
Christian-Albrechts-Universität zu Kiel

Diploma Thesis

A Constructive Model/View Approach
for the Re�nement of

UML 2.0 Sequence Diagrams

cand. inform. Marco Zingelmann

November 26, 2007

Department of Computer Science

Real-Time and Embedded Systems Group

Advised by:

Prof. Dr. Reinhard von Hanxleden

Dipl. Phys. Carsten Ziegenbein∗

∗Philips Medical Systems, Hamburg, Germany

ii

Eidesstattliche Erklärung

Hiermit erkläre ich an Eides statt, dass ich die vorliegende Arbeit selbstständig
verfasst und keine anderen als die angegebenen Hilfsmittel verwendet habe.

Kiel,

iv

Abstract

An industrially proven technique to manage the development of complex systems is
to begin with an abstract high-level description of the requirements that are step-
wise re�ned with increasing level of detail. UML 2.0 sequence diagrams provide a
common, well-suited graphical formalism to specify requirements. Developers are
thereupon able to model the whole behavior of the system under development based
on the re�ned, detailed requirements. UML sequence diagrams, however, present
only loosely coupled partial views of the system's behavior and, thus, the risk of
inconsistencies is inherent.
To overcome this problem, this thesis introduces a constructive model/view con-
cept for UML 2.0 sequence diagrams, which understands diagrams as views on an
underlying formalized model. The introduced concept supports di�erent levels of
abstraction and adopts changes in one level of abstraction into all dependent levels.
Constructive modi�cations of a model force the user to resolve ambiguities while
they occur. This results in an all-time consistent model. The consistency de�nitions
used in this thesis aim at the re�nement relation and the completeness of each re-
quirement level. Furthermore, these de�nitions allow highly e�cient algorithms by
addressing sequence diagram consistency at a syntactical level.

Keywords UML, sequence diagrams, model view, constructive development, consistency,

re�nement

vi

Preface

My thanks go to André Ohlho� for the constructive discussions concerning various
aspects of my thesis and the deeply reading of this work. In addition, I would like to
thank Jan Täubrich for his advice, reviews, the given lift, and the fruitful discussions
also during the return journeys. Last but not least, my thanks go to Björn Lüdemann
for the reviews and the challenging new ideas.

vii

viii

Contents

1. Introduction 1
1.1. Environment . 2
1.2. Sequence Diagrams . 4
1.3. Objectives . 6
1.4. Overview . 7

2. Consistency / Re�nement 9
2.1. Inter- / Intra-level Re�nement . 9
2.2. Level State Machine . 16

2.2.1. Example . 18
2.2.2. Petri Nets . 19
2.2.3. Sequence Diagram Start / End States 20
2.2.4. Petri Net Representation for the Level State Machine 29

2.3. State Re�nement . 29
2.4. Message Re�nement . 32

3. Model/View Concept 33
3.1. Introduction . 33
3.2. Model . 36

3.2.1. Identify possible event orderings 39
3.2.2. Classify possible event orderings 46
3.2.3. Re�nement . 49

3.3. Model Operations . 52
3.3.1. Sequence . 55
3.3.2. Views . 57
3.3.3. Instances . 57
3.3.4. Messages . 61
3.3.5. Fragments . 64
3.3.6. States . 67
3.3.7. References . 70
3.3.8. Actions . 71
3.3.9. Continuations . 72
3.3.10. General Orderings . 73

4. Implementation 75
4.1. Architecture . 75

4.1.1. Data Storage . 75

ix

Contents

4.1.2. Model/View System . 76
4.1.3. Prototype . 76
4.1.4. Petri Net . 78

4.2. Realization . 79
4.2.1. Technologies . 79
4.2.2. Functionality . 79

4.3. Evaluation . 82
4.3.1. Complexity . 82

5. Related Work 85

6. Conclusion and Further Work 89
6.1. Concept . 90

6.1.1. Hierarchical Scenario Re�nement 90
6.1.2. Using Change Logs for Merges / Di�erential Comparison . . . 90
6.1.3. Responsibilities for di�erent levels of abstraction 91
6.1.4. Hierarchical States . 92

6.2. Implementation . 92
6.2.1. Integration into a commercial CASE Tool 92
6.2.2. Semantic Plug-Ins . 93

A. Bibliography 95

B. Pseudocode 97
B.1. Identify events in the next/previous sequence level 97

B.1.1. identify events downwards . 97
B.1.2. identify events upwards . 99

B.2. Model Operations . 101
B.3. Auxiliary Operations . 106

x

List of Figures

1.1. Development process. 3
1.2. Simple sequence diagram. 4
1.3. Sequence diagram with two combined fragments. 6
1.4. Sequence diagram elements. 7

2.1. Illustration of the sequence diagram de�nition. 11
2.2. Representation of coregions. 12
2.3. An inter-level re�nement cf. [21, p. 15]. 13
2.4. An inter-level re�nement with distributed events cf. [21, p. 21]. 13
2.5. Intra-level re�nement of Figure 2.3(b) cf. [21, p. 16]. 14
2.6. An instance hierarchy with three di�erent levels of abstraction cf. [21,

p. 17]. 15
2.7. Sequence diagram annotated with state invariants. 17
2.8. Level state machine for the example. 19
2.9. Sequence diagram with two end states. 21
2.10. Di�erent end states through an opt fragment. 22
2.11. Di�erent end states through an alt fragment. 23
2.12. Di�erent end states through a loop fragment. 23
2.13. Replace a break fragment with an alt fragment. 25
2.14. Petri net representations. 29
2.15. Petri net representation of Figure 2.8. 30
2.16. Motivating example for the state re�nement. 31

3.1. Model-View-Controller design pattern 34
3.2. Di�erent views depict partial model information. 35
3.3. Integration of a new message to the next re�nement level. 36
3.4. Sequence diagram from Figure 3.3(b) and a view onto that sequence. . 39
3.5. The Petri net representation of Figure 3.3(b). 40
3.6. Continuation of Figure 3.3(b) with general ordering. 47
3.7. A generic model operation. 53
3.8. The deletion of send status implicates a new general ordering. 63

4.1. Class diagram for the model/view system (cf. De�nition 3.5). 77
4.2. Class diagram for the implementation. 78
4.3. Class diagram for the Petri net package. 79
4.4. Screenshot of the graphical user interface. 80
4.5. Screenshot of a sequence diagram view. 81

xi

List of Figures

4.6. Screenshot of the instance hierarchy view. 81
4.7. Screenshot of the level state machine view. 82
4.8. Screenshot of the state re�nement view. 82

6.1. Di�erent responsibilities in di�erent levels of abstraction. 91
6.2. alt fragment for multiple start states in comparison to a hierarchical

pseudo state on. 93

xii

Glossary of Symbols

Notation Description Page
SD a sequence diagram 9
I a set of instances 9
E a set of events 9
O a set of sequence diagram objects 9
ι E → I ×O maps events to lifelines and objects 9
< E ×E is a partial event order 9
η OO → OF maps operands to fragments 9
t OF → {alt,break, ...} determines fragment type 9
τ OO → Σ assigns a constraint to an operand 9
OM set of messages 9
OF set of fragments 9
OO set of operands 9
OR set of references 9
OS set of states 9
OA set of actions 9
OCO set of continuations 9
EMS/EMR a set of message send / receive events 9
EOB/MOE a set of operand begin / end events 9
ER a set of reference events 9
ES a set of state events 9
EAB/EAE a set of action begin / end events 9
ECO a set of continuation events 9
E∣i restricts E to events that belong to instance i 9
<∣i forms a total order for all events of instance i 9
!m refers to the sending event of m 12
?m refers to the receiving event of m 12

h an instance hierarchy 15
µ maps re�ning instances to their master instance 15
π maps child instances to their parent instance 15

PN a Petri net 19
P a non-empty set of places 19
T a non-empty set transitions 19
F (P × T) ∪ (T × P) a �ow relation 19

xiii

Glossary of Symbols

Notation Description Page
m P → {0,1} a Petri net marking 19
●p / ●t pre-set of place p / transition t 19
p● / t● post-set of place p / transition t 19

SR a state relation 31
G a partial function that relates messages with their

re�nements
32

M a data model 37
σ OS → I maps states to instances 37
Seqs a set of sequences 37

Seq a sequence in the data model 37
f maps levels of abstraction to a set of instances and

an event order
37

SDV a sequence diagram view 38
l a level of abstraction 38
VI a set of instances 38
ξ VI → E×E maps each instance to a start- and end

event
38

MV a model/view system 39
V a set of sequence diagram views 39

xiv

1. Introduction

The major challenge of today's software development is to handle the ever-growing
complexity, e.g., the product size or the level of distribution. Failures occur during re-
quirement de�nition, software design, implementation, and testing. It is well-known
that the earlier an error is discovered, the less it costs [16]. Software development
processes try to address the complexity issue with de�ned sequences of work steps,
speci�ed roles, and outputs. The Rational Uni�ed Process (RUP) [13] is such a soft-
ware development process with the following major disciplines: Business Modeling,
Requirements, Analysis & Design, Implementation, Test and Deployment. The pro-
cess distinguishes four di�erent phases, namely Inception, Elaboration, Construction,
and Transition, with several iterations for each phase. The output of each phase is
a milestone. The RUP is based on use cases, which are described in prose or a more
formal notation to master all de�ned disciplines. The Uni�ed Modeling Language
(UML) [26] is the common formalism for the uni�ed process and a wide spread lan-
guage in the industrial environment. The UML de�nes a set of formalisms to describe
parts of the system under development from di�erent perspectives and at di�erent
levels of abstraction; most of them are graphically represented. The UML as well
as the RUP are in continuous development to meet today's requirements in software
engineering. The current major version 2 of the UML describes six structural and
seven behavioral diagrams. Two important behavioral diagrams are state machine
diagrams based on Harel's Statecharts [8] and sequence diagrams. State machines
describe the behavior of the system or a sub-system, whereas sequence diagrams
specify the behavior between di�erent systems or sub-systems [9]. Class diagrams
are important structural diagrams, which specify relations between di�erent classes.
Classes can be speci�ed by an annotation called stereotype to an explicit element,
and a concrete incarnation of a class is called an instance. During all disciplines
these diagrams can be used to specify the system under development in an abstract
manner and provide a base for dependent disciplines.
UML diagrams, however, are only loosely coupled partial views on the system. Di�er-
ent diagrams may show the same structure or behavior from di�erent perspectives,
which introduces redundancy. The number of diagrams will grow throughout the
development process and changes to existing diagrams will be made in consecutive
iterations of the development process. Elements changed in one diagram have to be
updated in other diagrams, which depend on this element, to prevent inconsistencies.
Thus, consistency of the total system is hard to maintain.
This thesis introduces a consistent and constructive model/view concept based on an
iterative software development process using re�nement of diagrams. It distinguishes
between diagrams as views and an underneath model. As a result, changes in one

1

1. Introduction

view can be observed in all views on the modi�ed part of the model. Whenever
ambiguities arise, this concept provides interactive support to resolve them.
In the remainder of this chapter, Section 1.1 describes the environment in which
this thesis was created. Section 1.2 brie�y introduces UML sequence diagrams. Fur-
thermore, Section 1.3 presents the objectives of this thesis and �nally, Section 1.4
outlines the further chapters.

1.1. Environment

This diploma thesis was developed in cooperation with a software development team
at Philips Medical Systems (PMS) [23] in Hamburg, Germany. This team develops
real-time embedded software for high-voltage X-ray generators based on a ROOM
framework [25]. ROOM stands for real-time object-oriented modeling. The units of
composition in the ROOM framework are called capsules, which are encapsulated
entities communicating over de�ned ports with other capsules. Capsules are inde-
pendent and concurrent, and their internal structure is hidden to the environment.
This description matches to the UML term component, which is, such as a cap-
sule, a stereotyped class. Throughout this thesis the terms capsule, component, and
instance are used synonymously. Capsules can be hierarchically composed with sub-
capsules. The behavior of a capsule is de�ned by a state machine, which is used for
transformation into implementation code in a classical programming language such
as C++ or Real-time-Java.
UML sequence diagrams describe external behavior between di�erent instances at
the interface level. Because of the restriction of capsules to communicate only over
ports with each other, sequence diagrams are well-suited for specifying the behavior
between capsules. The software development team at PMS uses a customized ver-
sion of the Rational Uni�ed Process and makes heavy use of sequence diagrams at
all development disciplines. Thus, requirements for the system under development
are based on use cases and formalized by sequence diagrams. Starting at an abstract
high level, consequent re�nement is used to structure the system; components are
split-up and for that reason more internal behavior is added. This process is sepa-
rated in di�erent levels and is not limited to the requirement discipline. Figure 1.1
depicts an exemplary view on this process.

The �gure is separated into two parts: the upper half describes the requirement
process, where basic scenarios are re�ned into detailed scenarios. The last require-
ment level n forms the �rst level n + 1 of the implementation. During the imple-
mentation process requirements are re�ned to physical realities e.g., messages are
renamed to ful�ll given protocols or bus systems. Message orderings in the require-
ments discipline, which may result in race conditions while arbitrary execution have
to be resolved during the implementation phase. The bottom of Figure 1.1 depicts
that state machines are used to model the whole behavior of the components at the
end of the re�nement process. Finally, these state machines are transformed into
source code.

2

1.1. Environment

Figure 1.1.: Development process.

3

1. Introduction

1.2. Sequence Diagrams

Sequence diagrams are part of the UML and belong to the class of behavioral dia-
grams. In the upper left corner of a UML diagram there is a pentagon containing the
type of the diagram followed by the label of that diagram. In the case of sequence
diagrams the type is sd. Sequence diagrams represent the participating components
in the horizontal dimension and the temporal progress of the interaction in vertical
dimension. Every contained component has a dashed lifeline, which describes the
temporal progress for that component. Exchanged messages between two compo-
nents are represented through arrows between the corresponding lifelines, whereas
the arrow is annotated with the label of the message. Figure 1.2 depicts a simple
sequence diagram with two components and two messages.

Figure 1.2.: Simple sequence diagram.

The component Owner is an actor, which is drawn as stick-�gure. At PMS actors
are those components of interactions that initiate the communication by sending the
�rst message to another component.
All examples used throughout this thesis are based on a restaurant-example for-
merly introduced by Lischke [17] and Lüdemann [18] and extended by Ohlho� [21].
Its plain components allow small examples on the one side and on the other side all
re�nement and consistency terms can be well explained.
Because of their simplicity, sequence diagrams can take several tasks in the develop-
ment process:

Modeling As mentioned in Section 1.1, sequence diagrams can be used to specify
the inter-object behavior of di�erent components. They can be used at the
requirement level as well as at the implementation level to describe valid sce-
narios that a component has to ful�ll. Moreover, UML 2.0 allows describing
invalid scenarios, too.

Communication Sequence diagrams are a useful communication medium when talk-
ing to di�erent stakeholders. It is easier to discuss desired and unintended
behavior on the basis of a simple graphical representation. In terms of the de-
scribed development process, di�erent levels of abstraction suit di�erent stake-
holders.

4

1.2. Sequence Diagrams

Documentation Traceability and documentation is an important part of many de-
velopment processes and often required due to domain speci�c regulations.
Sequence diagrams can be annotated with comments to clarify customer de-
mands at requirement level and to explain design decisions at implementation
level.

Veri�cation Sequence Diagrams describe traces of the system under development.
This information can be used to verify the execution of the system. A test
environment may take the role of the actors and send the �rst message to start
the speci�ed interaction. The sent and received messages can be compared
with the ones de�ned by the sequence diagram without human interaction. In
a regression test many of such sequence diagrams can be automatically tested
to guarantee that new software versions still implement the speci�ed scenarios.

In UML 1.x the expressiveness of sequence diagrams is limited to mainly one trace
between the described components or a set of traces in case of concurrency, respec-
tively. Many concepts of Message Sequence Charts (MSC) [14] and Live Sequence
Charts (LSC) [2] have been adopted in UML 2.0 and de�nitely increased the ex-
pressiveness of sequence diagrams. One important concept is combined fragments,
which group a set of messages together with an operator such as loop, par, or strict.
UML 2.0 de�nes a set of 12 operators and every fragment is separated in several
operands by a dashed line. Each fragment has at least one operand containing the
corresponding sequence diagram elements. Furthermore, combined fragments can be
arbitrarily nested. The impact of one fragment is limited to the lifelines and objects
it covers. Each operand can be annotated with a constraint that speci�es whether
the operand is executable.
Figure 1.3 depicts a sequence diagram with two combined fragments, where the out-
ermost alt has two operands and describes an alternative trace. After the Owner

sent his request to open the Restaurant, the answer depends on the status of the
Restaurant. The innermost fragment opt has one operand and describes an optional
message, which will be send only on Mondays, because on Monday the new o�ers
have to be unhinged.
Each message shown in a sequence diagram consists of a message send event on

the senders lifeline, a message receive event on the receivers lifeline, and the message
itself. Thus, a trace of a sequence diagram is an ordered list of event occurrences.
The semantics of sequence diagrams is given as a pair of sets of traces. On the one
hand there are valid traces given through sequence diagrams with no fragments or
operators such as alt, par, or opt. On the other hand there are invalid traces, given
by operators such as neg, which describes traces that shall not occur. The union of
these two sets does not have to cover all possible traces.
Figure 1.4 shows an overview of the most important sequence diagram elements.
Coregions represent that the enclosed events may occur in arbitrary order. A Gen-
eral Ordering depicts that independent events can be ordered. Gates are message
connection points to send messages to the outside of an interaction or combined
fragment. A Reference is a mechanism to reuse a former de�ned interaction in the

5

1. Introduction

Owner Restaurant

open restaurant

opened

unhinge offers

opt [on monday]

error

alt [restaurant ready?]

[else]

sd open restaurant

Figure 1.3.: Sequence diagram with two combined fragments.

current diagram, which supports the Write Things Once or WTO principle. State
Invariants annotate lifelines with runtime conditions, such as the value of a variable
or internal state. A Local Action speci�es the execution of an action within the life-
line. Continuations are used in combination with two di�erent alt fragments, they
transport the decision, which operand was chosen in the �rst alt fragment, to the
second alt fragment.

1.3. Objectives

The primary objective of this thesis is to introduce a constructive model/view con-
cept for the re�nement of UML 2.0 sequence diagrams with support of the sketched
software development process (cf. Section 1.1). Working with the de�ned model
should be possible in a constructive way to resolve arising ambiguities through an
interactive dialog. The bene�t of an interactive process is that operations that would
lead to an inconsistent model can be denied. In consequence, model operations have
to form a transaction, which could be only completed if all ambiguities are solved.
Having a consistent model at any time avoids many errors before they occur. Some
further objectives arise from this approach:

� De�ne all necessary model operations and introduce a re�nement concept for
local states, by using Ohlho�'s Consistent Re�nement of Sequence Diagrams
in the UML 2.0 [21].

� Extend Lischke's consistency of sequence diagrams of the same abstraction level
for UML 1.4 sequence diagrams [17] to incorporate new elements from UML
2.0.

6

1.4. Overview

Figure 1.4.: Sequence diagram elements.

� Determine valid integrations and classify them according to consistent traces
from top level to bottom, if ambiguities arise throughout the re�nement pro-
cess.

� Introduce a simple message re�nement concept to support the di�erentiation
between requirement level and implementation level in the same underlying
model.

1.4. Overview

The remainder of the diploma thesis is organized as follows: Chapter 2 introduces
important consistency notions for sequence diagrams and the re�nement process.
These terms are used in subsequent chapters to de�ne a consistent model behind
the sequence diagrams. Chapter 3 describes the model/view concept, the necessary
data model, and all model operations. Furthermore, Chapter 3 introduces how am-
biguities, which may arise through the re�nement steps, can be solved interactively.
Chapter 4 presents a Java prototype for the main ideas of the model/view concept.
Chapter 5 provides an overview of related work and points out relations to this thesis.
Finally, Chapter 6 assesses the results of this thesis and presents further work.

7

1. Introduction

8

2. Consistency / Re�nement

As mentioned in the introduction, the main objective is to maintain at all times
a consistent model. Hence, a notion of consistency has to be de�ned and satis�ed
by any model operation to gain this objective. Therefore, this chapter describes
the re�nement principle of intra- and inter-level re�nement that was introduced by
Ohlho� [21] and the horizontal consistency concept of a level state machine intro-
duced by Lischke [17]. These ideas build the basement of this thesis. The level state
machine concept is extended to support new elements of UML 2.0 and the re�nement
principles used here.
Checking consistency of sequence diagrams on the trace level is easy. It is simple
to check if a trace is included in another trace with de�ned projections. Due to the
large amount of traces of even small sequence diagrams, it is, however, ine�cient to
address consistency checks at the trace level. Furthermore, there exists no rigorous
semantics for all sequence diagram elements in UML 2.0, such as negative traces [24].
All consistency notions de�ned in the remainder of this chapter are highly e�cient
by addressing sequence diagram consistency on a syntactical level. For that reason,
these concepts avoid nonspeci�c semantics and can be easily extended to all future
interpretations of the UML elements. As a result of addressing consistency at the
syntactical level, these concepts allow constructive modeling, in contrast to concepts
based on post-operational model checking.

2.1. Inter- / Intra-level Re�nement

This section recapitulates the inter- and intra-level re�nement concept that was
introduced by Ohlho� [21] and transforms it to the ideas presented in this diploma
thesis. The introduction of the re�nement concept is, however, informal. Chapter 3
formalizes the ideas in connection with the model operations.
Section 1.2 introduced sequence diagrams in an informal way. The following de�ni-

tion provides a formal base that further de�nitions and algorithms will refer to. The
further concepts, de�nitions, and examples in this section are taken from Ohlho�'s
thesis [21] and adjusted to the new formalization and to the needs of the following
chapters.

De�nition 2.1 (Sequence Diagram):
A sequence diagram (SD) is a tuple

SD = (I,E,O, ι,<, η, t, τ)

where

9

2. Consistency / Re�nement

I is a set of instances, disjoint union of Ia (actors) and Ic (components),

E is a set of events,

O is a set of sequence diagram objects,

ι ∶ E → I ×O maps events to lifelines and objects,

< ⊂ E ×E is a partial event order,

η ∶ OO → OF maps operands to fragments,

t ∶ OF → {alt,break, ...} determines fragment type, and

τ ∶ OO → Σ assigns a constraint in an alphabet to an operand.

The set O of sequence diagram objects is a disjoint union of the following sets:

OM set of messages,

OF set of fragments,

OO set of operands,

OR set of references,

OS set of states,

OA set of actions,

OCO set of continuations.

The set E of events is a disjoint union of the following sets:

EMS/EMR set of message send / receive events,

EOB/MOE set of operand begin / end events,

ER set of reference events,

ES set of state events,

EAB/EAE set of action begin / end events,

ECO set of continuation events.

The following shorthands will be used later:

E∣i ∶= {e ∈ E ∣ ∃ o ∈ O ∶ ι(e) = (i, o)} restricts E to events that belong to instance i
and
< ∣i ∶= {(e, e′) ∈ < ∣ ∃ o, o′ ∈ O ∶ ι(e) = (i, o) ∧ ι(e′) = (i, o′)} forms a total order for all
events of instance i.

