The graph is traversed using
the depth-first approach. Each node receives an index based on exploration time and remembers
the lowest index (the low-link) of the reachable nodes. Recursively the outgoing edges of the node
are traversed (assigning an index and the low-link). Nodes for which the low-link is smaller than
the index are part of a strongly connected component S with |S| ¡ 1. While the original approach
classifies sets with a power of one as a strongly connected component, for cycle breaking, only strongly
connected components of power greater than 1 are relevant. This simple modification is done in the
implementation used for the cycle breakers, and the pseudo-code showing the original approach with
this modification is shown in the appendix in Listing A.1.

2.9 Stability

Stability can be described by the magnitude of change to the structure of the layout by changing small
parts of the model order interacting with the layout. The advantage of working with an interactive
layout window is the ability to focus on certain parts of a layout. The terminology focus & context, as
coined by Card et al. [CMS99], refers to visualization techniques that provide detailed information as

16

2.9. Stability

Figure 2.6. All ELK Layered processors, and the different options for the main layout phases [DHS+23].

17

2. Preliminaries

well as a general overview of the visualized information. According to the authors and the works they
refer to, the following aspects are part of focus & context:

� The visualization should encourage the viewer to think about the information, be it a broad
overview or a fine detail.

� The visualization tools (i.e. a layout view) requires specific interaction methods for specific datasets.

� The detailed and broad visualizations can be in a combined dynamic visualization.

A vital tool for controlling the presented details of graphs with hierarchical nodes is the collapsing
and expansion of these hierarchical nodes. Collapsing a hierarchical node means hiding the contained
elements and showing the node as if there was no internal elements. Expanding a hierarchical node
means visualizing the contained elements of the hierarchical node.

The crossing minimization phase reorders ports to minimize crossing, this can lead to a stability
problem. Expanding and collapsing nodes may force a new order for the ports. This reordering of
ports can have big implications for edge-routing and, therefore, the layout in general. I.e., edges may
move from the very top of the layout to the bottom. Graph layout stability helps with the preservation
of a mental map and the ease of working by reducing the required effort to follow node and edge
placements in a layout [PHG06; ZKS11; LCG+15].

Stability is hard to measure, as this cannot be done as a post-layout analysis; rather, it is experienced
while actively working with graphs and interacting with them. Furthermore, presenting stability in
a paper format is difficult as well, as the motion of a changing graph cannot be depicted in a single
snapshot of the graph. Stability issues are much worse for larger graphs, as the position of more nodes
and edges may change.

Figure 2.7 tries to show stability issues for one large model. Starting with the initial layout with
most nodes collapsed in Figure 2.7a. Figure 2.7b shows the layout result for the model with a fixed
port order and the node l1_caches: cdn_cache expanded. Except for the expansion of this node, no
changes have been made. The remaining nodes remain close to their original position, and the order
of edges and nodes remains the same. Figure 2.7c shows the model with the same node, the node
l1_caches: cdn_cache node. While it looks like the node l2_caches: cdn_cache was expanded, these nodes
have switched positions, as well as the two dram_storage nodes in the first layer. The position changes
conflict with the mental map of the layout, and it requires time to discover where the nodes are
positioned now.

18

2.9. Stability

(a) Lingua Franca model with most nodes collapsed.

(b) Expanding the top cdn_cache node with fixed port order.

(c) Expanding the top cdn_cache node without fixed port order.

Figure 2.7. Enforcing port order and increasing stability.

19

Chapter 3

Cycle Breaking

As mentioned in Section 2.7, the cycle-breaking phase is the initial phase of the layered layout algorithm.
This chapter explains the fundamentals and various strategies of cycle breaking, along with their
Worst-Case Execution Time (WCET) in Big O notation. The examples in this chapter are extracted from
larger models to reduce the size and highlight the import parts. As shown in the introduction, in
Figure 1.7, the use of the raw model order is not sensible. Different approaches for cycle-breaking are
introduced here, using different approaches to cope with the textual grouping.

(a) Reversing the edge from a logical action to reac-
tion 2.

(b) Reversing the edge from reaction 4 to a logical
action.

Figure 3.1. Two different options of cycle breaking, with highlighting for the reversed edges and their starting
nodes and annotation of the model order of the actions.

3.1 Fundamentals

Fundamentally, cycle-breaking is about creating an acyclic graph. The cycle-breaking phase is based on
finding a feedback set. While finding a feedback set of arbitrary size is easy, finding a minimal solution
is proven NP-complete [GJ79; CTY07]. Consequently, the strategies employed in the layered algorithm
are not designed to find minimal solutions with perfect accuracy. However, they are designed to find
a minimal solution in a reasonable time. Figure 3.1 shows two different options for cycle breaking
for the same graph. This visualization shows that cycle breaking modifies the flow of the layout. The
option presented in Figure 3.1b delays the edge reversal to the latest possible node, interrupting the
flow at the latest point. The other option creates a backward edge as early as possible, reducing the
diagram’s width. A backward edge could be intentional to represent a feedback loop. These intentions
are secondary notation and may be extracted from the textual order and utilized. This use of the model
order enhances the flow from a mere graphical artifact to an expression of intentional data-flow in the
model.

The different strategies explored in this section have different approaches to finding good edges to
reverse. Generally, edge reversals should be kept as minimal as possible, as these create backward
edges in the final layout, reducing the layout’s readability. However, different approaches can find a
solution of the same size but with different edges. Identifying which solution is the best is ambiguous.

21

3. Cycle Breaking

All strategies traverse the graph in some way, and reverse edges until it is ensured that no cycles
remain. This traversal can utilize model order, i.e., selecting the next node based on model order. This
order of node traversal is called discovery order. The discovery order can induce problems. The discovery
order problem is defined as follows: A node that is not part of a cycle is discovered but has a connection
to a node with an earlier discovery time. Thus, the edge to the already discovered node is reversed
when discovering the node. An example of this is shown in Section 3.3.1 and visualized in Figure 3.4,
where the edge from intermediate_2 to end is reversed, as end has an earlier discovery time.

The following sections introduce the different approaches. The order does not imply that a later
strategies explicitly tries to improve a previous strategy. The evaluation of the strategies is given in
Chapter 5. Some of these strategies define a strict order based on the group type while other strategies
use the node type to modify the behavior.

3.2 Greedy Cycle Breaker

The main design focus of the Greedy Cycle Breaker (G-CB) is to find small feedback sets [ELS93]. This
strategy uses model order as a tie-breaker, for a heuristic metric called outflow, as defined in Definition
2.7. An order is defined using the outflow, as shown in Listing 3.1. In the original approach a node is
chosen randomly if multiple nodes have the same outflow. The seed for this random node choice is
fixed to ensure the same layout on all devices.

1 unprocessedNodes = V

2 sinkOrder = []

3 sourceOrder = []

4 nodeOrder =[]

5 while unprocessedNodes not empty:

6 for v in unprocessedNodes.sinks:

7 sinkOrder.append(v)

8 unprocessedNodes.remove(v)

9 updateAdjecentNodes(v)

10 for v in unprocessedNodes.sources:

11 sourceOrder.append(v)

12 unprocessedNodes.remove(v)

13 updateAdjecentNodes(v)

14 maxOutflowNodes = findMaxOutflowNodes(unprocessedNodes)

15 v = maxOutflowNodes.random()

16 nodeOrder.append(v)

17 unprocessedNodes.remove(v)

18

19 function updateAdjacentNodes(v):

20 //... update the in- and outdegree of adjacent nodes, as if v would not exist in G

21

22 function findMaxOutflowNodes(v):

23 //... loop over unprocessedNodes and return a list of nodes with the max outflow

Listing 3.1. Pseudo code showing an order extraction using the outflow.

The algorithm reverses edges that go against the order induced by the outflow. The approach for
utilizing model order in SCChart cycle breaking was presented by Domrös et al. [DRv23]. This approach
uses the model order as a tiebreaker for nodes with the same outflow. Utilizing model order for

22

3.2. Greedy Cycle Breaker

languages that group nodes based on their types results in selecting the node type that is defined first.
Ultimately, this selection leads to similar problems, as the standard model order approach mentioned
in Section 1.3.1, if the two nodes of different groups have the same outflow. Figure 3.2a shows the
same model as shown in Figure 1.7 but using the G-CB. Figure 3.2a shows that the layouts with this
strategies enforce edge reversals strictly from one type to another, creating more edge crossings.

(a) Limitations of the G-CB. (b) Cycle-breaking considering group order.

Figure 3.2. Limitations of the standard G-CB.

The following approach is suggested and implemented to introduce group model order:

� Define an additional order for the different node types.

� If a node has to be chosen from multiple nodes with the same outflow, choose all nodes of the type
with the highest priority and use the node with the minimal model order with this type.

With this approach the G-CB can achieve the same layout as shown in Figure 3.2b (also used in the
introduction). However, the order defined for the node types does not eliminate the problem of strictly
reversing edges between different node types. Figure 3.3 shows that altering the fixed order can
improve some layouts, but switching the types of all nodes recreates this problem.

(a) Limitations of the fixed order for G-CB. (b) Cycle-breaking considering group order.

Figure 3.3. Limitations of the G-CB with a fixed group order.

Both approaches have a runtime complexity of O(V + E).

23

3. Cycle Breaking

3.3 Breadth-First Cycle Breaker

The Breadth-First Cycle Breaker (BF-CB) utilizes the Breadth-First Search (BFS) to traverse the graph,
remembering which nodes have been visited. If an edge of the current node ends in a node that was
previously visited, a cycle is identified, and this edge is reversed. Since BFS finds the shortest path,
the layout tends to be compressed, with the drawback of creating more edge-crossings with a high
probability [Rie22].

The standard implementation of the BFS has additional drawbacks if employed in cycle breaking.
The following two subsections explain and solve these problems. Finally, two different options for the
discovery orders are given.

3.3.1 Sources and Sinks

Edges that start (end) in sources (sinks) can never be part of a cycle since sources and sinks can, by
definition, never be part of a cycle. Figure 3.4a shows an ONO example regarding cycle-breaking, where
the edge from intermediate_2 to end is reversed, even though the graph is inherently acyclic.

(a) ONO layout, due to unnecessary edge reversal
with a sink.

(b) OYES layout, due to eliminating the easily iden-
tifiable unnecessary edge reversal.

Figure 3.4. Difference of filtering edge reversals for sink and source connections.

The problem arises due to the discovery order problem. In terms of BFS, the discovery time is linked
to the shortest path from the source of the search. For Figure 3.4a, this problem arises as the node
discovery happens as follows: the initial step of BFS discovers the start node, followed by the nodes
labeled intermediate_1 and end. Finally, the intermediate_2 node is discovered in the second step, and
reversing the edge connecting to end since it leads to an already discovered node. Figure 3.4b shows
an OYES layout, achieved by adjusting the BF-CB to check if the target (starting) node is a sink (source),
and if this is the case, do not reverse any of the edges.

3.3.2 Cycle Detection Pre-processing

The same problem, as mentioned in the previous subsection, may also happen for nodes that are not
sinks or sources. There are two reasons why a single BFS could not suffice to traverse the entire graph:

� The graph has detached parts, running a BFS on one of these parts does not traverse the others.

� The graph has multiple sources, running a BFS from one source does not discover any other sources
or any nodes only reachable by different sources.

For the detached parts, cycle breaking is applied independently. However, for the case of multiple
sources, discovery order problems can arise again, as seen in Figure 3.5a, where the edge from 1 to L is
reversed. Figure 3.5b shows that introducing a flag for nodes that indicates if they are part of a cycle

24

3.3. Breadth-First Cycle Breaker

(a) Unnecessary edge reversal due to
discovery order problem.

(b) Eliminating the unnecessary edge
reversal by only allowing edge rever-
sals of edges in a cycle.

(c) Unnecessary edge reversal due to
the discovery order problem of a node
in a different SCC.

