A Domain-Specific Language
for Railway Control

Philip Eumann

Bachelor’s Thesis
September 2017

Real-Time and Embedded Systems Group
Prof. Dr. Reinhard von Hanxleden
Department of Computer Science
Kiel University

Advised by
Dipl. -Inf. Steven Smyth
M. Sc. Nis Borge Wechselberg
Prof. Dr. Reinhard von Hanxleden






Selbststindigkeitserkldrung

Hiermit erklére ich, dass ich die vorliegende Arbeit selbststindig verfasst und keine anderen als die
angegebenen Quellen und Hilfsmittel verwendet habe.

Kiel,

iii






Abstract

Computer science is a field crucial to all major companies. Computer scientists are needed everywhere,
and the universities are always looking for new students in the field. Kiel University holds promotional
events such as Girl’s Day or taster courses (“Schnupperstudium”) to incentivize young people to study
computer science. The goal of these events is to present a tempting, but still realistic view of the way
computer scientists work.

This thesis proposes a textual language called RailSL that can be used by the participants of such
events to control a model railway installation. The language is designed to be easily usable by pupils
with little to no programming experience. A synchronous language called SCCharts is used as host
language to ensure determinacy of the programs written in RailSL. The programs are written in an
Eclipse-based environment with a live visualization indicating the effects of a statement while it is

typed.

Acknowledgements

I would like to thank Prof. Dr. Reinhard von Hanxleden for offering me the opportunity to work on
this intriguing topic, as well as my advisors Steven Smyth and Nis Wechselberg for always lending
me an ear and for all the helpful advice. Thanks as well to the railway project team for tips, tricks,
explanations and debugging help and, last but not least, to Johanna for being there at all times.






1 Introduction

Contents

1.1 Synchronous Languages . . . . . . ... ... ... .. ... e
1.1.1  Berry’s Synchronous Model of Computation . . . . . ... .............
1.1.2  The Sequentially Constructive Model of Computation . ... ... .. ... ...
113 SCCharts . . . . ... o
1.2 The KIELER Project . . . . . . . . . . .. . . . . e
1.3 The Railway Installation . . . .. .. ... ... ... ... ... ... .. .. .. ... ...
131 History . . . . . ... e

1.3.2  Technology
1.4 Problem Statement

141 Target Audience . .. ... ... ... ... ...
142 Currently Used Tool . . . .. .. ... ... .. .. .. .. .. .. .. .. ...
143 Languageldea . . ... ... ... .. . .. .. ...
1.5 ThesisOutline . . . . . . . . . . . e e

2 Related Work

2.1 Domain-Specific Languages . . . . ... ... ... ..
22 Synchronous Languages . . . ... ... ... . ... ... ... ... ...
2.3 Model Railways used in Teaching . . . ... ........ ... ... ... ........
2.3.1 Digital Process Control Laboratory . . ... ... .. ... .............
232 Master'sProject. . . . . . ...
2.3.3 Teaching Programming to Pre-School Children Using a Model Railway . . . . .
234 Conclusions for thisthesis. . . . . . . . . ... ... . ... ... ... ... ...

3 Used Technologies

3.1 TheEclipse Platform . . . .. ........ ... ... ... . ... .
3.1.1 Plugin Architecture. . . . . . ... ... .
3.1.2 The Eclipse Modelling Framework . . . . .. ... ... .. .............
32 Xtextand Xtend . . . . . . . . e

4 Language Design

41 BasicConcept . .. .. .. .. .
42 TheDesign Process . . . . . ... ... ... ... ...
421 Initial Version . . . . . . . . . e e e e
422 SyntaxChanges . . . ... ... ... .. ... ... ... ... ...
4.2.3 The Introduction of Conditional Statements . . . . ... ... ... ........
424 TheParallel Statement . . . . . . . . . . . . . ... ...

4.3 The Final Language

O 0 NI NI NI O kWO N R, R -

11
11
12
12
12
13

13

15
15
15
15
16

17
17
17
17
19
19
20
21

vii



Contents

5 Language Implementation

5.1 KiCo Compilation
5.2 Logical and Physical Time

5.2.1

52.2 Logical Time in RailSL
5.3 Concurrency

Physical Time in Synchronous Languages . . .. .. .. ... ...........

531 Combine Functions . . . . . . . . . . . . . . e e
5.3.2 Introducing Sequential Blocks Using the Parallel Statement . . . . ... ... ..
5.4 RailSL statements and their translations to SCCharts . . . ... ... ... ........
5.4.1 TrackStatement . . . . . . . . . . ... e
5.4.2 PointStatement . . . . . . ... e
543 LightStatement . . ... ... ... ... ... ... ... . ...
544 ContactWaitStatement . . . . . . . . . .. ...
5.45 TimeWaitStatement . . . . . . . . . . ... e
546 Blocks . . . . .. e e e e
5.4.7 ParallelStatement . . . . . . . . ...
5.4.8 ConditionalStatement . . . . . . . . . . . .. ...
5.5 Wrapper Code and Compilation . . .. ... ....... ... .. ... ... .......
6 Live Visualization
6.1 GeneralIdea . . . . . . . . . . e e e
6.2 Implementation . . . ... ... ... ... ... ...
7 Conclusion
71 Summary . ... e
72 Future Work . . . . . . . e e
721 Improved workflow . .. ... ... . ... ... ...
722 Simulation in KIELER . . . . . . . . . . . . . e
A User Documentation
A1l Introduction . . . . . . . . . e e
A2 Thelnstallation . . . . . . . . . . . . . e
A3 Program Structure . .. .. .. .. ... ...
A3.1 Blocks . . . . .. e e e e
A3.2 Parallel Blocks . . . . . . . . . e
A4 Controlling the Components . . ... .. ... ... .. ... ... .. .. .. .....
A.4.1 Statements and their Effects . . . . . . . . . .. .. .. .. ... ... .
A5 Delays . .. ...
A6 Compilation . . ... .. .
A7 Comments and Formatting . . .. ... ... ... ... ... ... ... ... ... ...
A8 Troubleshooting . . . . . ... ... ... .. .. ...
B Sample Solutions to typical Programming Challenges
B.1 Challenge 1 (Easy) . .. .. ... ... ..
B.2 Challenge2 (Advanced) . . ... ... ... .. . ...
B3 Challenge3 (Hard) . .. ... ... ... ... ... ... ... ... . ... ... ..
Bibliography

viii



1.2
1.3
1.4
1.5
1.6

5.1
52
53
54
55
5.6
5.7

5.8

6.1

Al

List of Figures

An overview of SCCharts features used in this project. . . . ... ... ... .. ... ...
Images of the old railway installation. Pictures taken from [Wec15]. . .. ... ... ..
The current railway installation. Picture taken from [The0O6]. . . . . . .. ... ... ...
The (simplified) trackscheme of the current installation. Schematic taken from [The06].
The tool currently used for modelling railway controllers. . . ... ... .........

TrackStatements and the corresponding SCCharts generated from them. . . . . . . . ..
PointStatements and the corresponding SCCharts generated from them. . . . . ... ..
LightStatements and the corresponding SCCharts generated from them. . . . . . .. ..
ContactWaitStatements and the corresponding SCCharts generated from them. . . . . .
SCChart generated from Wait for 5 seconds. . . .. ... ... ..............
An SCChart generated from a looped block with three statements. . . . ... ... ...
An SCChart generated from a ParallelStatement with two blocks, each containing a
TimeWaitStatement . . . . . . . . . . ...
An SCChart generated from a ConditionalStatement with two blocks, each containing a
ContactWaitStatement . . . . . . . . . . . . .. L e

Example of a program and its visualization in KIELER . . . ... ... ... .......

The (simplified) trackscheme of the installation. Schematic taken from [HFP+06].

o O U1 U1 W

26
27
27
28
28
29

30

30

33

ix






4.1 RailSL Statements in the initial version

List of Tables

Xi






Chapter 1

Introduction

This introduction will incrementally present the key components required to understand what this
thesis is about. The first section will explain synchronous languages in general, beginning with classical
approaches and concluding with SCCharts, the language that I used to realize this project. Section 1.2
will briefly introduce the KIELER project, the foundation on which the project has been built. The
third section will introduce the model railway installation that I used before Section 1.4 states the
goals and objectives of this thesis. Finally, Section 1.5 will present the outline of the further thesis.

1.1 Synchronous Languages

Synchronous languages offer determinacy and predictability under all circumstances as well as
compile-time validation [BCE+03]. If a compiler for a synchronous language accepts a program, it is
guaranteed to run without deadlocks and to behave exactly the same way each time it is given the
same sequence of inputs. This makes these languages ideal for embedded and safety-critical real-time
applications such as infrastructure systems (e. g., railway interlocking systems, traffic light controllers)
or emergency systems (e. g., airbags in cars, reactor emergency shutdown in nuclear power plants).

However, the concepts of synchronous languages and their models of computation may seem
unfamiliar and confusing to people who never worked with them before as they differ significantly
from widely used languages such as Java or C.

1.1.1 Berry’s Synchronous Model of Computation

The central aspect of the synchronous model of computation (MoC), as proposed in the 1990’s [BCE+03]
and used for the language Esterel [BerOOa], is the concept of perfect synchrony. Perfect synchrony means
that physical time does not affect the execution of a program and that instead, time is divided into
logical ticks. An execution of a program is a sequence of ticks, also called macrosteps, which in turn are
composed of a finite number of microsteps. All microsteps within the same macrostep are considered
instantaneous and take no logical time when executed. While each macrostep is thus guaranteed to
terminate, the execution itself may well contain an infinite amount of macrosteps.

Another important part of Berry’s synchronous MoC is the concept of signals. A signal may be
either absent or present and must have a consistent state throughout each tick. A signal can be emitted
through an emit statement, making it present for the entire duration of the current tick. If no such
statement is executed in a tick, the signal remains absent. Programs with non-consistent signal states
like Listing 1.1 are rejected by the compiler.



1. Introduction

Present X else emit X; ‘ ‘ Present X then emit X else emit X;
Listing (1.1) A contradictory Esterel program. The Listing (1.2) A logically correct, but non-
signal changes state after it was already read in the constructive Esterel program.

same tick, making its state non-consistent.

Modern compilers go even further, considering a program valid if and only if it is constructive.
Constructiveness, as Berry proposes, means that a signal is present in a tick iff an emit statement must
be executed in that tick. It is absent iff no emit statement can be executed in the given tick [Ber02].

This forbids some programs, like Listing 1.2, which would be acceptable according to the signal
coherence rule explained above as there is only one valid state for X: Having X present would emit it
again, which is allowed as reemitting it does not change the state of the signal, making this a valid
signal state. Having X absent would mean that an emit statement is executed in a tick where X has
already been read as absent, which is not allowed. However, this reasoning is counter-intuitive as
it moves against the direction of control flow; only the knowledge that a certain signal state will be
invalid later in the execution determines the required state for X. The constructiveness analysis would,
in the case of Listing 1.2, be unable to determine a signal state for X as at the time of evaluation of the
present statement, there is no information about the state of X. This way, either of the two alternatives
may, but neither of them must be executed. Therefore, the constructiveness analysis would reject such
a program.

In short, constructiveness is a restriction of logical correctness in order to ensure determinacy.
However, Berry’s synchronous MoC also enforces consistent signal states throughout a tick. While this
concept is grounded in the fact that the MoC was originally developed for use with hardware signals
[Ber0OOa], it is not necessary to ensure determinacy; with a carefully chosen set of rules, sequential
updates of signals can still be determinately scheduled.

1.1.2 The Sequentially Constructive Model of Computation

The Sequentially Constructive Model of Computation (SC MoC), presented by von Hanxleden et al. in 2014
[HMA+14], introduces the Initialize-Update-Read (IUR) protocol. This protocol determines rules for
scheduling concurrent accesses to the same variables. It states that all initializations (e.g., x = 0) have
to be executed first, then all updates (e.g., x = x + 1), and finally all reads. So rather than forbidding
all concurrent variable writes, as Berry’s MoC does, a program can still be accepted if this set of rules
permits statically scheduling all concurrent accesses to variables in a deterministic way.

It is also worth noting that these rules only apply to concurrent accesses. One thread by itself may
well read the same variable and write it later in the same tick. In this MoC, the scheduler does not,
as in classical synchronous languages, start from scratch, but uses the scheduling information already
expressed by the programmer. Lines of code written for a thread are executed in that particular order
(unless there are conditional jumps or preemptions of course), so if a programmer writes if x ==
false then x = true, the scheduler will have no trouble reading x, then updating its value if it was
false before. This would also permit a program like Listing 1.1 as the scheduling order is already
defined by the way the program was written.

The SC MoC conservatively extends Berry Constructiveness, meaning that any Berry-constructive
program will also be sequentially constructive [HMA+14]. However, it allows a programming style
more intuitive to those who are mainly used to imperative programming and removes restrictions that
are not required to enforce determinacy.



1.1. Synchronous Languages

1.1.3 SCCharts

SCCharts is a language proposed by von Hanxleden et al. in 2014 [HDM+13]. It is an extension of
SyncCharts, which was proposed by Charles André in 1995 [And95]. SyncCharts is a state machine-
based language with hierarchy, concurrency and modularity, among other features also found in
SCCharts. SyncCharts can be translated to Esterel and vice versa and is thus a synchronous language.
SCCharts applies the SC MoC to the state-machine based approach. This section will only give a
short overview on language features used in this project, shown in Figure 1.2.
For a full list of features available in SCCharts, see [HDM+14].

Features

input bool inputVariable
output bool outputVariable
int array[42]

bool triggerCondition

[-] Region1

[-] Region2

-
complexState

[-]
o

Figure 1.2. An overview of SCCharts features used in this project.