This de�nition introduces many symbols to distinguish all sequence diagram ele-
ments. The key concept, however, is not di�cult: Every element, e.g., a message, in
a sequence diagram is an object and each object is associated with a set of events,
which represents the object's occurrence on a lifeline. Figure 2.1 shows a sequence
diagram annotated with the events and objects from the de�nition to demonstrate
how the visual presentation and the formal de�nition match. The only notable dif-
ference is the representation of operand delimiters. In the diagram operands are

10

2.1. Inter- / Intra-level Re�nement

separated by a dashed line and in the formal representation there is one operand end
event and one operand begin event. The advantage of this approach, in contrast to
something such as a next operand event, is that every operand can be handled in
the same manner. The functions η, t, τ are necessary to formalize the conditions
for start and end states (cf. Section 2.2), e.g., τ allows to formalize operand asser-
tions with a special meaning, such as an else operand for alt fragments. Another
important fact is that every lifeline has a total order of its events, which re�ects the
visual representation and not the logical �ow. Due to the total order of each lifeline,
a minimum (min) and maximum (max) element exists for each E∣i with i ∈ I.

Figure 2.1.: Illustration of the sequence diagram de�nition.

Figure 1.4 depicts coregions as another sequence diagram element, which cannot
directly be recognized in De�nition 2.1. Coregions allow expressing that no ordering
constraints hold for the covered events. A coregion, however, does not express that
the events have to be executed simultaneously. A coregion in UML 2.0 is a notational
shorthand for a par fragment that covers one lifeline. Figure 2.2(a) presents a simple
sequence diagram with a coregion where a Customer orders dish and drink in the
Restaurant. To express that both events may be received in arbitrary order, a coregion
encapsulates the receive events. Figure 2.2(b) depicts the same sequence diagram
with a par fragment. In the remainder of this thesis, coregions are used in the par

fragment representation and, thus, handled as other fragments.

Instances in a sequence diagram interact with each other through messages. Each

11

2. Consistency / Re�nement

Customer Restaurant

order dish

order drink

sd order

(a) Exemplary usage of a core-
gion.

Customer Restaurant

order dish

order drink

par

sd order

(b) Representation of the coregion as
par fragment.

Figure 2.2.: Representation of coregions.

message consists of a message send event on the senders lifeline and a message receive
event on the receivers lifeline. Besides asynchronous messages, there are several other
message types, which were already mentioned in Section 1.2. These other message
types, however, can be treated as asynchronous messages, because the message type is
not important for the re�nement concept, e.g., synchronous messages can be replaced
by asynchronous request and reply messages.

Notation 2.1 (Message):
Let SD = (I,E,O, ι,<, η, t, τ) be a sequence diagram. Amessage m ∈ OM
is a pair (s, r) ∈ EMS ×EMR. !m and ?m refer to the sending event and
receiving event of m, i.e., !m = s and ?m = r
cf. [21, p. 6].

The presented re�nement concept distinguishes between two kinds of re�nement
steps, namely inter-level re�nement and intra-level re�nement. To introduce these
re�nement steps, the following examples provide insight into the concepts, which are
formally de�ned in Chapter 3. Let s and t be sequence diagrams; if s is an inter-
level re�nement of t, t is called s's master diagram. In a similar manner, if s is an
intra-level re�nement of t, t is called s's parent diagram.

Inter-level Re�nement

Inter-level re�nement introduces a more detailed view of a scenario to describe the
interaction on a lower level of abstraction. More speci�c instances replace current
abstract ones. Figure 2.3(a) depicts the high-level scenario of serving a customer,
who �rstly orders a drink and secondly orders the main dish. The Restaurant handles
both requests by returning the ordered drink and main dish, respectively. This
scenario is inter-level re�ned by the sequence diagram shown in Figure 2.3(b). The

12

2.1. Inter- / Intra-level Re�nement

Customer Restaurant

order drink

serve drink

order main dish

serve main dish

sd serve customer

(a) An abstract master diagram.

Customer Waiter Kitchen

order drink

forward drink order

prepare drink

serve drink

order main dish

forward main order

prepare main dish

serve main dish

sd serve customer

(b) Waiter and Kitchen replace the Restaurant.

Figure 2.3.: An inter-level re�nement cf. [21, p. 15].

more speci�c instances Waiter and Kitchen substitute the Restaurant. The Waiter

takes on the direct interaction with the Customer, while the Kitchen prepares the
drink and the main dish. The new messages in Figure 2.3(b) appear only between
the two substituting instances. All messages from the master diagram are also in
the re�nement. The handling of messages sent or received by the replaced instance,
however, has not to be done from the same re�ned instance. Figure 2.4 shows another
valid inter-level re�nement. The Head Waiter and the Assistant in Figure 2.4(b)
replace the Waiter from the master diagram in Figure 2.4(a). In the master diagram,
the Waiter receives the message tidy up and sends the message return dishes. In the
re�nement, the Head Waiter receives the tidy up instruction and delegates it to the
Assistant, who returns the dishes. Thus, the events from the Waiter are separated
into the re�ned instances.

Waiter Kitchen

tidy up

return dishes

sd tidy up

(a) The Kitchen instructs the
Waiter to tidy up.

Head Waiter Assistant Kitchen

tidy up

delegate

return dishes

sd tidy up

(b) Head Waiter and Assistant substitute the
Kitchen.

Figure 2.4.: An inter-level re�nement with distributed events cf. [21, p. 21].

13

2. Consistency / Re�nement

Intra-level Re�nement

Waiter Kitchen Barkeeper Cook

forward drink order

drink order

drink

prepare drink

forward main order

main order

main dish

prepare main dish

sd serve customer

Figure 2.5.: Intra-level re�nement of Figure 2.3(b) cf. [21, p. 16].

Intra-level re�nement uncovers the internal behavior of existing instances with-
out changing the level of abstraction. Revisiting the example from Figure 2.3(b),
Figure 2.5 depicts an intra-level re�ned sequence diagram. Two new instances were
added to the diagram, namely Barkeeper and Cook, which are subinstances of the
Kitchen. The Barkeeper takes on the drink order and the Cook prepares the main
dish. The interaction as seen by theWaiter is still the same. Furthermore, theWaiter

cannot send messages to the Barkeeper or the Cook directly, since they are internals
of the Kitchen. Thus, the Kitchen has to forward messages for their subinstances.
Besides the message exchange, re�nement can be used to reduce the diagram's set
of instances to the ones, which are important for the meaning of this scenario. For
example the Customer in Figure 2.5 is absent.

Instance Hierarchy

The di�erent re�nement steps structure the set of instances, because inter-level re-
�nement replaces instances and changes the level of abstraction, while intra-level
re�nement adds subinstances to the set of instances. To restrict the re�nement
possibilities this structure is de�ned independently.

De�nition 2.2 (Instance Hierarchy):
An instance hierarchy is a tuple

h = (I0, I1, . . . , In, µ, π)

where

14

2.1. Inter- / Intra-level Re�nement

� I0, I1, . . . , In are pairwise disjoint sets of instances representing the
di�erent abstraction layers. I denotes the union of these sets.

� µ ∶ I → I∪{�} maps re�ning instances to their master instance, i.e.,

∀ i ∈ I ∶ µ(i) ≠ � ⇒ ∃ k ∈ {1, . . . , n} ∶ i ∈ Ik ∧ µ(i) ∈ Ik−1.

� π ∶ I → I ∪ {�} is an acyclic function that maps child instances to
their parent instance, i.e.,

∀ i ∈ I ∶ π(i) ≠ � ⇒ ∃ k ∈ {0, . . . , n} ∶ i ∈ Ik ∧ µ(i) ∈ Ik,

and µ and π ful�ll the following restrictions:

∀ i ∈ I ∖ I0 ∶ µ(i) = � ⇒ π(i) ≠ �, and
∀ i ∈ I ∖ I0 ∶ π(i) ≠ � ≠ µ(i) ⇒ µ(π(i)) = π(µ(i)) ≠ �

cf. [21, p. 17].

Figure 2.6 depicts the instance hierarchy used throughout this section. The verti-
cal arrows point to the master instance of an inter-level re�ned instance and the
horizontal arrows point to the parent instance of an intra-level re�ned instance.

Waiter Kitchen

Barkeeper

Cook

Customer Restaurant

Customer

Customer Head Waiter Assistant

Barkeeper

Kitchen
Head Chef

Scullion

<<master>> <<parent>>

<0> <0>

<1> <1>

<1>

<1>

<2> <2> <2> <2>

<2>
<2>

<2>

<1>

Figure 2.6.: An instance hierarchy with three di�erent levels of abstraction cf. [21,
p. 17].

The following de�nitions restrict the set of valid sequence diagrams according to
the instance hierarchy. Due to the structure of capsules, messages are only valid
between children of the same parent. Communication with subinstances of a par-
ent from outside the parent can be done by communicating with the parent, which
forwards the message to the corresponding child. Thus a message between the Bar-
keeper and the Cook in Figure 2.6 is valid, while messages between Waiter and Cook

are invalid. The following de�nition describes in detail which message are illegal.

15

2. Consistency / Re�nement

De�nition 2.3 (Illegal Message):
Let sd be a sequence diagram and p ∶ I × O → I with ∀ i ∈ I, o ∈ O ∶
p(i, o) = i a projection to the �rst tuple element. A message m ∈ OM is
illegal if the sending and receiving instance of m have di�erent parent
instances, and neither is the sending instance the parent of the receiving
instance nor is receiving instance the parent of the sending instance. The
set ILL(sd) refers to the illegal messages of sd, i.e.,

ILL(sd) = {m ∈ OM ∣ π(p(ι(!m))) ≠ π(p(ι(?m)))
∧ π(p(ι(!m))) ≠ p(ι(?m))
∧ π(p(ι(?m))) ≠ p(ι(!m))}

cf. [21, p. 18].

Knowing the set of illegal messages for a sequence diagram, the following de�nition
presents when sequence diagrams are well-formed according to the instance hierarchy.

De�nition 2.4 (Well-Formed Sequence Diagram):
Let sd be a sequence diagram and Isd the set of instances of sd. The
sequence diagram sd is well-formed, if it contains no illegal message and
if all instances have the same level of abstraction, i.e.,

ILL(sd) = ∅ ∧ ∃ k ∈ {0, . . . , n} ∶ Isd ⊆ Ik

cf. [21, p. 18].

2.2. Level State Machine

Besides a consistent re�nement, the completeness is an equally important aspect
that arises during the development process: Have scenarios been speci�ed that have
no meaningful continuation in the remaining speci�cation? If this is true, the whole
system is under-speci�ed and this can lead to unintended or con�icting behavior. Lis-
chke has de�ned a consistency notion for sequence diagrams [17], which addresses,
among others, the completeness of one speci�cation level. For this purpose Lischke
annotated lifelines with state invariants to express the start and end state of a sce-
nario for each participating instance. Figure 2.7 depicts a simple sequence diagram
annotated according to the described consistency notion. The Service is initially
in the state service closed and the Kitchen in the state kitchen closed, respectively.
These states are the start states of this interaction, because the components remain
in these states until the Owner initiates the successive communication. Thus, the
states are a precondition for the interaction. After the communication is done, both
components remain in a new state, namely service open for the Service and kitchen

open for the Kitchen. The actor Owner, however, has no state invariants because an
actor is an external component to the shown interaction, for which, a priori, no state
information is known.

16

2.2. Level State Machine

Figure 2.7.: Sequence diagram annotated with state invariants.

All start states of a sequence diagram are combined to a state vector. The same is
done for all end states. As a result every sequence diagram can be understood as a
transition from its start state vector to its end state vector. Lischke's idea is to take
a state machine where each of these state vectors forms one state and every speci�ed
sequence diagram forms a transition between those two states. Afterwards, an initial
state is marked, which represents the state vector the system initially has, and end
states are characterized, which represent state vectors the system can terminate in.
This leads to a state machine representation of all sequence diagrams in one level of
abstraction, originally called System State Machine.
This thesis uses the term Level State Machine, because of the many di�erent levels in
the software development process, while System State Machine suggests that there
exists only one state machine for all levels.
Most importantly the level state machine gives information about the completeness
of the corresponding level. If there are states that are not reachable from the initial
state, the represented scenarios will never occur. Furthermore, if there are states
with no outgoing transitions that are not marked as end states, the corresponding
scenarios will be reachable, but are no desired termination points for the whole
system. These two cases can be automatically determined, but there are even more
discrepancies a developer can recognize, e.g., some scenarios should be applicable
in a loop, but there is no cyclic dependency in the level state machine. Another
discrepancy may be that the level state machine has an unexpected path between
two state vectors, e.g., a path to an error state without informing somebody about
the failure.

17

2. Consistency / Re�nement

2.2.1. Example

The following example shows a simple scenario and the corresponding level state
machine to illustrate the concept. The scenario includes two components: service

and kitchen. Each component has several states, namely open, closed, and closure for
both components and additional wait for the service and pause for the kitchen. Fur-
thermore, the level state machine needs the necessary sequence diagrams to describe
the state transitions. The details of the actual interaction that takes place between
the start and end states are not important for this example, thus, the following
condensed representation is su�cient to describe one sequence diagram.

sequence diagram label ⟨start states⟩ → ⟨end states⟩
� start states: tuple of participating components and their start states
(e.g., service.open, kitchen.open)

� end states: tuple of participating components and their end states
(e.g., service.closed, kitchen.closed)

Using this representation, the following sequence diagrams represent the transitions
of the level state machine.

SD label ⟨start states⟩ → ⟨end states⟩
● ⟨comment⟩

open ⟨service.closed, kitchen.closed⟩ → ⟨service.open, kitchen.open⟩
restaurant ● the owner opens the restaurant in the morning

close ⟨service.open, kitchen.open⟩ → ⟨service.closed, kitchen.closed⟩
restaurant ● the owner closes the restaurant in the evening

serve ⟨service.open, kitchen.open⟩ → ⟨service.wait, kitchen.open⟩
customer ● service and kitchen serve the customer

take ⟨service.wait, kitchen.open⟩ → ⟨service.open, kitchen.open⟩
payment ● the customer pays the bill and leaves the restaurant

take ⟨kitchen.open⟩ → ⟨kitchen.pause⟩
a rest ● the kitchen's personnel takes a rest
closure of ⟨service.open, kitchen.open⟩ → ⟨service.closure, kitchen.closure⟩
business ● the owner has to go out of business
Finally, the initial state vector and the end state vectors have to be determined by
the user. In this example ⟨service.closed, kitchen.closed⟩ is the initial state vector,
which means that initially the service and the kitchen are closed. In addition this
state combination is one of the end state vectors. Furthermore, ⟨service.closure,
kitchen.closure⟩ is a second end state vector that arises after the closure of business.
Figure 2.8 shows the resulting level state machine with the six state vectors and all
possible transitions between these state vectors. The initial state vector is decorated
with a round, black �lled pseudo state and the end states have an unlabeled transition
to the �nal state.

18

2.2. Level State Machine

Figure 2.8.: Level state machine for the example.

The level state machine has two states without outgoing transitions, which implies
that these states represent dead locks of the whole system. There are no scenarios
that describe how to leave these states. This problem can be solved by adding a new
sequence diagram, which speci�es for the kitchen personnel how to end the break.
There are, however, several other possibilities to make this example dead lock free,
e.g., by adding two di�erent sequence diagrams, one for each problematical state.
To sum up, the exemplary scenario used here is not consistent and can lead to unin-
tended behavior if it will be used. The level state machine uncovers these problems
and highlights possibilities how to �x the problems.

2.2.2. Petri Nets

Petri nets are a common formalism in computer science and mathematics used for
modeling and analyzing distributed and concurrent systems. Since there are detailed
publications on Petri nets [20], this section only gives a brief introduction to the
formalization of Petri nets that is used throughout this thesis.

De�nition 2.5 (Petri Net):
A Petri net (PN) is a tuple

PN = (P,T,F,m0)

where

P is a non-empty set of places,

T is a non-empty set of transitions,

F ⊆ (P × T) ∪ (T × P) is a �ow relation, and

m0 ∶ P → {0,1} is a binary initial marking

19

2. Consistency / Re�nement

The set of places P and the set of transitions T are disjoint. The pre-set for a
transition t is ●t ∶= {p ∈ P ∣ (p, t) ∈ F} and the post-set for t is t● ∶= {p ∈ P ∣ (t, p) ∈ F}.
Analogously, the pre-set for a place p is ●p ∶= {t ∈ T ∣ (t, p) ∈ F} and the post-set for
p is p● ∶= {t ∈ T ∣ (p, t) ∈ F}. A marking of a Petri net is a function m ∶ P → {0,1}.
A place p is called marked by m if m(p) = 1 and unmarked otherwise.

Thus, a Petri net is a directed, bipartite graph separated into transitions as active
elements and places as passive elements. Each place is either marked or unmarked.
The current marking m of a Petri net PN represents the state of PN and serves for
the de�nition of an execution model for Petri nets.

De�nition 2.6 (Execution of a Petri net):
Let PN = (P,T,F,m0) be a Petri net with the current marking m. A transition
t ∈ T is enabled in m, i� ∀ p ∈ ●t ∶ m(p) = 1. To take one execution step of PN an
arbitrary transition t from {t ∈ T ∣ t is enabled} is chosen. The process of taking a
transition is called �ring. If a transition is �red, the result will be a new Petri net

marking, which is written as m
t→m′ with

m′(p) ∶=

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

0 if p ∈ ●t,
1 if p ∈ t●,
m(p) otherwise.

A Petri net execution is a sequence ⟨m0, t0,m1, ...⟩ of successive markings and tran-

sitions with mi
ti→mi+1 for all i.

Besides having a de�ned mathematical model, Petri nets are well-suited to analyze
properties of the modeled system. An important property is the reachability of a
given marking, which means whether the state of the Petri net can be reached from
the initial marking or not. For example, when modeling a tra�c light system it is
important that cars and pedestrians do not have both green for the same street at the
same time. This state represents a Petri net marking that should not be reachable
from the initial marking. Mayr [19] proved that the reachability problem is decidable
and presented a �rst algorithm.

De�nition 2.7 (Reachability):
Let PN = (P,T,F,m0) be a Petri net. A marking m is reachable from the initial
marking m0, i� there is a Petri net execution ⟨m0, t0,m1, ...,mn⟩ with m =mn. The
set of all possible reachable markings for a Petri net PN from its initial marking m0

is denoted with R(PN).
The reachability graph for a Petri net PN is a directed graph G = (V,E) with

V = R(PN) and E = {(m, t,m′) ∣m t→m′}.

2.2.3. Sequence Diagram Start / End States

Lischke [17] introduced the system state machine concept for UML 1.4 sequence dia-
grams. Thus, the concept does not support new elements from UML 2.0. Combined

20

2.2. Level State Machine

fragments can be used to have more then one start and end state, e.g., the operator
break can be used to prematurely terminate a given interaction or an alt fragment
can be used to specify an alternative start or end. Figure 2.9 shows the open restau-

rant example with a break fragment, which leads to two possible end states for the
Restaurant instance. On the one hand, if the open restaurant request was successful,
the restaurant answers with opened and reaches the state open. On the other hand,
when an error occurred while opening the restaurant, an error message is returned
and the end state of this interaction remains closed.

Owner Restaurant

closed

open restaurant

error

closed

break [restaurant not ready?]

opened

open

sd open restaurant

Figure 2.9.: Sequence diagram with two end states.

Consequently, one sequence diagram can represent more than one transition in the
level state machine. Therefore it is necessary to determine all possible start and end
state vectors of a sequence diagram. Not all states in a sequence diagram are possible
start or end states, though. In the following, some possibilities how end states can
arise are presented to motivate the subsequently de�ned consistency term. Every
fragment whose execution might be optional or results in an alternative �ow can be
a source of additional end states. Figure 2.10 depicts an opt fragment at the bottom
of the interaction, which can change the end states. Since the execution is optional,
the end states have to be above the fragment and at the bottom of the fragment
itself. Consequently, the resulting end state vectors are ⟨Service.open, Kitchen.open⟩
and ⟨Service.open, Kitchen.ready to cook⟩. Besides opt and break fragments, an alt

fragment is another possibility to exit a sequence diagram with di�erent end states,
since the UML standard allows that no operand of an alt fragment is executed if none
of the operand constraints evaluate to true. Figure 2.11 shows an interaction with
an alt fragment at the bottom, which does not cover all lifelines and, thus, the result
is a combination of end states. In the normal course of life for this restaurant, both
alternative conditions are false and the Service, just as the Kitchen, terminates the
interaction in state open. The alternative traces let the interaction terminate with

21

2. Consistency / Re�nement

the end state vectors ⟨Service.wait, Kitchen.open⟩ and ⟨Service.close, Kitchen.open⟩,
respectively. If one condition of an operand of the alt fragment is else, then there is
always an applicable alternative and, thus, no state information has to be above the
fragment.
A further fragment that leads to additional end state vectors is the loop fragment,
which repeats the included sequence a number of times. Since this number can be
zero, the components do not have to execute the included sequence. In conclusion,
considering end states loop fragments can be handled as opt fragments. Figure 2.12
depicts the open restaurant example with a loop fragment, which can be executed zero
times if there are no waiting reservations or a number of times until all reservations
are processed.

Figure 2.10.: Di�erent end states through an opt fragment.

The following notation de�nes additional functions on event sets of sequence dia-
grams, which are necessary to de�ne a consistency notion for start and end states.

Notation 2.2:
Let SD = (I,E,O, ι,<, η, t, τ) be a sequence diagram.
Then operandEventSet(E,o) contains only events between the operand begin and
the operand end event(s) of o, i.e.,

operandEventSet ∶ E ×OO → E,

operandEventSet(E,o) ∶= {e ∈ E ∣ ∃ i ∈ I, o′ ∈ O ∶ ι(e) = (i, o′)
∧ (∃ e′ ∈ EOB ∶ ι(e′) = (i, o) ∧ e′ < e)
∧ (∃ e′ ∈ EOE ∶ ι(e′) = (i, o) ∧ e < e′)}.

22

2.2. Level State Machine

Figure 2.11.: Di�erent end states through an alt fragment.

Figure 2.12.: Di�erent end states through a loop fragment.

23

2. Consistency / Re�nement

The cutEventSet(E,f) contains all events from E excluding the fragment f with all
events in all operands from f , i.e.,

cutEventSet ∶ E ×OF → E,

cutEventSet(E,f) ∶= E ∖
⎧⎪⎪⎨⎪⎪⎩

⋃
o∈OO ∶η(o)=f

operandEventSet(E,o)

∪ {e ∈ EOB ∪EOE ∣ ∃ i ∈ I ∶ ι(e) = (i, o)}} .

The next event after e according to the event order on the same lifeline is contained
in next(e), i.e.,

next ∶ E → E

next(e) ∶= {e′ ∈ E ∣ ∃ i ∈ I, o ∈ O ∶ ι(e) = (i, o)
∧ ∃ o′ ∈ O ∶ ι(e′) = (i, o′) ∧ e′ > e
∧ ∀ e′′ ∈ E∣i ∶ e′′ ≥ e′ ∨ e′′ < e}.

