
Forschungsprojekt: Model Order Cycle
Breaking in Lingua Franca

Problem Description
Previous works and studies suggest that the textual model, used for synthesis of graphical
models, have an inherent order. Adapting the Cycle-Breaking stage of the Layered Algorithm to
work with this order and to preserve it in the graphical model provides the creator of the models
with some level of control and creates better graphical results. The results mentioned above
originate in an analysis that has been done with SCCharts.
Lingua Franca is a modeling language with different types of nodes (mainly actions, reactions and
reactors). In the textual representation, nodes are grouped based on their type. Additionally, the
order of nodes in the textual representation is part of the semantics of Lingua Franca, as this
order is used for scheduling, to ensure deterministic behavior.
This project focused on finding and comparing different approaches for Cycle Breaking. The
general goal is to create better-synthesized models.

General Approach
While it initially was the goal to find a Cycle Breaking strategy which works for any modeling
language with different Node-Types, Lingua Franca has many peculiarities and approaches
presented here will focus on these peculiarities and make assumptions based on them.
The grouping of nodes in the textual representation yields the problem that comparing the Model
Order between different Node-Types is not sensible.
Within a type the Cycle-Breaking strategy could simply utilize the Model-Order. Different
approaches for edges between different Node-Types will be discussed here.
It has to be ensured, that the strategy removes all cycles between different Node-Types. The
cycles within a type are handled by the Model-Order.
Another peculiarity of Lingua Franca is that node-types alternate, actions connect to reactions,
which in turn connect back to actions.

Exemplary Models using the current Cycle Breaking
Strategy.

This section will show two graphical models using the current strategy. This is meant as a
reference when looking at the results of different approaches.

af://n97
af://n99
af://n101
af://n103

(Approach 0) Using the Depth-First Cycle Breaker
Considering that the Depth First Cycle Breaker and the Model Order Cycle Breaker produced the
same results for the majority of the models for SCCharts, simply using the Depth First approach
might be viable. This might be interesting, if the textual order of Lingua Franca models does not
represent any idea of the model creator, due to the order being part of the semantics of Lingua
Franca.

Approach 1 Node-Type Priority
Idea: Have a strict reversal order between different node types.

Define priorities (type-priorities) for the different Node-Types. If an edge starts in a node with a
lower type priority than the target node, reverse this edge. This ensures, that there are no cycles
between different Node-Types. However, due to the alternating nature of LF Node-Types, this
leads to layers of node-types. The Model-Order is completely ignored, as edges are only reversed
based on the type priority. This may also create large amounts of backwards-edges.

Advantages

Easy and fast.

Disadvantages

Creates mostly isolated layers for different Node-Types.
Bad performance regarding classical aesthetic criteria.

The following two images show the problems discussed above. Having unnecessary backward
edges and creating layers for different node types.

FOR v in V:

 FOR e in v.outgoing:

 if e.source.type_priority > e.target.type_priority:

 e.reverse()

 else if e.source.type_priority == e.target.type_priority:

 if e.source.model_order > e.target.model_order:

 e.reverse()

af://n105
af://n107
af://n111
af://n115

Approach 2 Breadth-First or Depth-First as
Secondary Order

Idea: Traverse the graph with Breadth-First-Search/Depth-First-Search and create a second ordering to
use between different node-types.

Start a BFS/DFS from a selected node (e.g external port, start-up node), in general from sources,
and create a second ordering. This ordering is used as a tie-breaker when comparing nodes of
different types. Again this approach has the same problem as the first approach. As nodes
alternate in LF, the Model-Order is completely ignored and edges are only reversed based on the
ordering of BFS/DFS. Therefore for Lingua Franca this approach is equivalent to approach 0.