(d) Eliminating the unnecessary edge
reversal by allowing edge reversals
only within the same SCC.

Figure 3.5. Improving the layout by filtering edge reversals for connections that are not part of a (same) cycle.

and not reversing edges if the source or the target node is not part of a cycle eliminates the discovery
order problem. Furthermore, in Figure 3.5c the edge from Clock to RandomSource is reversed, as both
nodes are flagged as part of a cycle. Figure 3.5d shows that eliminating unnecessary reversals can be
done by remembering which SCC the node is a part of and only allowing edge reversals if the starting
and target nodes are part of the same SCC. This eliminates the need for checking if a node is a source
or a sinks, since these nodes are never part of a cycle.

3.3.3 Edge- or Node-Order

A way to alter the BF-CB is the order of discovery, if multiple options are available. The following
options are possible:

� Discover by the order of edge-declarations.

� Discover by the order of the target.

The first option requires that edges have an assigned model order. The second option requires that all
nodes have a model order. Figure 3.6 shows a model and the layout variants for using node or edge
order. The layout in Figure 3.6a uses the node order, therefore, the node MQTT_Sender is discovered
first. The layout in Figure 3.6b uses the edge order, therefore, the node MQTT_Reciever is discovered
first. While the edges declaration order in this model is freely modifiable, the edge order for edges
connected to reactions is dictated by the declaration order of the reaction. The order of reactions is not
freely modifiable, which means that for reactions both approaches fail to introduce control to modify
the layout. However, for connections between reactors both versions work.

25

3. Cycle Breaking

1 reactor Sequential_Messenger{

2 clock = new Clock()

3 sender = new MQTT_Sender()

4 reciever = new MQTT_Reciever()

5

6

7 clock.rec_signal -> reciever.recieve

8 clock.send_signal -> sender.send

9

10 sender.notify -> reciever.notification

11 reciever.notify -> sender.notification

12 }

Listing (3.2) Model with crossing declaration for
node and edge order.

(a) Use node order for discovery.

(b) Use edge order for discovery.

Figure 3.6. Comparison of layouts that prefer node or edge order using the BF-CB.

Listing 3.3 shows how the order of discovery is modified to the node model order. This imple-
mentation shows one approach to reduce the size of edges to evaluate, in lines 5-13. Here, edges are
grouped into a set of edges if they connect to the same target. Later, the strategy evaluates only one
edge of every set and applies the decision to reverse all edges of the set based on the decision for the
representative edge. This grouping effectively limits the edges to check for BFS to E ¤ V2, the upper
limit for fully connected digraphs that do not allow multiple edges to start and end in the same nodes.
While this does not reduce the runtime approximation in Big O notation, it reduces the real execution
time by reducing the size of E. Algorithms could utilize this strategy in steps that are indifferent to
singular or multiple connections between two nodes, like cycle breaking or layer assignment. However,
it would require heavy restructuring of these algorithms.

1 v = currently inspected node

2 modelOrderDict = new Dict<Integer, Set of Edges>

3

4 maxVal = Integer.MAX_VALUE

5 for e in v.outgoing:

6 model_order = e.target.model_order

7 if model_order is null:

8 modelOrderDict[maxVal--] = new Set().add(e)

9 else:

10 if modelOrderDict[model_order] is null:

11 modelOrderDict[model_order] = new Set().add(e)

12 else:

13 modelOrderDict[model_order].add(e)

14

15 sortedKeys = modelOrderDict.keys.sort()

Listing 3.3. Sort outgoing edges by the model order of the target node.

3.3.4 Complexity

The complexity of raw BFS is O(V + E). The mentioned modifications alter the complexity as follows:

26

3.4. Depth-First Cycle Breaker

� Sources and Sinks: Adding the check if a node is a source or sink does not add to the complexity.
Nodes have a list for in-coming and out-going edges. Checking if a node is a source (sink) is done
by checking if the out-going (in-coming) list is empty. O(V + E)

� Cycle Detection Pre-processing: Tarjan’s algorithm also has the complexity of O(V + E), resulting
in O((V + E) + (V + E)) = O(2(V + E)) = O(V + E)

Ordering the edges by their model order or the model order of their target node does not make a
difference concerning runtime complexity. Both cases require that the out-going edge list of each node
is sorted which comes with a runtime of O(E log E). In detail explained by lines of Listing 3.3:

� Lines 5-13: Each outgoing edge is handled once, giving a complexity of O(E)

� Line 15: Creating a sorted-set from an unsorted set requires the usual time complexity of sorting a
set of values O(E log E).

� Wrapper: Since this is run in a loop over all nodes a fully connected graph creates a runtime of
O(V � (E log E))

The resulting complexity scales poorly, especially for graphs with high connectivity.

3.4 Depth-First Cycle Breaker

The Depth-First Cycle Breaker (DF-CB) uses the Depth-First Search (DFS) to traverse the graph. Edges that
end in a node on the active path are reversed. The active path is the path from the source node to the
currently inspected graph. DFS has the advantage of having a dynamic active path, which automatically
prevents unnecessary edge-crossings, as only edges to nodes in the active path are reversed and these
edges always indicate a cycle.

Similar to the BF-CB, the discovery order can be altered based on the model order of the edge
or the target, resulting in the same runtime complexity (O(V + E)) and effects, and restrictions for
reactions, on the discovery order. The DF-CB performed extremely well in the analysis for SCCharts

[Rie22]. Additionally, the DF-CB created the same layouts as the strict model order approach in the
most cases, which hints at a mental map in a depth-first layout.

3.5 Model Order Cycle Breaker

The Model Order Cycle Breaker (MO-CB) was initially created for SCCharts and is designed to utilize
secondary notation and increase the control for the developer. As described in Section 1.3.1, nodes
receive a model order based on declaration order in the textual file, as shown in Listing 3.4. If an
edge starts in a node with a higher model order than the target node, it is reversed. The MO-CB may
achieve any feedback set that another strategy creates for graphs where node declarations are freely
movable [Rie22]. This gives the developer full control regarding backward edge creation. However, for
languages where different nodes are grouped by their type this approach does not work. Figure 3.7a
shows an example of this. As the reaction with label 2 is declared below the logical action, the edge
connecting these nodes is declared as a backward edge. The MO-CB creates unnecessary backwards
edges, as using it with the restricted model order does not work as intended. The following strategy,
called Strict Type Cycle Breaker has a similar problem with the layout creation. The MO-CB has a
complexity of O(E).

27

3. Cycle Breaking

1 reactor MessageReceiver {

2 physical action ros_message_a:

instant_t

3 logical action ros_message_l

4

5 timer t(0, 5 msec)

6

7 reaction(startup) ->

ros_message_a

8 reaction(ros_message_a) ->

ros_message_l

9 reaction(ros_message_l)

10 reaction(t)

11 reaction(shutdown)

12 }

Listing (3.4) Model used to show
limitations of the MO-CB

(a) Unnecessary edge reversal using the MO-CB.

Figure 3.7. A small model that shows problems for the MO-CB

3.6 Strict Type Cycle Breaker

The Strict Type Cycle Breaker (ST-CB) utilizes the MO-CB for nodes of the same type and enforces a strict
relation for connection between different node types. I.e., reverse all edges from type A to type B,
as seen in Listing 3.5, where all edges from reactions to actions are reversed. For nodes where the
declaration order is freely moveable using model order works as intended. However, for nodes like
reactions the order is part of the semantics, removing the free moveability.

1 for (LNode source : layeredGraph.getLayerlessNodes()) {

2 int modelOrderSource //...

3 int groupIDSource //...

4 source.getOutgoingEdges().forEach(edge -> {

5 int groupIDTarget = //...

6 int modelOrderTarget = //...

7 // If groups do not match, use groupID

8 if (groupIDTarget < groupIDSource) {

9 revEdges.add(edge);

10 }

11 // If groups match use Model Order

12 else if (modelOrderTarget < modelOrderSource && groupIDTarget == groupIDSource) {

13 revEdges.add(edge);

14 }

15 });

16 }

Listing 3.5. Implementation of the ST-CB.

Modeling languages where the node-type switches occur frequently rarely utilize the MO-CB, as the
strict order between nodes is used, leading to strict segregation of nodes into different layers, as seen
in Figure 3.8a. Figure 3.8b shows a layout for the same model with the BF-CB. While the ST-CB cycle

28

3.7. Model Order Look Ahead Cycle Breaker

breaking approach might be sensible for other languages, for LF, with high probability, this results in
bad layouts. Therefore, this approach will not be explored further here but should be remembered for
exploration in other languages.

(a) ONO layout created with the ST-CB.
This creates unnecessary backwards
edges.

(b) OYES layout created with the BF-CB.

Figure 3.8. Issues of the ST-CB for languages like LF.

3.7 Model Order Look Ahead Cycle Breaker

The Model Order Look Ahead Cycle Breaker (MOLA-CB) utilizes the group model order by only comparing
model order for nodes of the same type, outsourcing the decision to a subsequent edge that ends
in a node with the original node type. If an edge that starts in type A goes to type B, the algorithm
begins a search in all subsequent paths for the next node with type A. Listing 3.6 shows pseudo-code
for this. The search is based on a BFS, using a queue to check the subsequent nodes. The base version
of this strategy can be modified with the options described in the following sections, which tackle
different problems. However, finding a good balance between these options to create good layouts
for all Lingua Franca models used in the analysis is difficult, as some model layouts are better with
different options than other models.

3.7.1 Reducing Edge Reversals

Using the model order to determine edge reversals can lead to unnecessary edge reversals for groups
with restrictions on the declaration order. Figure 3.9a and Figure 3.9b shows an example, where the
reversed edges are not required, but induced by the semantically enforced model order. Figure 3.9c
shows that using Tarjan’s algorithm as a pre-processor and only reversing edges if the starting and
ending node are in the same SCC can eliminate these reversals.

3.7.2 Preferred Type For Order

With multiple node types, it is possible that the order of some types is of higher relevance for the
developer. Defining an order for the different node types and using this order in cycle breaking can
incorporate this order. While the ST-CB uses this order strictly between different types, in the MOLA-CB

the order of priority indicates the order of cycle-breaking by type. This can remove cycles with different
node types but this is not as strict.

Let type A be of higher relevance than type B. Filtering the nodes in V to only include nodes of
type A in line 6 of Listing 3.6 modifies the algorithm to only compare nodes of type A and break

29

3. Cycle Breaking

1 input: directed graph G = (V,E)

2 output: acyclic graph G‘ = (V,E‘)

3

4 subsequentNodes = Queue of Nodes

5

6 for v in V:

7 for (v,w) in E: // accessible by v.outgoing

8 if v.type == w.type :

9 //reverse (v,w) if v.modelorder <= w.modelorder

10 compareByModelOrder((v,w),w)

11 else:

12 w.visited = true

13 if findNextNodes(v):

14 (v,w).reverse()

15

16

17 function findNextNode(v):

18 while subsequentNodes not empty:

19 w = subsequentNodes.dequeue()

20 for (w,x) in E:

21 //node of same group and reversal inducing

22 if v.type == x.type and v.modelorder > x.modelorder:

23 return true

24 //not the same type, add the subsequent nodes for evaluation.

25 if v.type != x.type and not x.visited:

26 x.visited = true

27 subsequentNodes.enqueue(x)

28 //No node of the same type or with a lower model order was found, dont reverse (v,w)

29 return false

Listing 3.6. Pseudocode of the basic MOLA-CB implementation.

cycles based on this type’s model order. After all nodes of type A are handled, the nodes of type B are
handled to ensure an acyclic graph. However, all cycles containing nodes of type A and B have already
been cleared based on the preferred model order. For languages like Lingua Franca, where a specific
type has restrictions on the declaration order (reactions), the order should prioritize nodes without
restrictions, as this increases the control of the developer.