The previous event before e according to the event order on the same lifeline is
contained in prev(e), i.e.,

prev ∶ E → E

prev(e) ∶= {e′ ∈ E ∣ ∃ i ∈ I, o ∈ O ∶ ι(e) = (i, o)
∧ ∃ o′ ∈ O ∶ ι(e′) = (i, o′) ∧ e′ < e
∧ ∀ e′′ ∈ E∣i ∶ e′′ ≤ e′ ∨ e′′ > e}.

The following de�nition describes whether a given sequence diagram is consistent
with the start and end state information needed to create the level state machine.
To simplify the de�nition and the following algorithm, an alt fragment replaces any
break fragment. This is no semantically correct transformation, but in case of end
states every break fragment is analogous to an alt fragment with an else-case. Fur-
thermore, all references have to be expanded while all gates and parameters have to
be resolved.
Figure 2.13(a) shows an order sequence during which the Customer orders a cake and
a co�ee. If the Customer remembers an important appointment, the Customer pre-
maturely cancels the transaction. Figure 2.13(b) shows the same sequence where an
alt fragment replaces the break fragment. The interaction below the break fragment
forms the second case for the alt fragment. Since the condition for the second operand
is else there is always one executable operand. The transformation is, however, not
semantically equivalent, since the Customer can notice the forgotten appointment
before the Restaurant receives the co�ee order. The break fragment prematurely ter-
minates the surrounding interaction and, thus, the co�ee order may not be received.
In Figure 2.13(b), this case is not possible, since the alt fragment cannot cancel an
interaction and the co�ee order will always be received. The set of possible end state
vectors of both sequence diagrams, however, remains the same.

24

2.2. Level State Machine

Customer Restaurant

ready to serve

order cake

order coffee

cancel order

ready to serve

break [forgot appointment]

serve cake

serve coffee

served

sd order

(a) If the Customer remembers an impor-
tant appointment, the sequence will be
prematurely canceled.

Customer Restaurant

ready to serve

order cake

order coffee

cancel order

ready to serve

serve cake

serve coffee

served

alt [forgot appointment]

[else]

sd order

(b) The corresponding diagram with an
alt fragment.

Figure 2.13.: Replace a break fragment with an alt fragment.

De�nition 2.8 (Sequence Diagram State Consistency):
A sequence diagram SD = (I,E,O, ι,<, η, t, τ) is state consistent, if start and end
states are present for each component's lifeline, i.e.

∀ i ∈ Ic ∶ checkStartStates (E∣i) ∧ checkEndStates (E∣i) .

The start (end) states are present for lifeline i if the �rst (last) element of the
total order for i is a state or an alt, opt, or loop fragment, which contains start (end)
states, i.e.

checkStartStates(E) ∶= (min(E) ∈ Es)
∨ checkStartFragments(E),

checkEndStates(E) ∶= (max(E) ∈ Es)
∨ checkEndFragments(E).

The maximum (max) and minimum (min) are applicable since the event set is
restricted to the total order of one lifeline. If the �rst (last) element of the total
order of i is an alt, opt, or loop fragment, each operand of the fragment has to
contain start (end) states. For the fragments that introduce optional sequences, i.e.,

25

2. Consistency / Re�nement

opt, loop, and alt without an else-case, start (end) states have to exist after (before)
the fragment, i.e.

checkStartFragments(E) ∶= ∃ i′ ∈ I, o ∈ OO ∶ ι(min(E)) = (i′, o)
∧ t(η(o)) ∈ {alt,opt, loop}
∧ ((t(η(o)) = {alt}∧
∀ o′ ∈ OO ∶ η(o′) = η(o) ⇒ τ(o′) ≠ ”else”)
∨ t(η(o)) ∈ {opt, loop} ⇒
checkStartStates(cutEventSet(E,η(o))))

∧ ∀ o′ ∈ OO ∶ η(o′) = η(o) ⇒
checkStartStates(operandEventSet(E,o′)),

checkEndFragments(E) ∶= ∃ i′ ∈ I, o ∈ OO ∶ ι(max(E)) = (i′, o)
∧ t(η(o)) ∈ {alt,opt, loop}
∧ ((t(η(o)) = {alt}∧
∀ o′ ∈ OO ∶ η(o′) = η(o) ⇒ τ(o′) ≠ ”else”)
∨ t(η(o)) ∈ {opt, loop} ⇒
checkEndStates(cutEventSet(E,η(o))))

∧ ∀ o′ ∈ OO ∶ η(o′) = η(o) ⇒
checkEndStates(operandEventSet(E,o′)).

Finally, all possible start and end state vectors have to be calculated. This task is
separated in three steps:

� Algorithm 2.1 �rstly determines all start states recursively for each lifeline
according to the consistency de�nition. The algorithm to determine the end
states is analogous to Algorithm 2.1 when changing min to max.

� Secondly, Algorithm 2.2 creates a Petri net with all start (end) states and their
relations, i.e., common operands.

� Finally, this Petri net is used to calculate the resulting state vectors the se-
quence diagram can start or end with, respectively. This step calculates the
reachability graph for the created Petri net. Due to the structure of the Petri
net, the states of the reachability graph are valid start (end) state vectors for
the sequence diagram.

The three steps are performed once for the start states and once for the end states
of the sequence diagram. Figure 2.14 depicts the Petri net representations for the
end states of Figure 2.10 and Figure 2.11, respectively.

26

2.2. Level State Machine

Algorithm 2.1 Calculate all start (end) states of a sequence diagram
Inputs: sd = (I,E,O, ι,<, η, t, τ)
function calcStartStates(E)

curStates← {}
(i, o) ← ι(min(E))
if min(E) ∈ ES then

curStates← {min(E)}
else if min(E) ∈ EOB ∪EOE then

elseOperand← false
for all o′ ∈ OO do
if η(o′) = η(o) then

curStates← curStates∪ calcStartStates(operandEventSet(E,o′))
if τ(o′) ="else" then

elseOperand← true
end if

end if
end for
if elseOperand = false ∨ t(η(o)) ∈ {loop,opt} then

curStates← curStates∪ calcStartStates(cutEventSet(E,η(o)))
end if

end if
return curStates

end function

startStates← {}
for all i ∈ Ic do

startStates← startStates∪ calcStartStates(E∣i)
end for
return startStates

27

2. Consistency / Re�nement

Algorithm 2.2 Create Petri net to determine start (end) state combinations

Require: state contains the start [end] state events according to Algorithm 2.1
P ← {}
T ← {}
F ← {}
m0 ← {(x,1) ∣ x ∈ state}
for all i ∈ Ic do
for all s ∈ state ∣i do
P ← P ∪ {s}
e← s
while next(e) ≠ ∅ ∧ next(e) ∉ state do

{e} ← next(e)
if e ∈ EOE [e ∈ EOB] then

(i, o) ← ι(e)
T ← T ∪ {o}
F ← F ∪ {(s, o)}

end if
end while
if next(e) ≠ ∅ then
F ← F ∪ {(o, next(e))}

end if
for all s′ ∈ state ∣i do

{e′} ← {e′′ ∈ Es ∣ ι(e′′) = (i, s)}
if e′ < e then
m0(s) ← 0

end if
end for

end for
end for
return (P,T,F,m0)

28

2.3. State Re�nement

(a) Petri net representation of the end states of Figure 2.10.

(b) Petri net representation of the end states of Figure 2.11.

Figure 2.14.: Petri net representations.

2.2.4. Petri Net Representation for the Level State Machine

Lischke [17] used an algorithm for the generation of the level state machine that
matches the sequence diagram formalization used by her. By using Petri nets, the
same results are achieved with established and well analyzed methods. Thus, the
level state machine is a result of a common Petri net algorithm, if the following
Petri net representation is used. Figure 2.15 depicts the Petri net representation to
generate the level state machine from the example of this section (cf. Figure 2.8).
Each place represents a state of one component in the given level of abstraction and
each transition represents one sequence diagram from one start state combination
to one end state combination. In this example each sequence diagram corresponds
to only one transition, because each of them has exactly one start state and end
state combination. The states in the initial state vector of the level state machine
description are initially marked in the Petri net. The reachability graph of this
representation equals the level state machine, because each reachable marking of the
Petri net is equivalent to one state vector in the level state machine. Consequently
the edges in the reachability graph are annotated with the labels of the transitions
to obtain the same presentation.
Algorithm 2.3 converts a set of sequence diagrams for a given re�nement level to the
introduced Petri net representation.

2.3. State Re�nement

Section 2.1 introduced the inter- and intra-level re�nement for instances and the im-
pact on the presence of messages in related sequence diagrams. Section 2.2 presented
the level state machine concept, which reveals how complete a speci�cation level is,

29

2. Consistency / Re�nement

Figure 2.15.: Petri net representation of Figure 2.8.

Algorithm 2.3 lsmTransformation
Inputs: n, initialStates

P ← {}
T ← {}
F ← {}
for all sd ∈ SDn with sd = (I,E,O, ι,<, η, t, τ) do
startVectors ← calcStartVectors(E)
endVectors ← calcEndVectors(E)
for all startVector ∈ startVectors do
for all endVector ∈ endVectors do
T ← T ∪ sdstartVector

endVector

for all state ∈ startVector do
P ← P ∪ {state}
F ← F ∪ {(state, sdstartVector

endVector)}
end for
for all state ∈ endVector do
P ← P ∪ {state}
F ← F ∪ {(sdstartVector

endVector , state)}
end for

end for
end for

end for
m0 ← {(x,1)) ∣ x ∈ initialStates} ∪ {(x,0) ∣ x ∈ P ∖ initialStates}
return (P,T,F,m0)

30

2.3. State Re�nement

by using sequence diagrams that are annotated with state information. These two
concepts are independent, because the instance re�nement does not include state
information. Thus, a re�nement concept for states in sequence diagrams is needed
to combine instance re�nement and level state machines.
States of di�erent components are only weakly related, even if they are in a re�ne-
ment relation, such as described in Section 2.1. Figure 2.16 depicts a small example
to illustrate some cases for the state re�nement. The master instance Restaurant is
re�ned to the Waiter and the Kitchen. Each instance has several states, which are
listed below the instance.

Figure 2.16.: Motivating example for the state re�nement.

A one-to-one match of states between master and re�ning instance is not possible,
since the Restaurant has two states and the re�ning instances have three states. The
Waiter does not even have a state with the same name as the Restaurant. A relation
between the states, however, exists. The open state of the Restaurant relates to the
open state of the Kitchen and the present state of the Waiter. Likewise, the closed

state of the Restaurant relates with the closed state of the Kitchen and the absent

state of the Waiter. The open state of the Restaurant also relates to the additional
states of the Waiter and the Kitchen, namely pause and cleaning. Nonetheless, the
Kitchen can be closed while the Restaurant is open or the Kitchen can be cleaning
while the Restaurant is closed. Thus, the relations between states are weak, but they
exist and should be made explicit in the model. All this is captured in the following
de�nition.

De�nition 2.9 (State Relation):
Let h = (I0, I1, . . . , In, µ, π) be an instance hierarchy. Si designates the states of
instance i and S refers to the set of all states for all instances, i.e., S ∶= ⋃i∈I Si. The
relation

SR ⊆ S × S

named State Relation holds all relations between states of subsequent instances ac-
cording to the re�nement.

According to this de�nition, the state relation for the example from Figure 2.16 can

31

2. Consistency / Re�nement

be:

SR = {(Restaurant.open,Kitchen.open), (Restaurant.open,Kitchen.cleaning),
(Restaurant.open,Waiter.present), (Restaurant.open,Waiter.pause),
(Restaurant.closed,Kitchen.closed), (Restaurant.closed,Waiter.absent)}

On the one hand, every state of the master instance needs a relation to at least one
state of each re�ned instance, because being in one state has to have a counterpart
in every re�ned instance. On the other hand, each state of a re�ned instance needs
a relation to at least one master state, because each state combination of the re�ned
instances has to re�ect one master state.
The following de�nition formalizes these conditions.

De�nition 2.10 (State Consistency):
Let h = (I0, I1, . . . , In, µ, π) be a instance hierarchy and SR the state relation for h.
SR is state consistent, i�

∀ i ∈ I ∃ i′ ∈ I ∶ µ(i) = i′ ⇒ (∀ s ∈ Si′ ∃ s′ ∈ Si ∶ (s, s′) ∈ SR)
∧ (∀ s ∈ Si ∃ s′ ∈ Si′ ∶ (s′, s) ∈ SR).

2.4. Message Re�nement

During the development process messages can change their names and other details
such as their documentation or communication ports. The reason for that is that
messages are re�ned from an abstract information transport- and synchronization-
medium to concrete protocols and bus systems. Thus, messages in the requirement
levels can have other names than in the implementation levels, since they are re�ned
to physical entities. Hence, messages between di�erent levels of abstraction are not
the same object, but they are directly related. The following de�nition presents an
one-to-one re�nement for messages

De�nition 2.11 (Message Re�nement):
Let n,m ∈ OM be messages and G ∶ OM → OM . The partial function G relates
messages with their re�nements, and if message n re�nes message m, there is no
other message n′ which also re�nes message m, i.e.,

(m,n) ∈ G ∶⇔ message n re�nes message m and

for all n′ ∈ OM ∶ (m,n′) ∈ G⇒ n = n′.

32

3. Model/View Concept

This chapter presents the constructive model/view concept, which incorporates the
re�nement and consistency notions from Chapter 2. Section 3.1 introduces the con-
cept informally and describes the bene�ts for the software development process.
Section 3.2 describes the underlying data model and Section 3.3 presents operations
on the model.

3.1. Introduction

During the development process many sequence diagrams are created and several
of them might show parts of the same behavior from di�erent levels of abstraction
or from di�erent points of view. Consequently, there is a large share in redundant
information, e.g., the same message in a master diagram and in its re�nement. If
an element in one diagram is changed, the modi�cation has to be repeated in all
diagrams that also refer to that element. The model/view concept abstracts from
this issue by decoupling the data elements from their concrete appearance in the
diagrams. For structural UML diagrams such as class diagrams, a model/view con-
cept is already used and implemented in commercial CASE tools, e.g., the Rational
Systems Developer [12] or ARTiSAN Studio [1]. By contrast, the model/view sup-
port for behavioral diagrams such as sequence diagrams is very limited and does not
include re�nement. The model/view concept is based on the Model-View-Controller
pattern.

Model-View-Controller Model-View-Controller (MVC) is an architectural design
pattern, which was �rstly described in the context of the object-oriented language
Smalltalk [15]. It separates an application into the domain speci�c data represen-
tation (Model), the user interface (View), and the control logic (Controller). As a
result of this separation, each part consists only of the necessary information and
logic. The resulting classes are easier to maintain and reuse due to the reduced
amount of dependencies. Figure 3.1 depicts the design pattern and the relations
between the di�erent parts. The view visualizes a part from the model, so there
is a connection from the view to the model. The controller handles the interaction
between view and model, which is shown by the remaining two connections.

A slight modi�cation of this pattern is the model/view pattern that distinguishes
only between model and view. The controller is part of the view for handling the
user interaction and part of the model for the model interactions.
Section 3.2 describes the realization of this pattern in detail, which consists of all

33

3. Model/View Concept

Figure 3.1.: Model-View-Controller design pattern

relevant information for the sequence diagrams, the re�nement concept, and the level
state machine. Due to the software development process mentioned in Section 1.1,
the main views are sequence diagrams, but there are several other important views
onto the model. Figure 3.2 depicts a collection of di�erent views and their relation to
the model. Each arrow represents the possible information �ow between the adjacent
views and the model.

Sequence Diagram Sequence diagrams are the main views to add new scenarios
and to modify or delete existing scenarios.

Level State Machine Each level of abstraction corresponds to a level state machine
(cf. Section 2.2). It shows all reachable state combinations and all scenarios
between them. The level state machine view allows to create templates for new
sequence diagrams between state combinations. These templates consist of the
necessary components, start states, and end states.

Instance Hierarchy The instance hierarchy (cf. De�nition 2.2) establishes the base-
ment of the re�nement concept. New instances can be added through this view
and existing instances can be re�ned or removed.

State Re�nement The state re�nement view depicts the current state relation (cf.
Section 2.3) and allows the user to add new states to the model, relate states
to each other, or remove existing states.

Derived Views Derived views visualize a part from the model in a di�erent way,
e.g., default scenarios without optional behavior or scenarios with expanded
references. These views are well-suited to communicate with di�erent stake-
holders or to get a better understanding of the scenario. Derived views in
Figure 3.2 have only a connection from the model to the view, because derived
views may use aggregated values. Changes in those views maybe hard or even
impossible to integrate into the model and, thus, derived views are read-only.

Several bene�ts arise from the constructive model/view concept: The number of
integrations against a model is lower than the required number of integrations if all
diagrams are independent. The constructive approach integrates each change to all
parts of the model and resolves all ambiguities. Without the constructive approach,
several views may be changed at the same time. Consequently, all views have to be
integrated with each other. If n diagrams show partly the same behavior, there are

34

3.1. Introduction

Figure 3.2.: Di�erent views depict partial model information.

n ∗ (n − 1)/2 integrations to get a consistent set of diagrams (cf. [5]). Furthermore,
the constructive approach allows maintaining model properties, e.g., there will be no
state that is not consistent with the state re�nement concept in Section 2.3.
Redundancy is reduced to a minimum, since diagrams showing the same behavior are
di�erent views on the same model objects. Thus, trivial changes, such as renamed
messages, a�ect directly all diagrams showing the modi�ed object. The central
data base of all diagram elements allows fast derivation of new information, such as
derived views, aggregated values, or statistics. We refer to this as model queries as
an analogy to database queries.

Integration of view modi�cations Changes cannot be integrated automatically
into other levels of abstraction, since several di�erent integrations might be valid.
Thus, only the developer can decide which integration is desired in such a situation.
Figure 3.3(a) depicts a simple example. The Customer orders a drink, which is served
by the Restaurant. A new message, namely ask for peanuts, is inserted between the
already existing messages. This change has to be integrated with the inter-level
re�nement, which is shown in Figure 3.3(b). The Waiter and the Kitchen replace
the Restaurant. The Waiter communicates with the Customer, and the Kitchen mixes
the drink. The position of the send event of the new message is the same as in
the source diagram, because the adjacent events, i.e., the send event for order drink
and the receive event for serve drink, are directly related. By contrast, there are six
possibilities for the receive event of the message ask for peanuts, which are emphasized
in Figure 3.3(b). Waiter and Kitchen are both re�ning the Restaurant and, thus,
may both receive the new message. Due to the internal communication between

35

3. Model/View Concept

Waiter and Kitchen, there are three insertion points on both lifelines. Some of the
insertion points are, however, of lower quality of integration, since the topmost and
bottommost points of the Kitchen's lifeline are not consistent with all traces of the
high-level diagram, see also Section 3.2.2. For example, if the receive event of the
message ask for peanuts will be inserted as the �rst event on the Kitchen's lifeline,
then there is a trace in which the receive event can occur before the receive event of
order drink. This situation cannot occur in the high-level diagram, because the two
receive events are ordered there. Thus, the valid inter-level insertion points have to
be classi�ed according to the quality of integration.

Customer Restaurant

order drink

ask for peanuts

serve drink

sd order drink (Level 0)

(a) Insertion of a new message
ask for peanuts into the sequence
diagram.

Customer Waiter Kitchen

order drink

forward drink order

drink is ready

serve drink

sd order drink (Level 1)

(b) Valid insertion points for the receive event of ask for

peanuts.

Figure 3.3.: Integration of a new message to the next re�nement level.

3.2. Model

The model constitutes the essential part of the concept, because it has to re�ect all
concepts of Chapter 2. Consequently, the model consists of a data representation and
a set of operations to encapsulate this data representation. The operations integrate
changes from a view into the model and, thus, these operations have to maintain the
consistency of the model. The following de�nition introduces the data model as the
foundation for the model operations and the views.

De�nition 3.1 (Data Model):
A data model is a tuple

M = (h,O,S,G,σ, η, t, τ,Seqs)

36

3.2. Model

where

h = (I0, I1, . . . , In, µ, π) is an instance hierarchy with I = ⋃k∈N≤n Ik,
O is a set of sequence diagram objects,

S is a state relation,

G is a message re�nement relation,

σ ∶ OS → I maps states to instances,

η ∶ OO → OF maps operands to fragments,

t ∶ OF → {alt,break, ...} determines fragment type,

τ ∶ OO → Σ assigns a constraint in an alphabet to an operand, and

Seqs is a set of sequences (cf. De�nition 3.2).

As part of the data model, the following de�nition presents a sequence, which is
a scenario or a set of scenarios in di�erent levels of abstraction. The term sequence
might be misleading, since a sequence, as used here, includes more than one trace.
Moreover, it represents a set of traces and also the re�nement of these traces. The
name sequence is, however, appropriate, because it re�ects the UML understanding
of a sequence diagram with extensions that re�ect the re�nement principles.

De�nition 3.2 (Sequence):
A sequence is a tuple

Seq = (E = E0 ⊍ . . . ⊍En, ι, f)

where

E = E0 ⊍ . . . ⊍En is a set of events,

ι ∶ E → I ×O maps events to lifelines and objects, and

f ∶ N≤n → P(I) × P(E ×E)
maps levels of abstraction to a set of instances and an event order.

A sequence consists of events, which are each assigned to a level of abstraction.
The function f assigns each level of abstraction to a set of instances from the data
model and an event order on the corresponding events. The data model subsumes
every relation described in Chapter 2.
The following de�nition presents how a sequence diagram, as used in Chapter 2, can
be extracted from the data model. Therefore, all sets and relations, which represent a
sequence diagram, have to be limited to the objects that correspond to a speci�c level
of abstraction in a given sequence. Consequently, all de�nitions from that chapter
are applicable to a sequence in a given level of abstraction.

37

3. Model/View Concept

De�nition 3.3 (Sequence to Sequence Diagram):
LetM = (h,O,S,G,σ, η, t, τ,Seqs) be a data model and Seq = (E = E0⊍ . . .⊍En, ι, f)
be a sequence in Seqs. Further be l ∈ N≤n with f(l) = (Il,<l).

SDl
s = (Il,El,O′, ι′, η′, t′, τ ′)

is the corresponding sequence diagram according to De�nition 2.1 with:

O′ = {o ∈ O ∣ ∃ e ∈ El, i ∈ Il ∶ ι(e) = (i, o)}
O′
α = Oα ∩O′ for α ∈ {M,F,O,R,S,C,A,CO}

ι′ = ι∣El×Il×O′
η′ = η∣O′O×O′F
t′ = t∣O′F×{alt,break,...}
τ = τ ∣O′O×Σ

References in a sequence diagram as seen in Figure 1.4 are a shorthand for insert-
ing the content of another sequence diagram. In the context of the data model, the
diagram that would be inserted is a sequence at a given level of abstraction. Since
the referenced diagram is a sequence, it may also be re�ned and reused in more
detailed sequence levels. The reference object, i.e., an element from OR, is a link
to a sequence at a given level of abstraction and a reference event represents the
occurrence of the reference object on an instance's lifeline.
The data model with the set of sequences is the foundation for the sequence dia-
gram views. Thus, the following de�nition presents how sequence diagram views are
represented according to the data model.