Input / Output variables
Variables can be declared as inputs or outputs (or both). Input variables are used to feed information
about the state of the environment to the SCChart while outputs are set in order to interact with
the environment.

Simple and Complex States
Simple states are only beginning and end points for transitions while complex states have inner
behaviour. If a complex state is entered, all of its inner regions are executed in parallel.

Immediate Transition
If the trigger condition is true within a tick, the transition can be taken and the execution is
immediately continued in the next state.

Delayed Transition
This type of transition will not be active in the same tick where its source is reached. Once a tick
boundary has been crossed though, the transition becomes active and behaves like an immediate
transition until taken.



1. Introduction

Parallel Regions
Each parallel region with the same parent scope will be run in its own thread, starting in the
region’s initial state, which by definition is mandatory and has to be unique.

Normal Termination Transition
This transition is taken when all regions in a complex state have reached one of their final states.
Normal termination transitions may be immediate or delayed, even though for this project, only
immediate normal terminations are used.

Count Delay
Transitions with a count delay of n will not be triggered as soon as the trigger expression is true,
but as soon as it has been true in 1 separate, not necessarily consecutive ticks.

1.2 The KIELER Project

The Kiel Integrated Environment for Layout Eclipse RichClient (KIELER)! is a research project developed
by the Real-Time and Embedded Systems (RTSys) group? at Kiel University>. It is based on the
Eclipse platform described in Section 3.1 and offers tools for automatic layout of diagrams* as well
as a powerful compiler based on step-by-step transformation chains from complex source models to
executable files [MSH14]. Developers can register their own transformations for custom languages and
integrate them with KIELER.

KIELER also comes with an implementation of SCCharts. Rather than modelling the charts with a
graphical editor, a textual language called SCCharts Textual Syntax (SCT) is used to specify them, from
which in turn an actual SCChart can be derived and displayed in real-time using a transient diagram
view [SSH13] and the automatic layout capabilities of KIELER. A series of model-to-model (M2M)
transformations allows the KIELER compiler (KiCo) to transform SCCharts, via several intermediate
formats, to either code in a common programming language (C or Java) or VHDL code for hardware
synthesis.

1.3 The Railway Installation

The Institute of Computer Science of Kiel University owns a railway installation consisting of about 127
meters of tracks on an area of 18 square meters’. As it is a simple and lucid example of a safety-critical
real-time system, the installation is used for teaching and demonstration purposes, for both students
and people foreign to the subject of computer science.

1.3.1 History

The first version of the installation was built by the working group for Computer Organization and
ready for use in 1997. It was inspired by the Kicking Horse Pass in Canada, a railway infamous for having
steep and sharp curves and a single track with many trains wanting to pass it. The model railway was
designed in close accordance to the real railway (Figure 1.3a), however the installation also suffered

1h’r’tp: / /rtsys.informatik.uni-kiel.de/kieler
2h’rtp: / /www.rtsys.informatik.uni-kiel.de
3http: / /www.uni-kiel.de

4https: / /www.eclipse.org/elk

Shttps:/ /www.informatik.uni-kiel.de/~railway



1.3. The Railway Installation

(a) The central ascent in the first version of the (b) Wiring of the second generation of railway hard-
railway installation. ware.

Figure 1.3. Images of the old railway installation. Pictures taken from [Wec15].

from the same problems. Some trains were unable to ascend the steep tracks and caused accidents or
fell off the higher segments. Also, the control electronics was very susceptible to interference.

As the working group moved to the central campus, the installation remained unused for a while
until it was refurbished in 1999, swapping out the old electronics for more robust parts and remodeling
the track layout. Realism was traded for ease of use, a double-lane segment was introduced in the
middle of the central pass to ease scheduling and keep the trains flowing. The steep ascents were
swapped out for flatter segments to reduce the risks of accidents. The new electronics and their wiring,
shown in Figure 1.3b, were however not very well documented and hard to maintain in case something
broke.

Figure 1.4. The current railway installation. Picture taken from [The06].



1. Introduction

Model Railway Track Scheme

Realtime and Embedded Systems Group

Symbols
KH_ST_1 <or o0 KH_ST_6
f ™ KH_ST 2 - /® hias Track segments
=
& 2 ©@ O ©® © wss © 0 Oare e @ 7 === Inner Circle
o=
® pr KnsT4 o S —=——— Outer Circle
Coae——
KH_ST_O ( KH_ST_S Y 4 gl & === Kicking Horse Pass
— Coae——
W ; I ======Interconnections
10_LN_2 OI_LN_O
C——e-Y — o
OCINO oo \OC;JCT'O/ OC_LN_1 oo OGN ? o OSN3 Track specialties
'K ﬁ (= s _—= =, e — )i N .
/ 10_LN.O  icacT.0 N\ < Ol_LN_2 & IC_LN_3 ST 5‘ ;‘ ‘:\\% Bridge
i i 10_LN_1 ® — 0 —— ' OI_LN_1 8 ol
M|
8| Point or crossing
Al of= o B e
EE I E Bl 3.9,
Z|l oll ¢ T a0 A I = Railroad crossing
8
! S —
2! 8
] T g‘ l ﬁ; Directions
T 2 § — Unidirectional block
3
l o Bidirectional block with
‘\ s < forward direction
@ T ° 3\ e Preferred direction
ﬁ IC_ST_3 — _ooe z
T [ IC_ST_2 —
. pr BN — Electronics
\ IC_ST_0 / IC_ST 1 m.\ IC_ST 4 Block teofati
i ocsT4 @ @ OC_ST 3 [©) €] @ oc_sTo I ock isolation
— — === Reed contact
8 N oc_sT2 A ee ct.)n ac
g v = eE = J 8! LR Block signal
1 = r— — @ Lighting
©® ; ® Point ting unit
S - e - & 8, 9 / oint operating unif

Coae—s

—
KHIN2 @@ 8

Stephan
F npinei

ary 2006, o
le/-railway/ =

\ KH_LN_7 <<+ ooe ( o KH_LN_6
e

Figure 1.5. The (simplified) trackscheme of the current installation. Schematic taken from [The06].

1.3.2 Technology

In 2002, the Real-Time and Embedded Systems group took over the installation and in 2004 moved it
to its current location. A third generation of control hardware was installed in 2005. It consisted of
24 custom-made circuit boards, each controlling a certain section of the installation, connected to a
central computer. This time, the wiring was designed with low interference and high maintainability
in mind, labelling each of the cables for easy replacement. This version of the railway was used for
several lab courses as well as publicity events and presentations. A detailed description of the third
generation railway installation can be found in [HFP+06].

Even though this version worked reasonably well for several years, the number of hardware faults
started to increase. Parts of the network infrastructure failed repeatedly and several nodes did not
boot properly. Therefore, Nis Borge Wechselberg introduced a fourth generation of railway hardware
with his master’s thesis in 2014 [Wec15].

The fourth generation of railway controller hardware relies mainly on commercial off-the-shelf
(COTS) components to ensure an abundance of replacement parts. The low-level control of the railway
sensors and actors is handled by Arduino microcontrollers®, which are connected to Raspberry Pis’
via USB. Those are in turn connected to the university’s LAN and thus reachable from anywhere

Shttps:/ /www.arduino.cc
"https:/ /www.raspberrypi.org



1.4. Problem Statement

within the network. This enables them to communicate with one another as well.

Since the third generation, a series of C header files exists that can be used to compile controllers
for use with the model railway installation. They provide an Application Programming Interface (API)
that allows for easy communication with the railway hardware as well as connection establishment
and closing.

The intricate technical details of the installation are of no particular relevance to this thesis and
are thus left out. For an in-depth explanation, please refer to Nis Borge Wechselberg’s master’s thesis
[Wec15].

1.4 Problem Statement

This section defines the purpose of this thesis and describes the idea and motivation behind it.

1.4.1 Target Audience

The Department of Computer Science of Kiel University is involved in various regular promotional
events, such as Girl’s Day® or Schnupperstudium’®. In these types of events, young people, typically
pupils from local and regional schools, are supposed to get an insight into the subject of computer
science. A few participants will have some programming experience from computer science classes in
school, however most of them do not. At the very least, they usually lack advanced understanding of
programming languages and thus the ability to grasp new programming concepts in the very limited
time available during these types of events, as well as knowledge in theoretical computer science and
terminology.

1.4.2 Currently Used Tool

The RTSys group has developed a tool in 2007 that is used in these types of events to allow the
participants to control the railway installation. It features a graphical editor to create controlflow
diagrams that can be compiled for use with either a SCADE!?-based simulation or the actual railway
installation. Figure 1.6 shows a screenshot of this tool.

The tool is rather outdated. It is not very comfortable to operate, due to being a graphical editor
in general and due to some conceptual problems in particular. It uses, for example, an initial field
for every node in the chart. If this field is set to true, a thread will be spawned that executes the
chart, starting from this position. This field was introduced as it is not possible to find a unambiguous
schedule for this type of program if it contains cycles, which the tool permits. The chart does not
visually indicate that a node is set as initial though. This leads to very common issues with participants
setting nodes as initial by accident or misunderstanding the concept and the tutors having difficulties
finding the error.

Also, text fields, e. g., lists of track segments to be affected by a node, cannot be displayed properly
if their content is too long, which happens regularly. The user then has to click the field, which opens
a new window capable of displaying the full content. Additionally, the diagram itself may sometimes
be hard to read due to the dark colors used, especially in bright sunlight or with weak projectors.

8https: //www.inf.uni-kiel.de/en/computer-science-and-scool/ girls-day
https:/ /www.inf.uni-kiel.de/en/computer-science-and-scool/ taster-courses
10http: / /www.esterel-technologies.com/products/scade-suite



1. Introduction

- SimpleRailCtr Application oo
Fle Edit Diagram Execute Window Help |

O @ % [ | sans vlo |8 1 ]Ar & s - @B R e e 0 N O 125w -]

d) *railway1.simplerailctri_diagram £2 5 I_a' -a
<> =]
#10 Second
F[KH_LN 5,K...
§ [SECOND] £ Properties % l? »m =0
F YELLOWGRE... | 4 |c jcT 0 /FIRST % Set Speed true
Core Property | value
Appearance Direction 1= REV
Initial “htrue
Speed i 120
Track = KH_LN_S, KH_LN_6, KH_LN
B ExecutionConsole 2 @ Y=o
=l
L 0] [ o]
AECT H [ simplerailcti ... o 1208

Figure 1.6. The tool currently used for modelling railway controllers.

The tool does provide an auto layout option, however its effectiveness is rather limited. To achieve
a pleasing layout, the button has to be pressed several times consecutively, moving the nodes a bit
each time.

Visual problems aside, the tool uses six buttons, three each for deploying a program to the
simulation or the railway. One button is used for code generation, one for compilation, and one for
deployment. This is to be able to show the generated code, but it confuses people foreign to the subject,
as they do not understand why they need to press three buttons to achieve what appears to be a single
task. The generated C code is also a rather inadequate example to show to students, as its formatting
and naming conventions obey no apparent rules. The C code is customly generated for this particular
application, using semaphores for synchronization instead of synchronous concepts.

In conclusion, the currently used tool has major deficiencies. KIELER offers almost all the things
necessary to greatly improve the usability and maintainability of such a tool, easy extensability, good
automatic layout and a powerful and transparent compiler.

1.4.3 Language Idea

The goal of this thesis is to present a completely redesigned tool to develop software for use with the
department’s railway installation. I therefore created a domain-specific language (DSL) called RailSL
(short for “railway-specific language”).

The main objectives are easy usability for complete beginners and good readability of the programs.
The language is integrated with KIELER using an Eclipse Xtext-based plugin, which is further
explained in Section 3.2. The visual feedback, rather than using flowcharts or SCCharts, is based on



1.5. Thesis Outline

a track scheme of the installation and immediate responses to changes in the program. To ensure
determinacy, the KIELER compiler’s extensability is used to compile RailSL to SCCharts, then down
to C code using the standard SCCharts compilation.

1.5 Thesis Outline

Chapter 2 provides a brief look at related work, which will include other synchronous languages that
may be considered appropriate for my requirements, other DSLs built for non computer scientists and
other instances of model railways being used in teaching.
Chapter 3 will outline the central technologies I used for my project that have not yet been
discussed, namely the Eclipse platform and its plugin architecture as well as the Xtext framework.
Chapters 4, 5, and 6 will describe the three main steps of developing the tool:

Language Design
Chapter 4 explains the way I designed the language, its general concept and changes I made to it
during the development process.

Implementation
In Chapter 5, the implementation of the language is discussed. This includes technical decisions
I made in the process, the notion of time in my language and concurrency issues typical to
synchronous languages and their models of computation. Additionally, the actual implementation
of the KiCo transformation and its corresponding wrapper code is explained.

Live Visualization
Chapter 6 deals with the integrated visualization of the tool and the way it has been realized.

Finally, Chapter 7 will summarize my work and point out future work that may be tackled at
another occasion.

The appendix of this thesis contains a user-level guide to the language, written in a style adapted
to the target audience, as well as sample solutions for typical programming challenges used in
promotional events.






Chapter 2

Related Work

This chapter presents existing publications dealing with topics similar to the one I have been working
on. I will discuss other DSLs, some of which have been developed with objectives similar to those of
RailSL, other synchronous languages that could have been used instead of SCCharts as well as other
instances of model railway installations used in teaching.

2.1 Domain-Specific Languages

According to van Deursen et al., a DSL is “a small, usually declarative, language that offers expressive
power focused on a particular problem domain” [DKV00]. In other words, domain-specific languages
are tailored for a certain type of problems, a domain. They sacrifice versatility offered by general-
purpose languages like C or Java and are usually not able to handle all types of problems imaginable.
In turn, they are usually easier to learn and more powerful regarding the specific type of task they
were made for.