3.7.3 Skip Sequential Edges

Instead of reversing the immediate outgoing edge of a node, reverse the incoming edge of the last node
on the path to the node of the same type. This delays the creation of backward edges, moving backward
edges to a later point of the diagram and creating a linear beginning, as seen in the differences between
Figure 3.9a and Figure 3.9b. This option can increase the number of edge reversals, as every path that
has a model order violation creates a new backward edge. However, as seen in the outgoing edge from
2 in Figure 3.9a, an initial outgoing edge can have contradictory preferences regarding the reversal for
different paths. The edge (2,L,1) dictates a reversal of the outgoing edge from 2, while the edge (2,L,3)
prefers the edge not to be reversed. Regarding the pseudo-code in Listing 3.6, instead of returning
a boolean value, the function findNextNode is altered to return the sequential edges that should be
reversed. This moves the flow interruption to a later point, creating layouts that follow the layout

30

3.7. Model Order Look Ahead Cycle Breaker

direction longer.

(a) Layout using the basic ver-
sion of the MOLA-CB. The out-
going edge of reaction 2 is re-
versed, since reaction 1 has a
lower model order and is on a
subsequent path

(b) Layout using the MOLA-CB
using the skip sequential edges
option. The incoming edge of
reaction 1 is reversed, since this
edge violates model order.

(c) Layout using the MOLA-CB
with Tarjan’s algorithm as pre-
processor. The edge reversal is
removed, since the graph is in-
herently acyclic.

Figure 3.9. Layouts using the basic MOLA-CB or using the skip sequential edges option or with a Tarjan’s algorithm
pre-processor.

3.7.4 Fallback Edges

Contradicting preferences for edge reversals can also form for the sequential edges. The layout in
Figure 3.10a shows such a conflict; the path (2,L,3) does not require a reversal based on model order
but the path (4,L,3) introduces the edge reversal of (L,3). The outgoing edge of 4 is later reversed due
to the declaration order of the logical actions. An option to prevent the contradicting preference for
sequential edges would be fixing the direction of incoming edges if they obey model order for the
lowest connecting model order. The initial outgoing edges are remembered, and if any subsequent
path leads to a fixed edge, only the initial edge is reversed, as shown in Figure 3.10b. The path (2,L,3)
fixes the edge direction of (L,3), forcing the fallback to (4,L). This can be done by altering Listing 3.6,
keeping a list of edges to reverse. Finally, if all paths are explored and subsequentNodes is empty,
reverse all edges in the list. If an edge that has a fixed direction is encountered that violates the model
order, during the traversal of all paths, clear the list and only reverse the initial edge.

(a) Layout using MOLA-CB with
skip sequential edges option.
The incoming edge of reaction
3 is reversed due to the connec-
tion of reaction 4.

(b) Layout using MOLA-CB with skip
sequential edges and fallback edges
option. The outgoing edge of reaction
4 is reversed, as it is the fallback edge
and the direction of the incoming edge
of reaction 3 is fixed.

Figure 3.10. Reversal conflicts for the MOLA-CB.

31

3. Cycle Breaking

3.7.5 Complexity

This strategy initially visits every node and edge once for a runtime of O(V + E). A new search is
started for every connection to a different node group. If an edge is reversed, it is not considered for
reversal in any following run, reducing the search space for subsequent nodes. The worst case is a fully
connected graph, where every node is of a different type. This strategy has a runtime approximation of
O(V log V + E log E). For LF, the search process for subsequent edges of the same type is negligible,
as only three relevant node types exist. As mentioned, nodes that are sinks or sources can be skipped
since they cannot be part of a cycle, which applies inherently to startup, shutdown and timer nodes.
As reactors tend to be connected to other reactors, and actions or reactions can not follow their node
type, enforcing the switch on every other node, while this does not change the runtime approximation
for LF it behaves like a approximation of O(V + E), since the breadth-first searches most likely only
need to look at the second layer.

3.8 Strongly Connected Component Cycle Breaker

The final cycle breaking strategy is the Strongly Connected Component Cycle Breaker (SCC-CB). This
strategy uses Tarjan’s algorithm multiple times. The idea is to identify strongly connected components
and choosing a "good" node to reverse edges in each SCC to effectively remove the cycles.

3.8.1 Node Selection

The following section explores multiple approaches for selecting “good” nodes, starting with general
approaches applicable for any modeling language that uses model order — followed by an option to
alter the behavior for languages with node type grouping. The first two approaches in this section
explore the selection of model order maxima (or minima) in the SCC. The third approach explores
the selection of a maxima or minima based on the in- and out-degree inside the SCC, combining the
previous approaches to reduce the repetitions of Tarjan’s algorithm.

Minimum Model Order

The first approach finds the node with the minimum model order. Since model order indicates that
this node should be placed as far to the left as possible, all incoming edges coming from a node in the
same SCC are reversed. This selection process can be incorporated into Tarjan’s algorithm for better
efficiency. This approach is visualized in Figure 3.11. The node labels describe the model order of the
node. For this example graph, Tarjan’s algorithm has to be run thrice. Initially identifying strongly
connected components in Step 1, the repetition of this Step 1, shown in Figure 3.11c, and finally, to
guarantee that the graph is acyclic. This number of repetitions is not optimal for this model, as two
could suffice, shown in Section 3.8.1.

32

3.8. Strongly Connected Component Cycle Breaker

(a) Step 1: Identify strongly connected
components.

(b) Step 2: Find node with minimum
model order and reverse incoming
edges.

(c) Repeat step 1 and 2. Reversed edges
are dashed.

(d) Acyclic Graph.

Figure 3.11. Illustration of the SCC-CB, using minimum model order selection.

Maximum Model Order

The maximum model order node selection selects the node with the maximal model order in the SCC.
Since the definition of this node is the latest definition for all nodes in the SCC, it should be placed
right-most, which is achieved by reversing all outgoing edges to nodes of the same SCC. The different
behavior this has is illustrated in Figure 3.12, altering Step 2 to Step 2’. For this example, the number
of repetitions of Tarjan’s algorithm remains the same, but it is not optimal.

(a) Step 2’: Select the node with the
maximum model order and reverse
outgoing edges.

(b) Repeat step 1 and 2’

Figure 3.12. Illustration of the SCC-CB, using maximum model order selection.

Connectivity Model Order

Combining the minimum and maximum model order selection can be achieved by using the in-degree
and out-degree of the nodes. For each SCC, the minimum and maximum model order nodes are saved.

33

3. Cycle Breaking

If the minimum node has a higher in-degree (filtered to nodes of the same SCC) than the maximum
node’s out-degree (filtered to nodes of the same SCC), it is chosen. Otherwise, the maximum node is
chosen. Figure 3.13 illustrates this. This approach reduces the required repetitions for the example
graph to two. If the in-degree equals the out-degree for the respective nodes either option can be
chosen, as both approaches reverse the same edges, just in a different order. The connectivity approach
tries to reduce the execution time.

Figure 3.13. Illustration of the SCC-CB, using connectivity model order selection.

Behavior by Node-Type

For languages with multiple node types and grouping, these options so far do not deal with the
problem of incomparable model order. However, the node type may alter the node selection behavior by
using the same approach explored in the “preferred type for order” option of the MOLA-CB, explained
in Section 3.7.2. A specific type can be prioritized, i.e., for Lingua Franca, this order could be defined
as follows:

� If the minimum and maximum model order nodes are of the same type, choose the node according
to the in- and out-degree.

� If the minimum node is a reactor and the maximum node is a different type, choose the minimum
node.

� If the maximum node is a reaction, select this node.

This order allows that reactors, which are freely movable, are prioritized, to increase the control.
As a conclusion to the different options, the connectivity model order selection combines the

minimum and maximum approach and reduces execution time, therefore, this approach is used in the
analysis. The behavior by node-type approach introduces a priority order for node types to prefer
freely moveable nodes, therefore, this approach is also evaluated in the analysis in Chapter 5.

3.8.2 Complexity

In each iteration, at least one node is removed from every SCC since it is transformed into a source
or sink for this SCC. Therefore, the worst case is a fully connected graph and requires N iterations to
remove all cycles. This results in a WCET of O((N + E) � N).

34

Chapter 4

Crossing Minimization

As previously mentioned, edge crossings are bad for the readability of a layout, as following edges
is a vital part of working with graphs. This chapter presents the basics of crossing minimization by
introducing the layer sweep crossing minimization algorithm, to explain where group model order can
be used to alter this approach. Additionally, the challenges and opportunities for modeling languages
with node-type grouping are explored.

Crossing minimization works by altering the node order within a layer (and the port order of a
node), for which a proper layered graph is needed. A proper layered graph is ensured by the previous
phase, layer assignment, by introducing dummy nodes and dummy edges to replace edges that stretch
over multiple layers. Generally, when referring to the target of an edge the long edge target is meant.
The long edge target is the original target of the edge if it was split into multiple edges and dummy
nodes. Figure 4.1 shows an example of a proper layered graph and crossing minimizing this graph by
altering the order in the third layer (swapping D and E). The multi-layer edge from A to F is replaced
by dummy nodes (represented by diamonds) and edges.

While the in-layer ordering is altered by this strategy, using model order as secondary notation to
dictate the in-layer order improves stability and increases control. The newly proposed approaches,
shown in Section 4.4, try to improve the stability and control by introducing group model order. The
approach in Section 4.5 evades the problem of node-type grouping by fixing the port order.

(a) Simple graph before crossing minimization. (b) Simple graph after crossing minimization.

Figure 4.1. Illustration of crossing minimization.

35

4. Crossing Minimization

1 input: proper layered graph G = (V,E,L)

2 output: proper layered and ordered graph G = (V‘,E,L‘)

3 r = randomSeed // Fixed random seed

4 t = thoroughness

5 sweepForward = randomSweepDirection(r)

6 bestOrder = null

7 for i = 0 ; i < t ; i++:

8 G = randomizeLayers(G,r,sweepForward)

9 do:

10 for each l in L:

11 minimizeCrossings(l)

12 while improved(G)

13 if crossings(G) < crossings(bestOrder):

14 bestOrder = G

15 sweepForward = !sweepForward

Listing 4.1. Pseudo code showing the layer sweep crossing minimizer.

4.1 Layer Sweep Crossing Minimizer

Listing 4.1 shows pseudo-code of the Layer Sweep Crossing Minimizer. Crossing minimization is NP-
complete, even for bipartite graphs [GJ83]. Since the graphs considered in this thesis utilize ports,
a heuristic is required that includes ports [SSH14]. This approach is prone to local minima and is,
therefore, run multiple times, defined by the thoroughness t of the algorithm. The seed for random
decisions is fixed to ensure the same behavior for a given graph. The initial sweep direction, the direction
of traversing the layers, is chosen randomly in randomSweepDirection, using the fixed random seed.
This sweep direction can either be forward or backward (along the layout direction or against the
layout direction). The node order within each layer and the port order of each node are randomized
in the randomizeLayers function, if their order is not otherwise constraint (i.e., the order of reactions).
The edge order is extracted from the port order, to match the edge and port order.

The function minimizeCrossings uses two layers: the current layer, or the fixed layer, and the next
layer, the free layer. In Figure 4.1 the second layer (containing B and C) is the fixed layer, and the third
layer (containing D and E) is the free layer. The next layer is either the immediate layer to the right or
left based on the direction of the layer sweep. The nodes and ports in the free layer are ordered to
minimize crossings, utilizing a minimization strategy like the barycenter heuristic [SFH+10]. Simplified
the barycenter heuristic works as follows:

� 1: For each node in the free layer, calculate the average position, the barycenter, of the connected
nodes in the fixed layer.

� 2: Order the free layer based on the barycenter values.

Finally, edge crossings are counted using the node and port order described in [BMJ04] and the best
order for the graph, with respect to edge crossings, is remembered and used after t runs. The following
section explains how the barycenter approach can be modified to include model order.