De�nition 3.4 (Sequence Diagram View):
Let M = (h,O,S,G, η, t, τ,Seqs) be a data model. A sequence diagram view is a
tuple

SDV = (Seq, l, VI, ξ)

where

Seq is a sequence,

l ∈ N≤n is a level of abstraction,

VI ⊆ I l is a set of instances, and
ξ ∶ VI → E ×E maps each instance to a start- and end event.

A sequence diagram view consists of a set of instances and for each instance a start
event and end event, which represent the start and the end of the instance's lifeline.
Thus, a sequence diagram view is a projection onto a sequence. This de�nition allows

38

3.2. Model

a range of sequence diagram views, since it represents a clipping of the instances and
the event set for a sequence. Figure 3.4(a) shows the second level of abstraction from
a small sequence order drink already known from Figure 3.3. Figure 3.4(b) depicts a
sequence diagram view onto that level and it contains only the Waiter and Kitchen.
The �rst event for the Waiter is the send event of the message forward drink order and
the last event is the message receive event for drink is ready. Likewise, the �rst event
for the Kitchen is the message receive event for forward drink order and the last event
is the send event for drink is ready. The dashed rectangle in Figure 3.4(a) frames the
events and objects that are visible in the adjoining view.

(a) Figure 3.3(b) without marker. (b) A view onto Figure 3.4(a).

Figure 3.4.: Sequence diagram from Figure 3.3(b) and a view onto that sequence.

Views are only valid together with the underlying model and each model operation
that a�ects a view, e.g., remove an instance that is part of a view, has to adjust the
view object, too. Thus, the following de�nition presents a structure that combines
model and views.

De�nition 3.5 (Model/View System):
A model/view system (MV) is a tuple

MV = (M,V)

where

M = (h,O,S,G, η, t, τ,Seqs) is a data model,
V is a set of sequence diagram views of M.

3.2.1. Identify possible event orderings

Figure 3.3 in the introduction of this chapter presents a sample integration for the
insertion of a new message. There are six insertion points in Figure 3.3(b) that

39

3. Model/View Concept

(a) Petri net with initial marking.

od order drink

sd serve drink

fdo forward drink order

dir drink is ready

(b) Abbreviations.

Figure 3.5.: The Petri net representation of Figure 3.3(b).

are valid integrations for the new message receive event. The points between two
existing events correspond to event orderings, i.e., tuples from E ×E. The position
of the message receive event in the source diagram (cf. Figure 3.3(b)) will default
the occurrence of the new receive event after the receive event of order drink and
before the send event of serve drink. Both of these events have counterparts in the
re�ning diagram and, thus, are also a constraint for the position of the new message
receive event. A Petri net representation of the sequence diagram determines the
possible event orderings by using a special execution model. Each event in the
sequence diagram corresponds to a Petri net transition and the Petri net places
correspond to possible insertion points for new events. The complete transformation
from a given sequence diagram to a Petri net is explained in the remainder of this
section. Figure 3.5 depicts the Petri net representation of the sequence diagram in
Figure 3.3(b). The main idea of this algorithm is to �nd a minimal execution of
the Petri net that the receive event of order drink is executed and afterwards, to
execute the Petri net maximal until the send event of serve drink is the only possible
execution. During the maximal execution phase, all insertion points are stored.
To generalize the problem, let s = (E = E0 ⊍ . . . ⊍En, ι, f) be a sequence and k a

level of abstraction in s. If a new event x in a sequence level k is "framed" by an
event a upwards and an event b downwards, which event orderings are valid insertion
points in the next/previous level of abstraction?

Function 3.1:
The following steps are necessary to identify the set of valid insertion points:

1. Transform the next sequence level k+1 (the previous sequence level k−1) into
a Petri net PN = (P,T,F,m0)

2. Identify events a′ and b′ that represent the ordering constraints in level k + 1
(k − 1)

40

3.2. Model

3. Execute the Petri net PN minimal until transition a′ was executed

4. From now on, save all places that are currently marked or that will get a marker
in the subsequent steps.

5. Execute the Petri net maximal until b′ is the only selectable transition.

6. Remove all places from the list that are between message send and receive
events of the same message and that belong to instances, which are not allowed
as insertion points: the only allowed instances are the master instance for
the previous level of abstraction and only child instances for the next level of
abstraction, respectively.

Each place from the generated list corresponds to an event ordering for a lifeline
and represents a valid insertion point for the event x in the next/previous level of
abstraction. The following paragraph describes and presents an algorithm for the
Petri net transformation, i.e., for the �rst step of Function 3.1.

Petri net transformation Petri nets form a well-suited semantic representation of
sequence diagrams [22]. The main idea of the algorithm is to transform sequence dia-
gram events into Petri net transitions and preserve the lifeline �ow for each instance.
Thus, for each lifeline there is at least one initially marked place that represents
the start of the corresponding lifeline. Table 3.1 contrasts sequence diagram objects
with their corresponding Petri net representation. The dashed line that separates two
successive operands in the visual representation is formalized by two events, namely
the operand begin event of the �rst operand and the operand end event of the sec-
ond operand. Thus, the formalization would allow events between two operands that
have no visual representation. To avoid new events between two operands, the trans-
formation ignores the operand end events of all but the last operand. Continuations
are not part of the transformation, because continuations have to be the �rst or last
element in an alt fragment and, thus, no new event can be inserted between the
continuation and the fragment border. Let M = (h,O,S,G, η, t, τ,Seqs) be a data
model, s = (E = E0⊍ . . .⊍En, ι, f) be a sequence inM and k a level of abstraction in
s with f(k) = (Ik,<k). Algorithm 3.1 represents the transformation for the sequence
diagram sd = (Ik,E,O, ι,<k, η, t, τ).
The �rst step generates a Petri net for the next/previous sequence level and the

later steps execute the Petri net with the ordering constraints from the source se-
quence level. These ordering constraints are adjacent events in the source sequence
level. Many events do not have to be in the next or previous level, though, e.g.,
references or actions. The next paragraph describes which events can be identi�ed
and how they can be identi�ed.

Identify events in the next/previous sequence level Some events from a given
level can be identi�ed with events in the successive level or in the previous level,
respectively. Those events are important, because they pose a constraint for valid

41

3. Model/View Concept

Object
Sequence Diagram Petri Net
Representation Representation

Message

Fragment

State Invariant

Local Action
(Execution
Occurrence)

Reference

Table 3.1.: Petri net transformation for sequence diagram objects.

42

3.2. Model

Algorithm 3.1 Petri net transformation
Inputs: Sequence Diagram sd = (I,E,O, ι,<, η, t, τ)
P ← {}, T ← {}, F ← {}
for all i ∈ I do
e←min(E∣i)
curPlace← create new place
P ← P ∪ {curPlace}
m0(curPlace) ← 1
while next(e) ≠ � do

(i, o) ← ι(e)
if e ∈ EMS ∪EMR ∪ECB ∪ECE ∪ES ∪EAB ∪EAE then
T ← T ∪ {e}
F ← F ∪ {(curPlace, e)}
if e ∈ EMS then
P ← P ∪ {o}, m0(o) ← 0
F ← F ∪ {(e, o)}

end if
if e ∈ EMR then
P ← P ∪ {o}, m0(o) ← 0
F ← F ∪ {(o, e)}

end if
curPlace← create new place
P ← P ∪ {curPlace}
m0(curPlace) ← 0
F ← F ∪ {(e, curPlace)}

end if
if next(e) ≠ � then

(i′, o′) ← ι(next(e))
else

(i′, o′) ← (�,�)
end if
if e ∈ EOB ∨ (e ∈ EOE ∧ η(o) ≠ η(o′)) then
T ← T ∪ {o}
F ← F ∪ {(curPlace, o)}
curPlace← create new place
P ← P ∪ {curPlace}
m0(curPlace) ← 0
F ← F ∪ {(o, curPlace)}

end if
e← next(e)

end while
end for
return (P,T,F,m0)

43

3. Model/View Concept

event orderings when adding new elements to the model. The number of identi�-
able events varies depending on the target level of abstraction. In general, message
events and operand events are identi�able. Message send and receive events can be
identi�ed, since messages are in a one-to-one re�nement relation (cf. Section 2.4).
Fragments and operands are unique for all levels, thus, a fragment in the current level
is the same as in the successive level. For that reason each operand begin/end event
can be identi�ed. The set of messages and operands is monotonically increasing with
the level of abstraction. Thus, should events be identi�ed relative to the next more
detailed sequence level, the nearest message or operand event can be used. Identi-
fying events for the next more abstract level is more complex, since the target level
might not contain all message and operand events. Both algorithms can be found
in the appendix, namely indentifyDownwards to identify the next possible event in
the successive level of abstraction and identifyUpwards for the next previous level of
abstraction.

Following the introduction on how to identify possible event orderings, the follow-
ing paragraph describes the Petri net execution model. This execution model uses
the Petri net from the �rst step and the two identi�ed events a′ and b′.

Petri net execution model The Petri net represents the order of events from the
given sequence level and, thus, allows determining the set of event orderings between
an ordering constraint, namely between two events a′, b′. To maximize the size of
the event ordering set, the �rst constraint a′ has to be minimally ful�lled. Thus, a
minimal execution sequence of transitions has to be found, which begins with the
initial marking and ends by enabling transition a′. Algorithm 3.2 generates a set of
transitions beginning at transition a′. The algorithm traces the shortest way from
a′ to the initial marking and �nds each transition that has to be �red before a′ will
be enabled.

After creation of the backtrack set the Petri net has to be executed to get the
marking that represents the ordering constraint a′. Algorithm 3.3 executes the set by
going through the set and �ring each enabled transition. If the event a′ is unde�ned,
Algorithm 3.2 and Algorithm 3.3 do not have to be executed and, thus, the Petri net
remains in its initial marking. The marking as generated by Algorithm 3.3 conforms
to the �rst ordering constraint a′. From now on, each marked place represents a new
possibility to insert the new event x. To get all valid possibilities according to the
event order, the Petri net has to �re all transitions until b′ remains the only enabled
transition. Algorithm 3.4 takes the marking m from Algorithm 3.3 and generates
the set of event orderings. Therefore, the algorithm loops over all transitions and
�res each enabled transition except b′ until there are no enabled transitions left. The
algorithm adds each place that has a marker according to m or gets a marker in
the execution sequence to a set of places. Each place in this set represents an event
ordering in the sequence diagram. If the event b' is unde�ned, the Petri net will be
executed until the end. Since there are no loops in the Petri net, it will terminate if
all lifeline tokens are in the last place of the lifeline.

44

3.2. Model

Algorithm 3.2 Petri net Backtracking
Inputs: Petri Net pn, Transition t

new ← {t}
backtrackSet← {}
while new ≠ ∅ do
t← any element from new
new ← new∖{t}
backtrackSet← backtrackSet∪{t}
for all p ∈ ●t do
for all k ∈ ●p do
if k ∉ backtrackSet then

new ← new∪{k}
end if

end for
end for

end while
return backtrackSet

Algorithm 3.3 Petri net execute Backtracking - Set
Inputs: Petri Net pn = (P,T,F,m0), Set backtrackSet
m←m0

while backtrackSet ≠ ∅ do
for all t ∈ backtrackSet do
if t is enabled then
m

t→m′

m←m′

backtrackSet← backtrackSet∖{t}
end if

end for
end while
return m

45

3. Model/View Concept

Algorithm 3.4 Compute valid insertion points � Petri net full execution
Inputs: Petri Net pn = (P,T,F,m0), Marking m, Transition t

markedPlaces = empty list
for all p ∈ P do
if m(p) = 1 then

add(markedPlaces, p)
end if

end for
deadlock = false
while deadlock = false do
deadlock = true
for all t′ ∈ T do
if t′ is enabled ∧ t′ ≠ t then
deadlock = false

m
t′→m′

m←m′

for all p ∈ t′● do
add(markedPlaces, p)

end for
end if

end for
end while
return markedPlaces

3.2.2. Classify possible event orderings

The Petri net approach determines all insertion points that are consistent with the
event order of the sequence diagram as de�ned in Section 2.1. Some of these points
are, however, of di�erent integration quality. The introduction of this chapter pre-
sented an exemplary integration for a new message ask for peanuts. The possible
insertion points in the inter-level re�nement are determined by the Petri net ap-
proach. For the �rst and the last insertion point of the Kitchen there are traces
of the re�ning diagram that are not possible in the master diagram. Thus, these
two insertion points are of lower integration quality. Algorithm 3.5 also determines
a set of insertion points, which in contrast are valid according to the traces of the
re�ned diagram. To distinguish these di�erent qualities, we call the insertion points
computed by Algorithm 3.5 trace valid, which is a subset of the set of valid insertion
points determined by the Petri net approach, i.e., Algorithm 3.4. A restriction to
trace valid insertion points only is not appropriate since the every day development
often reveals additional constraints that avoid the problematic traces. UML o�ers,
with general orderings, a syntactic possibility to make these ordering constraints ex-
plicit. General orderings are dashed lines between two events in a sequence diagram
with an arrowhead in the middle, which depicts the direction of the additional or-

46

3.2. Model

dering constraint.
The following approach classi�es the set of insertion points according to the inte-
gration quality and automatically adds general orderings. To resume the example,

Customer Waiter Kitchen

order drink

ask for peanuts

forward drink order

drink is ready

serve drink

sd order drink (Level 1)

Figure 3.6.: Continuation of Figure 3.3(b) with general ordering.

Figure 3.6 depicts the integration of the message ask for peanuts with the general
ordering that corrects the ordering between the receive event of order drink and the
new receive event of ask for peanuts.
The procedure to generate and classify the set of insertion points is:

1. P1 = set of insertion points according to the Petri net execution (Function 3.1).

2. P2 = set of insertion points according to Algorithm 3.5.

3. Valid insertion points: PV = P1 ∩ P2.

4. Insertion points with general ordering: PG = P1 ∖ P2.

When these insertion points are presented to the developer, the classi�cation is de-
picted with di�erent colors or di�erent symbols (cf. Figure 3.3(b)).
As for the Petri net approach, the base of the classi�cation are the Petri net trans-
formation and the identi�ed ordering constraints a′ and b′. Algorithm 3.5 executes
two breadth �rst searches (BFS) on the Petri net representation of the sequence dia-
gram. The starting point of the �rst search is the transition or place that represents
a′ and the �nal point is the transition or place that represents b′ and vice versa for
the second search. The algorithm determines all places of direct paths between these
two Petri net elements and, thus, each sequence of places that has a strict ordering
between the ordering constraints a′ and b′.
If the �rst ordering constraint a′ is unde�ned, the breadth �rst search has to be

done for each initial place of all re�ning instances and the given b′ as endpoint. The
result of the modi�ed algorithm is the union of all result sets. If the second ordering
constraint b′ is unde�ned, the end place of each re�ned lifeline is a second ordering
constraint. If both ordering constraints are unde�ned, the algorithm does not have

47

3. Model/View Concept

Algorithm 3.5 Compute trace valid insertion points � Petri net BFS
Inputs: Petri net pn = (P,T,F,m0), element a ∈ P ∪ T , element b ∈ P ∪ T
function traceValidIPs(Petri net pn, element a ∈ P ∪ T , element b ∈ P ∪ T ,
direction d ∈ {up,down})

visited ∶ P ∪ T → {true, false}
∀ x ∈ P ∪ T ∶ visited(x) ← false
visited(a) ← true
toVisit← [a]
while toVisit ≠ [] do
e← head(toVisit)
toVisit← tail(toVisit)
if e ≠ b then
T ← e●
if d = up then
T ← ●e

end if
for all x ∈ T do
if visited(x) = false then

visited(x) ← true
append(toVisit, x)

end if
end for

end if
end while
return {p ∈ P ∣ visited(p) = true}

end function

L1 ← traceValidIPs(pn, a, b,down)
L2 ← traceValidIPs(pn, b, a,up)
return L1 ∩L2

to be executed, since there is no restriction.
General orderings in the data model are an additional entry in the event order. If a
general ordering should be inserted into a given level of abstraction in a sequence,
a new tuple is inserted into the event order of that level. The automatic insertion
of general orderings can be done between the identi�ed events a′, b′ and the new
inserted event x. If there is no direct path between a′ and x, the new general order-
ing is (a′, x). Analogous for b′, if there is no direct path between x and b′, the new
general ordering is (x, b′).

48

3.2. Model

3.2.3. Re�nement

Section 2.1 introduced informally the ideas of the re�nement concept, which this
thesis is based on. Consequently, the following de�nitions present the pending struc-
tural re�nement rules in the context of the data model. There are several di�erences
between the rules de�ned here and the original de�nitions by Ohlho� [21]. These
di�erences are explained along with the corresponding de�nition. In the data model
each level of a sequence corresponds to a sequence diagram of the original de�nitions
(cf. De�nition 3.3).
The �rst de�nition describes which instances have to appear in successive sequence
levels.

De�nition 3.6 (Inter-level Instance Re�nement):
Let Seq = (E = E0 ⊍ . . . ⊍ En, ι, f) be a sequence and s, t ∈ N≤n levels
of abstraction in Seq with t = s + 1, f(s) = (Is,<s), and f(t) = (It,<t).
Sequence level t is an inter-level instance re�nement of sequence level s,
if s contains all master instances from instances in t and each instance in
t that does not have a master according to the instance hierarchy has a
parent instance in t, i.e.,

∀ i ∈ It ∶ µ(i) ≠ � ⇒ µ(i) ∈ Is
∧ ∀ i ∈ It ∶ µ(i) = � ⇒ π(i) ∈ It

cf. [21, p. 19].

A separate structural re�nement rule for intra-level instance re�nement as in the
diploma thesis of Ohlho� [21] is not necessary, since sequences as used here are
complete, i.e., each level of abstraction is an inter-level instance re�nement of the
previous level. The concept of this thesis allows no decoupled diagrams that depict
a clipping of the behavior, since these diagrams would be views on a complete se-
quence.
The following de�nition prescribes which messages have to appear in successive se-
quence levels of abstraction.

De�nition 3.7 (Inter-level Message Re�nement):
Let Seq = (E = E0⊍. . .⊍En, ι, f) be a sequence and s, t ∈ N≤n levels of ab-
straction in Seq with t = s+1, f(s) = (Is,<s), and f(t) = (It,<t). Further
be sequence level t an inter-level instance re�nement of sequence level s.
t is an inter-level message re�nement of s, if the following holds for all
messages in s and t. For each message m in s, G(m) also appears in t. If
the sending and receiving instances of a message m in t are re�nements
of di�erent instances of s, G−1(m) also appears in s. Furthermore, the
sending and receiving instances of messages that appear in both sequence

49

3. Model/View Concept

levels are compatible with the instance hierarchy, i.e.,

∀ m ∈Mt ∶ � ≠ µ(p(!m)) ≠ µ(p(?m)) ≠ � ⇒ G−1(m) ∈Ms

∧ ∀ m ∈Ms ∃ m′ ∈Mt ∶
G(m) =m′ ∧ p(!m) = µ(p(!m′)) ∧ p(?m) = µ(p(?m′))

where:

� Mk ∶= {o ∈ OM ∣ ∃ i ∈ Ik, e ∈ Ek ∶ ι(e) = (i, o)} for all k ∈ N≤n is the
set of messages in sequence level k and

� p ∶ E → I with ∀ e ∈ E, i ∈ I ∶ p(e) = i⇔ ∃ o ∈ O ∶ ι(e) = (i, o) is a
mapping from events to instances

cf. [21, p. 20].

Compared to the original de�nition, messages from the master diagram have to ap-
pear in the next level. Consequently, the set of messages between successive levels is
monotonically increasing.
De�nition 3.8 describes which fragments have to appear in successive levels of ab-
straction.

De�nition 3.8 (Fragment Complete):
Let Seq = (E = E0 ⊍ . . . ⊍ En, ι, f) be a sequence and s, t ∈ N≤n levels
of abstraction in Seq with t = s + 1, f(s) = (Is,<s), and f(t) = (It,<t).
Further be sequence level t an inter-level instance re�nement of sequence
level s. s and t are fragment complete if t contains all combined fragments
from s that cover instances whose re�nements appear in t, i.e.,

∀ o ∈ OO, i ∈ Is ∶
(∃ eB ∈ EOB, eE ∈ EOE ∶ ι(eB) = (i, o) = ι(eE)) ⇒
[∀ i′ ∈ It ∶ µ(i′) = i⇒ ∃ e′B ∈ EOB, e′E ∈ EOE ∶ ι(e′B) = (i′, o) = ι(e′E)].

and s contains all fragments from t whose covered instances are re�ne-
ments of di�erent instances of s, i.e.,

∀ o ∈ OO ∶
(∃ i, i′ ∈ It, e, e′ ∈ E ∶ ι(e) = (i, o) ∧ ι(e′) = (i′, o) ∧ µ(i) ≠ � ≠ µ(i′)) ⇒
[∀ i ∈ It ∶

(∃ eB ∈ EOB, eE ∈ EOE ∶ ι(eB) = (i, o) = ι(eE) ∧ µ(i) ∈ Is) ⇒
∃ e′B ∈ EOB, e′E ∈ EOE ∶ ι(e′B) = (µ(i), o) = ι(e′E)]

cf. [21, p. 21].

In the original de�nition, the occurrence of an operand in successive levels of ab-
straction depends on the messages that are covered by the operand. The de�nition
used here prescribes the appearance of operands based on the instances in that level.

50

3.2. Model

The new de�nition is more rigorous, since all operands have to appear in each level
of abstraction according to the contained instances. Just as the set of messages, the
set of operands is also monotonically increasing.
The structural re�nement rules describe nothing about the event order between two
successive levels. The following notation introduces the restriction of the event set
and event order to events covered by the re�nement concept and how the event order
of a high-level diagram brought forward to the next more detailed level of abstrac-
tion. The operation identDownwards can be found in the appendix. Furthermore, it
de�nes for each event a set of operands that encapsulate the event. If the event does
not belong to an operand, the operand set is empty.

Notation 3.1:
Let Seq = (E = E0 ⊍ . . . ⊍En, ι, f) be a sequence. Then we de�ne

Ident(E) ∶= EMS ∪EMR ∪EOB ∪EOE

For each level of abstraction s ∈ N≤n in Seq with f(s) = (Is,<s), we de�ne

Ident(<s) ∶=<s ∣Ident(E)×Ident(E)

to be the restriction of the event order <s to identi�able events.
For each event e ∈ E with ι(e) = (i, o′) it is

∀ o ∈ OO ∶ o ∈ operandSet(e) ∶⇔
∃ eB ∈ EOB, eE ∈ EOE ∶ ι(eB) = (i, o) = ι(eE) ∧ eB < e ∧ e < eE

the set of operands that e belongs to.
For two levels of abstraction s, t ∈ N≤n in Seq with t = s + 1, f(s) = (Is,<s), and
f(t) = (It,<t) we de�ne Identt ∶ E ×E → Ident(E) × Ident(E) as the corresponding
event order of <s with events from level t:

∀ e, e′ ∈ Ident(E) ∶ (e, e′) ∈ <s ⇒
(identDownwards(Seq, e), identDownwards(Seq, e′)) ∈ Identt(<s).