While [DKV00] lists dozens of example DSLs from various domains, a particularly interesting topic
for this thesis is the usability of DSLs for non-programmers, which has been investigated by Donohue
[Don10]. He states that well-designed DSLs can be successfully used by non-programmer domain
experts. He conducted a series of interviews with users of different DSLs and found that some, but
not all of the users were able to write and maintain programs in the respective DSLs. However, he also
found that there were cases where languages specifically designed to be used by non-programmers
were not usable in practice.

A successful example of a DSL designed for non-programmers is Quby [Vell2], a ruby-based
DSL designed for the creation of medical questionnaires. Veldthuis developed this language as an
alternative to modern commercial solutions like Questback (formerly GlobalPark)!. He believed that
using a DSL could speed up the workflow of the questionnaire designers compared to using the
graphical tool that was currently in use. In a trial with domain experts who were unfamiliar with the
DSL and who had little to no programming skills, Quby performed quite well. Even though it was
done with only three participants, the trial along with the fact that many other users unrelated to the
research project have been actively using it shows that the language is easy to learn and quick to use
and that it can even compete with commercial solutions.

Ihttps:/ /www.questback.com

11



2. Related Work

2.2 Synchronous Languages

This section offers a brief look at various synchronous languages and discuss the advantages and
disadvantages of using them in this project.

One such language is Esterel [Ber00b], a textual imperative controlflow language currently main-
tained by Esterel Technologies®. It uses the classical synchronous MoC and offers mechanisms for
concurrency, preemption and suspension. As mentioned in Section 1.1, these mechanisms are inher-
ently counter-intuitive even to advanced computer science students and therefore not very suitable for
non-programmers.

There is a sequentially constructive version of Esterel called Sequentially Constructive Esterel (SCEst),
proposed by Rathlev et al. in 2015 [RSM+15]. SCEst extends Esterel to support the SC MoC explained
in Section 1.1.1, removing some of the restrictions imposed by the classical synchronous MoC and
focusing on software rather than hardware synthesis.

Another commonly used synchronous language is Lustre [HCR+91]. Lustre is dataflow-based,
meaning that each variable or constant represents not a singular value, but a conceptually infinite
stream of values and an associated clock, which is technically a boolean stream. In each tick of the
program’s master clock, it is determined for each variable’s clock whether it is true. If that is the
case, the next value for the associated stream is computed. Lustre, and especially its derivative
SCADE?, which provides graphical modeling tools and a formally certified compiler, are widely used
in commercial safety-critical applications like train interlocking systems, power plant controls or plane
flight controls.

However, SCADE could not be used in this project as it is only commercially available at a quite
high cost. Plain Lustre, even though it is powerful and allows for a fast workflow after getting used to
it, is just too hard to grasp without prior knowledge or a lengthy explanation.

The main reasons for choosing SCCharts over the alternatives presented here, however, were the
easy integration with KIELER, the ease of using Xtext (rather than implementing a custom parser and
compiler) as well as the vivid automaton-like visualization of KIELER SCCharts. I would consider the
latter to be much more understandable to non-programmers than hundreds of lines of code.

2.3 Model Railways used in Teaching

2.3.1 Digital Process Control Laboratory

In a 1988 paper [McC88], McCormick describes the use of a model railway installation in teaching
a course called Digital Process Control. Much like at Kiel University, the model railway has been
made from commercially available tracks, but most of the electronics were self-made. McCormick
presents a list of ten course objectives, including “Concurrency” and “Software Design Methodology
for Real-Time Systems” [McC88]. As the computer used to control the installation had no mass storage
as well as no operating system, the students had to write their own executive to provide the required
services to run C programs. To keep the course size manageable, strict requirements were defined that
everyone who wanted to participate in the course had to fulfill.

Even though there were several problems like frequent damage to the delicate trains, different
levels of engagement of the students and the tedious process of debugging C code on a machine with
limited abilities, McCormick considers the course to be “highly successful” [McC88]. He observed
an overall high level of motivation among students taking the course and even students who did not

Zhttp:/ /www.esterel-technologies.com
3htt’p: / /www.esterel-technologies.com/products/scade-suite

12



2.3. Model Railways used in Teaching

take the course discussing scientific topics in the laboratory room where the installation was located.
He also noticed a positive change in the public image of his college, with newspaper articles and
television reports featuring it.

He concludes that using a model railway installation for teaching has many advantages and is
recommendable if an instructor is willing to take the extra workload required to set up and maintain
the installation. However, he also suggests using a higher-level programming language than C to avoid
unnecessary difficulties with coding and debugging.

2.3.2 Master’s Project

As the multiple instances of renewed railway hardware show, the RTSys group is determined to do
exactly as recommended by McCormick. During the time of writing this thesis, the RTSys group
of Kiel University offered a project for master’s students of which the objective was to develop a
universal controller for the group’s railway installation using SCCharts*. An SCCharts-based model
of the railway installation has been created as well to test controllers prior to deploying them to the
physical system in order to prevent damage. The students had to integrate their knowledge about
concurrent scheduling, deadlock prevention, hardware interfacing and software engineering. This
is only the most recent of several teaching events that Kiel University’s model railway installation
has been used for. The focus of the curricular teaching events at Kiel University lies on high-level
model-based development, just as suggested by McCormick. The previous iteration of the Model
Railway Master’s Project, held in 2014, is considered a success by the tutors, as detailed in the project
report [SMS+15].

2.3.3 Teaching Programming to Pre-School Children Using a Model Railway

Noma et al. proposed a model railway toy to teach the basics of programming to pre-school children
[NSI+03]. They compare the concept of acquiring literacy through picture books to their concept of
acquiring programming knowledge through a railway toy. They present custom components designed
to represent statements and control structures and have trains as symbols for the program counter. A
track forming a circle makes a loop, a component that sets switch points depending on the cargo of
the train represents a conditional jump and so forth. The core idea is not to tell the children that the
exercises are meant to be related to programming, but to just let them play and have fun and have
them acquire skills needed for programming step by step.

Unfortunately, there is no record of the success or failure of this project; the paper cited here is a
mere draft of the concept before even producing the toy and the associated assignments, and I was
unable to find any follow-up publications.

2.3.4 Conclusions for this thesis

These examples of model railways being successfully used in or designed for teaching show that
the general idea of catching the attention of students as well as providing motivation and physical
feedback on what has been programmed using a model railway installation is not quite new, but
well-tested and promising.

Students with different levels of knowledge can be taught scientific skills using this method. The
availability of such an installation at Kiel University, along with the successful examples from other
institutions, makes it almost imperative to use this potential.

4https: / /rtsys.informatik.uni-kiel.de/confluence/display /RP2 /Railway+Project+-+Summer+Term+2017

13






Chapter 3

Used Technologies

3.1 The Eclipse Platform

The Eclipse Platform! is an open-source Integrated Development Environment (IDE) originally created
by IBM? and currently maintained by the Eclipse Foundation. It was originally designed as a Java
development platform, but due to its versatility, it is used across all domains today. Its extensability
and configurability allow developers to customize the platform, adapting it to their needs. Extension
plugins can be easily developed and seamlessly integrated with the existing components.

3.1.1 Plugin Architecture

A central feature of the Eclipse Platform is its plugin architecture. The core Eclipse application is very
slim, all noticeable features are implemented through plugins that can be independently loaded and
updated. Eclipse provides a simple system of extension points and extensions to allow for interdependent
plugins.

An extension point is an interface that can be implemented by any number of extensions. The
extension point declares fields for strings, booleans or Java class names. A plugin using such an
extension point can access services provided by the extension point if it specifies values for all the
fields required. Extensions and extension points are both defined using XML.

With extension points, any plugin can contribute functionality and have it cleanly integrated with
the existing platform.

3.1.2 The Eclipse Modelling Framework

The Eclipse Modelling Framework (EMF)? is a framework to allow the use of structured data models
in Eclipse plugins. A user can create metamodels describing the possible structures of models. The
framework will then generate Java classes and adapters to allow the usage of these models in a Java
context.

Thttps:/ /eclipse.org
2https: //www.ibm.com
Shttps:/ /projects.eclipse.org/projects/modeling.emf

15



3. Used Technologies

3.2 Xtext and Xtend

Xtext? is a framework designed to ease the development of new programming languages. It allows
developers to specify a language in a notation very similar to the Extended Backus-Naur Form (EBNF).
If desired, Xtext can now automatically generate an EMF metamodel for the language, for which in
turn the EMF will generate Java code as described above. Alternatively, one can design a custom EMF
model and import it into Xtext. Xtext will also provide a parser along with a completely functional
Eclipse editor with syntax highlighting and auto completion for the language.

Xtend® is the language used by Xtext. It is used to generate Java code and is syntactically very
similar to it, however there are some differences. For example, Xtend allows for extension methods,
meaning that for a method foo that expects a parameter, instead of writing foo(X), you can also write
X.foo(). Furthermore, the language introduces the ? operator to make any procedure call null-safe
or makes empty pairs of parentheses optional. All in all, Xtend feels more usable than Java, but still
works seamlessly with Java classes or libraries, making it ideal for Eclipse plugin development.

RailSL has been implemented using Xtext and all plugin code is written in Xtend.

4https: / /eclipse.org/ Xtext
5 http:/ /www.eclipse.org/xtend

16



Chapter 4

Language Design

This chapter will talk about the language design process, its concept and realization and changes that
have been incrementally made during the development.

4.1 Basic Concept

As stated in Section 1.4.1, the language is meant to be used by mostly young people with little to no
programming experience, let alone knowledge of theoretical computer science. As many programming
languages can appear intimidating and confusing due to their heavy use of symbols, brackets or even
line alignment as part of their syntax, I decided to use as few symbols as possible and rely mostly on
words, numbers and sentences to keep the language as understandable as possible. Most statements
are therefore complete english sentences and also end with a full stop to emphasize the sentence
character.

I wanted writing a program in RailSL to feel like writing a text. Generally, programming means
telling the computer what to do. However, as our natural language is not concise and simple enough
for the computers we have, programming languages were designed to be the half-way point between
humans and computers, something that both can understand with some effort. To minimize the effort
on the human side, DSLs like RailSL introduce another layer of language between other programming
languages (C in our case) and the user with the intention to shift this point closer to the human.

There are some statements for which I chose a different syntax than the sentence-based structure
described above. This is true for all controlflow statements, namely the conditional and parallel
statements and the blocks. I made this decision because parsing the language requires unambiguous
structures and making controlflow commands out of sentences seemed overly complicated and
user-unfriendly to me.

The reasoning and possible alternatives will be discussed individually for each statement in the
following section.

4.2 The Design Process

This section will give an overview of how the language evolved and explain design decisions made in
the process.

4.2.1 Initial Version

The initial version of RailSL contained the statements listed in Table 4.1.
These statements allow basic control of all components of the railway installation as well as
controlflow based on events from the installation itself or a timer.

17



4. Language Design

Table 4.1. RailSL Statements in the initial version

| Statement Type | Purpose | Example Syntax
Manipulating speed and direction Set track KH_ST_1 to go.
TrackStatement settings of an arbitrary number of track | Set track KH_LN_1, KH_LN_2,
segments KH_LN_3 to reverse slow.
. Switching an arbitrary number of points | Set point 1 to straight.
PointStatement between straight and branch Set point 2, 3, 4 to branch.
. Turning an arbitrary number of lights on | Turn light 1 on.
LightStatement or off Turn light 2, 3, 4 off.
CrossingStatement Open or close the railway crossing Open crossing.

. Delaying the execution until a certain Reach first contact of KH_ST_1.
ContactWaitStatement contact is triggered Pass second contact of KH_ST_2.
TimeWaitStatement Delaying the execution for a certain | Wait for 5 seconds.

amount of physical time
1| Start:

2 Set track KH_ST_1, KH_ST 2, KH_ST_3 to reverse go.
3 Set point 5, 7, 8 to branch.

Y Reach second contact of KH_ST 4.

5 Turn light 4, 5, 6 off.

»| Open crossing.

7 Wait for 10 seconds.

s| Loop .

Listing 4.1. Examples for first version of RailSL syntax.

In order to avoid code repitition, it is possible to list multiple identifiers, separated by commas,
rather than writing the same statement for each one of them.

Except for point and light indices, all numerical constants are hidden behind keywords as this way,
it is not necessary to decide on an adequate speed or to memorize the standard numbers. This also
prevents errors arising from number range problems and thus makes the language more stable. For
example, the speed of a train can either be set to go (120), slow (45) or stop (0) instead of allowing
freely entered integers. These particular values were adapted from the Girl’s Day worksheets.

As we saw in Section 1.3.2, each train triggers a contact twice when passing it: once when the
locomotive reaches it and again when the end of the last wagon passes it. So, for example, to make
sure that a segment is empty, the only way is to wait until the closest contact of the next segment
in the direction of travel has been triggered twice. However, to stop in a station, the contact must be
triggered for the first time as the train needs to remain behind the contact. Again, in order to avoid code
repition, writing the same statement twice to pass a contact and just once to reach it, the Reach and
Pass keywords were introduced. Using them requires no knowledge of reed contacts and magnets in
the physical railway, just a brief explanation of what each of them means.

Blocks are not commands for immediate interaction with the railway, but rather a means of
structure that surrounds statements. To highlight this difference and for the sake on shortness, blocks
are enclosed with simple Start: and End. markers rather than having full sentences on either side of
the block. The End marker of the block can either be End., in which case the block will be executed
just once, or Loop., which will cause the block to be repeated forever.

This structure emphasizes start and end of a block and also serves as a visual aid to quickly grasp

18



4.2. The Design Process

the sructure of a program. This especially true if all statements within a block are properly indented
as shown in Listing 4.1.