4.2 Model Order In Crossing Minimization

Recent endeavors in utilizing the model order for the layered algorithm have tackled the crossing
minimization phase. "Preserving Order during Crossing Minimization in Sugiyama Layouts" [DH21]

36

4.3. Enforcing Node Order

explores this in-depth, with further exploration in "Model Order in Sugiyama Layouts" [DRv23]. The
proposed approach defines a vertex order (node order) and a port order based on the initial order of
the graph. While the initial graph may define orders for nodes and edges, which should be reflected in
the final layout, sometimes it is impossible to express both orders since they may contradict each other.
Therefore, a flag is introduced to decide if the node or the port order is prioritized. The following
modifications to the layer sweep crossing minimizer are introduced:

� Before beginning the layer sweep this approach order the ports and layers based on these orders.
Let GI be the graph with this order (Introduced prior to the for loop in line 7).

� The bestOrder is defined with these initial orders applied to the graph, GI .

� The initial randomization is skipped and the layer sweep is run on GI .

� Continue with the original random approach for subsequent runs to improve the layout if the initial
ordering fails.

Another problem with using the model order crossing minimization is the introduction of dummy
nodes and edges in layer assignment. As these elements are not part of the textual model these
elements do not have an initial order. Dummy edges use the model order of the initial edge they
replace. For dummy nodes the model order of the long edge target node is used. Real nodes can be
compared by model order, but comparing a real node directly with a dummy node by model order
cannot be done.Comparing a real node and a dummy node is done by selecting the nodes with the
lowest model order in the previous layer that connect to the real and dummy node.

4.3 Enforcing Node Order

For some nodes, the declaration order is part of the syntax. As mentioned, this syntax sensitive order
is the case for reactions in LF. The in-layer ordering of these nodes with syntax sensitive declaration
order uses the model order instead of the barycenter heuristic. This use of model order forces the
in-layer order of reactions to be identical to the execution order, eliminating the behavior shown in
Figure 4.2a. The order shown in Figure 4.2a violates model order for reactions and does not reflect the
execution order, which can be used as secondary notation. This behavior as this should be avoided.

Currently reactions and reactors use the model order in LF. With the introduction of group model
order this can be changed as shown in Section 4.4. Figure 4.2b shows that using the model order for
both reactors and reactions, while increasing control, may introduce edge crossings. This, however,
indicates a crossing declaration order. One could argue that it is the responsibility of the developer to
eliminate these edge crossings by avoiding crossing declarations shown in Figure 4.2c.

Using the model order for in-layer ordering of nodes with different types creates a separation
between different node types. I.e., let type A be the node type that is (generally) defined ahead of type
B; the in-layer order reflects this declaration behavior and orders nodes of type A to the top and nodes
of type B to the bottom.

Enforcing the node order for all nodes reduces the effectiveness of crossing minimization, as the
only changes that are applied in the crossing minimization phase would then affect dummy nodes.

Generally, one has to evaluate the trade-off for control and ease of use, which may change
depending on the expertise of the developer.

37

4. Crossing Minimization

(a) Undesired ordering of reactions, not following
model order and execution order.

(b) Bad declaration order forces edge crossing when
using model order.

1 main reactor {

2 i = new initiator();

3 r1 = new r_Source();

4 r2 = new r_Sink();

5 w1 = new w_Source();

6 w2 = new w_Sink();

7 e = new end();

8

9 reaction (w1.out) -> w2.in

10 reaction (r1.out) -> r2.in

11

12 i.r -> r1.in

13 i.w -> w1.in

14 w2.out -> e.w

15 r2.out -> e.r

16 }

(c) Bad declaration order, with crossing orders.
Declaring r1, r2 before w1, w2 but declaring the re-
action of w1Ñ w2 before r1Ñ r2

Figure 4.2. Reason with for fixing node order based on model order and the problems this brings.

4.4 Introducing New Behavior For Node Types

Using the model order within the same node type is sensible for in-layer node ordering. However,
the same problem that exists for cycle breaking, that comparing the model order of different types,
emerges when comparing different node types in the same layer. The following sections explore
options for this problem by introducing group model order.

4.4.1 Model Order For One Type

The first option is restricting the use of model order to only one node type. This is shown in Figure 4.3b
in a simplified version. If only one node type utilizes model order, the remaining types are handled
by using the barycenter method. This approach reduces the use of secondary notation, as the model
order for all other types is not used. While this can improve the layout it defeats the goal of this
thesis, increasing . However, it reduces the workload for developers (by being less restrictive in the
declaration order) while maintaining the model order for the node type of highest preference and
reducing crossings for the different types, as seen in Figure 4.3a. As this distinction between different
node types can violate the transitive constraint of orderings an order preserving sorting algorithm like
insertion sort has to be used [DRv23].

38

4.4. Introducing New Behavior For Node Types

(a) Enforcing node order for reactions and crossing mini-
mizing reactors.

1 Node n1,n2

2 if (n1.hasModelOrder

3 AND n2.hasModelOrder

4 AND n1.type == Reaction

5 AND n2.type == Reaction):

6 // Use ModelOrder

7 else :

8 // Use Barycenterheuristic

(b) Adding a filter in the
ModelOrderBarycenterHeuristic.java to
check the type of the nodes (lines 4 and 5).

Figure 4.3. Enforcing node order for one specific node type.

4.4.2 Barycenter For Different Types

The second approach utilizes the newly introduced definition of group model order to ensure the
model order is only used within the same type and uses the barycenter approach for the comparison
of different node types regarding the in-layer ordering. This can be done by altering lines 4 and 5 of
Figure 4.3b to check if n1 and n2 are of the same type. This retains the control for the developer while
improving edge crossings between different types the developer can not adjust. The differences shown
in Figure 4.4a and Figure 4.4b shows the improvements this approach gives over simply using the
restricted model order. This approach, however, is again susceptible to crossing declaration order and
edge crossings based on this crossing declaration order.

(a) Using the model order to order layers. Creating a separation
between reactions and reactors.

(b) Using the barycenter method to compare different node
types. This mixes reactors and reactions and reduces crossings.

Figure 4.4. Using model order between different node-types or only for nodes of the same node-type.

39

4. Crossing Minimization

4.5 Enforcing Port Order

This section explores the approach of fixing the port order. This approach works for languages that
explicitly define ports like LF. For languages like SCCharts the ports are created implicitly and use the
edge order.

As port declarations are freely movable in LF, this could be used instead of the model order of
nodes. This approach can be combined with the approach of still enforcing the model order for a
specific node type like reactions. This may introduce edge crossings, which could be resolved by
altering the port order. Figure 4.5 shows the complications of enforcing the port order for models that
were not created with this option, as presented in Figure 4.5c. Figure 4.5a shows that this port order
enforcement can create in-layer order violations for the execution order of reactions and the creation
of unnecessary crossings. Figure 4.5b shows these problems can easily be eliminated by reordering the
ports.

(a) Enforcing the port order creates an unnecessary edge
crossing for the outgoing edges of X_Loader and forces the
reactions order in X_S_Sink to go against execution order.

(b) Fixing the port order eliminates the unnecessary edge
crossing and fixed the reaction order

1 reactor X_S_Sink{

2 input S_in:int

3 input X_in:int

4 input S_sig:signal

5 input X_sig:signal

6

7 reaction (X_in){==}

8 reaction (S_in){==}

9 }

10

11 reactor X_Loader{

12 input in:int

13 output out_not:int

14 output out:int

15 }

(c) The declaration of the the ports
for the nodes X_Loader and X_S_Sink

in Figure 4.5a

Figure 4.5. Reducing edge crossings and fixing model order violations for reactions by modifying the fixed port
order.

Furthermore, removing the in-layer order constraint of reactions may reduce edge crossings. This
would give full control to the developer. The order may be adjusted to reduce edge crossings to an
optimal solution with the applied layering. However, this allows in-layer model order violations for
reactions, as shown in Figure 4.6a, where the in-layer order of all reactions contained in mixed is
violated, but the edge crossings in this layout are reduced to the minimal amount of two with this
layering. While the optimal solution for this graph is 0 edge crossings, by moving the node x_notify to a
layer ahead of the layer with X_S_Sink, which can be achieved with the Stretch Width Layerer [RAC+17]
and is visualized in Figure 4.6b.

40

4.5. Enforcing Port Order

(a) Violation of the in-layer order for reactions to reduce
crossings

(b) Violation of the in-layer order for reactions to reduce
crossings

Figure 4.6. Using a fixed port order without node order constraints to reduce crossings.

Something to consider is that the port order has to match the internal and external graph for
hierarchical nodes. The different port orders of the node X_S_Sink in Figure 4.5b and Figure 4.5a. While
the port order used in Figure 4.5a reduces edge crossings in the external graph the model order of the
reactions contained in X_S_Sink is violated. The port order used in Figure 4.5b fixes the model order
violation for the reactions contained in X_S_Sink but creates an edge crossing in the external graph.
Keeping track of both portion of the entire graph may be tedious, especially if the reactor is defined in
a different file.

Enforcing the node order gives the developer a high degree of control; however, this comes with
some overhead. Ultimately, enforcing the port order creates a massive benefit for interactively working
with the diagram: stability, as introduced in Section 2.9.

41

Chapter 5

Analysis

This chapter gives an analysis of the different approaches for cycle breaking and crossing minimization.
Additionally, some feedback from the LF development team and a team of developers at Magnition is
evaluated.

5.1 Evaluation Basics

This chapter utilizes the GrAna tool from KIELER. This tool allows easy evaluation of graphs in the
elkg1 format. This tool exports the result of the analysis in a Comma-Separated Value (CSV) file. The
R-Project2 was used for the evaluation of those and the creation of the diagrams used in this chapter.
In this section, general statistics that do not change for the different approaches, like the average node
count, are given.

5.1.1 The Dataset(s)

Four different datasets are analyzed in this chapter:

Table 5.1. The datasets used in the analysis.

Dataset Name Source Description Size

LF Unit Tests (LFT) Lingua Franca Github 3 The models of this dataset are used in

the unit tests of LF, to ensure intended behavior.
139

LF Experiments (LFEP) Lingua Franca Playground Github4 This dataset contains models that are actively developed

internally to demonstrate proposed language features.
70

LF Examples (LFEA) Lingua Franca Playground Github5 These models are examples for beginners to learn LF. 131

Magnition Colaboration (COLAB) Magnition Github6 This dataset contains real-world models,

shared by Magnition.
38

This brings the total dataset size to 378 models. However, as shown in Section 5.1.5 and Section 5.2.1,
most of these graphs are very small and, the same layout is created. In addition to comparing the
different approaches as introduced in Chapter 3 and Chapter 4, the evaluation will compare the
datasets with each other to see if fundamental differences exist when it comes to different sources.

1https://eclipse.dev/elk/documentation/tooldevelopers/graphdatastructure.html
2https://www.r-project.org/
3https://github.com/lf-lang/lingua-franca/tree/master/test
4https://github.com/lf-lang/playground-lingua-franca/tree/main/experiments
5https://github.com/lf-lang/playground-lingua-franca/tree/main/examples
6https://github.com/MagnitionIO/LF_Collaboration/tree/main

43

https://eclipse.dev/elk/documentation/tooldevelopers/graphdatastructure.html
https://www.r-project.org/
https://github.com/lf-lang/lingua-franca/tree/master/test
https://github.com/lf-lang/playground-lingua-franca/tree/main/experiments
https://github.com/lf-lang/playground-lingua-franca/tree/main/examples
https://github.com/MagnitionIO/LF_Collaboration/tree/main

5. Analysis

5.1.2 Data Normalization

The significant differences in graph size are beneficial for gathering data of a broader range; however,
the context and, with that, the comparability of the statistic is lost. Comparing raw edge crossings or
backward edges in a violin plot shows the average distribution for the dataset; it does not, however,
show if the models with the larger numbers are the same models for all strategies. Additionally, for
statistics, like edge crossings, the analysis data consists of very small results for the majority of the
models and some large outliers. Showing both the small and large examples in one readable diagram
is not possible without spanning the diagram over an entire page. Therefore, normalization is sensible.
The proposed normalization approach reduces the size of the y-axis and increases comparability, for
this, normalization is defined as follows.