The following de�nition presents a further consistency term for combined fragments
and operands. The �rst part prescribes that fragments cannot overlap each other in
a sequence and the second part prescribes that each identi�able event in a re�ning
level of abstraction has to belong to at least the same operands as the corresponding
event in the re�nement master.

De�nition 3.9 (Fragment Consistent):
Let Seq = (E = E0 ⊍ . . . ⊍ En, ι, f) be a sequence and s ∈ N≤n a level of
abstraction in Seq. We say s is fragment consistent if all operand begin
and operand end events that belong to a single operand are nested in the
same set of operands, i.e.,

∀ o ∈ OO, e, e′ ∈ E, i, i′ ∈ I ∶ ι(e) = (i, o) ∧ ι(e′) = (i′, o) ⇒
operandSet(e) = operandSet(e′)

51

3. Model/View Concept

Let t be a further level of abstraction in Seq with t = s + 1 and let s
and t be fragment complete, where s and t are each fragment consistent.
We say s and t are fragment consistent if each identi�able event e from
s resides in a subset of the operands that the corresponding event in t
resides in, i.e.,

∀ e ∈ Ident(E) ∶ operandSet(identDownwards(Seq, e)) ⊆ operandSet(e)

cf. [21, p. 22].

De�nition 3.10 combines the preceding de�nitions and speci�es when two event orders
between successive levels are consistent.

De�nition 3.10 (Inter-level Re�nement):
Let Seq = (E = E0 ⊍ . . . ⊍En, ι, f) be a sequence and s, t ∈ N≤n levels of
abstraction in Seq with t = s + 1, f(s) = (Is,<s), and f(t) = (It,<t). t is
an inter-level re�nement of s, if t is an inter-level message re�nement of
s, t and s are fragment consistent, and Identt(<s) ∪ Ident(<t) is acyclic
cf [21, p. 26].

Function 3.1 determines the valid insertion points for new messages and operands.
The ordering constraints in that function are those events, which maintain the
acyclicity of the unions of both event orders.
These re�nement rules de�ne constraints, which are ful�lled by the corresponding
model operations in the following section.

3.3. Model Operations

The model operations provide the interface between the data representation and
the user. Each operation maintains the consistency of the model. According to
the example in the introduction of this chapter, some operations might not be re-
solved unambiguously since it is possible that several valid resolutions exists in other
levels of abstraction. Only the developer can choose the desired option. Further-
more, maintaining the model consistency might involve a couple of changes to the
data representation or even several model operations. All these changes to the data
model have to be atomic, consistent, isolated, and durable for each operation. These
four mentioned characteristics are well-known as ACID properties in the database
transaction theory. Consequently, each model operation has to be encapsulated in a
transaction, which may only be committed if each change is made and each ambigu-
ity is resolved. Figure 3.7 depicts the �ow of a generic model operation. Firstly, the
user initiates an operation on a view. Secondly, the view creates a new transaction
and delivers the operation with the corresponding parameters to the model. The
model interacts with the data representation to get the necessary information and
to perform the relevant changes. Finally, the view commits the transaction if the
operation is complete or performs a rollback if an error occurred in between. The

52

3.3. Model Operations

User View Model Data Model

operation

start transaction

operation

start operation

get information

information

changes

end operation

rollback transaction

break [error occured?]

commit transaction

update

sd model operation

Figure 3.7.: A generic model operation.

rollback can also be triggered by the model, e.g., if the error occurred inside the
model.

The remainder of this section introduces all important model operations to create
a new model and to work on it. Table 3.2 outlines the operations of this section. Let
MV be a model/view system. Each operation is given as a list of input parameters,
a list of preconditions, and the operation body. An operation body is only executed
if all preconditions are ful�lled. Several operations share helping functions, e.g.,
addToEventOrder to modify the event order, which can be found in the appendix.
Furthermore, each operation that removes an event from a sequence has to assure the
view integrity, i.e., that the start and end event in the view de�nition are replaced
with the next or previous event if the de�ned event is removed.

Ask User In several model operations a call will occur to an operation askUser,
which represents that the developer has to resolve ambiguities or to add missing
information. Even if the operation often can choose a valid solution itself, it cannot
choose the desired solution, though. The operation askUser is a callback from the
model with a speci�ed interface and, thus, an oracle can take the role of the developer
for non-interactive operations such as automated tests.

53

3. Model/View Concept

Operation Description

create sequence create a new sequence in the data model
delete sequence delete an existing sequence from the data model
create level create a new level of abstraction in a sequence
delete level delete a level of abstraction in a sequence
create view create a sequence diagram view
delete view delete a sequence diagram view
create instance create instance in the instance hierarchy
delete instance delete instance from the instance hierarchy
add sequence instance add an instance to a sequence
remove sequence instance remove an instance from a sequence
add view instance add an instance to a sequence diagram view
remove view instance remove an instance from a sequence diagram view
add message add a new message to a sequence
delete message delete a message from a sequence
add fragment add a new fragment to a sequence
delete fragment remove a fragment from a sequence
add operand add a new operand to a sequence
delete operand delete an operand to a sequence
create state create a new state for an instance
delete state delete a state from an instance
relate states relate two states of related instances
unrelate states unrelate two states
add state add a new state to a sequence
remove state remove a state from a sequence
add reference add a reference to a sequence
delete reference delete a reference from a sequence
add local action add a local action to a sequence
delete local action delete a local action from a sequence
add continuation add a continuation to a sequence
delete continuation delete a continuation from a sequence
add general ordering add a general ordering to a sequence
delete general ordering delete a general ordering to a sequence

Table 3.2.: Overview of the model operations in Section 3.3.

54

3.3. Model Operations

3.3.1. Sequence

The user creates a new sequence to describe a new �ow of the system or to de�ne
a new source for a reference. After creating a new sequence, the event set and the
functions ι and f are empty, because there are no objects in the sequence.

create sequence

Input: �

Body: f(0) ← ({},{})
Seqs ← Seqs ∪ {({},{}, f)}

The delete operation has to remove all objects from the object set, which only
belong to the events of that sequence. For that reason, it is su�cient to remove each
level of abstraction. States are independent of the sequences and, thus, remain in
the object set if a state event is removed.

delete sequence

Input: sequence s = (E, ι, f) ∈ Seqs

Require: � the sequence is not used as reference in another sequence

Body: for l = n to 0 do
if f(l) ≠ � then

delete level(s, l)
end if

end for
Seqs ← Seqs ∖{s}

The following operation adds a new level of abstraction to a sequence. The in-
stances for the new level of abstraction have to exist in the instance hierarchy before
adding the new level. For messages and operands, the re�nement concept de�nes
which messages and operands have to be in the new level (cf. message operations
and fragment operations). This operation adds the messages and fragments auto-
matically into the new level, to maintain the model consistency. Other objects, such
as actions, states, or continuations, are not transferred to the new level, since there is
no constraint de�ned on how to add these objects. If an instance from the previous
level is substituted by more than one instance in the new level, a proxy instance will
be selected, which takes over the communication from the previous level.

create level

Input: sequence s = (E, ι, f) ∈ Seqs, level l ∈ N≤n

Require: � l > 0

� f(l) = � ∧ f(l − 1) ≠ �

55

3. Model/View Concept

� f(l − 1) = (Il−1,<l−1) ∧ ∀i ∈ Il−1 ∃ i′ ∈ I ∶ µ(i′) = i

Body: (Il−1,<l−1) ← f(l − 1)
I ′ ← {i ∈ I ∣ ∃ i′ ∈ Il−1 ∶ µ(i) = i′} ∪ {i ∈ I ∣ ∃ i′ ∈ Il ∶ π(i) = i′}
for all i ∈ Il−1 do
i′ ← any instance from {i′ ∈ I ′ ∣ µ(i′) = i}
e←min(E∣i)
while e ≠ � do

(i, o) ← ι(e)
if e ∈ EMS ∪EMR then
if G(o) = � then
m← new message with the same type as o
OM ← OM ∪ {m}
G(o) ←m

else
m← G(o)

end if
if e ∈ EMS then
e′ ← message send event for m
EMS ← EMS ∪ {e′}

else
e′ ← message receive event for m
EMR ← EMR ∪ {e′}

end if
ι(e′) ← (i′,m)
<l ← addToEventOrder(e′, (max(E∣i′),�),<l)

end if
if e ∈ EOB ∪EOE then
for all i′′ ∈ {i′ ∈ I ′ ∣ µ(i′) = i} do
if e ∈ EOB then
e′ ← new operand begin event for o
EOB ← EOB ∪ {e′}

else
e′ ← new operand end event for o
EOE ← EOE ∪ {e′}

end if
ι(e′) ← (i′′, o)
<l ← addToEventOrder(e′, (max(E∣i′′),�),<l)

end for
end if
e← next(e)

end while
end for
f(l) ← (I ′,<l)

56

3.3. Model Operations

To delete a level of abstraction, it has to be the lowest de�ned level, so that there
is no dependency to another level. The operation removes all instances from that
level, since each element that belongs to a sequence's level of abstraction in particular
belongs to an instance.

delete level

Input: sequence s = (E, ι, f) ∈ Seqs, level l ∈ N≤n

Require: � f(l + 1) = �
� the sequence is not used as reference in another sequence

Body: (Il,<l) ← f(l)
for all i ∈ Il do

remove sequence instance(s, i, l)
end for
f(l) ← �

3.3.2. Views

A sequence diagram view depicts a clipping of the instances and events of a sequence.
Thus, a new sequence diagram view consists of a sequence as information base.

create view

Input: sequence s = (E, ι, f) ∈ Seqs, level l ∈ N≤n

Require: � f(l) ≠ �
Body: V ← V ∪ {(s,{}, l,{})}

Views provide no information for the model and no other elements reference them.
Hence, the delete operation for a sequence diagram view only has to remove the view
structure.

delete view

Input: view v ∈ V
Body: V ← V ∖ {v}

3.3.3. Instances

Instances are part of the instance hierarchy, all sequences, and the sequence diagram
views. Thus, the model needs at least six operations to add instances and remove
them, respectively. The instance hierarchy is the only structure that consists of
instances while sequences and sequence diagram views refer only to a subset of the
instance hierarchy. The following model operation creates a new instance and adds
it to the instance hierarchy.

57

3. Model/View Concept

create instance

Input: type t ∈ {actor, component}, level l ∈ N≤n, master m ∈ I ∪ {�},
parent p ∈ I ∪ {�}

Require: � only �rst level instances do not require a master or a parent, i.e.,
if l > 0 ∶ m ≠ � ∨ p ≠ �

� if m ≠ �: m ∈ I l−1

� if p ≠ �: p ∈ I l

Body: i ← new instance with type t
I l ← I l ∪ {i}
µ(i) ←m
π(i) ← p

To delete an instance from the model, each object depending on that instance has
to be removed �rst. The next operation calls the remove operation for each sequence
and sequence diagram view. Afterwards it removes the instance from the instance
hierarchy. The precondition requires that all re�ning instances are removed before
the master or parent can be removed.

delete instance

Input: instance i ∈ I, level l ∈ N≤n

Require: � there are no inter-level re�ning instances in the instance hierarchy,
i.e., {i′ ∈ I l+1 ∣ µ(i′) = i} = ∅

� there are no intra-level re�ning instances in the instance hierarchy,
i.e., {i′ ∈ I l ∣ π(i′) = i} = ∅

Body: for all v ∈ V do
remove view instance(v, i)

end for
for all s ∈ Seqs do
remove sequence instance(s, i, l)

end for
µ(i) ← �
π(i) ← �
I l ← I l ∖ {i}

The set of instances in each level of abstraction in a sequence has to be well-formed
according to De�nition 2.4, i.e., all instances have to belong to the same level of
abstraction. Furthermore, the re�nement concept de�nes with De�nition 3.6, which
instances have to belong to subsequent levels. In conclusion, the following operation
adds an existing instance to a sequence.

58

3.3. Model Operations

add sequence instance

Input: sequence s ∈ Seq, instance i ∈ I, level l ∈ N≤n

Require: � the level of abstraction of instance is l, i.e., i ∈ I l

� if µ(i) ≠ � ⇒ (Il−1,<l−1) = f(l − 1) ∧ µ(i) ∈ Il−1

� if π(i) ≠ � ⇒ (Il,<l) = f(l) ∧ π(i) ∈ Il
Body: (Il,<l) ← f(l)

f(l) ← (Il ∪ {i},<l)

To remove an instance from a sequence, the operation needs to delete all events
that belong to that instance. Consequently, it also needs to delete those objects
that belong exclusively to the instance's lifeline and cannot remain in the model.
More precisely, if the instance's lifeline contains a message send or receive event
then this message would be incomplete without the event and has to be deleted,
too. Coregions and actions belong to only one instance's event set and, thus, the
operation has to delete these objects together with the instance itself. States are
independent from a sequence and the operation only removes the state from the
sequence but not from the model. Each reference usage in a sequence has to cover
the same instances as in the reference de�nition. Consequently, the operation has to
delete all reference objects that cover the instance that should be deleted. Fragments
and continuations, however, have only to be deleted if the object covers the instance
exclusively. Otherwise, it is su�cient to delete the corresponding events.

remove sequence instance

Input: sequence s = (E, ι, f) ∈ Seqs, instance i ∈ I, level l ∈ N≤n

Require: � the level of abstraction of instance is l, i.e., i ∈ I l

� there are no inter-level re�ning instances for the given instance in
seq, i.e., (Il+1,<l+1) = f(l + 1), Il+1 ∩ {i ∈ I ∣ µ(i) = i} = ∅

� there are no intra-level re�ning instances for the given instance in
seq, i.e., (Il,<l) = f(l), Il ∩ {i ∈ I ∣ µ(i) = i} = ∅

� the sequence is not used as reference in another sequence

Body: (Il,<l) ← f(l)
Ei ← {e ∈ E ∣ ∃ o ∈ O ∶ ι(e) = (i, o)}
for all e ∈ Ei do

(i, o) ← ι(e)
if o ∈ OM then

delete message(s, l, o)
else if o ∈ OR then

delete reference(s, l, o)
else if o ∈ OS then

59

3. Model/View Concept

remove state(s, l, o)
else if o ∈ OC then

delete coregion(s, l, o)
else if o ∈ OA then

delete local action(s, l, o)
else if o ∈ OO ∪OCO then
if {i′ ∈ Il ∣ ∃ e ∈ E ∶ ι(e) = (i′′, o′) ∧ i′ = i′′ ∧ o′ = o} = {i} then
if o ∈ OO then

delete fragment(s, l, η(o))
else

delete continuation(s, l, o)
end if

else
E ← E ∩ {e ∈ E ∣ ι(e) = (i, o)}
<l ← <l ∖{(e, e′) ∣ ι(e) = (i, o) ∨ ι(e′) = (i, o)}

end if
end if

end for

Each sequence diagram view depicts a clipping of the instances and event set for
a given sequence and a level of abstraction. Thus, the operation to add an instance
to a view requires two events besides the instance itself. These two events have to
belong to the instance that should be added and have to be given in ascending order.

add view instance

Input: view v = (Seq, l, VI, ξ) ∈ V , instance i ∈ I, event e1 ∈ E, event e2 ∈ E

Require: � VI ∪ {i} ⊆ I l

� e1, e2 belong to instance i and e1 < e2

Body: VI ← VI ∪ {i}
ξ(i) ← (e1, e2)

The operation to remove an instance from a view has only to modify the instance
set and the event mapping.

remove view instance

Input: view v = (Seq, l, VI, ξ) ∈ V , instance i ∈ I

Body: VI ← VI ∖ {i}
ξ(i) ← �

60

3.3. Model Operations

3.3.4. Messages

Messages consist of a message send event and a message receive event. Thus, the
operation to add a new message requires a send event order and a receive event order.
After inserting the message into the intended level of abstraction, a corresponding
message possibly has to be integrated into the other levels of the same sequence.
De�nition 3.7 speci�es whether new messages have to be integrated into the next
higher and lower level. If the message has to be integrated into another level of
abstraction, the Petri net algorithm from the previous section �nds the appropriate
event orderings. Afterwards the breadth �rst search allows the classi�cation between
insertion points that are completely covered by the traces of the next more abstract
level and the insertion points allowed by the event order. The following model
operation adds a new message into the sequence. Since the integration algorithm is
long, the operation presented here is only an abstraction of the full operation. The
complete version can be found in the appendix.

add message

Input: sequence s = (E, ι, f) ∈ Seqs, level l ∈ N≤n, send order so ∈ <, receive order
ro ∈ <

Require: � so = (e, e′): e, e′ belong to the same instance and e, e′ are subsequent
according to the event order, i.e.,
e < e′ ∧ ∀ e′′ ∈ E ∶ e ≠ e′′ ≠ e′ ⇒ e′′ < e ∨ e′ < e′′

� ro = (e, e′) analogous to so

� ro is a valid message receive order according to so, i.e., the event
order < is acyclic after inserting the new message events.

Body: function traverseUpwards(sequence s ∈ Seqs, level l ∈ N≤n, message
m ∈ OM , send order so ∈ <, receive order ro ∈ <)
if � ≠ µ(getInstance(so)) ≠ µ(getInstance(so)) ≠ � then
m′ ← new message with relation to m
(P,P ′) ← determine a set of valid insertion points upwards for
(so, ro)
(eoS , eoR) ← (askUser(P),askUser(P ′))
insert message m′

traverseUpwards(s, l − 1,m′, eoS , eoR)
end if

end function

function traverseDownwards(sequence s ∈ Seqs, level l ∈ N≤n, message
m ∈ OM , send order so ∈ <, receive order ro ∈ <)
if ∃ i ∈ I ∶ µ(i) ∈ {getInstance(so),getInstance(ro)} then
m′ ← new message with relation to m

61

3. Model/View Concept

(P,P ′) ← determine a set of valid insertion points downwards for
(so, ro)
(eoS , eoR) ← (askUser(P),askUser(P ′))
insert message m′

traverseDownwards(s, l + 1,m′, eoS , eoR)
end if

end function

m← new message
insert message m
traverseUpwards(s, l, m, so, ro)
traverseDownwards(s, l, m, so, ro)

To remove an existing message from all levels of abstraction in a sequence s, the
operation has to iterate over the message re�nement relation to get the message ob-
jects in each level. Section 3.2 describes the classi�cation of insertion points, where
some of the insertion points are only valid with an additional general ordering. Like-
wise, the delete message operation has to verify that the deletion of the message does
not invalidate the already existing event order according to the master diagram. For
example if a message that should be deleted synchronizes two lifelines, the operation
has to add new general orderings to resolve the event order according to the more
abstract higher level.

Function 3.2:
The following steps are used to �nd out whether the deleted message with send event
eMS and receive event eMR has to be replaced by a general ordering after the message
was deleted. For this purpose, let <+ denote the transitive closure of <.

1. e1 = findUpwards(s, eMS ,UP)

2. e2 = findUpwards(s, eMR,DOWN)

3. add general ordering (e1, e2), if identUpwards(s, e1) <+l−1 identUpwards(s, e2)
and e1 /<+l e2

Figure 3.8 depicts an example where the deletion of a message implicates a new
general ordering. The master diagram in Figure 3.8(a) shows the Owner retrieving
the status of the Service and the Kitchen. The re�ning diagram in Figure 3.8(b)
reveals the internal behavior of the Restaurant and depicts that Service and Kitchen

send their own status. The message send status maintains the message order of the
master diagram, since without send status both send events could occur in arbitrary
order. In the following, the message send status should be deleted. The �rst step
of Function 3.2 �nds the next identi�able event e1 above the send event of send

status, namely the send event of service status. The second step �nds the next
identi�able event e2 below the receive event of send status, namely the send event
of kitchen status. Moreover, the operation identUpwards returns for both found

62

3.3. Model Operations

events the counterpart in level 0. The condition of the third step of Function 3.2 is
ful�lled, since e1 and e2 are not ordered in level 1 after the deletion of send status,
while the identi�ed counterparts in level 0 are ordered. Consequently, a new general
ordering has to be inserted into the diagram between e1 and e2, which is depicted in
Figure 3.8(c).

Owner Restaurant

service status

kitchen status

sd retrieve status (Level 0)

(a) The Owner retrieves the status
of the service and the kitchen.

Owner Service Kitchen

service status

send status

kitchen status

sd retrieve status (Level 1)

(b) The message send status synchronizes the un-
related send events in level 1.

Owner Service Kitchen

service status

kitchen status

sd retrieve status (Level 1)

(c) A general ordering undertakes the task of
send status.

Figure 3.8.: The deletion of send status implicates a new general ordering.

delete message

Input: sequence s = (E, ι, f) ∈ Seqs, level l ∈ N≤n, message m ∈ OM
Body: (Il,<l) ← f(l)

{eMS} ← {e ∈ EMS ∣ ∃ i ∈ Il ∶ ι(e) = (i,m)}
{eMR} ← {e ∈ EMR ∣ ∃ i ∈ Il ∶ ι(e) = (i,m)}
ι(eMS) ← �
ι(eMR) ← �
E ← E ∖ {eMS , eMR}
<l ← <l ∖{(e1, e2) ∣ e1 ∈ {eMS , eMR} ∧ e2 ∈ E}
<l ← <l ∖{(e1, e2) ∣ e2 ∈ {eMS , eMR} ∧ e1 ∈ E}
if l > 0 then
e1 ← findUpwards(s, eMS ,UP)

63

3. Model/View Concept

e2 ← findUpwards(s, eMR,DOWN)
(Il−1,<l−1) ← f(l − 1)
if (e1, e2) ∉ <l ∧ identUpwards(s, e1) <l−1 identUpwards(s, e2) then
<l ← <l ∪{(e1, e2)}

end if
end if
if G−1(m) ≠ � then
m′ ← G−1(m)
G(m′) ← �
delete message(m′, l − 1)

end if
if G(m) ≠ � then
m′ ← G(m)
G(m) ← �
delete message(m′, l + 1)

end if
OM ← OM ∖ {m}

3.3.5. Fragments

Fragments are shared between all levels of abstraction in the same sequence. De-
pending on the type, fragments consist of one or more operands. Since fragments
and operands are di�erent objects, the �rst two operations add and delete a new
fragment and the following two operations add and delete operands. Operands just
like messages have to be integrated into the other levels of abstraction in the same
sequence. De�nition 3.8 describes which fragments and which operands have to be
integrated.
The following operation adds a new fragment to a sequence. Since each fragment

has at least one operand, the operation calls the add operand operation. Thus, the
parameter list includes all values which are needed to add an operand.

add fragment

Input: sequence s ∈ Seqs, level l ∈ N≤n, type p ∈ { alt, assert, break, consider,
critical, ignore, loop, neg, opt, par, seq, strict }, assertion a ∈ Σ, instances
I ′ ⊆ I, event order eo ⊆<

Require: � see add operand

Body: oF ← new fragment of type t
OF ← OF ∪ {oF }
t(oF) ← p
add operand(oF , a, I ′, eo)

The operation to delete a fragment has to remove all operands that belong to the
fragment before the fragment object can be removed.