4.2.2 Syntax Changes

Instead of setting a track to reverse slow, it is now set to slow reverse. The position change of the
reverse keyword made the language closer to natural English.

The word go as the constant for full speed has been replaced with full, as go did not convey the
idea of full speed, but rather of not stopping. It might have led to confusion in combination with slow,
as both of them made the train go, just at different speeds. full is clearer as to what it means.

Furthermore, the and keyword has been introduced to enumerations as in any natural sentence,
one would always write and between the second-to-last and last words of an enumeration instead of
just putting a comma there. However, to make the language as intuitive as possible, the possibility to
use only commas has been preserved while also allowing the use of the Oxford comma.

4.2.3 The Introduction of Conditional Statements

During the implementation process, the problem arose that some desired programs were not feasible
with the current version of the language. It was able to do everything necessary for a single train or
even multiple trains without interactions. However, there was no way in which trains could synchronize
with one another or even communicate at all. For example, a typical Girl’s Day Challenge is to have
two trains moving in opposite directions, meeting at a suitable point and then continuing at the same
time. The Conditional statement was introduced to make this possible. With this, multiple alternative
continuations can be specified that are chosen depending on the order in which contacts are triggered.
If several contacts are triggered in the same tick, the textually first alternative is chosen.

The introducing Branch: marker is required to make the language unambiguous, marking which
alternatives belong to the same conditional statement. The marker is not a full sentence because as
with the blocks, it is not an actual command, but just a means of structuring. The statement allows
one block per alternative that may contain any number of statements, including nested conditional
statements.

Listing 4.2 shows the syntax and usage of the conditional statement.

However, the conditional statement turned out not to be very usable. It cannot be effectively used
to synchronize the arrivals of two trains at their respective destinations as a train, controlled by a
dedicated block, cannot check for the other train’s arrival while it is still moving itself. Making a third
thread as a kind of controller that would always listen for both contacts and act depending on their

Start:
Branch:
If first contact of KH_ST_1 is reached first, do:
Start:
Set point 1 to straight.
End.
If second contact of KH_ST_1 is reached first , do:
Start:
Set point 1 to branch.
End.
End.

Listing 4.2. Example of a conditional statement.

19




4. Language Design

Start:
Parallel:
Start:
Turn light 3 off.
End.

Start:
Set point 7 to straight.
End.

Wait for 5 seconds.

2| End.

Listing 4.3. Example of a parallel statement.

triggering order seems like a plausible solution. As the conditional statement only allows one block
per alternative, this controller would, however, be unable to both start two blocks moving the two
trains and notify the existing blocks that controlled the trains up to this point.

4.2.4 The Parallel Statement

In order to allow for better synchronization, an explicit parallel statement has been introduced. The
main program now no longer consists of multiple, but just of a single block. In this block, there
may be any number of statements, including parallel statements, which in turn contain two or more
blocks. This makes solving tasks like the above one much simpler as there now is an option for
sequentially executed blocks. It allows for multiple blocks to be executed (e.g. moving two trains to
certain positions) and to start any number of new blocks after all of the previous ones were completely
executed.

Listing 4.3 shows how the parallel statement can be used. The TimeWaitStatement in line 12 is
executed only after both blocks within the parallel statement have terminated.

This, as the conditional statement, requires a marker to make it unambiguous, which again is just
a word rather than a sentence to keep it simple. The parallel statement also solved some technical
issues regarding schedulability, which are discussed in detail in Section 5.3.

20




4.3. The Final Language

4.3 The Final Language

This section contains a full EBNF of RailSL as it is now. For usage examples, please refer to Appendix B.

NN

// Track Statement

Program ::= Block
| // Blocks
Block = ’Start:’ Statement {Statement} BlockEnd
BlockEnd ::= ’‘Done. ’
| "Loop.’
// Statements
Statement ::= SetStatement
| WaitStatement
| OpStatement
| ConditionalStatement
| ParallelStatement
SetStatement ::= TrackStatement
| PointStatement
;| WaitStatement ::= ContactWaitStatement
| TimeWaitStatement
OpStatement ::= CrossingStatement
I LightStatement

TrackStatement ::= ’'Set track’ SegName
{’,” SegName}
[("and” SegName) | (’, and’ SegName) ]

“to’ TrackSetting
| TrackSetting = (7 full”

I ’stop’

// Point Statement

s

| ’slow’) [’reverse’])

PointStatement ::= ’'Set point’ Int

{”,” Int
[("and’

“to’ PointSetting

}
Int) | (', and’ Int)]

ro

PointSetting 1= ’straight’

| ’“branch’

// Contact Wait Statement

ContactWaitStatement ::= ContactEvent
ContactIndex
“contact of’
SegName " . ’
ContactEvent ::= ’"Reach’
| ’"Pass’
ContactIndex = first’
| ’second’
// Time Wait Statement
;| TimeWaitStatement ::= "Wait for’
Int
"seconds.’
// Crossing Statement
CrossingStatement = CrossingSetting
‘crossing .’
5| CrossingSetting = ’Open’
| "Close’

21




%

J| Digit

4. Language Design

// Light Statement

LightStatement ::= 'Turn light’ Int
{, Int}
[("and’ Int) | (', and’ Int)]
LightSetting

3| LightSetting := ‘on’

[ ’off’

// Conditional Statement

ConditionalStatement ::= ’Branch:’
ConditionalLine
ConditionalLine
{ConditionalLine}

ConditionalLine ::= "If’ ContactIndex
"contact of’
SegName
"is reached first , do
Block

’

// Parallel Statement

ParallelStatement ::= ’Parallel :’
Block
Block
{Block}

3| // Segment names

"OLLLN_0" | "OILLLN_1" | "OI_LLN_2~’
"IO_LN_0" | "IO_LN_1" | "IO_LN_2~

SegName ::= 'KH.ST 0’ | 'KH.ST_1" | 'KH_ST 2’ | 'KH_ST 3’
I 'KH_ST_ 4" | 'KH_ST.5" | 'KH_ST_6’
I KH.LIN_O" | "KH.ILN_1" | "KH.IN 2" | 'KH_LN_3’
I 'KH.LN 4" | "KH.LN.5" | 'KHIN6" | "KH.LN_7’
I 'KH_LN_8" | ’'KIO_LN_0" | ’KIO_LN_1’
I "OC_ST_0” | "OC_ST_1" | "OC_ST2" | "OC_ST_3’
[ 7OC_ST_4” | "OC_LLN_O" | "OC_LN_1" | "OC_LN_2’
I "OC_LLN_3" | "OC_LN_ 4" | "OC_LN_5’
I 7IC_ST_0" | ’"IC_ST_1’" | ’IC_ST_2’ | "IC_ST_3~’
I 7IC_ST_47 | ’"IC_LN_O" | "IC_LN_1" | "IC_LN_2"’
| 7IC_LN_3" | "IC_LN_4" | ’IC_LN_5"’
[ "OC_JCT_ 0" | "IC_JCT_0"
|
|

// Non—negative integers

Int ::= NonZeroDigit
{Digit}
NonZeroDigit =11213141516171819

NonZeroDigit | 0

RailSL grammar

22




Chapter 5

Language Implementation

In this chapter, I will explain the implementation process of RailSL, including design decisions
concerning the notion of time in the language as well as concurrency and present the way a RailSL
program is transformed into an appropriate SCChart.

5.1 KiCo Compilation

The KIELER Compiler works with incremental model-to-model transformations. The programmer
can write their own transformation class using XTend (see Section 3.2) and register it as a KiCo
transformation. With a compilation system, a set of transformations and metrics can be combined and
used like a single transformation.

The SCCharts compilation system contains 28 transformations that will remove complex features
one at a time and replace them with more basic ones until the last transformation outputs C code.

In order to use the KIELER compiler for RailSL, an additional transformation was required
that would generate an equivalent SCChart from a RailSL program and let the standard SCCharts
compilation system take care of the generation of C code from that chart.

5.2 Logical and Physical Time

As already discussed in Section 1.1, the notion of time in synchronous languages is quite different
from what Java or C programmers are used to. This section deals with design decisions that were
necessary due to these differences.

5.2.1 Physical Time in Synchronous Languages

Synchronous languages deal with logical time, divided into discrete ticks, rather than with physical
time divided into seconds or milliseconds. Therefore, synchronous languages like SCCharts offer no
built-in option to suspend the program execution for a certain duration of physical time. They only
allow to either wait for one logical tick, which can have any physical duration and is thus unsuitable to
measure actual time, or to wait for a certain event, either a guard expression becoming true or a signal
being present. Therefore, a typical approach to integrating physical time into synchronous programs
is to have an input signal that will be emitted by the environment in regular intervals of physical time.
This way, the program can assume that no matter how many ticks have passed, if the signal is present
in a tick, this tick must be at least one physical time interval after the last time the signal has been
present.

This mechanism may however produce intervals longer than intended. As opposed to interrupt-
based systems like modern personal computers, a synchronous program will not react to a timer
signal immediately. Instead, it will delay the reaction until the current tick has been completed as the

23



5. Language Implementation

program will typically read the inputs at the beginning of each tick. If a program has a computationally
complex tick function or runs on a system with limited resources, it may take a relatively long time to
process a single tick.

Still, this delay has a limited length. As stated in Section 1.1, each tick in a synchronous program
may only contain a finite number of microsteps. Each of these microsteps is in turn an operation
that runs in finite (and usually well-known) time. This way, it is generally possible to compute the
worst-case execution time (WCET) of a program. The WCET is the maximum time it can take to compute
a full tick. This value obviously depends on the program and its complexity, but also on the machine
it is running on.

The delay caused by the current tick being completed before reacting to the timer signal can
therefore be no longer than the controller’s WCET. So far, no WCET measurements have been
performed for any controller generated from a RailSL program. However, as typical RailSL programs
are rather simple and will be executed on personal computers or the university’s ThinLinc clients!,
delays will presumably be short. Also, the only place in which physical time is used in RailSL is with
the TimeWaitStatement (see Section 5.4.5), where the execution is meant to be delayed anyway, and by
several orders of magnitude more than a single tick.

5.2.2 Logical Time in RailSL

With synchronous programming, the question of tick boundaries always arises. Conceptually, every-
thing that can or does happen physically at once should be within the same tick and tick boundaries
should be introduced in the places where physical time passes between statements. In RailSL, there
are tick boundaries in two different places:

> In a TimeWaitStatement

> Between the last and the initial state of a chart generated from a block with a Loop. end marker

The former is there for the reasons described above. A physical timeout should never terminate
instantly. The latter does not obey the rule stated above as there does not necessarily have to be
a physical delay between the last and first statements of a loop. However, as mentioned before,
instantaneous loops are forbidden in synchronous languages like SCCharts. Without an artificially
introduced tick boundary, it would be possible to write programs that would theoretically work on the
railway installation, using contact events for safe operation and leaving out any timeouts, that could
not be compiled as the KiCo would reject them as not schedulable due to an instantaneous cycle.

As discussed in the previous section, this delays the execution of the program by at most its WCET
with each completed loop. As loops will typically run for several seconds or even minutes, this has no
observable impact on the railway’s behaviour.

1ht‘rps: / /www.cendio.com/thinlinc/download

24



5.3. Concurrency

5.3 Concurrency

Another issue that had to be resolved was the question of concurrency. In early versions of RailSL,
multiple parallel blocks at the top level were legal. The transformation turned them into parallel
regions within the same root state so that they would be executed in parallel.

Some of the problems that this concept caused were already discussed in Section 4.2.3. Also,
the KIELER compiler does not accept programs with concurrent and non-confluent accesses to the
same variable. Two assignments are considered confluent iff the order in which they are executed
does not affect the resulting variable value. For a formal definition, see [HMA+14]. As all regions
potentially controlling different trains were concurrent by definition, it was impossible to have two
regions manipulate the same track segment, switch point or even lamp, even if it was ensured that
these two events could never happen at the same time.

5.3.1 Combine Functions

A possible fix for this problem would be Esterel-style combine functions. Every region would get its
own set of output variables and write exclusively to those while sharing the inputs as usual. This way,
each region could manipulate the variables without restrictions. A combine region would compare
all variables set by the different regions and decide what value to propagate to the global output
variables.

In practice though, designing the combine functions is complicated, which is why this approach
turned out to be unusable. All regions would usually configure all switch points and tracks that their
train needs for the next journey, then wait until the train reaches an end contact. If two regions set
the same component to two different settings, there is no safe way to combine these two inputs; the
combination will always cause unexpected behaviour for at least one of the two regions.

As described above, concurrent and non-confluent accesses to the same variable cause the KiCo
to reject the program. This is actually beneficial to RailSL and its safety as multiple parallel regions
accessing the same variable may mean that multiple trains will soon move across the same track
segments or switch points. To avoid this, as well as potential crashes and damage to the installation
resulting from it, RailSL still uses parallel regions without any combine function. This way, the KiCo
will reject any program with potentially colliding trains.

5.3.2 Introducing Sequential Blocks Using the Parallel Statement

One of the problems described in Section 4.2.3 is that trains cannot move across the same track segment
even if it is ensured that the segment is free whenever a train reaches it. The problem that causes
this is not the fact that concurrent regions cannot access the same variables, but rather the general
parallelity of all blocks, no matter whether their behaviour actually takes place at the same time.

With the introduction of an explicit parallel statement, this problem can be solved. As described
in Section 4.2.4, the parallel statement allows the user to specify two or more blocks that should be
executed in parallel. These blocks are translated into concurrent regions, where it is beneficial to have
the KiCo reject programs that have conflicting variable accesses. However, if blocks are not part of the
same parallel statement, they are no longer concurrent and therefore can use the same components of
the railway.