5.1 Definition (Normalization). Let Ax
i be a ordered set of result data for strategy i and analysis x.

Ax contains all result sets @i 1 ¤ i ¤ |Ax| : Ax
i P Ax. Normalization for a data set Ax is defined as:

� norm(Ax) = @Ax
i P Ax : norm(Ax

i)

Let vi,x
j be the resulting value of analysis x and strategy i for model j. Therefore, norm(Ax

i) is given as:

� norm(Ax
i) = @j 1 ¤ j ¤ |Ax

i | :

vi,x
j / ∑|Ax|

k=1
vk,x

j
|Ax|

, if ∑|Ax|
k=1

vk,x
j

|Ax|
¡ 0

1 , otherwise
Or in words, divide the value of a specific analysis by the mean value of all strategies for this model
and analysis.

Datasets normalized with this method now express how a strategy performs in relation to the mean of
all strategies. If the normalized value is greater than 1, the strategy performs worse than the average
(i.e., creating 1.4 times the number of backwards edges as the mean of all strategies). If the normalized
value is 1 is equivalent with performing just like the average. This explains the otherwise case of the
formula; if all strategies evaluate to 0 the average would be 0 but this would indicate that all strategies
performed better than the average. As they performed exactly as the average, they are normalized to 1.
If the normalized value is smaller than 1 the strategy performs better than the average (i.e., creating
0.6 times the backwards edges as the mean). For the example of backward edges, if a normalized
value is 0 it indicates that for this model the strategy was able to create a layout without introducing
backwards edges, while other strategies required backwards edges.

5.1.3 Kruskal-Wallis Test

The results of the analysis in this chapter are evaluated with the Kruskal-Wallis test [KW52] to check
for statistical significance. It is a non-parametric7 test for samples of equal or different sample sizes and
tests if the samples originate from distributions around the same median value. The Kruskal-Wallis
test is an extension of the Mann-Whitney-U-Test [MW47], which is only capable of comparing two
samples. As the p-value to indicate significance the standard value of 0.05 is used. The null hypothesis
is: The samples originate from distributions with the same median. If the p-value is smaller than 0.05
this hypothesis is discarded. The implementation of this test is given by the R package rstatix8.

5.1.4 Willcoxon Test

As a post hoc analysis, if the Kruskal-Wallis test shows significance, the pairwise Willcoxon signed
rank test [Wil45] is used. This test analyses paired data to indicate where the differences are in a

7https://en.wikipedia.org/wiki/Nonparametric_statistics
8https://cran.r-project.org/web/packages/rstatix/index.html

44

https://en.wikipedia.org/wiki/Nonparametric_statistics
https://cran.r-project.org/web/packages/rstatix/index.html

5.1. Evaluation Basics

multi-sample analysis. To counteract the multiple comparisons problem9 for statistical tests that consist
of multiple comparisons, the Bonferroni correction [Bon36] was used. The Willcoxon test indicates
significance if the p-value is smaller than the p-value of the Kruskal-Wallis test divided by the number
of samples. The implementation of this test is given by the rstatix package as well.

5.1.5 Node / Edge Count Analysis

Figure 5.1 shows the distribution of the node count for all datasets, not including dummy nodes. The
ggbreak [XCF+21] package was used to create a break in the y scale. It is apparent that the majority of
the examples have a relatively small node count. With some out-lier models with up to 178 nodes.

Figure 5.1. Node count distribution and statistics for the entire dataset.

Predominantly, the LFT dataset consists of extremely small examples, as seen in Figure 5.2c. The COLAB

and LFEP datasets include the largest samples, as presented in Figure 5.2b and Figure 5.2d. These
samples consist of a composition of many small models. The large samples are particularly interesting,
as these show the highest amount of differences for the tested approaches. Furthermore, testing the
differences in layout creation times should be more conclusive for larger diagrams.

With increasing node count, the edge count should increase. The plots for the edge count analysis
of the different datasets are shown in the appendix, in Figure A.1. These plots, together with the
plots for the edge count, show different behaviors when working with compositions in Lingua Franca.
Figure A.1b shows a relatively equal distribution for the edge count. This indicates that the dataset
has a wide range of models, regarding the size. On the contrary, as seen in Figure A.1d, the COLAB

dataset consisting of many small models and some very large models. This evaluation can be explained
by taking a closer look at the composition of a given model. A large model often consists of the
composition of many small models.

9https://en.wikipedia.org/wiki/Multiple_comparisons_problem

45

https://en.wikipedia.org/wiki/Multiple_comparisons_problem

5. Analysis

(a) LFEA Node Count (b) LFEP Node Count

(c) LFT Node Count (d) COLAB Node Count

Figure 5.2. Comparison of the node count in the different datasets.

As explained in Chapter 2, due to the fact that LF models may have multi edge connections the
edge count is no longer bound by the squared node count. However, in all of the models, the number
of edges never exceeds the number of nodes squared.

5.1.6 Multi-Edge Connections

As mentioned in Section 3.3.4, there is a way to reduce number of evaluation for multi-edge connections
to only a single evaluation. Figure 5.3 shows the average percentage of multi-edge connections per
model in each dataset. The data shows that an average of 9.67% of the edges in the models of the
LFEA, LFT and COLAB datasets are multi-edges. The LFEP dataset has an abnormally high percentage
of average multi-edge connections, with 49.2%. For five models of the entire dataset all edges are
multi-edge connections. This shows that the proposed approach may drastically reduce the evaluation
for edges. The average model in the entire dataset has 27% multi-edges.

46

5.2. Cycle Breaking Evaluation

(a) LFEA multi-edge connection percentage. (b) LFEP multi-edge connection percentage.

(c) LFT multi-edge connection percentage. (d) COLAB multi-edge connection percentage.

Figure 5.3. Comparison of the multi-edge connection percentage in the different datasets.

5.2 Cycle Breaking Evaluation

This section evaluates six different cycle breaking strategies, namely: BF-CB, DF-CB, G-CB, MOLA-CB,
Strongly Connected Components Connectivity Cycle Breaker (SCC_CON-CB) and Strongly Connected Compo-
nents Node Type Cycle Breaker (SCC_NODE-CB). The BF-CB and DF-CB strategies use the node order option.
The results for the MOLA-CB strategy uses the skip sequential edges with fallback edges option, as
the evaluation for other options performed worse in all categories. The SCC_CON-CB strategy is the
SCC-CB with the connectivity model order option, so that they rely on an explicitly defined model order.
Finally, the SCC_NODE-CB is the SCC-CB with the behavior by node-type option, preferring to reverse the
incoming edges of the reactor with the lowest model order. Five different analyses are done for these
strategies.

5.2.1 Matching Layouts

For inherently acyclic models, the layouts are indifferent. Furthermore, small models not only have a
high probability of not containing any cycles but also have small cycles with few options for choosing
different edges to reverse. In this section, the layouts are evaluated for equality. Figure 5.4 shows the

47

5. Analysis

(a) LFEA matching layouts. (b) LFEP matching layouts.

(c) LFT matching layouts. (d) COLAB matching layouts.

Figure 5.4. Comparing how often different cycle breaking strategies create the same layout for all datasets.

results of this analysis using an UpSet10 diagram. UpSet graphs show the intersections of sets as a
matrix. Each column in the matrix below the bar chart describes an intersection, where the filled-in
dot highlights the sets that are part of this intersection. The bar above a given set indicates the size of
this intersection. Usually, UpSet diagrams include an indicator for the size of the individual sets, as all
sets have the same size in this example, this indicator is omitted. Figure 5.4 shows that, for all datasets,
the majority of the layouts are indifferent. In total, of the 378 models in all datasets, 294 models have
the same layout for all options, equating to 77.7% of the models. For the LFT dataset of the 139 models
131 (or 94, 2%) are indifferent to altering the cycle breaking strategy. Of the 378 models, only 3 have
unique layouts for the six different approaches.

Any statistic for the entire dataset would be vanishingly small, as they would be overshadowed

10https://upset.app

48

https://upset.app

5.2. Cycle Breaking Evaluation

by the large amount of indifferent layouts. Additionally, all layouts where no edges are reversed can
be excluded, as any differences in these layouts originate in stability-inaccuracies in other phases of
the layered algorithm. Stability-inaccuracies mean that even though the layered algorithm is designed
to replicate the same layouts if the model and the settings do not change this behavior can not be
guaranteed entirely, i.e., detached parts are sometimes ordered differently. Therefore, the analysis is
done on the datasets where the entries with equal layouts or without edge reversals for all strategies
are removed. This reduces the dataset size from 378 models to 71 models.

5.2.2 Backward Edge Analysis

As mentioned, the feedback set problem is the underlying problem for cycle breaking. Therefore,
a smaller solution for cycle breaking is a smaller solution for the feedback set problem, creating a
metric to evaluate the heuristics behind each approach. Figure Figure 5.5a shows the raw results
for the backward edge analysis for the entire dataset, and Figure 5.5b shows the normalized graph.
These graphics show why normalization is helpful for displaying differences. While the results for
the different strategies in Figure 5.5a look fairly similar, Figure 5.5b shows that the G-CB performs
extremely well. For all examples, it performs at least as well as the average of the different strategies
but, in most cases, creates fewer edge reversals. In fact, for only one model of the 71 models is
this strategy outperformed by the DF-CB. The BF-CB performs the worst of them, which is expected
considering how the breadth-first search discovers nodes.

(a) ALL backwards edge count. (b) ALL normalized backwards edge comparison.

Figure 5.5. Analysis data for the backwards edge analysis

The Kruskal-Wallis test returns a p-value of 0.9, failing to show significant differences for the backwards
edge count. The mean value for the G-CB is 4.92 while the mean values for the other are between 5.75
and 6.38.

5.2.3 Edge Crossing analysis

While edge crossings are further evaluated in Section 5.3, crossings are also induced by differences in
cycle breaking, as the nodes can be sorted into different layers. The settings for crossing minimization
are kept consistent for this analysis. Here, the crossing minimization uses the model order even
between different node types with a fixed port order to reduce the impact of the crossing-minimization
step.

49

5. Analysis

A similar analysis for SCCharts has shown that graphs with fewer layers tend to have more edge
crossings, as edges cluttered between fewer layers [Rie22]. This was particularly critical for the BF-CB

for SCCharts. Figure 5.6 shows the normalized results of the edge-crossing analysis.

Figure 5.6. Normalized data for edge crossings.

The visualization of the analysis data for the BF-CB, DF-CB and the SCC_CON-CB are extremely similar.
Taking the matching layouts presented in Figure 5.4 into consideration, this should not be surprising.
Of the 378 models, these three strategies create identical layouts in 367, or 97.1%, of the models. The
average edge crossing number is 14� 1 for the entire dataset and the different strategies: Therefore,
the Kruskal-Wallis test fails to indicate significant differences with a p-value of 0.292. The MOLA-CB

performs worse in most cases, with some examples that are especially bad.

5.2.4 Aspect ratio Analysis

5.2 Definition (Aspect ratio). The aspect ratio of a layout is defined by wwidth/wheight where w is the
root node of the graph.

The aspect ratio of a graph is a relevant metric for readability. Figure 5.7 shows how differences in
the aspect ratio of the drawing area and the layout of the graph impact the readability of a model. A
mismatch results in layouts with decreased readability, as the layout can not utilize the drawing area,
creating unused whitespace around the layout, as seen in Figure 5.7a.