64

3.3. Model Operations

delete fragment

Input: sequence s ∈ Seqs, fragment oF ∈ OF

Require: � see delete operand

Body: Q← {o ∈ OO ∣ η(o) = oF }
for all o ∈ Q do

delete operand(s, o)
end for
t(oF) ← �
OF ← OF ∖ {oF }

The following operation adds a new operand to a fragment. A parameter with
a subset of the instances in that level of abstraction speci�es the covered lifelines.
An event ordering for each lifeline determines the insertion point for the operand.
Furthermore, operands are drawn as rectangles in the sequence diagram. Hence, the
given event orderings have to allow that. To check if the event orderings ful�ll this
restriction, the current level of abstraction has to be converted to the corresponding
Petri net representation (cf. Algorithm 3.1). Each event ordering equals a marking of
one place in the Petri net. Consequently, the condition for the check is, if the marking
that represents the event ordering is reachable in the Petri net. Since an operand does
not have to cover each lifeline, the event orderings represent no complete marking.
This problem is called submarking reachability [20].
De�nition 3.8 describes which fragments have to be in which levels of abstraction.
Thus, the operation iterates over the levels and inserts the corresponding operand
events in the appropriate levels. The Petri net execution model is used to determine
valid insertion points in other levels. Since the integration algorithm is long, the
operation presented here is only an abstraction of the complete operation that can
be found in the appendix.

add operand

Input: sequence s = (E, ι, f) ∈ Seqs, level l ∈ N≤n, fragment oF ∈ OF , assertion
a ∈ Σ, instances T ⊆ I, event orders eos ⊆ <

Require: � if t(oF) ∈ {loop,opt,break,neg} ⇒ ∣η−1(oF)∣ = 0

� for each i ∈ T there is an (e, e′) ∈ eos: e, e′ belongs to instance i and
there is no other (e, e′) ∈ eos that belongs to i

� for each (e, e′) ∈ eos: e, e′ are subsequent according to the event
order, i.e.,
e < e′ ∧ ∀ e′′ ∈ E ∶ e ≠ e′′ ≠ e′ ⇒ e′′ < e ∨ e′ < e′′

� check event orders (see above)

Body: function traverseUpwards(sequence s ∈ Seqs, level l ∈ N≤n, operand
oO ∈ OO, instances T ⊆ I, event orders eos ⊆ <)

65

3. Model/View Concept

M ← {i ∈ I ∣ ∃ i′ ∈ T ∶ µ(i′) = i}
if ∣M ∣ > 1 then
for all m ∈M do
identify events from eos upwards
execute Petri net for the identi�ed events
eo← chosen event ordering
eos′ ← eos′ ∪ {eo}
T ′ ← T ′ ∪ {m}

end for
traverseUpwards(s, l − 1, oO, T ′, eos′)

end if
end function

function traverseDownwards(sequence s ∈ Seqs, level l ∈ N≤n, operand
oO ∈ OO, instances T ⊆ I, event orders eos ⊆ <)
if {i ∈ I ∣ µ(i) ∈ T} ≠ ∅ then
for all (e1, e2) ∈ eos do
identify events e1, e2 downwards
execute Petri net for the identi�ed events
for all c ∈ {i′ ∈ I ∣ µ(i′) = getInstance((e1, e2))} do
eo← chosen event ordering for instance c
eos′ ← eos′ ∪ {eo}
T ′ ← T ′ ∪ {c}

end for
end for
traverseDownwards(s, l + 1, oO, T ′, eos′)

end if
end function

oO ← new operand
insert operand oO
traverseUpwards(s, l, oO, T, eos)
traverseDownwards(s, l, oO, T, eos)

To remove an operand, each operand begin and end event that belongs to the
operand has to be removed from the event set and the event order of all levels of
abstraction. Afterwards the operand object can be removed from the object set.

delete operand

Input: sequence s = (E, ι, f) ∈ Seqs, operand oO ∈ OO

Require: � operand is empty in all levels of abstraction

Body: for l = 1 to n do

66

3.3. Model Operations

if f(l) ≠ � then
(Il,<l) ← f(l)
E′ = {e ∈ E ∣ ∃ i ∈ Il ∶ ι(e) = (i, oO)}
for all eO ∈ E′ do
ι(eO) ← �
<l ← <l ∖{(e1, e2) ∈<l∣ e1 = eO ∨ e2 = eO}

end for
E ← E ∖E′

end if
end for
η(oO) = �
τ(oO) = �
OO ← OO ∖ {oO}

3.3.6. States

Each state belongs to an instance and is independent from the set of sequences since
states are used in possibly many sequences. Moreover, states are in a re�nement
relation (cf. Section 2.3). Overall, there are six operations to handle states: The �rst
two operations are responsible to create and delete states for an instance. Existing
states can be put into relation or removed from the state relation with the relate
operation and the unrelate operation. The last two operations add and remove
states to a sequence as a local state event.
If the user creates a new state in the model, this state has to be put in relation with
other states to retain a state consistent model (cf. De�nition 2.10). These other
states need not exist already and the operation makes sure that all necessary states
are created to comply with De�nition 2.10.

create state

Input: instance i ∈ I
Body: function insert state (instance i ∈ I, state o′S ∈ OS , state o′′S ∈ OS)

oS ← new state for instance i
σ(oS) ← i
OS ← OS ∪ {oS}
if o′S ≠ � then
S ← S ∪ {(oS , o′S)}

end if
if o′′S ≠ � then
S ← S ∪ {(o′′S , oS)}

end if
T = {o ∈ OS ∣ σ(o) = µ(i)}
if µ(i) ≠ � ∧ (∃ o ∈ T ∶ (o, oS) ∈ S) = false then
d← askUser(add new state for µ(i) or relate existing state?)

67

3. Model/View Concept

if d = add new state for instance µ(i) then
insert state(µ(i), oS ,�)

else
o← askUser(select state from T)
S ← S ∪ {(o, oS)}

end if
end if
C ← {i′ ∈ I ∣ µ(i′) = i}
for all i′ ∈ C do
T ← {o ∈ OS ∣ σ(o) = i′}
if (∃ o ∈ T ∶ (oS , o) ∈ S) = false then
d← askUser(add new state for i′ or relate existing state?)
if d = add new state for instance i′ then

insert state(i′,�, oS)
else
o← askUser(select state from T)
S ← S ∪ {(oS , o)}

end if
end if

end for
end function

insert state(i,�,�)

The operation to delete a state oS has to remove all relations to the state and
from the state. All states that are no longer consistent with the state re�nement
after removing oS have to be reintegrated to the state re�nement to maintain the
state consistency. For each removed relation the user has to choose between three
possibilities: The related state can also be deleted, an existing state takes over the
relation, or a new state for the same instance may take over the relation.

delete state

Input: state oS ∈ OS

Require: � no sequence has a state event for oS

Body: K ← {o ∈ OS ∣ (oS , o) ∈ S}
for all o ∈K do
if (∃ o′ ∈ OS ∶ (o′, o) ∈ S ∧ o′ ≠ oS) = false then
S ← S ∖ {(oS , o)}
d← askUser(create new state, delete state, relate state?)
if d = create new state then

insert state(σ(oS), o,�)
else if d = delete state then

68

3.3. Model Operations

delete state(o)
else
oN ← askUser(select state from instance σ(oS))
relate state(oN , o)

end if
else
S ← S ∖ {(oS , o)}

end if
end for
K ← {o ∈ OS ∣ (o, oS) ∈ S}
for all o ∈K do
if (∃ o′ ∈ OS ∶ (o, o′) ∈ S ∧ o′ ≠ oS) = false then
S ← S ∖ {(o, oS)}
d← askUser(create new state, delete state, relate state?)
if d = create new state then

insert state(σ(oS),�, o)
else if d = delete state then

delete state(o)
else
oN ← askUser(select state from instance σ(o))
relate state(o, oN)

end if
else
S ← S ∖ {(o, oS)}

end if
end for
OS ← OS ∖ {oS}

According to the state re�nement, each state may be related to a set of other
states. Thus, the following operation relates two existing states. The precondition
assures that only states of successive instances in the instance hierarchy can be added
to the state re�nement relation.

relate states

Input: state oS ∈ OS , state o′S ∈ OS

Require: � µ(σ(o′S)) = σ(oS)
Body: S ← S ∪ {(oS , o′S)}

State relations can be removed as long as there remains at least one relation to
maintain the state re�nement consistency.

69

3. Model/View Concept

unrelate states

Input: state oS ∈ OS , state o′S ∈ OS

Require: � ∃ o ∈ OS ∶ o ≠ o′S ∧ (oS , o) ∈ S ∧ σ(o) = σ(o′S)
� ∃ o′ ∈ OS ∶ (o′, o′S) ∈ S

Body: S ← S ∖ {(oS , o′S)}

States are used in sequences to de�ne state invariants and in particular to deter-
mine the start and end states. Only sequences that are annotated with start states
and end states can appear in the level state machine.

add state

Input: sequence s = (E, ι, f) ∈ Seqs, level l ∈ N≤n, state a ∈ OS , eventOrdering
eo ∈ <

Require: � eo is a valid event order

� l is a level in s, i.e., f(l) ≠ �
Body: eS ← new state event for a

(Il,<l) ← f(l)
ES ← ES ∪ {eS}
<l ← addToEventOrder(eS , eo,<l)
ι(eS) ← (getInstance(eo), a)

Each state of a sequence can be removed without a precondition, since there is
no condition for states. If the sequence is no longer state consistent after the state
was removed (cf. De�nition 2.8), it would not be used to generate the level state
machine.

remove state

Input: sequence s = (E, ι, f) ∈ Seqs, level l ∈ N≤n, state event eS ∈ ES
Body: (Il,<l) ← f(l)

ES ← ES ∖ {eS}
ι(eS) ← �
<l ← <l ∖{(e1, e2) ∣ e1 = eS ∨ e2 = eS}

3.3.7. References

References refer to a sequence at a given level of abstraction. The following operation
takes two sequences, a level of abstraction, and a set of event orderings to insert a
reference for the second sequence into the �rst sequence. The new reference object
has to cover each instance that is used in the referred sequence.

70

3.3. Model Operations

add reference

Input: sequence s = (Es, ιs, fs) ∈ Seqs, level l ∈ N≤n, event orderings eos ⊆ <,
reference r = (Er, ιr, fr) ∈ Seqs

Require: � check event orders

� eos contains all lifelines for the reference, i.e.,
(Ir,<r) = fr(l), ∀ i ∈ Ir ∃(e1, e2) ∈ eos ∶ getInstance((e1, e2)) = i

Body: (Is,<s) ← fs(l)
oR ← new reference for sequence r, level l
OR ← OR ∪ {oR}
for all eo ∈ eos do
eR ← reference event for oR
Es ← Es ∪ {eR}
ι(eR) ← (getInstance(eo), oR)
<s ← addToEventOrder(eR, eo,<s)

end for

The following operation deletes a reference from a sequence's level of abstraction.
The operation delete sequence can be used to delete the sequence the reference refers
to.

delete reference

Input: sequence s = (E, ι, f) ∈ Seqs, level l ∈ N≤n, reference oR ∈ OR
Body: E′ ← {e ∈ E ∣ ι(e) = (i, o) ∧ o = oR}

(Il,<l) ← f(l)
for all e ∈ E′ do
ι(e) ← �
<l ← <l ∖{(e1, e2) ∣ e1 = e ∨ e2 = e}

end for
E = E ∖E′

OR = OR ∖ {oR}

3.3.8. Actions

Each local action consists of a start event and an end event on the same lifeline. Thus,
both event orderings have to de�ne insertion points on the same lifeline. Moreover,
these insertion points have to reside in the same operand scope, i.e., the insertion
points belong to the same innermost operand or both belong to no operand.

add local action

Input: sequence s = (E, ι, f) ∈ Seqs, level l ∈ N≤n, actionBegin ab = (ab1, ab2) ⊆ <,
actionEnd ae = (ae1, ae2) ⊆ <

71

3. Model/View Concept

Require: � getInstance(ab) = getInstance(ae)
� operandSet(ab1) ∪ operandSet(ab2) =

operandSet(ae1) ∪ operandSet(ae2)
Body: oA ← new local action

OA ← OA ∪ {oA}
eAB ← local action begin event for oA
eAE ← local action end event for oA
E ← E ∪ {eAB, eAE}
ι(eAB) ← (getInstance(ab), oA)
ι(eAE) ← (getInstance(ae), oA)
(Il,<l) ← f(l)
<l ← addToEventOrder(eAB, ab,<l)
<l ← addToEventOrder(eAE , ae,<l)

To delete a local action, the following operation removes the start and end event
from the event set as well as from the event order and eventually the local action
object.

delete local action

Input: sequence s = (E, ι, f) ∈ Seqs, level l ∈ N≤n, local action a ∈ OA
Body: E′ ← {e ∈ E ∣ ι(e) = (i, o) ∧ o = a}

(Il,<l) ← f(l)
for all eA ∈ E′ do
ι(eA) ← �
<l ← <l ∖{(e1, e2) ∣ e1 = eA ∨ e2 = eA}

end for
E ← E ∖E′

OA ← OA ∖ {a}

3.3.9. Continuations

A continuation has to cover all lifelines in the enclosing operand and has to be either
the very �rst element in the operand or the very last. Thus, the operation to create
a new continuation takes an operand and the information if it should be placed at
the top or the bottom of the operand.

add continuation

Input: sequence s = (E, ι, f) ∈ Seqs, level l ∈ N≤n, operand o ∈ OO, mark m ∈
{START,END}

Body: oCO ← new continuation
OCO ← OCO ∪ {oCO}
(Il,<l) ← f(l)

72

3.3. Model Operations

if m = START then
E′ ← {e ∈ EOE ∣ ∃ i ∈ Il ∶ ι(e) = (i, o)}

else
E′ ← {e ∈ EOB ∣ ∃ i ∈ Il ∶ ι(e) = (i, o)}

end if
for all e ∈ E′ do
eCO ← continuation event for oCO
if m = START then
eo← (prev(e), e)

else
eo← (e,next(e))

end if
<l← addToEventOrder(eCO, eo,<l)
ι(eCO) ← (getInstance(eo), oCO)

end for

To delete a continuation, the operation removes the continuation object and the
corresponding events on all lifelines.

delete continuation

Input: sequence s = (E, ι, f) ∈ Seqs, level l ∈ N≤n, continuation oCO ∈ OCO
Body: E′ ← {e ∈ E ∣ ∃ i ∈ Il ∶ ι(e) = (i, oco)}

(Il,<l) ← f(l)
for all eCO ∈ E′ do
ι(eCO) ← �
<l ← <l ∖{(e1, e2) ∣ e1 = eCO ∨ e2 = eCO}

end for
E ← E ∖E′

OCO ← OCO ∖ {oCO}

3.3.10. General Orderings

General orderings can be used to put events into order that are not ordered yet. The
message add and remove operations automatically use this mechanism to order new
message events if needed. The following operation adds a new general ordering into
the event order of a sequence's level of abstraction.

add general ordering

Input: sequence s = (E, ι, f) ∈ Seqs, level l ∈ N≤n, event e1 ∈ E, event e2 ∈ E

Body: (Il,<l) ← f(l)
<l ← <l ∪ {(e1, e2)}

73

3. Model/View Concept

The operation to delete a general ordering has to assure that no regular event
orderings are deleted. Thus, the �rst precondition requires that both events belong
to di�erent instances to maintain the total order of the lifelines and further that
both events belong to di�erent objects. The second condition maintains the order
between message send and receive events of the same message object and prevents
the ordering of operand events of the same fragment.

delete general ordering

Input: sequence s = (E, ι, f) ∈ Seqs, level l ∈ N≤n, event e1 ∈ E, event e2 ∈ E

Require: � both events belong to di�erent instances and di�erent objects, i.e.,
ι(e1) = (i1, o1), ι(e2) = (i2, o2): i1 ≠ i2, o1 ≠ o2

� there is direct path between e1 and e2 without (e1, e2) ∈ <l
Body: (Il,<l) ← f(l)

<l ← <l ∖{(e1, e2)}

74

4. Implementation

This chapter describes the prototype implementation of the model as described in
Chapter 3. The remainder of this chapter is organized into the following sections:

Architecture The architecture section describes the structure of the implementa-
tion, the relations between the components, and the basic principles that were
used.

Realization The realization section presents the concrete technologies that were
used and describes the implementation itself.

Evaluation The evaluation section presents a complexity analysis for the Petri net
algorithms that were used to determine start and end states, to generate the
level state machine, and to calculate the possible insertion points for new
events.

4.1. Architecture

4.1.1. Data Storage

The information in the data model has to be saved persistently. A well-suited possi-
bility to save structured information is a relational database. Database management
systems (DBMS) allow e�cient information queries and the usage of proven mecha-
nisms such as database transactions, views, and triggers. Thus, the model transac-
tions as mentioned in Section 3.3 can be mapped to database transactions. DBMS
range from in-memory or �le based database systems to multi-user client/server
based database systems. Di�erent DBMS are suitable for di�erent use cases: File
based database systems are fast, require little or even no administration and the
database �les can be version-controlled through a classical �le based version control
system. Client/Server based database systems are appropriate if many developers
work on the same model, since the centralized database assures the ACID properties
of transactions for all connections to the database. Most of the complex software sys-
tems nowadays are developed in an object-oriented language such as Java, C++, or
C#. An object-relational mapping (O/R mapping) handles the connection between
objects in the programming language and the tuples in the relational database. Fur-
thermore, it abstracts from the concrete database queries and, thus, allows switching
between di�erent DBMS according to the desired use case. Consequently, no rela-
tional schema is given in this section, since it depends on the DBMS and is task of
the O/R mapping system.

75

4. Implementation

4.1.2. Model/View System

The prototype saves the model/view system in a relational database with help of
an O/R mapping. Each element type in the model/view system is a class with a
mapping description, which represents the names and tables of the class attributes.
Figure 4.1 depicts the class structure and the connections between the classes of the
data model element types (cf. De�nition 3.1) and the sequence diagram views (cf.
De�nition 3.4). The mapping function ι of the data model is included in the events,
since each event references the corresponding instance and object. Likewise, refer-
ences between the corresponding objects realize the functions η that maps operands
to fragments and σ that maps states to instances. The fragment type given by t
and the operand constraint given by τ are attributes of the fragment and operand,
respectively. Furthermore, the instance hierarchy with the master relation for inter-
level instance re�nement and the parent relation for intra-level instance re�nement
are references between the instances, namely masterInstance and parentInstance. A
separate level object realizes one level of abstraction in a sequence. View objects
represent sequence diagram views, which consist of view instances that reference the
lifelines in the view, the start event, and the end event.

4.1.3. Prototype

The implementation consists of the model/view system to store the information and
the model that contains the model operations to manipulate the model/view sys-
tem. Figure 4.2 depicts the class structure of the prototype implementation. Several
model operations use a callback to a function askUser to involve the developer if the
model operation has to resolve ambiguities or if information is missing. An inter-
face UserCallback represents the askUser function that is realized by the graphical
user interface, namely UserInterface. The second interface ModelChangeListener al-
lows any object to be informed if there was a change in the model. This listener
mechanism is used by the user interface and the views to update their content. On
the right side of the diagram is the model/view system, which is in detail shown by
Figure 4.1, and the O/R mapping framework with connection to the database and
the model/view system. The Model class has, besides the model operations from Sec-
tion 3.3, methods for the model listeners, the callback, and�most important�for
the model transactions. Before a series of model operations begins, a new trans-
action has to be initiated with the method startTransaction. This method starts a
transaction in the O/R mapping framework and, thus, in the database. For that
reason, all model operations can directly work on the objects and relations from
the model/view system and the transaction mechanism encapsulates the change set.
After all model operations have been executed, the transaction can be committed
with commitTransaction, which makes the changes permanent or a rollback can be
performed with rollbackTransaction, which undoes the changes.

76

4.1. Architecture

Figure 4.1.: Class diagram for the model/view system (cf. De�nition 3.5).

77

4. Implementation

Figure 4.2.: Class diagram for the implementation.

4.1.4. Petri Net

Several concepts in this thesis are based on Petri nets. For example, the algorithm
that determines start state and end state combinations in a sequence diagram cre-
ates a Petri net with the states and their relations according to the sequence diagram
structure. Afterwards the algorithm calculates the reachability graph of the created
Petri net. Thus, the implementation has to support Petri nets and graphs. Fig-
ure 4.3 presents the class structure of the Petri net package, which also contains
a graph representation. A Petri net consists of places and transitions, which the
diagram re�ects. Function 3.1 describes how to identify the set of valid insertion
points in the re�nement concept. In this function, a Petri net will be created and
executed. During the execution the set of places is saved, because each place rep-
resents an event ordering in the underlying sequence diagram. Moreover, the last
step of the mentioned function �lters out places that represent a message object,
i.e., the place between the send event of a message and the corresponding receive
event. For that reason, the place class has two specializations, namely EventOrder-

ingPlace, which includes an event ordering, and MessagePlace, which can easily be
�ltered. The reachability graph is a directed graph and, thus, the class representa-
tion is straightforward. Chapter 2 and Chapter 3 present the Petri net algorithms.

78

4.2. Realization

Figure 4.3.: Class diagram for the Petri net package.

4.2. Realization

4.2.1. Technologies

The prototype is written in Java. At Philips PMS Java is the favored language for
writing tools and tool extensions. Furthermore, with Eclipse [3] there is a comfort-
able development environment to write and test Java applications.
As mentioned in the previous section, the data storage in the prototype is realized
with an O/R mapping framework. Hibernate [10] is such an O/R mapping and persis-
tence framework that is available in native Java. It provides a special object-oriented
query language to access database objects similar to SQL for relational databases.
The prototype uses the small and fast HSQLDB [11]; a �le based database system
also written in Java. For visualization and layout of the graphs, i.e., the instance
hierarchy, the level state machine, and the state re�nement, the prototype uses the
Graphviz toolkit [7], which o�ers automatic graph layout and a Java interface to
depict the graphs.
All algorithms and model operations are implemented straightforward to the de�ni-
tions in Chapter 2 and Chapter 3.

4.2.2. Functionality

The implementation consists of the classes described in the previous section and of
a graphical user interface to work with the model and the views. It is a standalone
application and, thus, independent of any CASE-tool. The user interface allows to
start with an empty model and to add the instance hierarchy, state re�nement, the
sequences with their abstraction levels, and to work with the objects and events in
the sequence's levels of abstraction. Moreover, any amount of views can be de�ned

79

4. Implementation

for the sequences. Each view registers itself to the model and updates the view on
model changes. The prototype implements all but derived views from Figure 3.2. A
sequence diagram component, which is developed for this thesis, depicts the sequence
diagram views. The sequence diagram layout will be the same as for the sequence
diagrams in this thesis, since both are generated by the same component. The
sequence diagram component generates an automatic layout for sequence diagrams
and depicts the diagram according to the generated layout. An automatic layout
reduces the diagram to the semantically important information given by the partial
event order. Furthermore, it allows generating dynamic views that combine elements
without compatible layout information de�ned previously by the developer. The
layout algorithm tries to depict each event topmost on the corresponding lifeline and
to draw all possible messages horizontal. The sequence diagram elements and their
order can be de�ned within a XML �le, which was done for all sequence diagrams
of this thesis. Moreover, the component can be inserted into each Java application
as part of the graphical user interface. The component can add di�erent marker
types on the lifelines that are clickable by the user to choose insertion points for new
messages, actions, fragments and states. Figure 3.3 shows a sequence diagram with
markers that present valid insertion points. Furthermore, each sequence diagram
element can be colored to graphically highlight it. Figure 4.4 depicts a screenshot

Figure 4.4.: Screenshot of the graphical user interface.