Queue bfs_queue

List order

function presort():

 for v in V.sources:

 bfs_queue.add(v)

 while (!bfs_queue.isEmpty):

 v = bfs_queue.poll()

 order.add(v)

 bfs(v)

function bfs(v):

 if(!v.was_visited):

 ordered.add(v)

 for e in v.outgoing:

 if !e.target.was_visited:

 bfs_queue.add(e.target)

for v in V:

 for e in v.outgoing:

 if e.source.type != e.target.type:

 if order.index_of(e.source) > order.index_of(e.target):

 e.reverse()

 else if e.source.model_order > e.target.model_order:

 e.reverse()

af://n125

Advantages

Easy and Fast

Disadvantages

For a language like LF, where the different Node-Types mostly alternate, the Model Order is
lost and this strategy is equivalent to the simple Depth First Cycle Breaker

The Following image shows, that this introduces problems of the Depth / Breadth First Cycle
Breaker. The edge between reaction 1 and the logical action does not need to be reversed, but as
the logical action was already visited in a previous step, the edge is reversed.

Approach 3 Model-Order Look Ahead
Idea: Start a Breadth-First-Search from every node, if a search-path reaches a node of the same type,
compare the model order and reverse an edge / multiple edges based on this.
During the development of this Cycle Breaker, some additional features (in the form off
preprocessor or intermediate steps) have been discovered. Some of them alter the layout, some
of them are mainly used to reduce the search space. These features might be used in other
strategies as well. These features and the differences they induce will be discussed here. However
the basic algorithm will discussed first.

Since it is not sensible to compare the model order between different Node Types, the idea is to
skip over these edges and check for the next node(s) of the same Node Type. For that a Breadth
First Search is started at every node, to determine the successors of the same node type. In
general, if any of the nodes reached by the BFS has a model order lower or equal (in the case of a
self-loop) to the starting node, the initial edge has to be reversed.

for v in V:

 for e in v.outgoing:

 if e.source.type != e.target.type:

 //Using BFS search for the next node of the same type and compare

the model order of these nodes.

 nextNodes = getNextNodesWithGroupPriority(e.source, e.target)

 for seqNode in nextNodes:

 if e.source.model_order >= seqNode.model_order: // The "=" is

needed incase of a selfloop

 e.reverse()

 continue

 else if e.source.model_order > e.target.model_order:

 e.reverse()

af://n132
af://n136
af://n143

Advantages

Does not need a metric other than the Model Order.
Achieved promising results in Test-graphs.
Computationally inexpensive in LF. (due to alternating Node-Types)

Disadvantages

In Languages where node-types alternate very infrequent or have unique nodes, may be
computationally intensive.
Some edge-cases may lead to unnecessary edge reversals.

Remembering previously reversed edges

As this approach starts a Breadth-First Search for every node, it is important to reduce the search
space, especially for larger models. If an edge has been reversed previously, there is no need to
check beyond this edge as all cycles containing this edge have already been broken. Additionally,
this may reduce the number of backward edges, as shown below.

The first Image shows what happens when the BFS does not abort if it interacts with an edge already
marked for reversal. This happens because the model order of the reactions and the model order of the
actions induces a reversal.

Reordering the Groups of Node-Types

In Lingua Franca the Model-Order of the reactions is of the highest interest. Selecting from which
types of nodes we start with the strategy leads to different results if combined with the previously
mentioned technique of remembering reversed edges. Therefore the default approach is to start
with the reactions. Presorting the nodes additionally ensures determinism for this approach.

Reversing subsequent edges.

Instead of reversing the outgoing edge of the starting node s ,with type T, it is possible to reverse
the incoming edge of the next node with type T.
This leads to longer straight layouts and allows more precise edge reversals, however, it might
also lead to more backward edges.

The first image shows an example where due to one of the edges being of lower model order, the
outgoing edge of reaction 2 is reversed. Reversing the next incoming edge instead of the outgoing edge
may results in a more granular control over edge reversals, as shown in the second example.

af://n147
af://n155
af://n161
af://n165
af://n167

This, however, creates other problems, shown in the following section.

Fallback-edges

Using sequential edge reversals, as described above, may lead to conflicts regarding the model
order, as shown below.

The model order of reaction 2 and reaction 3 prefers the edge between the upper logical action and
reaction 3 not to be reversed. The model order of reaction 4 however leads to the reversal of this edge.