50

5.2. Cycle Breaking Evaluation

(a) Diagram view next to the textual file. (b) Diagram view below the textual file.

Figure 5.8. Different IDE layouts and their estimated aspect ratio for the diagram view.

(a) Mismatching aspect ratio.

(b) Matching aspect ratios.

Figure 5.7. Relation of the drawing area aspect ratio and the graphs aspect ratio.

Taylor and Rodgers [TR05] name multiple pleasing aspect ratios like 1 : 1, the golden ratio 1 : 1.618 or
1 : 2. They describe that the layout’s overall aspect ratio should match the drawing area (e.g., a page,
screen, or the containing hierarchical node). As mentioned, LF is mostly used in the Epoch IDE or in
VS Code with the LF-Plugin. These IDEs have a similar layout structure. Figure 5.8 shows the two main
configurations for working with LF files and an estimated aspect ratio of the diagram view on a 16 : 9
screen. These layouts are altered mostly to adhere to the preferences of the developer. All six strategies
and every model in the entire dataset result in 2.268 layouts. Only 234, or 10.3%, of these layouts have
an aspect ratio below one, which would mean that the height is greater than the width.Overall, the
mean aspect ratio for all these layouts is 2.49, and the median is 2.26. This indicates that the number
of layers is usually greater than the number of nodes in any layer. Additionally, the visualization of
reactions have an aspect ratio of 2.05, which inherently increases the layout width. All this indicates
that the IDE structure shown in Figure 5.8b is a better fit for LF.

The results for the aspect ratio analysis are fairly consistent across all datasets, Figure 5.9 shows
the results for the dataset described in Section 5.2.1 (removed indifferent layouts).

51

5. Analysis

Figure 5.9. Results of the aspect ratio analysis.

For this reduced dataset, the mean values range from 2.36 for the MOLA-CB and 2.85 for the DF-CB. No
pattern can be found for the relation between aspect ratio and node/edge count. The p-value for the
Kruskal-Wallis test is 0.18, failing to indicate a significant difference.

5.2.5 Execution Time Analysis

In Chapter 3 the WCET for the different strategies is given in O notation; this section evaluates real
execution times measured in nanoseconds. The entire dataset was used for this analysis, as the
execution times are different even for identical layouts. The load on the system was decreased to
a minimum, stopping all unnecessary processes. Resulting in a background load of 2% for the
Central Processing Unit (CPU), 3% for the Graphics Processing Unit (GPU) and 40% of the Random-Access
Memory (RAM). Table 5.2 shows the system specifications used for this test. Figure 5.10 shows the
execution time for the different cycle-breaking strategies, with a maximum of 0.001s. Table 5.3 presents
the raw data for key values of the analysis. The Kruskal-Wallis test has a p-value of 6.5e� 15, indicating
significant differences in the datasets. The Wilcoxon test indicates differences between all datasets
except between the SCC_CON-CB and SCC_NODE-CB.

52

5.2. Cycle Breaking Evaluation

Table 5.2. System specifications for the execution time analysis.

Component- / Softwarename Specification
CPU AMD Ryzen 7 5800X 8-Core 3.8GHz
GPU NVIDIA GeFroce RTX 4070 Ti
RAM 32 GB at 2133 MHz
Operation System Windows 10.0.19045
Java Java 17.0.4.1 2022-08-18 LTS
Epoch 0.5.10-Snapshot

Figure 5.10. Visualization of execution times capped at 0.001s.

Table 5.3. Exact values for key statistics of the execution time values in seconds.

Statistic BF-CB DF-CB GREEDY-CB MOLA-CB SCC_CON-CB SCC_Node-CB

min 8e� 07 7e� 07 1.4e� 06 1e� 06 1e� 06 1e� 06
max 3.7e� 03 6.4e� 03 3.9e� 04 5.8e� 03 7.0e� 03 7.9e� 4
mean 6.0e� 05 1.6e� 04 4.7e� 05 3.1e� 04 1.3e� 4 9.6e� 05
median 4.9e� 06 8.4e� 5 2.7e� 05 1.4e� 04 4.5e� 05 4.8e� 05

An interesting observation is visible in the difference between the BF-CB and the DF-CB. While the
BF-CB has the overhead of using Tarjan’s algorithm as a preprocessor, the mean and median execution
time is lower. Especially the mean execution time is lower, which can be a result of entirely skipping
cycle breaking if no cycles are found in the preprocessing step. Additionally, despite running Tarjan’s
algorithm multiple times, the differences in execution times for SCC_CON-CB and SCC_NODE-CB not as
significant as the WCET would suggest.

While the statistical tests show significant differences, the differences are mostly in the magnitude
of fractions of milliseconds. Even though the hardware used for these tests is rather powerful for
simple layout tasks, the differences found here should not be the reason to prefer any strategy.

53

5. Analysis

5.3 Crossing Minimization Evaluation

In this section, three options for utilizing model order or group model order in crossing minimization
are evaluated. As cycle breaking has an influence on layer assignment and, therefore, on crossings,
the options are evaluated for different cycle-breaking strategies. To reduce the number of different
combinations some cycle-breaking strategies will be grouped. As mentioned for the set of BF-CB, DF-CB

and SCC_CON-CB, 97.1% of the layouts are identical. Therefore, these strategies are represented by the
DF-CB. The G-CB and the SCC_NODE-CB create equal layouts in 353, or 93.4% of the models and are
therefore grouped as well, represented by the G-CB.

The following options for crossing minimization are compared:

� The original approach by Domrös and von Hanxleden [DH21]. Referred as DvH.

� Utilization of model order only for reactions. Referred as REAC.

� Barycenter for different Types. Referred as BC.

The approach of enforcing port order will not be evaluated, as enforcing the port order drastically
changes the way LF models should be implemented; comparing this approach with a more lax
approach would not be sensible. Models would require adjustments to utilize the full potential of fixed
node orders. The analysis will additionally be done on the entire dataset without the distinguishment
in the evaluation of cycle breaking. This creates up to nine different approaches to compare.

5.3.1 Matching Layouts

This analysis shows the effect size of the different crossing minimization options using UpSet plots.
Figure 5.11 shows the matching layouts when using the same cycle breaker and switching the crossing
minimization options.

(a) DF-CB. (b) GREEDY-CB. (c) MOLA-CB.

Figure 5.11. Differences induced by the crossing minimization option, for different cycle breaking strategies.

This figure shows that using the same cycle-breaking strategy and only adjusting the crossing minimizer
produces the same amount in up to 94% of the models. Contrary to that, Figure 5.12 shows the
differences induced by altering the cycle breaker and fixing the crossing minimization option. While
this still creates identical layouts in up to 80% of the cases, the effect of cycle breaking on the layout is
greater than the influence of crossing minimization.

54

5.3. Crossing Minimization Evaluation

(a) BC. (b) DvH. (c) REAC.

Figure 5.12. Differences induced by the crossing minimization option, when using different cycle breaking
strategies.

For the following analysis in this chapter use data set with removed identical layouts based on cycle
breaking.

5.3.2 Edge Crossing Analysis

Figure 5.13 shows the normalized analysis data for the edge crossing analysis based on crossing
minimization options by combining the different cycle-breaking strategies. The data shows that the BC

approach has a higher stability compared to the other approaches. It does not create layouts with a
massively larger edge crossing count than the other options.

Figure 5.13. Normalized edge crossings, grouped by the crossing minimization options.

Additionally, the BC approach creates the most layouts without edge crossings where at least one other
strategy could not eliminate all crossings. The REAC approach has the lowest average amount of edge

55

5. Analysis

crossings. The p-value comparing these datasets with the Kruskal-Wallis test is 0.0019, indicating
statistically significant differences. The Willcoxon test only indicates significant differences between
the REAC and DvH datasets, with a p-value of 4e� 4.

Figure 5.14 shows the differences induced by modifying crossing minimization for different cycle
breakers. This data confirms the behavior shown in Figure 5.13. However, this data uncovers that the
cycle breaker heavily influences the layouts in the scope of crossings; as for the DF-CB, no outliers are
created.

Figure 5.14. Affects of changes to crossing minimization for different cycle breakers.

Still, the DvH approach gives the highest normalized mean and median values for all different strategies.
The lowest mean and mean values differ based on cycle breaking strategy and the REAC approach has
the lowest median values for all cycle-breaking strategies.

Something to consider is that most models have not been created with a model order strategy
for crossing minimization, and if without proper introduction into the effects of model order. The BC

approach would benefit from this awareness, possibly reducing the edge crossing.

5.3.3 Aspect-ratio

When changing the in-layer order, the width and height of the entire layout change. Figure 5.15
shows the analysis data for the aspect ratio analysis. This data shows that the aspect ratio is relatively
consistent for the same cycle breaker with different crossing minimization options. For all cycle
breakers combined, the Kruskal-Wallis test fails to show statistically significant differences for the
different crossing minimization options. With mean values of 3.11, 3.12 and 3.08 for the BC, DvH and
REAC approaches, respectively.

56

5.4. Feedback

Figure 5.15. Aspect ratio comparison for different combinations of cycle breaking and crossing minimization

5.4 Feedback

Retrieving feedback from developers that actively use a programming language, or in this case, a
modeling framework, is difficult for multiple reasons. Some of these reasons are listed below:

� Knowledge about layout algorithms. Explaining different approaches for a layout algorithm requires
some knowledge about layout algorithms, to fully comprehend the expected induced differences.

� Personal preferences. Developers have different preferences for layout decisions. Some of these
decisions are difficult to measure with objective metrics.

� Small number of participants. Methods like surveys require time and effort, which reduces the num-
ber of developers that are willing to participate. Additionally, getting in contact with knowledgeable
persons can be difficult.

� Finding good examples. With the analysis results presented here it should be apparent that the
dataset for showing differences is very small. Only three models show unique behavior for cycle
breaking.

Two sources for feedback have been utilized. The different cycle-breaking strategies and approaches to
modify crossing minimization have been introduced in the weekly Lingua Franca meeting. The second
source of feedback is a meeting with a development team from Magnition, who actively use LF in
their products.

The first response of feedback generally was: "This should be an option." However, this is not
desirable, as explaining the induced differences in a tooltip , i.e., for swapping the cycle-breaking
strategy, is not feasible. Figure 5.16 shows some of the currently displayed options for diagram
manipulation, with the sections Modes and Layout collapsed.

57

5. Analysis

Figure 5.16. Diagram options in the VSCode extension.

The options windows seems overwhelming for first time users. The team at Magnition mostly uses
three options of the list presented in Figure 5.16. These options being: Multiport Widths, Port Names and
Reactor Instance Names. The presentation of too many choices can lead to indecision; in psychology
this is known as choice paradox. A study about consumer behavior regarding the purchase of jam
found that consumers bought jam in 40% of the cases with only six options. In contrast, consumers
with 24 different options of jams only bought any jam in 3% of the cases [IL00]. Now replace jams
with intricate algorithms with different options, where further explanation of these differences is not
given in a tooltip but rather some guide on a website or a markdown file, this should further limit
the desire to explore different decisions. Furthermore, Hick and Hyman found in their research that
with increasing choices, the decision for any given choice increases logarithmically, known as the
Hick-Hyman law [Hic52].

Initially, most feedback stated that reducing control is okay if it benefits the layout. However, after
some reconsideration most participants argued that control and especially stability are more important.
Using model order in the algorithm inherently creates stability, as drastic model order changes require
drastically changing the entire model, at which point stability can no longer be given.

58

5.4. Feedback

Finally, feedback concerned the ability to follow edges. Reducing edge crossings is vital for clear
edges, but Magnition mentioned a feature used in a different modeling tool to reduce the number of
visualized edges, further options are explored in Section 6.3.1.

59

Chapter 6

Conclusion

This chapter summarizes the results found in this thesis, followed by some aspects of the evaluation
that could be improved. Afterwards, an outlook that explains future options to improve feedback
generation and general options for better readability.