80

4.2. Realization

Figure 4.5.: Screenshot of a sequence diagram view.

Figure 4.6.: Screenshot of the instance hierarchy view.

of the graphical user interface with three frames showing the same scenario on two
levels of abstraction and the instance hierarchy. On the left side in the screenshot is
a tree containing the views for each level, i.e., sequence diagram views and the level
state machine, and the views that belong to no concrete level such as the instance
hierarchy and the state re�nement view are below the last level. Figure 4.5 presents a
sequence diagram view with the sequence diagram in the upper half and a panel with
further information in the lower half. This panel contains a documentation �eld, the
sequence name, the level of abstraction and a status �eld that depicts whether the
current state annotations in the diagram are valid according to De�nition 2.8. If
these annotations are valid, the corresponding sequence will be used for generation
of the level state machine. Figure 4.6 depicts a screenshot of the instance hierarchy
view with two levels of abstraction. Analogous to Figure 2.6, the arrows point
upwards to the master instances in case of inter-level re�nement, e.g., from the
Waiter to the Restaurant, and at the same level to the parent instance in case of
intra-level re�nement, e.g., from the Cook to the Kitchen. Figure 4.7 presents a level
state machine for �ve sequences each with one start state combination and one end

81

4. Implementation

state combination, such as the diagram in Figure 4.5. The black bullet marks the
initial state combination ⟨Waiter.closed, Kitchen.closed⟩. The last view is the state

Figure 4.7.: Screenshot of the level state machine view.

re�nement view, which is depicted by Figure 4.8. It presents all states for each
instance grouped by a rectangle and the relations between the states according to
De�nition 2.9.

Figure 4.8.: Screenshot of the state re�nement view.

4.3. Evaluation

4.3.1. Complexity

Petri Nets The Petri net de�nition (cf. De�nition 2.5) presents a subclass of the
standard Place/Transition nets, since each place can hold at most one token.
This subclass is called 1-safe nets, which contains Petri nets that are well-
suited to represent logical conditions. Esparza [6] presents a good overview
about decidability and complexity of Petri net questions. Most questions about
the behavior of standard Place/Transitions nets are EXPSPACE-hard [6] and,
thus, in particular in EXPTIME, which makes the algorithms unattractive for
implementations. The limitation to 1-safe nets reduces the complexity class
for the same questions to PSPACE-complete [6].

82

4.3. Evaluation

Level State Machine During the creation of the level state machine (cf. Sec-
tion 2.2), all start state and end state combinations of all participating se-
quences have to be determined. The used Petri net representation is 1-safe,
acyclic, and con�ict-free, i.e., each place has at most one outgoing transition.
Due to these properties, the complexity is reduced once more to polynomial
time. After all start and end state combinations were determined, the reacha-
bility graph of another Petri net results in the level state machine. This Petri
net is just 1-safe and, thus, the calculation belongs to the complexity class
PSPACE.

Petri Net Execution To determine the set of valid insertion points, e.g., for a new
message that should be integrated, a Petri net execution model results in the
insertion points. This execution model consists of three algorithms described
in Section 3.2. The backtracking set is calculated in O(∣P ∣ + ∣T ∣), where P is
the set of places and T is the set of transitions in the Petri net, since each path
has to be visited once in the worst case. The execution of the backtracking set
has to execute each transition of the set if it is enabled in the current Petri
net marking. Let pmax denote the maximal number of incoming and outgoing

places for a transition. The backtracking set is executed in O(n⋅(n+1)
2 ⋅ pmax)

where n is the cardinality of the backtracking set. The third algorithm executes
the Petri net from a given marking either until a certain transition is the only
enabled transition or until the end places are reached. Thus, in the worst case
all transitions are �red once and the algorithm calculates the set of insertion
points in O(∣P ∣ + ∣T ∣2 ⋅ pmax).

Petri net BFS The classi�cation of insertion points uses two breadth �rst searches
based on a Petri net (cf. Algorithm 3.5). A breadth �rst search has to visit in
the worst case each place and transition once, i.e., O(∣P ∣+∣T ∣). After both BFS
created a set of places, the cut of these two sets is the result of Algorithm 3.5.
Thus, the whole complexity is O(2 ∗ (∣P ∣ + ∣T ∣) + ∣P ∣). If the �rst ordering
constraint is not de�ned for the algorithm, the breadth �rst search has to be
done for each re�ning instance, i.e., with m as the number of re�ning instance,
the runtime complexity is O(m∗ (∣P ∣ + ∣T ∣)). If the second ordering constraint
is not de�ned, the complexity remains the same.

83

4. Implementation

84

5. Related Work

This chapter presents selected related work and points out relations to this thesis.
The concepts of this thesis touch several topics:

� Re�nement and consistency of sequence diagrams

� Model/View concept for sequence diagrams

� Constructive modeling

� Interactive resolution of ambiguities while integrating changes

Comparisons and related work for re�nement and consistency of sequence diagrams
can be found in the related work sections of Ohlho� [21] and Lischke [17]. In general,
most of the concepts that are state-of-the-art try to �nd inconsistencies between
existing views instead of preventing inconsistent operations.

UML and View Integration

Egyed presented several publications [5] including his dissertation [4] on the topic of
integrating UML views. In that work, he described problems that may arise between
di�erent UML views and presented a framework that exposes inconsistencies between
these views. Therefore, Egyed identi�ed a list of 51 inconsistency types that are
classi�ed in the abstract, the generic, and the behavioral dimension. Like in this
thesis, he distinguishes the development process into di�erent levels of abstraction,
i.e., a re�nement relation.
The integration process as described in Egyed's dissertation is separated into three
disciplines:

� Mapping: identi�es elements that describe overlapping information in di�erent
views;

� Transformation: extracts and manipulates model elements to support di�eren-
tiation;

� Di�erentiation: analyzes the model and identi�es inconsistencies.

The integration framework, however, checks views retroactively and, thus, reveals
existing inconsistencies rather then avoid them constructively. Even if the list of
inconsistencies covers some consistency terms for sequence diagrams, at state of the
dissertation the framework just supports class and object diagrams.

85

5. Related Work

Re�nement and Consistency

The sequence diagram re�nement concept used in this thesis is based on the diploma
thesis of Ohlho� [21]. He introduced a set of syntactical re�nement rules based on
the principle that the same things should look the same, which means that the same
behavior in a re�ning diagram has to be realized by the same syntactical elements.
The advantage of a syntactical approach is the high performance of validating these
rules, which allows constructive modeling. In this thesis, the rules were adapted and
realized even more rigorously. The original rules allow di�erent operand ordering for
fragments in case of par fragments or alt fragments, since the set of traces will remain
the same. The de�nitions here require the same operand order in each re�nement
step. Another mentionable di�erence is the handling of coregions; Ohlho� included
the handling of coregions into the partial order that is used to check the message
order consistency. This thesis does not uses a special mechanism for coregions,
since coregions are according to the UML 2.0 speci�cation a shorthand for a par

fragment where each event belongs to an own operand. Thus, coregions are handled
in the same way as each other fragment. Moreover, Ohlho� introduced intra-level
re�nement diagrams (cf. Section 2.1) to support iterative modeling of diagrams in
the same level of abstraction. This concept is maintained for instances, because it
contains a restriction of the valid messages. Intra-level re�ned instances can only be
accessed by the parent instance, which may interact as a proxy for other instances.
The corresponding intra-level re�nement concepts for messages and fragments are
covered by the model/view concept, since each sequence of the model contains all
instances, messages, and fragments that may be used in a level of abstraction. Thus,
intra-level re�nement diagrams can be achieved by de�ning a view that contains the
appropriate instances.

Level State Machine

Section 2.2 presented the level state machine as concept to check the overall con-
sistency between sequence diagrams of the same level of abstraction. That section
is founded on the diploma thesis of Lischke [17]. She presented several consistency
terms for single sequence diagrams, for sequence diagrams of the same level of ab-
straction and for re�nement relations between sequence diagrams of di�erent abstrac-
tion levels. Due to the supported CASE tool, Lischke used UML 1.4 and furthermore
neglected coregions. For single sequence diagrams, she introduced the usage of state
invariants to express the start and end states of a sequence diagram and presented a
consistency de�nition for the state annotation. Sequence diagrams in UML 1.4 have
only one start and end state combination. This thesis picked up the idea of anno-
tating sequence diagrams and extended it to the possibilities of UML 2.0. The new
combined fragments lead to possibly many state combinations for a single sequence
diagram as described in Section 2.2. The level state machine as used in this thesis
is the same as de�ned by Lischke, but the generation of the level state machine is
di�erent. Here, the level state machine is the reachability graph of a Petri net, which

86

is presented in Section 2.2.
Moreover, Lischke presented a re�nement concept for sequence diagrams based on
traces of master and re�nement diagrams. That approach is applicable for the made
restrictions, which make the amount of traces for one sequence diagram controllable.
Instances in successive abstraction levels can remain the same or can be substituted
by sub-instances that model the internal behavior in more detail. States are re�ned
according to the instances and, thus, there is a one-to-many relation from higher
to lower levels of abstraction. This thesis uses a many-to-many relation (cf. Sec-
tion 2.3) that allows more freedom to model the instances. Even if it is a weak
relation, Chapter 6 outlines a consistency notion as further work.

87

5. Related Work

88

6. Conclusion and Further Work

Describing intended and unintended behavior in case of sequence diagrams is a �eld-
tested communication medium to address di�erent stakeholders. It is applicable
throughout all disciplines of a software development process such as the Rational
Uni�ed Process. Furthermore, consistent re�nement from the requirements to the
implementation discipline helps to handle the complexity problem of today's soft-
ware. Due to the large number of diagrams for every re�nement step, the overall
consistency is hard to maintain. Thus, the overall consistency is a new part of the
development complexity.
This thesis de�nes a constructive model/view concept, with operations that main-
tain the e�cient structural re�nement relationships introduced by Ohlho� [21] (cf.
Section 2.1). The model is well-suited to handle redundant information and, thus,
to manage a large number of diagrams. The re�nement concept was adapted to the
constructive approach, which allows being more strict, i.e., operands have to appear
in the same order in all diagrams. In addition, the model/view concept supports the
completeness of each re�nement level introduced by Lischke [17], which is described
and extended in Section 2.2. The level state machine concept [17] was extended to
support the variety of start and end vectors arising through combined fragments that
were introduced in UML 2.0.
When a new element is added to an existing sequence diagram, the re�nement con-
cept describes which changes involve other sequence diagrams that refer to the same
scenario on another re�nement level. These changes often cannot be resolved au-
tomatically, since the possibly high number of valid integrations. The presentation
of only valid integrations to the developer allows comfortable ambiguity resolving in
other re�nement levels. Chapter 3 presented how a Petri net representation of the
sequence diagram identi�es valid integrations, by using a special execution model.
Furthermore, Chapter 3 describes how these possibilities can be classi�ed according
to the quality of the integration, i.e., if traces of the master diagram are obtained.
Beside sequence diagrams, other views can be used to modify and interact with the
model. For example, the developer can structure the re�nement of instances with an
instance hierarchy view. A prototype implementation of the model/view concept is
presented in Chapter 4. The database foundation of the data model allows system
development separately for each developer with a local database or in a team with a
central database server.
Even if the objectives that were mentioned in the introduction (cf. Section 1.3) are
ful�lled, several new interesting concepts arise from the constructive model/view
principle. Additionally, the tasks to turn the prototype into a well usable develop-
ment environment remain. The following section brie�y describes further work.

89

6. Conclusion and Further Work

6.1. Concept

This section outlines some conceptual extensions and new concepts that bene�t from
the model/view concept.

6.1.1. Hierarchical Scenario Re�nement

A new consistency notion can be introduced called Hierarchical Scenario Re�nement,
which bene�ts from the state re�nement concept (cf. Section 2.3).
The idea behind this consistency notion is that every scenario at a given level should
be executable at every lower level in the instance hierarchy. Thus, the set of scenarios
is monotonically increasing from top to bottom. According to the state re�nement,
every scenario runnable from state s at a given level should be executable at every
lower level from any re�ned states of s. That is every scenario should be executable
from every state combination re�ecting the original start state of the scenario.
Furthermore, each scenario at a given level ending in state t has to end at any lower
level in at least one re�ned state of t. In contrast to the �rst condition a scenario
does not need to end in all re�ned states of t, because a subsequent scenario has to
be executable in all re�ned states and in particular in t.
The following example revisits the instance hierarchy from Figure 2.16 and the state
relation de�ned for Figure 2.16 in the same section. Assume that for the Restaurant
a scenario named close restaurant was de�ned at level 0, which starts from the state
open and ends in the state closed. The corresponding scenario at level 1 has to start
in the state combinations:

� ⟨Kitchen.open, Waiter.present⟩

� ⟨Kitchen.open, Waiter.pause⟩

� ⟨Kitchen.cleaning, Waiter.present⟩

� ⟨Kitchen.cleaning, Waiter.pause⟩

The end state combination for the close restaurant scenario at abstraction level 1 is
⟨Kitchen.closed, Waiter.absent⟩.

6.1.2. Using Change Logs for Merges / Di�erential Comparison

A common practice in software development is that every developer has an own copy
of the model or source code from the system under development to work independent
from other developers. The source of this copy often is a version control system such
as Subversion, Microsoft Visual SourceSafe, or Rational ClearCase. After the work
is done, the developer has to integrate the changes into the version control system.
This task is easy, if the software is separated into independent small parts and
the developer, who integrates the changes, is the only one who made changes in the
corresponding part, because then the part can be overwritten with the new part from

90

6.1. Concept

Figure 6.1.: Di�erent responsibilities in di�erent levels of abstraction.

the developer. In case that the a�ected parts were also changed by other developers,
the integration becomes nontrivial. These merges of di�erent model versions are
di�cult, because the changes made by di�erent developers may be incompatible,
e.g., one developer added the new functionality to sequence diagram a and another
developer moved the existing functionality from sequence diagram a to sequence
diagram b and deleted sequence diagram a.
Each model operation results in a Change Log or Delta List, which is a list of changes
made since a given version, i.e., since the last model integration. A Change Log
in context of this model / view principle is the operation called by the user, the
parameters of the operation and the integration decisions the user made, rather then
the actual model changes after a successful operation. These change sets are useful
for comparing two models on higher level than comparing visual di�erences or textual
representations. Furthermore, a model integrator that should combine two models a
and b can start from the point where both models were equal and has to �nd a good
sequence of applying both change logs. Since each change log entry contains the
former integration decisions, the integrator can reuse these decisions, if the chosen
possibility is still a valid integration.

6.1.3. Responsibilities for di�erent levels of abstraction

In large software projects, di�erent roles are responsible for di�erent levels of abstrac-
tion. For example, a requirement team manages the requirement levels, a software
architect creates the design level, and the software developers are responsible for the
remaining implementation levels. If a role changes a diagram in a level that he/she
is responsible for and the consequence is that a diagram has to be changed that
belongs to another responsibility level, the question is how to handle this. Thus,
the concept introduced in this thesis can be extended to support responsibilities for
di�erent re�nement levels or even responsibilities for di�erent components or sub
trees of the instance hierarchy.
Since model operations are transactions, an operation which has impact on another,
higher responsibility scopes can be saved and given over to the corresponding role,

91

6. Conclusion and Further Work

who can decide to allow the model operation, i.e., to commit the transaction or to
disallow it, i.e., to rollback the transaction. Furthermore, changes on a higher level,
which have an impact on a lower levels in a di�erent responsibility scope, the appro-
priate role can be informed about the changes, e.g., changes can be highlighted in
the corresponding diagram.
Every model operation has to check whether the executed changes belong to the
same responsibility scope and a transaction can only be committed if all changes are
in the same scope or if the appropriate roles have allowed the change.

6.1.4. Hierarchical States

Chapter 2 describes the annotation of lifelines in a sequence diagram with state in-
variants to express the possible start and end states of the corresponding sequence. If
a component might start or end in a set of states, an alt fragment in the correspond-
ing sequence diagram can express that. Each operand in the alt fragment represents
one desired start/end state. Imagine a use case where the scenario represents a status
request that can occur in a large number of state combinations. The corresponding
sequence diagram will be cluttered and hard to maintain, since the large number of
operands and each new state has to be worked in as another operand. A way to
overcome this problem is the introduction of hierarchical states. This hierarchy is
independent from the state re�nement concept presented in Chapter 2. It introduces
new pseudo states for a component. Each pseudo states represents a set of states
already de�ned for that component, which are hierarchically below the pseudo state.
For example, consider a pseudo state on that contains the states ready, warm up,
working, and stand by. Figure 6.2 depicts two diagrams, both with the beginning of
a sequence where the Cook wants to get the status of the Oven. Figure 6.2(a) shows
the sequence with the enumeration of all states. In comparison, Figure 6.2(b) shows
the sequence with a hierarchical pseudo state, which is a strong simpli�cation of the
diagram.
In addition to hierarchical states, other pseudo states such as previous state or un-
changed can highly simplify the diagrams. Furthermore, those pseudo states also
introduce the concept of history from state charts into sequence diagrams. History
states in state charts allow resuming of a complex state with the last active con�g-
uration of that state.

6.2. Implementation

The following section presents several ideas and extensions towards an implementa-
tion of the concepts presented in this thesis.

6.2.1. Integration into a commercial CASE Tool

In order to transfer the concepts presented in this thesis to the day-by-day develop-
ment process, there has to be support for a rich CASE tool with the corresponding

92

6.2. Implementation

Cook Oven

ready

warm up

working

stand by

alt

[else]

get status

sd oven status

(a) An alt fragment expresses
multiple start states.

Cook Oven

on

get status

sd oven status

(b) Syntactical simpli�-
cation through a hierar-
chical pseudo state.

Figure 6.2.: alt fragment for multiple start states in comparison to a hierarchical
pseudo state on.

tool-chain, e.g., version control system, project and requirement tracking. The corre-
sponding CASE tool has to be highly customizable; since the consistency de�nitions
presented here necessitate that several operations can be refused or modi�ed to en-
force the overall consistency. Eclipse [3] based CASE tools, such as the Rational
Systems Developer (RSD) [12], often have a rich Application Programming Interface
(API) to extend the tools to customer needs. The Eclipse workbench consists of
views, perspectives, editors and wizards, which can be provided by di�erent plug-
ins, thus, special views such as the level state machine can be provided by an own
plug-in.

6.2.2. Semantic Plug-Ins

The integration of new information into other levels of abstraction is often an in-
teractive process, if there is more than one valid integration. The introduction of
Chapter 3 presented the integration of a new message into the next more detailed
level of abstraction and presented the di�erent insertion points for the receive event
of the new message. These insertion points were of di�erent integration quality. Two
of the insertion points in the example may lead to inconsistent traces of master and
re�nement diagram, which was resolved with a general ordering that relates the re-
ceive event with the previous event according to the master diagram. In a software
development process, several integration possibilities might be excluded through cod-
ing conventions or the actual application and their constraints. These restrictions of

93

6. Conclusion and Further Work

valid options can be achieved with semantic plug-ins. The prototype from Chapter 4
used a user callback interface, namely UserCallback, for each decision that the user
has to take. A semantic plug-in in that architecture is an implementation of the
interface UserCallback, which acts as proxy between the graphical user interface and
the model. It gets the set of valid choices from the model, �lters this input according
to the coding conventions, and presents the �ltered inputs to original implementation
of the interface.

94

A. Bibliography

[1] Artisan Software. UML Modeling Tools for Real-time Embedded Systems Mod-
eling and Systems Engineering, 2007. http://www.artisansw.com/.

[2] Werner Damm and David Harel. LSCs: Breathing Life into Message Sequence
Charts. Formal Methods in System Design, 19(1):45�80, 2001.

[3] Eclipse. An Open and Extensible IDE, 2007. http://www.eclipse.org/.

[4] Alexander Egyed. Heterogeneous View Integration and its Automation. Phd
dissertation, University of Southern California, Faculty of the Graduate School,
August 2000.

[5] Alexander Egyed. Integrating Architectural Views in UML. Technical Report
USC-CSE-99-514, Center for Software Engineering, University of Southern Cal-
ifornia, 1999. URL http://sunset.usc.edu/publications/TECHRPTS/1999/

usccse99-514/usccse99-514.pdf.

[6] Javier Esparza. Decidability and complexity of petri net problems - an intro-
duction. In Lectures on Petri Nets I: Basic Models, Advances in Petri Nets,
pages 374�428, London, UK, 1998. Springer-Verlag. ISBN 3-540-65306-6.

[7] Emden R. Gansner and Stephen C. North. An open graph visualization system
and its applications to software engineering. Software � Practice and Expe-
rience, 30(11):1203�1234, 2000. ISSN 00380644. URL http://www.research.

att.com/sw/tools/graphviz/GN99.pdf.

[8] David Harel. Statecharts: A visual formalism for complex systems. Science of
Computer Programming, 8(3):231�274, June 1987.

[9] David Harel and Rami Marelly. Come, Let's Play: Scenario-Based Programming
Using LSC's and the Play-Engine. Springer-Verlag New York, Inc., 2003.

[10] Hibernate. Relational Persistence for Java and .NET, 2007. http://www.

hibernate.org/.

[11] HSQLDB. Open-source Java Database, 2007. http://www.hsqldb.org/.

[12] IBM. Rational Systems Developer (RSD), 2006. http://www.ibm.com/

developerworks/rational/products/rsd/.

[13] IBM. Rational Uni�ed Process, 2007. http://www-306.ibm.com/software/

awdtools/rup/.

95

http://www.artisansw.com/
http://www.eclipse.org/
http://sunset.usc.edu/publications/TECHRPTS/1999/usccse99-514/usccse99-514.pdf
http://sunset.usc.edu/publications/TECHRPTS/1999/usccse99-514/usccse99-514.pdf
http://www.research.att.com/sw/tools/graphviz/GN99.pdf
http://www.research.att.com/sw/tools/graphviz/GN99.pdf
http://www.hibernate.org/
http://www.hibernate.org/
http://www.hsqldb.org/
http://www.ibm.com/developerworks/rational/products/rsd/
http://www.ibm.com/developerworks/rational/products/rsd/
http://www-306.ibm.com/software/awdtools/rup/
http://www-306.ibm.com/software/awdtools/rup/

A. Bibliography

[14] ITU-TS. ITU-TS Recommendation Z.120: Message Sequence Chart (MSC99).
Geneva, 1999.