This way, unsafe behaviour with multiple trains moving onto the same track segment cannot be
modelled as before while at the same time, it became possible to express explicitly that blocks are in
fact not parallel, but sequential.

25



5. Language Implementation

5.4 RailSL statements and their translations to SCCharts

This section lists all statements currently supported by RailSL and explains how each of them is
represented in SCCharts.
Generally, each statement is represented by a complex state’s inner behaviour.

5.4.1 TrackStatement

The TrackStatement is used to set any number of tracks to a certain speed level. It can also determine
the direction of travel and will automatically set the signals corresponding to the selected tracks
appropriately.

Figure 5.1 shows examples of TrackStatements with one (Figure 5.1a) and two (Figure 5.1b) track
segments and the SCCharts generated from them.

As with several other types of statements, one anonymous state is created per track. An immediate
transition is created for each track segment adressed in the statement, setting the four values associated
with the segment as its effect. These are, in order of appearance: speed (first field of tracks array),
direction of travel (second field of tracks array), second and first signals in the current direction of
travel. The first signal, pointing towards where the train is coming from, is always set to red. For full
speed, it is set to green and for slow travel to yellow. These, as well as all other constants, are defined
in the root SCChart and not shown here.

The control flow within the state is linear and ends in the same tick the state was entered.

Controller

_0_SetTrack

Q

. / tracks[KH_ST_1][0] =
slow;

'tracks[KH ST_1][1] =

:2 sngnals[KH ST_1][1]

Tr acks[KH ST_2][1] =
I2 sngnals[KH ST_2][1]
si

1 = yellow;
Controller :sn%nals[KH ST_1][0] =
[] I
_0_SetTrack i
0 Q¢ ~O
i
/ tracks[KH_ST_1][0] = : / tracks[KH_ST_2][0] =
Il; lslow
1
1

yellow;

%nals[KH ST_1][0] = %nals[KH ST_2][0] =

1

1

]

1fu

! tracks[KH_ST_1][1] =
O-> 1; Signals[KH_ST_1][1] [>-©

! Signal

1

|

1

1

|

& &

(a) Set track KH_ST_1 to full. (b) Set track KH_ST_1 and KH_ST_2 to slow
reverse.

Figure 5.1. TrackStatements and the corresponding SCCharts generated from them.

26



5.4. RailSL statements and their translations to SCCharts

Controller
_0_SetPoint

[]
Controller Q

_0_SetPoint / points[1] = branch

”Q O
O INE— O
1 / points[1] = straight
1

(a) Set point 1 to straight. (b) Set point 1, 2 to branch.

<————

~O

/ points[2] = branch

Figure 5.2. PointStatements and the corresponding SCCharts generated from them.

5.4.2 PointStatement

The PointStatement is used to toggle switch points between their straight and branched states. Fig-
ure 5.2 shows SCCharts generated from this type of statement. They function like the TrackStatement
presented in the previous section. The only difference is that here, only one variable needs to be set as
opposed to the four required in the previous statement.

5.4.3 LightStatement

The LightStatement is used to control the installation’s street lights and other lights not related to the
operation of the railway itself. Like the previous two, this type of statement creates one state per light
index listed and sets the appropriate variable, as can be seen in Figure 5.3.

Controller

_0_Light

[]
Controller Q

_0_Light / lights[1] = off

1
1
1
1
1
1 1
O” '/ lights[1] = on D’@ I/ lights[2] = off
1 1

O O

(@) Turn light 1 on. (b) Turn light 1, 2 off.

Figure 5.3. LightStatements and the corresponding SCCharts generated from them.

27



5. Language Implementation

Controller Controller
_0_ContactWait _0_ContactWait
fe 0
O~ | O |
: contacts[KH_ST_1][firstContact] 12 contacts[KH_ST_1][secondContact]
1 !
O O

(a) Reach first contact of KH_ST_1. (b) Pass second contact of KH_ST_1.

Figure 5.4. ContactWaitStatements and the corresponding SCCharts generated from them.

5.4.4 ContactWaitStatement

The ContactWaitStatement delays the execution until a certain contact is triggered once if the keyword
Reach was used (Figure 5.4a), or twice if Pass was used (Figure 5.4b). This is realized with a count
delay transition, indicated by the number 2 in Figure 5.4b. The way count delay transitions work is
explained in Section 1.1.3.

5.4.5 TimeWaitStatement

The TimeWaitStatement delays the execution of the program by a certain number of seconds. This
is realized very similarly to the previous statement, however this time, the variable used is set not
in accordance with the state of the railway installation, but by a dedicated timer in the program’s
wrapper code. This is due to the issues discussed in Section 5.2. To see in more detail how the wrapper
code works, see Section 5.5.

Controller

_0_TimeWait
[-]

O-’ 5 second D’@

Figure 5.5. SCChart generated from Wait for 5 seconds.

28



5.4. RailSL statements and their translations to SCCharts

5.4.6 Blocks

Figure 5.6a shows a program containing three statements and the SCChart generated from it.

To make the resulting SCChart as readable as possible and to visually show the separation of
the different statements, generally one state is generated for each statement according to the rules
explained above. An anonymous initial state is generated for each block with an immediate transition
to the first statement. As the inner behaviour of each statement reaches a final state after the statement
was executed, termination transitions can be used to connect the states with one another.

After the last statement was executed, its transition either leads to the chart’s final state if the
program ends with End. or returns to the initial state if it ends with Loop. (as shown in Figure 5.6a).

Controller

[-]
_0_SetPoint _1_TimeWait _2_ SetTrack ﬂ
( i 3] 3] 3]
v O Q !
\ K
\ /
A 4

' '
| / points[1] = branch b 5 second b } /tracks[KH_ST_1][0] = full; tracks[KH_ST_1][1] = 1; signals[KH_ST_1][1] = green; signals[KH_ST_1][0] = red
) )

O O

(a) Generated SCChart

Start:
Set point 1 to branch.
Wait for 5 seconds.
Set track KH_ST_1 to full.

5| Loop .

(b) The corresponding RailSL code

Figure 5.6. An SCChart generated from a looped block with three statements.

5.4.7 ParallelStatement

The parallel statement is used to start two or more blocks simultaneously that will be executed in
parallel. The statement terminates once all of its blocks terminate

To realize this, the inner behaviour of the state representing the statement is generated with one
region per block, as can be seen in Figure 5.7a. These regions are then generated according to the
standard rules for blocks described above. By definition, the normal termination transition that leads
out of the state will only be triggered once all regions have reached their final states.

5.4.8 ConditionalStatement

The ConditionalStatement will execute the block with the trigger expression that becomes true first.
All other blocks are ignored. If multiple trigger expressions become true in the same tick, only the
textually first one of them is executed. This is to ensure determinacy, however due to the short tick
times and the relatively long time it takes the trains to go from one contact to the next, this case should
occur very rarely in practice.

As Figure 5.8a shows, a state is generated for each block. Again, the inner behaviour of these states
is generated according to the block rules specified above. Transitions with the appropriate triggers and
the precedence specified by the textual order of the blocks are generated from the initial state to each
block. A normal termination transition is added from each block to a joint final state.

29




5. Language Implementation

Controller
_0_Parallel

0

v
_1_TimeWait
[l

C 3 second C

g

Start:

Parallel:
_2_TimeWait ] Start:

Wait for 3 seconds.
End.

ol O Lo
Q

)

-

[

C 5 second C .
6

7 Start:
8 Wait for 5 seconds.
9 End.

10| End.

n

(a) Generated SCChart (b) The corresponding RailSL code

Figure 5.7. An SCChart generated from a ParallelStatement with two blocks, each containing a TimeWaitStatement

: Controller 1 St art:
_0_Conditional 2 Branch:
! @) 3 If first contact of KH_ST_1 is
T T . reached first, do
iZ: ST_1][¢ \dContact] i1: |_ST_1][firstContact] 4 S t a rt .
[ R~ ] e — 5 Wait for 3 seconds.
] 6 End.
O” O” [»@ O" [»@ '”@ 7 If second contact of KH_ST 1
5 second 3 second is reached first, do
8 Start:
9 Wait for 5 seconds.
B = 10 End.
@ 11| End.
(a) Generated SCChart (b) The corresponding RailSL code

Figure 5.8. An SCChart generated from a ConditionalStatement with two blocks, each containing a
ContactWaitStatement

30



5.5. Wrapper Code and Compilation

5.5 Wrapper Code and Compilation

While the KIELER compiler is able to produce code in multiple languages, RailSL models are compiled
to C. From the SCChart that has been created by the transformation described in the previous section,
it generates a file containing a struct called TickData that saves the values of all signals, variables and
guards occuring in the chart as well as a tick function taking a TickData struct as its parameter. This
function contains the sequentialized logic of the chart and will, if called with a valid struct, perform
a tick and update the struct to contain the new values for all variables. KiCo also provides a reset
function that initializes all fields of the struct to their standard values.

However, this code cannot be compiled directly as it requires an adequate main function. This
so-called wrapper code is required to compile any SCChart into an executable file. KIELER offers a
module called Project Management (PROM) [Stal5] that allows for automatic generation of wrapper
code based on variable annotations and a template engine. However, PROM has not been used in this
project as the wrapper code is static and does therefore not need to be generated individually for each
program.

The API for the railway and thus most of the functions used in the wrapper code are documented
in Stephan Hohrmann'’s diploma thesis [Hoh06].

The following paragraphs will give an overview of the wrapper code’s structure.

The main function first performs several setup and initialization steps such as establishing the
network connection to the railway and creating the TickData struct and resetting it, then runs in a loop
that will remain active until the _TERM field of the struct is set.

The wrapper code also keeps track of all output variable values from the previous tick, the so-called
pre values. This is to reduce load on the railway’s network infrastructure because this way, API calls
have to be made only for the values that changed in the current tick.

The loop performs the following steps in each iteration:

Scan contacts

At the beginning of each tick, all contacts from tracks that are currently active and that have
contacts are scanned via an API call. The values are stored in the struct’s contacts field and can
be accessed by the chart’s logic. To reduce load, contacts of inactive tracks are not scanned as
they cannot be triggered. Contacts are reset after being scanned, ensuring that for each event, the
corresponding variable in the struct will be true for exactly one tick. As the railway hardware will
sometimes produce ghost contact events shortly after powering on, one of the inactive tracks is
scanned each tick in round robin mode as well to flush out these events.

Compute time
Then, it is checked whether at least one second has elapsed since the last time the second signal
was set to true. If that is the case, second is set to true for the next tick and the timer is reset.

Perform tick
At this point, the tick function is called, passing the TickData struct to it that contains, among
other data, the freshly computed inputs. The tick function computes the new state of the chart
and writes it back to the struct.

Write outputs
For each output variable, it is checked whether it changed during the last tick. If and only if that is
the case, an API call is performed to update the railway installation according to the new value.

Update pre values
Set the locally saved pre values to the newly computed values from the TickData struct.

31



5. Language Implementation

Sleep
Pause the execution for 100 microseconds. This is because on modern computers, tick times are
so short that the railway installation cannot, even with the measures to reduce load, handle the
requests fast enough. Testing has shown that with no delay, the Raspberry Pis handling the requests
will stop responding within seconds, causing timeouts in the controller. This delay is just long
enough that in tests the Rapsberry Pis could keep up with the number of requests.

When _TERM becomes true and the while loop terminates, the chart has reached its final state and no
further steps are required. The wrapper code then closes the connection to the railway and terminates.

To compile the generated C code, two different makefiles are available, depending on whether the
controller should run on a simulation or the physical railway installation. One of the two makefiles
was written in 2007 by Christian Motika and compiles the controller for simulation along with the
simulator itself. The other makefile, the one used for deployment to the actual railway, was developed
during the railway project described in Section 2.3.2.

At the time of writing this thesis, there is no automatic workflow for the compilation. The pos-
sibilities and requirements will be further discussed in Section 7.2.

32



Chapter 6

Live Visualization

This chapter describes the idea of on-the-fly visualization of the program being written in the editor.
The concept of transient views responding to editor changes is not new in KIELER; the KIELER
Lightweight Diagrams (KLighD) view [SSH13], which is used to display the SCCharts modeled in
the editor, originally responded directly to changes in the editor, however this approach has been
abandoned due to performance issues with large models.

6.1 General Idea

The general idea of the visualization is to give immediate visual feedback on what is being modelled
to reduce the probability of programming errors. The idea to show the track layout and highlight the
components being adressed came to mind quickly, as this concept can be seen in the old simulator.
KIELER offered a component called KIELER Environment Visualization (KEV), which was replaced by
the KIELER Visualization (KiViz) during the development process. The visualization of RailSL was

Fle Edit Navigate Search Project IJOSNX] Run Window Help
(=R €viM HvO-QUviFvid I 5 ¥@

= B @ simulation visualization 52 S BEEEO =8

B Console o4 Diagram 1 | 5 IMB Compiler sevE @4 - -0

Controller
T

_2_SetTrack

D Q

/

Q :
:

:

| /points(7) = branch _1_setpoint

tracks[KH_ST_1][0] =
i

(KH ST 11011

_3_TimeWait
v

s STl =
O red
O” | /pointsis] = branch > | /points(s] = straight > P*  |3second "@
v
© /tracksIKH_ST_6][0] =
full;

ST 6111] =
KHST_611]

1 boi - t
| /points[15] = branch g

O

Figure 6.1. Example of a program and its visualization in KIELER

33



6. Live Visualization

realized using KiViz.

KIELER offers tools to simulate and interact with SCCharts and to demonstrate the behaviour of
the model being simulated. The KiViz view is able to display an image that can, through a customized
mapping from model variables to image elements, react to changes in the simulation data pool. This
mapping works with a data pool from other sources as well and with a matching mapping, the data
pool can be visualized.