6.1 Summary

Previous analysis has shown that using model order in automatic graph drawing is beneficial for the
layout creation. The current approaches utilize the model order for languages with an unimpaired
model order. This thesis evaluates the possibilities of using the model order for languages where node
declarations are grouped by their type. Lingua Franca models are used as a case study for languages
with this behavior. A new property is added to each node for working with node groups, representing
the group as an integer value.

Several options are explored to utilize this newly introduced group ID in the cycle-breaking phase
of the layered algorithm. The results of the analysis fail to show a favorable strategy. The MOLA-CB

performs worst when comparing edge crossings and backward edges. However, this strategy creates
the layouts with the smallest aspect ratio. The model order greedy approach still achieves its original
goal of creating a minimal number of backward edges. However, for some models, this approach
creates layouts with a relatively high number of edge crossings. The DF-CB and the SCC_CON-CB perform
well in all aspects, with slight advantages for the SCC_CON-CB. Additionally, this approach provides
more control for the developer.

Another phase of the layered approach that was modified is the crossing minimization phase. The
results show that the newly proposed approaches reduce the number of edge crossings compared to
the current approach. While the REAC approach produces the best results on average, the BC approach
reduces edge crossings, eliminates bad outliers completely, and retains the highest control. Arguably,
with the BC approach enabled, the implementation of models will change and the edge crossing will
be reduced even further.

The surveyed developers generally preferred the option to fix the order of ports. Even if this
increases the initial overhead, stability is a big concern. This option would require developers to use it
for some time to give a fair evaluation, as creating a good port order could become quite complex for
large models, which are often divided into multiple files. However, the option of a fixed port order
could be exposed to the developer and could be deactivated for extremely large.

General feedback from Lingua Franca’s developers and developers who actively use it indicates
that higher control is favored. While the overhead of working with the model increases in the short
term, working with clear and readable layouts reduces the susceptibility to bugs and erroneous
configurations.

61

6. Conclusion

6.2 Evaluation Revision

The biggest problem for evaluating different layout strategies is the sample size of models. This
problem is aggravated for small samples if the compared strategies only induce minor differences
or none for the small samples. As mentioned in the analysis, 77.7% of the models in this dataset are
indifferent. Furthermore, only three models produce different results for all cycle-breaking strategies.
This problem transfers to the evaluation with human feedback. Comparing different strategies is
difficult if the sample size for different models is this small. One approach that could fix this problem
is presented in the following section.

6.3 Future Work

Gathering more models for an evaluation is difficult for many reasons, depending on the source of the
models.

� Test Samples: This dataset has the potential to grow as new features that require testing are
introduced into the language. However, the test models are relatively small, as shown in the
analysis. As a result, 94% of the samples are identical, with only three models showing more than
two options.

� Example Samples: This dataset grows under the same circumstances as the test dataset. Exemplary
models may explain new features for a given language. However, only a small number of models
probably suffice to fully explain a feature, while testing is more extensive.

� Experiments Sample: This dataset is described as some experiments with the language and
showcases future feature ideas. This dataset is the smallest of the open-source datasets because
these new ideas only emerge occasionally.

� Real World Samples: While real-world samples are the most relevant, they are also the hardest to
obtain. Real-world, large-scale development is rarely open-source. Obtaining these samples requires
good connections with the development team.

One approach to gathering more real-world samples could utilize a tool that removes the source
code of the target language. This code is irrelevant for evaluating layouts; however, it is why these
models cannot be shared openly. The source code in the target language may be classified by the
company. A tool that would allow development teams to remove this code and other classified parts
like comments or even obfuscate the names of the nodes could increase the willingness to share
models. This tool could be a command-line tool distributed with the main framework with a hint of
helping development and improving the framework on the website.

6.3.1 Wireless Connections

The general feedback of the developers using Lingua Franca with an interactive diagram view
concerned the ability to follow edges.

The diagram can get rather cluttered in large-scale diagrams with many multi-edge connections.
One approach hinted at is an approach that is utilized in the design tool Origami Studio1 by Meta. This
tool utilizes what they call Wireless Broadcasters and Wireless Receivers. These are essentially connections

1https://origami.design/

62

https://origami.design/

6.3. Future Work

Figure 6.1. Wireless Broadcasters and Wireless Recievers in Origami Studio2.

without the visual representation of an edge, as shown in Figure 6.1. These are especially useful for
edges that target multiple nodes. Using a label for these connections, similar to port labels, would
allow for multiple connections of this type without confusion.
These wireless edges could be created by introducing a new keyword or identifier like -|>, with the
benefit of eliminating these edges from the layout creation, even in different instances of either Epoch
or VS Code. Another approach would be to introduce a context menu for edges with the ability to
transform the edge. The second approach would be a transient decision, which most likely would
reduce the stability of the layout.

2https://origami.design/documentation/workflow/patchorganization

63

Appendix A

Appendix

A.1 Tarjan’s Algorithm

1 input: directed graph G = (V,E)

2 output: set of strongly connected components (vertex sets)

3

4 stronglyConnected = empty set of sets of nodes

5 index = 0

6 S = empty stack

7 for v in V:

8 if v.index is undefined :

9 scc(v)

10

11 function scc(v):

12 v.index = index

13 v.lowlink = index++

14 S.push(v)

15 v.onStack = true

16

17 for (v,w) in E: //outgoing edges of E

18 if w.index is undefined: //if a successor of v has not been visited, check it.

19 scc(w)

20 v.lowlink = min(v.lowlink,w.lowlink)

21 else if w.onstack:

22 // w is on stack and reachable it might be a lowlink

23 v.lowlink = min(v.lowlink,w.index)

24

25 if v.lowlink = v.index: //v is a root node

26 strong = empty set nodes //new strongly connected component

27 strong.add(v)

28 do:

29 w = S.pop

30 w.onStack = false

31 strong.add(w)

32 while v != w

33 if strong.size() > 1: //modification only power > 1

34 stronglyConnected.add(strong)

Listing A.1. Pseudo code for Tarjan’s algorithm

65

A. Appendix

A.2 Edge Count Analysis

(a) LFEA Edge Count (b) LFEP Edge Count

(c) LFT Edge Count (d) COLAB Edge Count

Figure A.1. Comparison of the edge count in the different datasets.

66

Bibliography

[BMJ04] Wilhelm Barth, Petra Mutzel, and Michael Jünger. “Simple and efficient bilayer cross
counting”. In: Journal of Graph Algorithms and Applications 8.2 (2004), pp. 179–194.

[Bon36] C.E. Bonferroni. Teoria statistica delle classi e calcolo delle probabilità. Pubblicazioni del R.
Istituto superiore di scienze economiche e commerciali di Firenze. Seeber, 1936. url:
https://books.google.de/books?id=3CY-HQAACAAJ.

[BRS+07] Chris Bennett, Jody Ryall, Leo Spalteholz, and Amy Gooch. “The aesthetics of graph
visualization”. In: Proceedings of the International Symposium on Computational Aesthetics
in Graphics, Visualization, and Imaging (CAe’07). Banff, Alberta, Canada: Eurographics
Association, 2007, pp. 57–64.

[CMS99] Stuart K. Card, Jock Mackinlay, and Ben Shneiderman. Readings in information visualization:
using vision to think. Morgan Kaufmann, Jan. 1999. isbn: 1558605339.

[CTY07] Pierre Charbit, Stéphan Thomassé, and Anders Yeo. “The minimum feedback arc set
problem is np-hard for tournaments”. In: Combinatorics, Probability & Computing 16.1
(2007), pp. 1–4. doi: 10.1017/S0963548306007887.

[DCS+23] Sara Di Bartolomeo, Tarik Crnovrsanin, David Saffo, and Cody Dunne. Evaluating graph
layout algorithms: a systematic review of methods and best practices. 2023. doi: 10.31219/osf.io/ms27r.

[DH21] Sören Domrös and Reinhard von Hanxleden. Preserving order during crossing minimiza-
tion in Sugiyama layouts. Technical Report 2103. ISSN 2192-6247. Christian-Albrechts-
Universität zu Kiel, Department of Computer Science, Nov. 2021.

[DHS+23] Sören Domrös, Reinhard von Hanxleden, Miro Spönemann, Ulf Rüegg, and Christoph
Daniel Schulze. The eclipse layout kernel. 2023. arXiv: 2311.00533 [cs.DS].

[DRv23] Sören Domrös., Max Riepe., and Reinhard von Hanxleden. “Model order in sugiyama
layouts”. In: Proceedings of the 18th International Joint Conference on Computer Vision, Imaging
and Computer Graphics Theory and Applications (VISIGRAPP 2023) - Volume 3: IVAPP.
INSTICC. SciTePress, 2023, pp. 77–88. isbn: 978-989-758-634-7. doi: 10.5220/0011656700003417.

[EHN+17] Peter Eades, Seok-Hee Hong, An Nguyen, and Karsten Klein. “Shape-based quality
metrics for large graph visualization”. In: Journal of Graph Algorithms and Applications 21.1
(2017), pp. 29–53. issn: 1526-1719. doi: 10.7155/jgaa.00405.

[ELS93] Peter Eades, Xuemin Lin, and W. F. Smyth. “A fast and effective heuristic for the feedback
arc set problem”. In: Information Processing Letters 47.6 (1993), pp. 319–323. issn: 0020-0190.
doi: 10.1016/0020-0190(93)90079-O.

[FH10] Hauke Fuhrmann and Reinhard von Hanxleden. “Taming graphical modeling”. In:
Proceedings of the ACM/IEEE 13th International Conference on Model Driven Engineering
Languages and Systems (MoDELS ’10). Vol. 6394. LNCS. Springer, Oct. 2010, pp. 196–210.
doi: 10.1007/978-3-642-16145-2.

[FR91] Thomas M. J. Fruchterman and Edward M. Reingold. “Graph drawing by force-directed
placement”. In: Software—Practice & Experience 21.11 (1991), pp. 1129–1164. issn: 0038-0644.
doi: http://dx.doi.org/10.1002/spe.4380211102.

67

https://books.google.de/books?id=3CY-HQAACAAJ
https://doi.org/10.1017/S0963548306007887
https://doi.org/10.31219/osf.io/ms27r
https://arxiv.org/abs/2311.00533
https://doi.org/10.5220/0011656700003417
https://doi.org/10.7155/jgaa.00405
https://doi.org/10.1016/0020-0190(93)90079-O
https://doi.org/10.1007/978-3-642-16145-2
https://doi.org/http://dx.doi.org/10.1002/spe.4380211102

Bibliography

[GJ79] Michael R. Garey and David S. Johnson. Computers and intractibility: a guide to the theory of
NP-completeness. New York: W. H. Freeman & Co, 1979.

[GJ83] Michael R. Garey and David S. Johnson. “Crossing number is NP-complete”. In: SIAM
Journal on Algebraic and Discrete Methods 4.3 (1983), pp. 312–316. doi: 10.1137/0604033.

[Gra14] Martin Grandjean. “La connaissance est un réseau. perspective sur l’organisation archivis-
tique et encyclopédique”. In: Les cahiers du numérique 10.3 (2014), pp. 37–54. issn: 14693380.
doi: 10.3166/LCN.10.3.37-54.

[HDM+14] Reinhard von Hanxleden, Björn Duderstadt, Christian Motika, Steven Smyth, Michael
Mendler, Joaquín Aguado, Stephen Mercer, and Owen O’Brien. “SCCharts: Sequentially
Constructive Statecharts for safety-critical applications”. In: Proc. ACM SIGPLAN Con-
ference on Programming Language Design and Implementation (PLDI ’14). Edinburgh, UK:
ACM, June 2014, pp. 372–383. doi: 10.1145/2594291.2594310.