[15] Gleen E. Krasner and Stephen T. Pope. A cookbook for using the model-view-
controller user interface paradigm in smalltalk-80. Journal of Object-Oriented
Programming (JOOP), 1(3):26�49, 1988.

[16] Dean Le�ngwell. Calculating Your Return on Investment from More E�ective
Requirements Management. Whitepaper, Rational Software Corporation, 1997.

[17] Andrea Lischke. Consistency Checking of Sequence Diagrams. Diploma thesis,
Brandenburgische Technische Universität Cottbus, September 2005.

[18] Björn Lüdemann. Synthesis of human-readable Statecharts from Sequence Dia-
grams. Diploma thesis, Christian-Albrechts-Universität zu Kiel, Department of
Computer Science, August 2005.

[19] Ernst W. Mayr. An algorithm for the general petri net reachability problem.
In STOC '81: Proceedings of the thirteenth annual ACM symposium on Theory
of computing, pages 238�246, New York, NY, USA, 1981. ACM. doi: http:
//doi.acm.org/10.1145/800076.802477.

[20] Tadao Murata. Petri nets: Properties, analysis and applications. Proceedings of
the IEEE, 77(4):541�580, 1989.

[21] André Ohlho�. Consistent Re�nement of Sequence Diagrams in the UML
2.0. Diploma thesis, Christian-Albrechts-Universität zu Kiel, Department of
Computer Science, November 2006. http://rtsys.informatik.uni-kiel.de/
~rbiblio/downloads/theses/aoh-dt.pdf.

[22] Olaf Kluge. Petri Nets as a Semantic Model for Message Sequence Chart Spec-
i�cations. In Proceedings of the European Joint Conferences on Theory and
Practice of Software (ETAPS), pages 138�147, 2002.

[23] Philips Medical Systems (PMS). PMS Homepage, 2007. http://www.medical.
philips.com/de/.

[24] Ragnhild Kobro Runde and Øystein Haugen and Ketil Stølen. How to transform
UML neg into a useful construct. In Proceedings of the Norwegian Informatics
Conference (Norsk Informatikkonferanse), 2005.

[25] Bran Selic, Garth Gullekson, and Paul T. Ward. Real-Time Object-Oriented
Modeling. John Wiley & Sons, 1994. ISBN 0-471-59917-4.

[26] The Object Management Group. UML Homepage, 2007. http://www.uml.

org/.

96

http://rtsys.informatik.uni-kiel.de/~rbiblio/downloads/theses/aoh-dt.pdf
http://rtsys.informatik.uni-kiel.de/~rbiblio/downloads/theses/aoh-dt.pdf
http://www.medical.philips.com/de/
http://www.medical.philips.com/de/
http://www.uml.org/
http://www.uml.org/

B. Pseudocode

This appendix contains the pseudocode for the identi�cation of events in di�erent
levels of abstraction, for several model operations, and for several small commonly
used auxiliary operations. These operations are in the appendix, because they are not
important to understand the concepts from the corresponding sections. Moreover,
the ideas are explained in the thesis or an abstract version of the pseudocode can be
found in the corresponding section.

B.1. Identify events in the next/previous sequence level

Section 3.2 describes the identi�cation of events between di�erent levels of abstrac-
tion without giving a concrete algorithm. This section provides the two described
algorithms for identifying events according to the next more abstract or the next more
detailed level of abstraction. These are two di�erent algorithms, since the amount
of identi�ably events depends on the identi�cation direction (cf. Section 3.2).

B.1.1. identify events downwards

Let s = (E, ι, f) be a sequence and e ∈ E an event in s. The following operation
identi�es the given event e according to the next more detailed level of abstraction.
The direction parameter de�nes whether the next event, incipient by e, should be
searched upwards or downwards according to the lifeline order.

identifyDownwards (sequence s = (E, ι, f) ∈ Seqs, event e ∈ E, direction d ∈
{UP,DOWN})
e′ ← findDownwards(s, e, d)
e′′ ← identDownwards(s, e′)
return e′′

The operation is separated into two operations: �ndDownwards to �nd the next
event in the same level of abstraction as e that can be identi�ed with an event of
the next more detailed level and identDownwards that uses the re�nement concepts
to return the corresponding event in the adjacent level of abstraction. This split-up
makes the whole operation easier to understand and allows other model operations
to access the interim result, i.e., the found event that has a corresponding event in
the adjacent level of abstraction.

97

B. Pseudocode

�ndDownwards (sequence s = (E, ι, f) ∈ Seqs, event e ∈ E, direction d ∈ { UP,
DOWN})
e′ ← e
while e′ ≠ � do
if d = DOWN then
e′ ← next(e′)

else
e′ ← prev(e′)

end if
if e′ ∈ EMS ∪EMR then
return e′

end if
if e′ ∈ EOB ∪EOE then
return e′

end if
end while
return �

identDownwards (sequence s = (E, ι, f) ∈ Seqs, event e ∈ E)
(i, o) ← ι(e′)
e′ ← �
if e ∈ EMS then
m← G(o)
{e′} ← {es ∈ EMS ∣ ι(es) = (i,m)}

end if
if e ∈ EMR then
m← G(o)
{e′} ← {es ∈ EMR ∣ ι(es) = (i,m)}

end if
if e′ ∈ EOB then
I ′ ← {i′ ∈ I ∣ µ(i′) = i}
E′ ← {eo ∈ EOB ∣ ι(eo) = (i′, o) ∧ i′ ∈ I ′}
e′ ← any element from E′

end if
if e′ ∈ EOE then
I ′ ← {i′ ∈ I ∣ µ(i′) = i}
E′ ← {eo ∈ EOE ∣ ι(eo) = (i′, o) ∧ i′ ∈ I ′}
e′ ← any element from E′

end if
return e′

98

B.1. Identify events in the next/previous sequence level

B.1.2. identify events upwards

Let s = (E, ι, f) be a sequence and e ∈ E an event in s. Analogous to identifyDown-
wards, the following operation identi�es the given event e in the next more abstract
level. Again, the direction parameter de�nes whether the next event, incipient by e,
should be searched upwards or downwards according to the lifeline order.

identifyUpwards (sequence s = (E, ι, f) ∈ Seqs, Event e ∈ E, direction d ∈ { UP,
DOWN})
e′ ← findUpwards(s, e, d)
e′′ ← identUpwards(s, e′)
return e′′

The operation is separated into two operations: �ndUpwards to �nd the appropriate
event and identUpwards that uses the re�nement concepts to return the correspond-
ing event in the adjacent level of abstraction. This split-up makes the whole operation
easier to understand and allows other model operations to access the interim result,
i.e., the found event that has a corresponding event in the adjacent level of abstrac-
tion.
In comparison to �ndDownwards, the operation �ndUpwards is more complex, since
not all events of the current level of abstraction have a corresponding event in the
next more abstract level (cf. Section 3.2).

�ndUpwards (sequence s = (E, ι, f) ∈ Seqs, event e ∈ E, direction d ∈ { UP,
DOWN})

(i, o) ← ι(e)
{k} ← {k ∈ N≤n ∣ i ∈ Ik}
(Ik−1,<k−1) ← f(k − 1)
I ′ ← {i′ ∈ I ∣ µ(i′) = µ(i)}
e′ ← e
while e′ ≠ � do
if d = DOWN then
e′ ← next(e′)

else
e′ ← prev(e′)

end if
(i, o) ← ι(e′)
if e′ ∈ EMS ∪EMR then
if e′ ∈ EMS then

{eM} ← {eM ∈ EMR ∣ ∃ i′ ∈ I ∶ ι(eM) = (i′, o)}
else

{eM} ← {eM ∈ EMS ∣ ∃ i′ ∈ I ∶ ι(eM) = (i′, o)}
end if
(i′, o′) ← ι(eM)

99

B. Pseudocode

// If the corresponding send/receive event for e′ belong to same instance,
// further search is required. Otherwise the event can be identi�ed.
if i′ ∈ I ′ then
e1 ← findUpwards(s, e′, d)
e2 ← findUpwards(s, eM , d)
if e1 = � then
return e2

else if e2 = � then
return e1

else if identUpwards(s, e1) <k−1 identUpwards(s, e2) then
return e2

end if
return e1

else
return e′

end if
end if
if e′ ∈ EOB ∪EOE then
// Determine the set of instances that are covered by o
I ′′ ← {i′ ∈ Ik ∣ ∃ e′′ ∈ E ∶ ι(e′′) = (i′, o)}
// If o covers at least one instance that has another parent,
// the event e′ can be identi�ed
if I ′′ ∩ I ′ ≠ ∅ then
return e′

end if
end if

end while
return �

identUpwards (sequence s = (E, ι, f) ∈ Seqs, event e ∈ E)
(i, o) ← ι(e′)
e′ ← �
if e ∈ EMS then
m← G−1(o)
{e′} ← {es ∈ EMS ∣ ι(es) = (µ(i),m)}

end if
if e ∈ EMR then
m← G−1(o)
{e′} ← {es ∈ EMR ∣ ι(es) = (µ(i),m)}

end if
if e′ ∈ EOB then
I ′ ← {i′ ∈ I ∣ µ(i′) = i}
{e′} ← {eo ∈ EOB ∣ ι(eo) = (µ(i), o)}

100

B.2. Model Operations

end if
if e′ ∈ EOE then
I ′ ← {i′ ∈ I ∣ µ(i′) = i}
{e′} ← {eo ∈ EOE ∣ ι(eo) = (µ(i), o)}

end if
return e′

B.2. Model Operations

This section contains complete versions of the model operations add message and
add operand. Section 3.3 presented only abstract versions of these operations and
explained the ideas that are implemented by these operations.

Temporary Views Each insert operation possibly has to make changes to many
levels of abstraction and therefore has to check for valid insertion possibilities in
those levels. This is achieved by a Petri net execution that represents a subset of the
events, which appear in that level. The source of the Petri net transformation is a
set of instances and for each instance a start and an end event. This source can be an
existing sequence diagram view or a newly generated temporary view. Besides being
the source of the Petri net transformation, the temporary view will be presented to
the developer if the amount of valid insertion points requires a choice between at
least two di�erent possibilities.
There are di�erent possibilities to generate a temporary view. Firstly, the whole
sequence in the current level of abstraction can serve as temporary view, since all
related model information is in that view. A disadvantage might be the complexity of
the view, because the developer might have modeled the containing behavior through
several small views and has to orient in the new view. Secondly, the current view
might serve as temporary view, since it is known to the developer and belongs to
the current operation. A disadvantage might be that the view is too restricted to
cover the necessary diagram elements and if the operation has to be integrated into
another level of abstraction, a new view has to be created that correspond to the
actual view. A third possibility might be a new constructed view that covers exactly
the elements, which are necessary to determine the insertion points for the current
operation. Since that view is completely new, it is hard to preserve the mental map
of the sequence. Finally, none of the listed possibilities is free of disadvantages and,
thus, it is up to the implementation to choose the appropriate view or allow the
developer to switch between several dynamic views.

The following operation adds a new message to the model and integrates the change
into all necessary levels of abstraction. The function traverseUpwards recursively
integrates the new message into all more abstract levels and traverseDownwards
integrates the new message into all more detailed levels, if necessary. An abstract
version of this operation can be found in Section 3.3.

101

B. Pseudocode

add message

Input: sequence s ∈ Seqs, level l ∈ N≤n, type t ∈ { async, sync, answer, create,
destroy }, send order so ∈ <, receive order ro ∈ <

Require: � so = (e, e′): e, e′ belong to the same instance and e, e′ are subsequent
according to the event order, i.e.,
e < e′ ∧ ∀ e′′ ∈ E ∶ e ≠ e′′ ≠ e′ ⇒ e′′ < e ∨ e′ < e′′

� ro = (e, e′) analogous to so
� ro is a valid message receive order according to so, i.e., the event
order < is acyclic after inserting the new message events.

Body: function addMessageEvents(sequence s = (E, ι, f) ∈ Seqs, level l ∈ N≤n,
message m ∈ OM , send order so ∈ <, receive order ro ∈ <)
eMS ← message send event for m
eMR ← message receive event for m
ι(eMS) ← (getInstance(so),m)
ι(eMR) ← (getInstance(ro),m)
EMS ← EMS ∪ {eMS}
EMR ← EMR ∪ {eMR}
(Il,<l) ← f(l)
<l ← addToEventOrder(eMS , so,<l)
<l ← addToEventOrder(eMR, ro,<l)
<l ← <l ∪ {(eMS , eMR)}

end function

function determineEventOrderUp(sequence s = (E, ι, f) ∈ Seqs, tem-
porary view d, event order eo ∈ <, instance i ∈ I)

(e1, e2) ← eo
e′1 ← identifyUpwards(s, e1,UP)
e′2 ← identifyUpwards(s, e2,DOWN)
p← execute Petri net for d and e′1, e

′
2

p′ ← {(e, e′) ∈ p ∣ getInstance((e, e′)) = i}
return getEventOrder(p′)

end function

function traverseUpwards(sequence s = (E, ι, f) ∈ Seqs, level l ∈ N≤n,
message m ∈ OM , send order so ∈ <, receive order ro ∈ <)
iS ← getInstance(so)
iR ← getInstance(ro)
if � ≠ µ(iS) ≠ µ(iR) ≠ � then
m′ ← new message with the same type as m
OM ← OM ∪ {m′}
G← G ∪ {(m′,m)}
d← generate temporary view for {iS , iR}

102

B.2. Model Operations

eoS ← determineEventOrderUp(d, so, µ(iS))
eoR ← determineEventOrderUp(d, ro, µ(iR))
addMessageEvents(s, l,m′, eoS , eoR)
traverseUpwards(s, l − 1,m′, eoS , eoR)

end if
end function

function determineEventOrderDown(sequence s = (E, ι, f) ∈ Seqs,
temporary view d, event e1 ∈ E, event e2 ∈ E, instances R ⊆ I)
e′1 ← identifyDownwards(s, e1,UP)
e′2 ← identifyDownwards(s, e2,DOWN)
p1 ← execute Petri net for d and e′1, e

′
2

p2 ← execute breadth �rst search on the Petri net for d and e′1, e
′
2

pV ← p1 ∩ p2 // valid insertion points
pG ← p1 ∖ p2 // insertion points with general ordering
p← pV ∪ pG
p′ ← {(e, e′) ∈ p ∣ getInstance((e, e′)) ∈ R}
return getEventOrder(p')

end function

function traverseDownwards(sequence s = (E, ι, f) ∈ Seqs, level l ∈
N≤n, message m ∈ OM , send order so = (eS1, eS2) ∈ <, receive order
ro = (eR1, eR2) ∈ <)
iS ← getInstance(so)
iR ← getInstance(ro)
RS ← {i ∈ I ∣ µ(i) = iS}
RR ← {i ∈ I ∣ µ(i) = iR}
if RS ≠ ∅ ∨RR ≠ ∅ then
m′ ← new message with the same type as m
OM ← OM ∪ {m′}
G← G ∪ {(m,m′)}
d← generate temporary view for RS ∪RR
eoS ← determineEventOrderDown(d, eS1, eS2,RS)
eoR ← determineEventOrderDown(d, eR1, eR2,RR)
addMessageEvents(s, l,m′, eoS , eoR)
traverseDownwards(s, l + 1,m′, eoS , eoR)

end if
end function

m← new message of type t
OM ← OM ∪ {m}
addMessageEvents(s, l,m, so, ro)
traverseUpwards(s, l − 1,m, so, ro)
traverseDownwards(s, l + 1,m, so, ro)

103

B. Pseudocode

The next operation adds a new operand to a given fragment and integrates the
new operand into all necessary levels of abstraction. Analogous to the operation
add message, the integration of the new operand into the more abstract levels of
abstraction is done by the function traverseUpwards and for the more detailed levels
of abstraction by the function traverseDownwards.

add operand

Input: sequence s = (E, ι, f) ∈ Seqs, level l ∈ N≤n, fragment oF ∈ OF , assertion
a ∈ Σ, instances T ⊆ I, event order eos ⊆ <

Require: � if t(oF) ∈ {loop,opt,break,neg} ⇒ ∣η−1(oF)∣ = 0

� for each (e, e′) ∈ eos: e, e′ belongs to one instance i ∈ T and there is
no other (e, e′) ∈ eos that belongs to i

� for each (e, e′) ∈ eos: e, e′ are subsequent according to the event
order, i.e.,
e < e′ ∧ ∀ e′′ ∈ E ∶ e ≠ e′′ ≠ e′ ⇒ e′′ < e ∨ e′ < e′′

� check event orders (described in the Chapter 3)

Body: function addOperandEvents(sequence s = (E, ι, f) ∈ Seqs, level l ∈
N≤n, operand oO ∈ OO, event order eo ∈ <)
eOB ← operand begin event for oO
eOE ← operand end event for oO
ι(eOB) ← (getInstance(eo), oO)
ι(eOE) ← (getInstance(eo), oO)
EOB ← EOB ∪ {eOB}
EOE ← EOE ∪ {eOE}
(Il,<l) ← f(l)
<l ← addToEventOrder(eOB, eo,<l)
<l ← addToEventOrder(eOE , eo,<l)

end function

function identifyUpwards* (sequence s = (E, ι, f) ∈ Seqs, level l ∈ N≤n,
events E′ ⊆ E, direction d ∈ {UP,DOWN})

(Il−1,<l−1) ← f(l − 1)
eR ← �
for all e ∈ E′ do
e′ ← identifyUpwards(e, d)
if eR = � ∨ e′ <l−1 eR then
eR ← e′

end if
end for
return eR

end function

104

B.2. Model Operations

function traverseUpwards(sequence s = (E, ι, f) ∈ Seqs, level l ∈ N≤n,
operand oO ∈ OO, instances T ⊆ I, event orders eos ⊆ <)
M ← {i ∈ I ∣ ∃ i′ ∈ T ∶ µ(i′) = i}
if ∣M ∣ > 1 then
d← generate temporary view for instances M
for all m ∈M do
E1 ← {e ∈ E ∣ ∃ i ∈ I, o ∈ O, e′ ∈ E ∶ ι(e) = (i, o) ∧ µ(i) =
m ∧ (e, e′) ∈ eos}
e1 ← identifyUpwards*(s, l,E1,UP)
E2 ← {e ∈ E ∣ ∃ i ∈ I, o ∈ O, e′ ∈ E ∶ ι(e) = (i, o) ∧ µ(i) =
m ∧ (e′, e) ∈ eos}
e2 ← identifyUpwards*(s, l,E2,DOWN)
P ← execute Petri net for diagram d and e1, e2

P ′ ← restrict possibilities to instance m
eo← getEventOrder(P ′)
addOperandEvents(s, l, oO, eo′)
eos′ ← eos′ ∪ {eo}, T ′ ← T ′ ∪ {m}

end for
traverseUpwards(s, l, oO, T ′, eos′)

end if
end function

function traverseDownwards(sequence s = (E, ι, f) ∈ Seqs, level l ∈
N≤n, operand oO ∈ OO, instances T ⊆ I, event orders eos ⊆ <)
if {i ∈ I ∣ µ(i) ∈ T} ≠ ∅ then
d← generate temporary view for instances
for all (e1, e2) ∈ eos do

(i, o) ← ι(e1)
C ← {i′ ∈ I ∣ µ(i′) = i}
e← identifyDownward(s, e1,UP)
e′ ← identifyDownward(s, e2,DOWN)
P ← execute Petri net for diagram d and e, e′

for all c ∈ C do
P ′ ← restrict possibilities to instance c
eo← getEventOrder(P ′)
addOperandEvents(s, l, oO, eo)
eos′ ← eos′ ∪ {eo}
T ′ ← T ′ ∪ {c}

end for
end for
traverseDownwards(s, l, oO, T ′, eos′)

end if
end function

105

B. Pseudocode

oO ← new operand
OO ← OO ∪ {oO}
τ(op) ← a
η(op) ← oF
for all (e1, e2) ∈ eos do

addOperandEvents(s, l, oO, e1, e2)
end for
traverseUpwards(s, l − 1, oO, T, eos)
traverseDownwards(s, l + 1, oO, T, eos)

B.3. Auxiliary Operations

The following auxiliary operations are used by the model operations (cf. Section 3.3)
for recurrent tasks such as adding an event to an event order or determining the
instance that corresponds to an event order tuple if it belongs to the total order of
one lifeline.

function getInstance(eo = (e, e′) ∈ <)
if e ≠ � then

(i, o) ← ι(e)
else if e′ ≠ � then

(i, o) ← ι(e′)
else
i← �

end if
return i

end function

getInstance returns the instance of an event order, which is part of the total order
of a lifeline. If the event order represents the point before the �rst event or below
the last element, respectively, one of both events is unde�ned. Thus, the function
uses both events to get the instance. If both events are unde�ned, the result is also
unde�ned.

function addToEventOrder(e ∈ E, (e1, e2) ∈ E ×E, < ⊆ E ×E)
< ← < ∪{(e, x) ∣ ∃ x ∈ E, i ∈ I, o, o′ ∈ O ∶ e1 < x ∧ ι(x) = (i, o) ∧ ι(e1) = (i, o′)}
< ← < ∪{(x, e) ∣ ∃ x ∈ E, i ∈ I, o, o′ ∈ O ∶ x < e2 ∧ ι(x) = (i, o) ∧ ι(e2) = (i, o′)}
return <

end function

The function addToEventOrder adds an event e to the event order < between (e1, e2).
Furthermore it maintains the transitive closure of the total order for the correspond-
ing lifeline.

106

B.3. Auxiliary Operations

function getEventOrder(possibilities P ⊆ <)
if ∣P ∣ = 1 then

(e, e′) ∈ P
else

(e, e′) ← askUser(P)
end if
return (e, e′)

end function

The function getEventOrder takes a set of event ordering possibilities and returns
the contained element, if there is only one element or asks the user to choose an
event ordering otherwise.

107

	Titlepage
	Assertion
	Introduction
	Environment
	Sequence Diagrams
	Objectives
	Overview

	Consistency / Refinement
	Inter- / Intra-level Refinement
	Level State Machine
	Example
	Petri Nets
	Sequence Diagram Start / End States
	Petri Net Representation for the Level State Machine

	State Refinement
	Message Refinement

	Model/View Concept
	Introduction
	Model
	Identify possible event orderings
	Classify possible event orderings
	Refinement

	Model Operations
	Sequence
	Views
	Instances
	Messages
	Fragments
	States
	References
	Actions
	Continuations
	General Orderings

	Implementation
	Architecture
	Data Storage
	Model/View System
	Prototype
	Petri Net

	Realization
	Technologies
	Functionality

	Evaluation
	Complexity

	Related Work
	Conclusion and Further Work
	Concept
	Hierarchical Scenario Refinement
	Using Change Logs for Merges / Differential Comparison
	Responsibilities for different levels of abstraction
	Hierarchical States

	Implementation
	Integration into a commercial CASE Tool
	Semantic Plug-Ins

	Bibliography
	Pseudocode
	Identify events in the next/previous sequence level
	identify events downwards
	identify events upwards

	Model Operations
	Auxiliary Operations