The KiViz view updates as a line of RailSL code is entered to show on the track layout what would
change if that line was executed. Setting the speed of a track highlights it in the appropriate color
according to the palette used by the new simulation developed during the master’s project while
setting the signals appropriately. Setting a point should flip it on the scheme, scanning contact events
should highlight the adressed contact. Figure 6.1 shows the RailSL editor (left), where a TrackStatement
is being edited, and the corresponding visualization (right) with the matching tracks highlighted
appropriately.

6.2 Implementation

In order to realize this visualization, changes to the editor’s content need to be detected as they should
trigger an update of the visualization. For this purpose, Eclipse offers the IDocumentListener interface.
An instance of a class implementing this interface can be attached to an editor’s active document and
will then be notified whenever a change is about to be made to the document, then once again when
the change has been performed. The (anonymous) Listener class of RailSL ignores the first event and
only reacts once the update is complete by notifying the singleton instance of the Visualizer class,
which contains the core logic for the visualization.

To ensure that the IDocumentListener is always attached to the correct document, the Eclipse
interface IPartListener2 was used. Instances of this interface are notified whenever parts of the Eclipse
window (the so-called workbench) are opened, closed or activated, among others. Closing and reopening
the editor or opening a new document disables the currently active IDocumentListener and switching
between multiple open editor tabs may cause it to be attached to the wrong document. Therefore, the
IPartListener2 was configured to attach a new listener to a document whenever an editor is activated,
which happens when opening the view or when loading a new file, and to remove it when the editor is
deactivated or closed. This ensures that the Visualizer will be notified reliably whenever the content
of the editor changes.

Xtext’'s EObjectAtOffsetHelper is used to determine the EObject generated at a particular cursor
position in an editor. With this, it is simple to find the statement being currently written or edited and
to generate an appropriate DataPool object for the KiViz view. This pool contains variable names and
their values. An additional mapping from these variables to image elements had to be created.

The Visualizer uses a default DataPool with all tracks set to off, all contacts deselected and all
switch points set to straight that is cloned with each update. The specific values needed to represent
the statement currently being edited are added and the pool is passed to the updateView function of
the KiViz view.

From a performance perspective, it would be sensible to keep track of the values that have been
added to the pool to visualize a statement in order to be able to remove them again, going back to the
original pool, and then readd values for the next statement. This would reduce the reaction time of
the visualization as the (rather large) data pool would not have to be cloned each time. However, the
simulation creates a new DataPool object each time a value changes and the view will ignore it if the
same pool as before is passed as in this case, no update would be required in a simulation scenario.

34



Chapter 7

Conclusion

7.1 Summary

The objective of this thesis was to develop a DSL to allow non-programmers to write controller
programs for use with the department’s model railway installation. The language, called RailSL,
is primarily meant to be used in promotional events with very limited time frames in which the
participants need to understand the concept of the language and produce working code solving
different challenges. Due to these requirements, the language has to be simple and intuitive, which was
achieved by keeping the language as close as possible to English. It uses few symbols like semicolons
or brackets and concludes every statement with a full stop in order to emphasize the natural language
character. There is a manageable number of statement types and it is quite clear what each one of
them does. The use of the language is eased further by the autocomplete options offered by the editor
and the integrated visualization.

To implement the language, available features of KIELER, the Eclipse platform and Xtext were
used as the foundation of the newly developed components. After specifying the grammar for RailSL,
Xtext generated an Eclipse editor with syntax highlighting and autocompletion along with a parser
and EMF model generator. Thanks to the EMF, the model generated by the Xtext parser can be used in
a Java context. A custom KiCo transformation converts the RailSL model to an SCCharts model, which
is then compiled with the standard SCCharts compilation chain, generating C code. This C code can
then be compiled together with a file containing wrapper code as an interface between the controller
program and either the railway installation or a simulation using a predefined makefile.

The language is ready to be used and creates fully functional controllers, however some improve-
ments are left for future work.

35



7. Conclusion

7.2 Future Work

This section lists topics that are left for future projects.

7.2.1 Improved workflow

At the time of writing, the language, though fully functional, does not offer a very user-friendly
workflow. It is currently necessary to copy and paste the C code generated by KIELER into a correctly
named file along with the makefile, wrapper code, required headers and, in case it is compiled for
simulation, the files needed for that as well. The compilation itself currently has to be manually run as
well, then the resulting binary has to be started by hand via a command line.

Eclipse does offer options to greatly improve this workflow. It would be possible to automatically
configure a run configuration for each project created with the New RailSL project wizard. This run
configuration should execute a KiCo configuration (kibuild) file that generates the C code, then saves
it to an appropriate output directory. The project creation wizard should also create all files required
for the compilation of the generated code so that the run configuration can call make and afterwards
run the generated executable file.

7.2.2 Simulation in KIELER

As mentioned earlier, the team of the master’s railway project that took place recently (see Section 2.3.2)
developed an SCCharts-based simulation of the railway installation that can be used directly with
the simulation mechanism of KIELER. However, at the time of development, it was not possible to
integrate this simulation with the RailSL system as it had not yet been migrated to the latest version of
KIELER and was thus not compatible with my code. For future work, it would be desirable to use this
new simulation instead of the old standalone version as it would greatly simplify the simulation of
RailSL programs. This way, a single button could start the simulation right from the code in the editor,
removing a lot of overhead.

36



Appendix A

User Documentation

A.1 Introduction

RailSL is a textual language designed for quick and simple programming. It allows the construction
of controller software for the model railway installation maintained by the Department of Computer
Science of Kiel University. It is meant to be easily usable even by people with little to no programming
experience. This manual explains the usage of the language and, for the sake of understandability,
leaves out a lot of technical detail, which the interested reader can find in Philip Eumann’s Bachelor’s
thesis!. If any questions remain unanswered by this manual, please feel free to contact Philip Eumann
(stu121235@mail.uni-kiel.de).

A.2 The Installation

The Department of Computer Science’s model railway installation is, as can be seen in Figure A.1,
divided into four parts:

Kicking Horse Pass
This part of the installation (highlighted red in the track scheme) can be used by trains travelling in
both directions. However, travelling clockwise is considered the main direction of travel. The Kicking
Horse Station (at the top of the scheme) has enough space for five trains and can also be used in
both directions. The two segments at the bottom have little arrows next to them that indicate the
preferred direction of travel. This means that if a train travels clockwise, it should preferably take
the bottom route and the top route if it travels the other way round.

Outer Circle
The green Outer Circle and its station may only be used by trains travelling clockwise.

Inner Circle
Trains using the yellow Inner Circle and its station must travel counter-clockwise.

Connections
There are several connecting segments between the three circles, highlighted in blue. Each one of
them may be used according to the arrows shown next to them.

An interesting property of this installation, which it shares with most other model railways, is the
fact that the trains cannot be controlled directly. Instead, the track segments they run on are set to
different speed settings.

The details of the different components are described in Section A.4.

Thttp:/ /rtsys.informatik.uni-kiel.de/ ~biblio/downloads/ theses /peu-bt.pdf

37



A. User Documentation

Model Railway Track Scheme

Realtime and Embedded Systems Group

Symbols
KH_ST_1 P KH_ST_6
/ == KH_ST_2 —c /® e ‘\ Track segments
Q*®* 0 @ @ O wsis ©®© @ [CPEC) ————  Inner Circle
® / e KH_ST 4 == o0 / ———= Outer Circle
Ksto = KH_ST_5 PR 4 g 8 === Kicking Horse Pass

=

/f; I 1 === Interconnections

10_LN_2 OLLN_O

0 " e — - o

OC_INO m\?cim’u.é OCIN.1 oo OCUNL2 o OGNS Track specialties

8l| 8 ﬁ { —— cINs = — s — )
V4 10_LN_0 / \C,Jcr,ug o OI_LN_ 2 & IC.LN_3 ”\Cﬁmﬂ ':\\% Bridge
0 Coae—

0 OI_LN_1 o]
8| zé Point or crossing
|
3 .26
e
—,
) —

KIO_LN_1
KH_LN_0

o
=
z
[

KH_LN_8
KIO_LN_0
OC_LN_0
IC_LN_5
IC_LN_1
OC_LN_4

Railroad crossing

=3
——
OC_LN_5
=3
o

1 Directions

—_ Unidirectional block

IC_LN_0
=

Bidirectional block with
forward direction

z
3 FR. Preferred direction
<

_— IC_ST_3 —— oo

. ic_sT_2 —
. o o= Ny . Electronics
& Ic_sT_0 p/a Ic_ST_1 e N Ic_sT_4 J e Blooksomion
i ocst4 @ ® ® [©) oc_sT 3 ® ® @ @ oc.sto 1
— — ——=F—— Reed contact
3 -— N oc_sT 2 % 8
o — — g ge Block signal
8 N oc_sT_1 Va -
i — ® Lighting
Swg ©® 1 (] Point operating unit
KH_LN_5 —. KH_LN_3 — S J P 9
g o= o — T — p i Hohrmann, Januan
KKHJNJ e KHILN.6 - oo KN4 e o0 7 KH_LN_2 @[® 8 G bk

Figure A.1. The (simplified) trackscheme of the installation. Schematic taken from [HFP+06].

A.3 Program Structure

A.3.1 Blocks

Programs written in RailSL are structured into blocks. Blocks start with the Start marker and end with
either an End. or a Loop. marker. The dots are part of the marker and cannot be left out.

A program consists of a single block, so the first line of any program will be Start: and the last line
will be one of the two possible end markers. Each block must contain at least one statement. Statements
are basically commands capable of manipulating the installation or reacting to events. The different
types of statements are explained in the following sections.

When a block runs, the statements are executed one by one, in the order in which they were written.
Statements that control the components of the railway installation run in practically no time, whereas
some statements that wait for certain events may take a lot longer to run (see Section A.5).

Once all statements in a block have been executed, two things can happen:

1. If the block ends with the End. marker, the next step depends on the block’s position:
If the block is the root block, so the program itself, the program ends here.

If the block is part of a parallel statement and was the last one to terminate, the execution is
continued after the parallel statement in the parent block.

2. If the block ends with the Loop. marker, it is restarted and runs again from the beginning.

38



A4. Controlling the Components

A.3.2 Parallel Blocks

To run multiple trains at once, it is necessary to have multiple blocks that can be executed at the same
time, parallel to each other. This way, each train can have its own block that sets switch points and
track segments for it.

To accomplish this, you can write Parallel: anywhere within a block and follow it up with two
or more complete blocks (including start and end markers). There must not be any other statements in
between these blocks. These blocks may contain any statements, including other parallel statements.
After the blocks, you can just continue writing more statements. These belong to the same block as
the parallel statement. When all blocks have terminated, as described in the previous subsection, the
execution will resume here.

Be aware that if a parallel statement contains at least one block with a Loop. end marker, the
parallel statement will run forever and no statements will be executed that are located after it.

Two parallel blocks cannot control the same components as this may cause not only conflicts on a
software level, but also collisions on the hardware level. It is possible to model this kind of behaviour,
however the compiler will later reject such models. It is usually possible to divide blocks into several
chunks and have only those executed in parallel that should actually have simultaneous behaviour
and put the other chunks in a second parallel statement later on.

A4 Controlling the Components

When controlling the model railway installation, the following rules must be obeyed under all circum-
stances as parts of the installation might be damaged otherwise.
1. Track Speeds

The speed setting of a track segment must not be reversed while a train is on it.

If a train passes from one segment to the next, both segments must be set to the same speed
and direction.

The speed of a train must never be changed from full to stop as this may cause it to skid past
the stopping point and causing collisions.
2. Stopping

A train may only stop on a segment that has contacts in it and has to stop completely between
the two contacts.

Stopping on segments without any contacts is not allowed as these are either too short to
accomodate a train or connector tracks that must not be blocked.
3. Direction of travel
Trains must obey the travel directions for the segments stated above.

Trains may only ever travel forward; trains driving backwards may be derailed or otherwise
damaged.

To turn a train around, the loops between Inner and Outer Circle must be used.

4. Switch points
Trains must not run into switch points that have not been appropriately set

Switch points must not change orientation while a train is crossing them

39



A. User Documentation

5. Free segments

Whenever a block starts, it has to be ensured that all segments and switch points used by the
block are free of trains.

Each block exclusively uses the components for the entire duration of its execution.

A.4.1 Statements and their Effects

This section explains each type of statement that is available in RailSL. Generally, most statements are
complete sentences. If the examples show a full stop at the end, this is part of the statement and must
not be left out.

TrackStatement

The TrackStatement can be used to set speed and direction of track segments. The statement has the
general form

Set track [segments] to [setting].

One or more segment can be listed according to their name in the track scheme shown in Figure A.1.
When listing more than one segment, the setting is applied to all of them at once. There are three
options on how to list them. They all have the same effect and you can choose whichever one you like
the most.

Comma-separated KH_ST 1, KH_ST 2, KH_ST_3
Using “and” KH_ST_1, KH_ST_2 and KH_ST_3
Using the Oxford comma KH_ST_1, KH_ST_2, and KH_ST_3

There are three different speed settings available: full, slow and stop. If the train should move in
the main direction of travel, as described above, this already is the complete setting. If the train should
move against the main direction of travel, which is only legal on Kicking Horse Pass, add reverse after
the speed setting.

Signals will be automatically set appropriately.

PointStatement

PointStatements change the orientation of switch points. The general form is

Set point [index / indices] to [setting].

As indices, the numbers next to the points in Figure A.1 are used. Again, to list multiple indices,
the rules listed in the previous section apply.

There are only two settings available, straight and branch. straight does not necessarily mean
completely straight; the straight setting is always the one closer to an actually straight line while
branch is further away from it.