[HFS11] Reinhard von Hanxleden, Hauke Fuhrmann, and Miro Spönemann. “KIELER—The KIEL
Integrated Environment for Layout Eclipse Rich Client”. In: Proceedings of the Design,
Automation and Test in Europe University Booth (DATE ’11). Grenoble, France, Mar. 2011.

[Hic52] W. E. Hick. “On the rate of gain of information”. In: Quarterly Journal of Experimental
Psychology 4.1 (1952), pp. 11–26. doi: 10.1080/17470215208416600.

[HLF+22] Reinhard von Hanxleden, Edward A. Lee, Hauke Fuhrmann, Alexander Schulz-Rosengarten,
Sören Domrös, Marten Lohstroh, Soroush Bateni, and Christian Menard. “Pragmatics
twelve years later: a report on Lingua Franca”. In: 11th International Symposium on Leverag-
ing Applications of Formal Methods, Verification and Validation (ISoLA). Vol. 13702. Lecture
Notes in Computer Science. Springer. Rhodes, Greece, Oct. 2022, pp. 60–89. doi: 10.1007/978-

3-031-19756-7_5.

[IL00] S. S. Iyengar and M. R. Lepper. “When choice is demotivating: can one desire too much
of a good thing?” In: Journal of personality and social psychology 79.6 (2000), pp. 995–1006.
issn: 0022-3514. doi: 10.1037/0022-3514.79.6.995.

[KDM+16] Steve Kieffer, Tim Dwyer, Kim Marriott, and Michael Wybrow. “HOLA: human-like
orthogonal network layout”. In: IEEE Trans. Vis. Comput. Graph. 22.1 (2016), pp. 349–358.
doi: 10.1109/TVCG.2015.2467451.

[KW52] William H. Kruskal and W. Allen Wallis. “Use of ranks in one-criterion variance analysis”.
In: Journal of the American Statistical Association 47.260 (1952), pp. 583–621. issn: 0162-1459.
doi: 10.1080/01621459.1952.10483441.

[LCG+15] Alfredo Lezama, Irene-Angelica Chounta, Tilman Göhnert, and H. Hoppe. “Exploring
visual stability in dynamic graph drawings: a case study”. In: 2015. doi: 10.1145/2808797.2809341.

[LKP18] Felice de Luca, Stephen Kobourov, and Helen Purchase. “Perception of symmetries in
drawings of graphs”. In: Graph Drawing and Network Visualization - 26th International
Symposium, GD 2018 Barcelona, Spain, September 26–28, 2018 Proceedings. Ed. by Therese
Biedl and Andreas Kerren. Lecture Notes in Computer Science. Springer, 2018, pp. 433–
446. isbn: 9783030044138. doi: 10.1007/978-3-030-04414-5_31.

[MW47] H. B. Mann and D. R. Whitney. “On a test of whether one of two random variables is
stochastically larger than the other”. In: The Annals of Mathematical Statistics 18.1 (1947),
pp. 50–60. issn: 0003-4851. doi: 10.1214/aoms/1177730491.

68

https://doi.org/10.1137/0604033
https://doi.org/10.3166/LCN.10.3.37-54
https://doi.org/10.1145/2594291.2594310
https://doi.org/10.1080/17470215208416600
https://doi.org/10.1007/978-3-031-19756-7_5
https://doi.org/10.1007/978-3-031-19756-7_5
https://doi.org/10.1037/0022-3514.79.6.995
https://doi.org/10.1109/TVCG.2015.2467451
https://doi.org/10.1080/01621459.1952.10483441
https://doi.org/10.1145/2808797.2809341
https://doi.org/10.1007/978-3-030-04414-5_31
https://doi.org/10.1214/aoms/1177730491

Bibliography

[PCA02a] Helen C. Purchase, David Carrington, and Jo-Anne Allder. “Empirical evaluation of
aesthetics-based graph layout”. In: Empirical Software Engineering 7 (3 2002), pp. 233–255.
issn: 1382-3256.

[PCA02b] Helen C. Purchase, David Carrington, and Jo-Anne Allder. “Graph layout aesthetics in
UML diagrams: User preferences”. In: Journal of Graph Algorithms and Applications 6.3
(2002).

[Pet95] Marian Petre. “Why looking isn’t always seeing: Readership skills and graphical pro-
gramming”. In: Communications of the ACM 38.6 (June 1995), pp. 33–44.

[PHG06] Helen C. Purchase, Eve E. Hoggan, and Carsten Görg. “How important is the “mental
map”? – an empirical investigation of a dynamic graph layout algorithm”. In: Proceedings
of the 14th International Symposium on Graph Drawing (GD ’06). Vol. 4372. LNCS. Springer,
2006, pp. 184–195. isbn: 978-3-540-70903-9. doi: 10.1007/978-3-540-70904-6.

[Pur97] Helen C. Purchase. “Which aesthetic has the greatest effect on human understanding?”
In: Proceedings of the 5th International Symposium on Graph Drawing (GD ’97). Vol. 1353.
LNCS. Springer, 1997, pp. 248–261.

[RAC+17] Ulf Rüegg, Marc Adolf, Michael Cyruk, Astrid Mariana Flohr, and Reinhard von Hanxle-
den. Minimum-width graph layering revisited. Technical Report 1701. ISSN 2192-6247. Kiel
University, Department of Computer Science, Feb. 2017.

[Rie10] Martin Rieß. “A graph editor for algorithm engineering”. Bachelor Thesis. Kiel University,
Department of Computer Science, Sept. 2010.

[Rie22] Max Riepe. “Model Order and Cycle Breaking in SCCharts”. Bachelor Thesis. Kiel
University, Department of Computer Science, Mar. 2022.

[Sch11] Christoph Daniel Schulze. “Optimizing automatic layout for data flow diagrams”.
Diploma Thesis. Kiel University, Department of Computer Science, July 2011.

[SFH+10] Miro Spönemann, Hauke Fuhrmann, Reinhard von Hanxleden, and Petra Mutzel. “Port
constraints in hierarchical layout of data flow diagrams”. In: Proceedings of the 17th
International Symposium on Graph Drawing (GD ’09). Vol. 5849. LNCS. Springer, 2010,
pp. 135–146. doi: 10.1007/978-3-642-11805-0.

[SFH09] Miro Spönemann, Hauke Fuhrmann, and Reinhard von Hanxleden. Automatic layout of
data flow diagrams in KIELER and Ptolemy II. Technical Report 0914. Christian-Albrechts-
Universität zu Kiel, Department of Computer Science, July 2009.

[SSH12] Christian Schneider, Miro Spönemann, and Reinhard von Hanxleden. Transient view gen-
eration in Eclipse. Technical Report 1206. ISSN 2192-6247. Christian-Albrechts-Universität
zu Kiel, Department of Computer Science, June 2012.

[SSH13] Christian Schneider, Miro Spönemann, and Reinhard von Hanxleden. “Just model! –
Putting automatic synthesis of node-link-diagrams into practice”. In: Proceedings of the
IEEE Symposium on Visual Languages and Human-Centric Computing (VL/HCC ’13). San Jose,
CA, USA: IEEE, Sept. 2013, pp. 75–82. doi: 10.1109/VLHCC.2013.6645246.

[SSH14] Christoph Daniel Schulze, Miro Spönemann, and Reinhard von Hanxleden. “Drawing
layered graphs with port constraints”. In: Journal of Visual Languages and Computing,
Special Issue on Diagram Aesthetics and Layout 25.2 (2014), pp. 89–106. issn: 1045-926X. doi:
10.1016/j.jvlc.2013.11.005.

69

https://doi.org/10.1007/978-3-540-70904-6
https://doi.org/10.1007/978-3-642-11805-0
https://doi.org/10.1109/VLHCC.2013.6645246
https://doi.org/10.1016/j.jvlc.2013.11.005

Bibliography

[STT81] Kozo Sugiyama, Shojiro Tagawa, and Mitsuhiko Toda. “Methods for visual understanding
of hierarchical system structures”. In: IEEE Transactions on Systems, Man and Cybernetics
11.2 (Feb. 1981), pp. 109–125. doi: 10.1109/TSMC.1981.4308636.

[Tar72] Robert E. Tarjan. “Depth-first search and linear graph algorithms”. In: SIAM Journal of
Computing 1.2 (1972), pp. 146–160.

[TDB88] Roberto Tamassia, Giuseppe Di Battista, and Carlo Batini. “Automatic graph drawing
and readability of diagrams”. In: IEEE Transactions on Systems, Man and Cybernetics 18.1
(1988), pp. 61–79. issn: 0018-9472.

[TR05] Martyn Taylor and Peter Rodgers. “Applying graphical design techniques to graph visu-
alization”. In: Proceedings of the Ninth International Conference on Information Visualization
(InfoVIS’05). July 2005, pp. 651–656.

[Wil45] Frank Wilcoxon. “Individual comparisons by ranking methods”. In: Biometrics Bulletin
1.6 (1945), p. 80. issn: 00994987. doi: 10.2307/3001968.

[WPC+02] Colin Ware, Helen Purchase, Linda Colpoys, and Matthew McGill. “Cognitive measure-
ments of graph aesthetics”. In: Information Visualization 1.2 (2002), pp. 103–110. issn:
1473-8716.

[XCF+21] Shuangbin Xu, Meijun Chen, Tingze Feng, Li Zhan, Lang Zhou, and Guangchuang Yu.
“Use ggbreak to effectively utilize plotting space to deal with large datasets and outliers”.
In: Frontiers in genetics 12 (2021), p. 774846. issn: 1664-8021. doi: 10.3389/fgene.2021.774846.

[ZKS11] Loutfouz Zaman, Ashish Kalra, and Wolfgang Stuerzlinger. “The effect of animation,
dual view, difference layers and relative re- layout in hierarchical diagram differencing”.
In: 2011, pp. 183–190.

70

https://doi.org/10.1109/TSMC.1981.4308636
https://doi.org/10.2307/3001968
https://doi.org/10.3389/fgene.2021.774846

	Abbreviations
	Introduction
	Input Variants
	Related Work
	Control
	Model Order

	Group Model Order
	Outline

	Preliminaries
	Terminology
	Multi-Edge Connections
	Layout Quality Metrics
	Eclipse Layout Kernel
	Kiel Integrated Environment for Layout Eclipse Rich Client
	Lingua Franca
	Layered Algorithm
	Detecting Cycles using Tarjan's algorithm
	Stability

	Cycle Breaking
	Fundamentals
	Greedy Cycle Breaker
	Breadth-First Cycle Breaker
	Sources and Sinks
	Cycle Detection Pre-processing
	Edge- or Node-Order
	Complexity

	Depth-First Cycle Breaker
	Model Order Cycle Breaker
	Strict Type Cycle Breaker
	Model Order Look Ahead Cycle Breaker
	Reducing Edge Reversals
	Preferred Type For Order
	Skip Sequential Edges
	Fallback Edges
	Complexity

	Strongly Connected Component Cycle Breaker
	Node Selection
	Complexity

	Crossing Minimization
	Layer Sweep Crossing Minimizer
	Model Order In Crossing Minimization
	Enforcing Node Order
	Introducing New Behavior For Node Types
	Model Order For One Type
	Barycenter For Different Types

	Enforcing Port Order

	Analysis
	Evaluation Basics
	The Dataset(s)
	Data Normalization
	Kruskal-Wallis Test
	Willcoxon Test
	Node / Edge Count Analysis
	Multi-Edge Connections

	Cycle Breaking Evaluation
	Matching Layouts
	Backward Edge Analysis
	Edge Crossing analysis
	Aspect ratio Analysis
	Execution Time Analysis

	Crossing Minimization Evaluation
	Matching Layouts
	Edge Crossing Analysis
	Aspect-ratio

	Feedback

	Conclusion
	Summary
	Evaluation Revision
	Future Work
	Wireless Connections

	Appendix
	Tarjan's Algorithm
	Edge Count Analysis

	Bibliography