This problem can be dealt with, by fixing edge directions. During the Breadth First Search of
reaction 2, the layout direction of the problematic edge is marked as fixed direction. When the
BFS from reaction 4 reaches this edge, it is recognized, that the edge should be reversed to break
a cycle, but it is marked as fixed. In this case the outgoing edge of reaction 4 is chosen as fallback
edge to reverse. During this step no other edge is reversed other than the fallback edge. This is
shown in the following image.

One might like the first or the second better. For this domain experts should be surveyed. (Which
will be done at a later time.)

af://n172

Strict Model-Order is not always applicable

In the following example reaction 1 has to be defined before reaction 2 due to determancy,
however strict Model-Order edge reversal would now force the reversal of an edge.

To cope with this problem edges are marked as part of a loop if they are part of a strongly
connected component. Only if an edge is part of a strongly connected component it is part of a
cycle. Edge targets are therefore only checked if the edge connects nodes within a strongly
connected component. This allows the following layout, for the graph shown in the sequential
edge section. For this edges are marked using the Tarjan Algorithm for strongly connected
components.
(https://en.wikipedia.org/wiki/Tarjan%27s_strongly_connected_components_algorithm)

No edge reversal is needed for an acyclic graph.

The following example shows that this strategy may still reverse too many edges.

The right image shows, that one edge reversal suffices, to break all cycles. With this strategy all edges
are reversed if they are initially part of a strongly connected component and go against the model
order.

The following approach eliminates this problem. It however comes with a (significant) runtime
trade-of.

Approach 4 Greedy Strongly Connected Components

af://n178
https://en.wikipedia.org/wiki/Tarjan's_strongly_connected_components_algorithm
af://n189

Idea: Use Tarjans algorithm and reverse the edges off the node with the highest or lowest model order.
Repeat this process, until no strongly connected components are left.

This strategy utilizes the fact that reversing all incoming or outgoing edges of a node in a strongly
connected component breaks all circles containing this node. After reversing the edges, the Tarjan
algorithm is used again. These steps are repeated until no strongly connected component may be
found. Since at least n nodes are cleared from all cycles in every repetition (n being the amount of
SCC found in this iteration), after V repetitions no further SCC may be found, resulting in a worst-
case runtime of O((V+E)*V). However, this is extremely unlikely as it only applies to fully connected
graphs.

There is one major parameter one could alter for this approach, choosing the node. Concerning
Model-Order there are two main approaches:
Select the node with the lowest Mode-Order and reverse all of the incoming edges originating in
nodes that are part of the strongly connected component. As seen in the following image.

Select the node with the highest Model-Order and reverse all of the outgoing edges ending in a
node that is part of the strongly connected component, as seen here:

This does not eliminate all of the unnecessary edge reversals, but it may drastically reduce them.
One could try to improve the node selection for this method, disregarding Model-Order for a
heuristic approach like the one used in the Greedy Cycle Breaker. This could create a very good
approach in regard of edge reversals.

Outlook
Improvement for the MO-Look ahead Cycle Breaker (smart selection of initial or sequential edge
Reversals)
Quantitative analysis using GrAna.
Qualitative analysis, by surveying domain experts.

af://n247

	Forschungsprojekt: Model Order Cycle Breaking in Lingua Franca
	Problem Description
	General Approach
	Exemplary Models using the current Cycle Breaking Strategy.
	(Approach 0) Using the Depth-First Cycle Breaker
	Approach 1 Node-Type Priority
	Advantages
	Disadvantages

	Approach 2 Breadth-First or Depth-First as Secondary Order
	Advantages
	Disadvantages

	Approach 3 Model-Order Look Ahead
	Advantages
	Disadvantages
	Remembering previously reversed edges
	Reordering the Groups of Node-Types
	Reversing subsequent edges.
	Fallback-edges
	Strict Model-Order is not always applicable

	Approach 4 Greedy Strongly Connected Components
	Outlook