LightStatement

With LightStatements, the (purely decorative) lights of the installation can be turned on and off. A
LightStatement looks like this

Turn light [index / indices] [setting].

For indices, the same rules as above apply. The possible settings are on and off.

40



A.5. Delays

CrossingStatement

With the CrossingStatement, the railway crossing outside the Kicking Horse Pass station can be opened
and closed. The statement itself is very simple:

[command] crossing.

The command can either be 0pen or Close.

A.5 Delays

Until now, all statements already presented were instantaneous, meaning that they are executed
immediately and take practically no time. Usually however, the program will have to wait for a certain
event and do something only after this event occured.

These events can either be timer events, meaning that a certain amount of time elapsed, or contact
events. As mentioned before, most of the track segments have contacts at either end. These contacts can
detect trains passing over them. RailSL differentiates between reaching a contact, which means that the
tip of the locomotive of a train is crossing the contact, and passing it, meaning that the end of the last
wagon is over the contact. It is possible to wait for either of these events on any track that has contacts.

TimeWaitStatements are relatively simple:

Wait for [number of seconds] seconds.

ContactWaitStatements have the general form

[Event] [index] contact of [segment],

where the event can either be Reach or Pass, the index is one of first and second and segment is
the track segment’s name according to Figure A.1. Remember that the index is counted in the main
direction of travel, which is not necessarily the way the train is currently moving!

A.6 Compilation
To compile a RailSL program, there are several steps required.

1. Open the file that you want to compile in KIELER’s RailSL editor by double-clicking it from the
Project Explorer view.

2. If it is not yet open, open the KIELER compiler selection by clicking Window — Show View —Other...,
selecting Other —IMB Compiler and clicking OK.

3. If it is not yet open, open the KLighD Diagram view by clicking Window —Show View —Other...,
selecting KIELER Lightweight Diagrams —Diagram and clicking OK.

4. In the compiler selection, open the dropdown menu and select RailSL
5. Press the compile button on the left of the dropdown menu
6. The Diagram view now shows C code. Click the blue [Open in Editor] button.

7. In the C code editor, press Ctrl + A to select everything and Ctrl + C to copy it.

The following steps depend on whether the code should run on the railway installation or be
simulated locally.

41



A. User Documentation

Compilation for Simulation

To compile the controller for simulation, follow these steps:

1. Open the file Controller.c located in /railsl/simulation/RailwayControllerC

2. Replace all possibly existing content with your new code by pressing Ctrl + A and then Ctrl + V
3. Save and close Controller.c

4. Open a terminal and navigate to the simulation directory by entering cd ~/railsl/simulation

5. Compile your code along with the simulation by entering make all

6. Start the ModelGUI in an asynchronous task by entering gui &

7. In the ModelGUI window, click Open and select the file railway-6b1_fullsimsa.svg, then click Open
8. In the terminal window, enter Executables/SampleController

9. In the ModelGUI window, press the Play button.

The simulation now shows the behaviour of your controller. If there are any problems with the
simulation like collisions, error messages or unexpected behaviour in general, do not deploy your code
to the installation. Please ask a supervisor if you cannot solve the issue yourself.

Compilation for the Installation

Before deploying your controller to the installation, please make sure that it does not cause any
problems when simulated, as described in the previous section.
To deploy a controller, follow these steps:

1. Open the file Controller.c located in /railsl/girlsday

2. Replace all possibly existing content with your new code by pressing Ctrl + A and then Ctrl + V
3. Save and close Controller.c

4. Open a terminal and navigate to the girlsday directory by entering cd ~/railsl/girlsday

5. Compile your code by entering make all

6. Turn on the switch labelled 12V on the physical railway installation and wait for 30 seconds

7. Start the controller by entering ./RailwayController

If you want to terminate a controller that is running in an infinite loop, press Ctrl + C in the
terminal window.

Please rearrange all trains exactly the way they were before you used the installation. Do not push
locomotives around as they may be damaged. Instead, carry them and push the carriages.

42



A.7. Comments and Formatting

A.7 Comments and Formatting

While it is not required for the program to run, clean formatting and comments are important when
writing programs.

Formatting helps understand the program more quickly. Here are some general formatting rules to
keep in mind:

> Start a new line for every statement
> Do not put more than one space between words
> Leave empty lines where it makes sense (e. g., between blocks of a ParallelStatement)

> Indent your lines.
Keep everything at the same indentation that is on the same hierarchy level

For example, indent everything inside a block by one tab more than the Start: and End.
markers of the block.

Use tabs instead of spaces to indent

A.8 Troubleshooting

This section lists common issues and possible solutions to them.

Editor text highlighted in red / Red “X” showing on the left

> Move your cursor over the highlighted word or the error marker. The tool will give you an error
description that is usually enough to solve the problem.

> If you are unsure what the message means, delete the highlighted part and press Ctrl + Space where
it used to be. You will see a menu with possible words that may be used in this position. If you
are still unsure, carefully read the explanations above and make sure that the statement you are
writing obeys the rules listed there.

> If the message says something like “Extraneous Input [X], expected EOF”, you either have an extra
block end marker somewhere or you wrote code outside the main block, which is not allowed.
The Visualization is not working

> Reload the mapping by pressing the Open KVis File button and selecting the file Mapping.kvis, then
clicking OK

> Make sure that your editor contains no input highlighted in red
> Make sure that the statement you are entering has an effect that should be visible in the Visualization.

For example, setting a point to straight will not be visible as points are displayed as straight by
default.

43



A. User Documentation

The simulation does not behave correctly

> Check your RailSL program for possible programming errors. Most of the time, the reason that a
program does not behave as expected is a bug in the code. Especially check for contact indices; look
at the visualization and make sure that the right contact is adressed.

> Check the IMB Compiler view after compiling.

Expand group labelled SCG by double-clicking it

Look for the Scheduler transformation. If there is a red box inside it, this means that your
program contains two or more parallel blocks that access the same component of the installation.
This may cause damages to the installation.

To solve this issue, think about splitting your program into multiple sets of blocks that can be
executed one after the other to avoid this problem.

44



Appendix B

Sample Solutions to typical Programming
Challenges

This chapter presents the typical challenges used for promotional events as well as sample RailSL
programs that solve them.

B.1 Challenge 1 (Easy)

Challenge one is as follows:

—_

. Train starts on KH_ST 2

Train moves at full speed to the beginning of KH_LN_6
Train slows down and stops at the end of KH_LN_6
Wait for 5 seconds

Train continues at full speed to its original track

A T

Train slows down and stops at the end of its original track.

Listing B.1 shows a simple approach to solving this challenge. For this challenge, an alternative
solution is listed in Listing B.2, where each segment is only active when required and segments are
turned back off as soon as they are not needed anymore. However, this is more complex and thus
rarely to be found in practice.

45



B. Sample Solutions to typical Programming Challenges

1| /=

2| + Sample solution to Girl’s Day Challenge 1
3| = — Simple version —

4| =

5/ * Philip Eumann, stul21235@mail.uni—kiel.de
6| */

s| Start:

10 // Set points

11 Set point 7, 8, 15 to branch.
2| Set point 9 to straight.

13 Wait for 3 seconds.

15 // Travel to first contact of KH LN 6
16 Set track KH_ST_2, KH_ST_6, KH_LN_0, KH_LN_1, KH_LN_ 2, KH_LN_4, KH_LN_6 to full.
17 Reach first contact of KH_LN_6.

19 // Slow down
20 Set track KH_LN_4, KH_LN_ 6 to slow.
21 Reach second contact of KH_LN_6.

23 // Stop and wait

24 Set track KH_LN_6 to stop.
25 Wait for 5 seconds.

26
27 // Set points

28 Set point 14, 0, 2, 3 to straight.
29 Set point 1, 4 to branch.

30 Wait for 3 seconds.

32 // Travel to first contact of KH_ST 2
33 Set track KH_LN_6, KH_LN_7, KH_LN_8, KH_ST_ 0, KH_ST 2 to full.
34 Reach first contact of KH_ST 2.

36 // Slow down
37 Set track KH_ST 0, KH_ST_2 to slow.
38 Reach second contact of KH_ST 2.

40 // Stop
4 Set track KH_ST_2 to stop.

| End.

Listing B.1. A simple solution to Challenge 1.

46



26

B.1. Challenge 1 (Easy)

+ Sample solution to Girl’s Day Challenge 1
Advanced version

+ Philip Eumann, stul21235@mail.uni—kiel.de

x-/
Start:

// Set points

Set point 7, 8, 15 to branch.
Set point 9 to straight.
Wait for 3 seconds.

// Travel to first contact of KH LN 6
Set track KH_ST_ 2, KH_ST_ 6, KH_LN 0 to full.
Pass first contact of KH_LN_O.

Set track KH_ST_6 to stop.
Set track KH_ST 2 to stop.
Reach second contact of KH_LN_O.

Set track KH_LN_1 to full.
Pass first contact of KH_LN_1.

Set track KH_LN_O to stop.
Reach second contact of KH_LN_1.

Set track KH_ LN 2 to full.
Pass first contact of KH_LN_2.

Set track KH.LN_1 to stop.
Reach second contact of KH_LN_2.

Set track KH_LN 4 to full.
Pass first contact of KH_LN_4.

Set track KH_LN_2 to stop.
Reach second contact of KH_LN_4.

Set track KH_LN_6 to full.
Reach first contact of KH_LN_6.

// Slow down
Set track KH_LN 4, KH_LN_ 6 to slow.
Reach second contact of KH_LN_6.

// Stop and wait
Set track KH_LN_ 4, KH_LN_6 to stop.
Wait for 5 seconds.

// Set points

Set point 14, 0, 2, 3 to straight.
Set point 1, 4 to branch.

Wait for 3 seconds.

// Travel to first contact of KH ST 2
Set track KH_LN 6, KH_LN_7 to full.
Pass first contact of KH_LN_7.

47




B. Sample Solutions to typical Programming Challenges

Set track KH_LN_6 to stop.
Reach second contact of KH_LN_7.

Set track KH_LN_8 to full.
Pass first contact of KH_LN_S8.

Set track KH_LN_7 to stop.
Reach second contact of KH_LN_ 7.

Set track KH_ST 0, KH_ST_ 2 to full.
Reach first contact of KH_ST 2.

Set track KH_ST_ 0, KH_ST_2 to slow.
Reach second contact of KH_ST 2.

Set track KH_ST_2 to stop.

)| End.

Listing B.2. An advanced solution to Challenge 1.

B.2 Challenge 2 (Advanced)

The second challenge is as follows:
This challenge requires two trains.
The first trains moves exactly as described in Section B.1.
The second train moves as follows:

1. Train starts on IC_ST_3
2. Train does a lap at full speed to the beginning of its original track

3. Train slows down and stops at the end of its original track.

This challenge can, for example, be solved by Listing B.3.

Start:

Parallel :

Start:

Set point 7, 8, 15 to branch.
Set point 9 to straight.
Wait for 3 seconds.

48




26

66

69

End.

// Travel to first contact of KH LN 6

B.2. Challenge 2 (Advanced)

Set track KH_ST_ 2, KH_ST 6, KH_LN_0, KH_LN_1, KH_LN_2, KH_ LN 4, KH_IN 6 to full.

Reach first contact of KH_LN_6.

// Slow down
Set track KH_LN_4, KH_LN_6 to slow.
Reach second contact of KH_LN_6.

// Stop and wait
Set track KH_LN_6 to stop.
Wait for 5 seconds.

// Set points

Set point 14, 0, 2, 3 to straight.
Set point 1, 4 to branch.

Wait for 3 seconds.

// Travel to first contact of KH_ST 2

Set track KH.LN 6, KH LN 7, KH_ LN 8, KH ST 0, KH.ST_2 to full.

Reach first contact of KH_ST 2.

// Slow down
Set track KH_ST_0, KH_ST_2 to slow.
Reach second contact of KH_ST 2.

// Stop
Set track KH_ST 2 to stop.

End.

// Train 2
Start:

// Set points

Set point 24, 20 to branch.

Set point 23, 29, 13, 11, 18, 19 to straight.
Wait for 3 seconds.

// Travel to first contact of IC_ST_3

Set track IC_ST_3, IC_ST_4, IC_LN_O0, IC_LN_1, IC_LN_2, IC_LN_3, IC_LN_4, IC_JCT_0,

IC_LN_5, IC_ST_0 to full.

Reach first contact of IC_ST_3.

// Slow down
Set track IC_ST_0, IC_ST_3 to slow.
Reach second contact of IC_ST_3.

// Stop
Set track IC_ST_3 to stop.

End.

Listing B.3. A possible solution to Challenge 2.

49




B. Sample Solutions to typical Programming Challenges

B.3 Challenge 3 (Hard)

The third and hardest challenge is uses two trains.
Train A moves as follows:

1. Train starts on KH_ST_2
Train moves clockwise at full speed and does a loop of Kicking Horse Pass

Train returns to its original track

=N

Train slows down and stops at the end of its original track.

Train B moves as follows:

—_

Train starts on KH_ST 4
Train moves counter-clockwise at full speed and does a loop of Kicking Horse Pass

Train returns to its original track

= w N

Train slows down and stops at the end of its original track.

In this challenge, it is important to make sure that the two trains can never collide. Simulate the
controller before running it on the installation!

This challenge was difficult to do with the formerly used tool, however a RailSL program like
Listing B.4 is relatively simple to write and can solve the challenge.

50



G W N =

B.3. Challenge 3 (Hard)

/j Sample solution to Girl’s Day Challenge 3
. Philip Eumann, stul21235@mail—uni—kiel.de
./
Start:

Parallel :

// Train A
Start:

// Set points

Set point 7, 8, 15 to branch.
Set point 9 to straight.
Wait for 3 seconds.

// Travel to first contact of KH_LN_6
Set track KH_ST 2, KH_ST_ 6, KH_LN_ 0, KH_LN_1, KH_LN_ 2, KH_LN 4, KH LN 6 to full.
Reach first contact of KH_LN_6.

// Slow down
Set track KH_LN_4, KH_LN_6 to slow.
Reach second contact of KH_LN_6.

// Stop and wait
Set track KH_LN_6 to stop.
End.

// Train B
Start:

// Set points

Set point 2, 1, 14 to branch.
Set point 0 to straight.
Wait for 3 seconds.

// Travel to second contact of KH_LN 3
Set track KH_ST 4, KH_ ST 0, KH_ LN 8, KH LN 7, KH_ LN 5, KH_IN 3 to full reverse.
Reach second contact of KH_LN_3.

// Slow down
Set track KH_LN_5, KH_LN_3 to slow reverse.
Reach first contact of IC_ST_3.

// Stop
Set track IC_ST_3 to stop.
End.

// Both trains reached the bottom lanes.
Parallel:

// Train A
Start:

// Set points
Set point 14, 0, 2, 3 to straight.

51




B. Sample Solutions to typical Programming Challenges

60 Set point 1, 4 to branch.
61 Wait for 3 seconds.

63 // Travel to first contact of KH_ST_2
64 Set track KH_LN_6, KH_LN_7, KH_LN_ 8, KH_ST 0, KH_ST 2 to full.
65 Reach first contact of KH_ST 2.

66

67 // Slow down

68 Set track KH_ST 0, KH_ST_2 to slow.

69 Reach second contact of KH_ST 2.

70

71 // Stop

7 Set track KH_ST 2 to stop.

74 End.

76 // Train B

77 Start:

79 // Set points

80 Set point 8, 5 to branch.

81 Set point 15, 9, 7, 6 to straight.

82 Wait for 3 seconds.

83

84 // Travel to second contact of KH_ST_ 4

85 Set track KH_LN_3, KH_LN_ 2, KH_ILN_ 1, KH_LN_0, KH_ST 6, KH_ST 4 to full reverse.
86 Reach second contact of KH_ST 4.

88 // Slow down

89 Set track KH_ST 4, KH_ST_6 to slow reverse.
90 Reach first contact of KH_ST 4.

91

9”2 // Stop

93 Set track KH_ST 4 to stop.

94 End.

os| End.

Listing B.4. A solution proposal to Challenge 3.

52



[And95]
[BCE+03]

[Ber00a]

[Ber00b]

[Ber02]

[DKV00]

[Don10]

[HCR+91]

[HDM+13]

[HDM+14]

[HEP+06]

Bibliography

Charles André. Synccharts: a visual representation of reactive behaviors. Tech. rep. Oct. 1995.

Albert Benveniste, Paul Caspi, Stephen A. Edwards, Nicolas Halbwachs, Paul Le Guernic,
and Robert de Simone. “The Synchronous Languages Twelve Years Later”. In: Proc. IEEE,
Special Issue on Embedded Systems. Vol. 91. Piscataway, NJ, USA: IEEE, Jan. 2003, pp. 64-83.

Gérard Berry. The Esterel v5 language primer, version v5_91. ftp://ftp-sop.inria.fr/esterel/
pub/papers/primer.pdf. Centre de Mathématiques Appliquées Ecole des Mines and INRIA.
06565 Sophia-Antipolis, 2000.

Gérard Berry. “The foundations of Esterel”. In: Proof, Language, and Interaction: Essays in
Honour of Robin Milner. Ed. by Gordon Plotkin, Colin Stirling, and Mads Tofte. Cambridge,
MA, USA: MIT Press, 2000, pp. 425-454. 1sBN: 0-262-16188-5.

Gérard Berry. The constructive semantics of pure Esterel. Centre de Mathématiques Ap-
pligées, Ecole des Mines de Paris and INRIA, 2004 route des Lucioles, 06902 Sophia-
Antipolis CDX, France: Draft Book, Version 3.0, Dec. 2002.

Arie van Deursen, Paul Klint, and Joost Visser. “Domain-specific languages: an annotated
bibliography”. In: SIGPLAN Not. 35.6 (June 2000), pp. 26-36. 1sSN: 0362-1340. DOL: 10.1145/
352020.352035. URL: http://doi.acm.org/10.1145/352029.352035.

Aron Donohue. “Debugging domain-specific languages”. http://www.arandonohue. com/writing/
Msc/ut-thesis.pdf. Master thesis. University of Toronto, Graduate Department of Computer
Science, 2010.

Nicolas Halbwachs, Paul Caspi, Pascal Raymond, and Daniel Pilaud. “The synchronous
data-flow programming language LUSTRE”. In: Proceedings of the IEEE 79.9 (Sept. 1991),
pp- 1305-1320.

Reinhard von Hanxleden, Bjorn Duderstadt, Christian Motika, Steven Smyth, Michael
Mendler, Joaquin Aguado, Stephen Mercer, and Owen O’Brien. SCCharts: Sequentially
Constructive Statecharts for safety-critical applications. Technical Report 1311. ISSN 2192-6247.
Christian-Albrechts-Universitdt zu Kiel, Department of Computer Science, Dec. 2013.

Reinhard von Hanxleden, Bjorn Duderstadt, Christian Motika, Steven Smyth, Michael
Mendler, Joaquin Aguado, Stephen Mercer, and Owen O’Brien. “SCCharts: Sequentially
Constructive Statecharts for safety-critical applications”. In: Proc. ACM SIGPLAN Con-
ference on Programming Language Design and Implementation (PLDI '14). Edinburgh, UK:
ACM, June 2014.

Stephan Hohrmann, Hauke Fuhrmann, Steffen Prochnow, and Reinhard von Hanxleden.
“A versatile demonstrator for distributed real-time systems: using a model-railway in
education”. In: Proceedings of the ERCIM/DECOS Dependable Embedded Systems Workshop at
Euromicro 2006. Cavtat/Dubrovnik, Croatia, Aug. 2006.

53


ftp://ftp-sop.inria.fr/esterel/pub/papers/primer.pdf
ftp://ftp-sop.inria.fr/esterel/pub/papers/primer.pdf
http://dx.doi.org/10.1145/352029.352035
http://dx.doi.org/10.1145/352029.352035
http://doi.acm.org/10.1145/352029.352035
http://www.arandonohue.com/writing/MSc/ut-thesis.pdf
http://www.arandonohue.com/writing/MSc/ut-thesis.pdf

Bibliography

[HMA+14]

[Hoh06]

[McC88]

[MSH14]

[NSI+03]

[RSM+15]

[SMS+15]

[SSH13]

[Stal5]

[The06]

[Vel12]

[Wec15]

54

Reinhard von Hanxleden, Michael Mendler, Joaquin Aguado, Bjorn Duderstadt, Insa
Fuhrmann, Christian Motika, Stephen Mercer, Owen O’Brien, and Partha Roop. “Sequen-
tially Constructive Concurrency—A conservative extension of the synchronous model
of computation”. In: ACM Transactions on Embedded Computing Systems, Special Issue on
Applications of Concurrency to System Design 13.4s (July 2014), 144:1-144:26.

Stephan Hohrmann. “Entwicklung eines modularen Feldbussystems zur Steuerung einer
Modellbahnanlage”. http://rtsys.informatik.uni- kiel.de/~biblio/downloads/ theses/sho - dt . pdf.
Diploma thesis. Christian-Albrechts-Universitit zu Kiel, Department of Computer Science,
Mar. 2006.

John W. McCormick. “Using a model railroad to teach digital process control”. In:
Proceedings of the Nineteenth SIGCSE Technical Symposium on Computer Science Education.
SIGCSE "88. Atlanta, Georgia, USA: ACM, 1988, pp. 304-308. 1sBN: 0-89791-256-X. por:
10.1145/52964.53039. URL: http://doi.acm.org/10.1145/52964.53039.

Christian Motika, Steven Smyth, and Reinhard von Hanxleden. “Compiling SCCharts—A
case-study on interactive model-based compilation”. In: Proceedings of the 6th International
Symposium on Leveraging Applications of Formal Methods, Verification and Validation (ISoOLA
2014). Vol. 8802. LNCS. Corfu, Greece, Oct. 2014, pp. 443—462. DOI: 10.1007/978-3-662-45234-9.

H. Noma, H. Sasamoto, Y. Itoh, Y. Kitamura, F. Kishino, and N. Tetsutani. “Computer
learning system for pre-school-age children based on a haptized model railway”. In: First
Conference on Creating, Connecting and Collaborating Through Computing, 2003. C5 2003.
Proceedings. Jan. 2003, pp. 118-119. DOTI: 16.1109/c5.2003. 1222343.

Karsten Rathlev, Steven Smyth, Christian Motika, Reinhard von Hanxleden, and Michael
Mendler. “SCEst: Sequentially Constructive Esterel”. In: Proceedings of the 13th ACM-IEEE
International Conference on Formal Methods and Models for System Design (MEMOCODE ’15).
Austin, TX, USA, Sept. 2015.

Steven Smyth, Christian Motika, Alexander Schulz-Rosengarten, Nis Boerge Wechselberg,
Carsten Sprung, and Reinhard von Hanxleden. SCCharts: the railway project report. Techni-
cal Report 1510. ISSN 2192-6247. Christian-Albrechts-Universitdt zu Kiel, Department of
Computer Science, Aug. 2015.

Christian Schneider, Miro Sponemann, and Reinhard von Hanxleden. “Just model! —
Putting automatic synthesis of node-link-diagrams into practice”. In: Proceedings of the
IEEE Symposium on Visual Languages and Human-Centric Computing (VL/HCC "13). San Jose,
CA, USA, Sept. 2013, pp. 75-82. DOT: 16.1109/VLHCC.2013.6645246.

Andreas Stange. “Comfortable SCCharts modeling for embedded systems”. http://rtsys.
informatik.uni- kiel.de/~biblio/downloads/theses/aas - bt.pdf. Bachelor thesis. Kiel University,
Department of Computer Science, Sept. 2015.

The model railway. Project homepage. Group of Real-Time and Embedded Systems,
Department of Computer Science, Kiel, Germany. 2006. URL: http://www. informatik. uni-

kiel.de/~railway.

M. Veldthuis. “Quby - a domain-specific language for non-programmers”. http://wuw.
cs. rug.nl/~aiellom/tesi/veldthuis . pdf. Master thesis. University of Groningen, faculty of
mathematics and natural sciences, Aug. 2012.

Nis B. Wechselberg. “Model railway 4.0”. http://rtsys.informatik.uni-kiel.de/~biblio/downloads/

theses/nbw-mt.pdf. Master thesis. Kiel University, Department of Computer Science, Mar.
2015.


http://rtsys.informatik.uni-kiel.de/~biblio/downloads/theses/sho-dt.pdf
http://dx.doi.org/10.1145/52964.53039
http://doi.acm.org/10.1145/52964.53039
http://dx.doi.org/10.1007/978-3-662-45234-9
http://dx.doi.org/10.1109/C5.2003.1222343
http://dx.doi.org/10.1109/VLHCC.2013.6645246
http://rtsys.informatik.uni-kiel.de/~biblio/downloads/theses/aas-bt.pdf
http://rtsys.informatik.uni-kiel.de/~biblio/downloads/theses/aas-bt.pdf
http://www.informatik.uni-kiel.de/~railway
http://www.informatik.uni-kiel.de/~railway
http://www.cs.rug.nl/~aiellom/tesi/veldthuis.pdf
http://www.cs.rug.nl/~aiellom/tesi/veldthuis.pdf
http://rtsys.informatik.uni-kiel.de/~biblio/downloads/theses/nbw-mt.pdf
http://rtsys.informatik.uni-kiel.de/~biblio/downloads/theses/nbw-mt.pdf

	Introduction
	Synchronous Languages
	Berry's Synchronous Model of Computation
	The Sequentially Constructive Model of Computation
	SCCharts

	The KIELER Project
	The Railway Installation
	History
	Technology

	Problem Statement
	Target Audience
	Currently Used Tool
	Language Idea

	Thesis Outline

	Related Work
	Domain-Specific Languages
	Synchronous Languages
	Model Railways used in Teaching
	Digital Process Control Laboratory
	Master's Project
	Teaching Programming to Pre-School Children Using a Model Railway
	Conclusions for this thesis


	Used Technologies
	The Eclipse Platform
	Plugin Architecture
	The Eclipse Modelling Framework

	Xtext and Xtend

	Language Design
	Basic Concept
	The Design Process
	Initial Version
	Syntax Changes
	The Introduction of Conditional Statements
	The Parallel Statement

	The Final Language

	Language Implementation
	KiCo Compilation
	Logical and Physical Time
	Physical Time in Synchronous Languages
	Logical Time in RailSL

	Concurrency
	Combine Functions
	Introducing Sequential Blocks Using the Parallel Statement

	RailSL statements and their translations to SCCharts
	TrackStatement
	PointStatement
	LightStatement
	ContactWaitStatement
	TimeWaitStatement
	Blocks
	ParallelStatement
	ConditionalStatement

	Wrapper Code and Compilation

	Live Visualization
	General Idea
	Implementation

	Conclusion
	Summary
	Future Work
	Improved workflow
	Simulation in KIELER


	User Documentation
	Introduction
	The Installation
	Program Structure
	Blocks
	Parallel Blocks

	Controlling the Components
	Statements and their Effects

	Delays
	Compilation
	Comments and Formatting
	Troubleshooting

	Sample Solutions to typical Programming Challenges
	Challenge 1 (Easy)
	Challenge 2 (Advanced)
	Challenge 3 (Hard)

	Bibliography

