
Model-Based Debugging

Philip Eumann
stu121235@mail.uni-kiel.de

Master’s Thesis
June 2020

Embedded and Real-Time Systems Group
Department of Computer Science

Kiel University

Advised by
M.Sc. Alexander Schulz-Rosengarten

Dipl-Inf. Steven Smyth
Prof. Dr. Reinhard von Hanxleden





Selbstständigkeitserklärung

Hiermit erkläre ich, dass ich die vorliegende Arbeit selbstständig verfasst und keine anderen als die
angegebenen Quellen und Hilfsmittel verwendet habe.

Kiel,

iii





Abstract

Source-level debugging is a standard procedure in software development, increasing productivity and
software quality. For embedded safety-critical applications, where model-based languages are commonly
used, high quality of software is particularly important. However, standard debuggers will either
simulate the model-based code on its own, disregarding any host code surrounding it in its real
environment, or run on the generated code like on a generic program, losing options to examine the
source model’s state.

To make debugging of such projects easier, this thesis proposes concepts for model-based debugging
of generated code. A model-based debugger runs on the host language level and uses knowledge
about the code generation process and additional marker comments in the generated code. With this
information, it can visualize the generated code’s memory state on the model level, making it easier for
the user to grasp the current state of the model. Additionally, the debugger allows for the placement
of host-language breakpoints through the source model, letting the user interrupt the control flow of
the generated code in the right place without any knowledge about its structure.

The presented concepts are demonstrated and evaluated using SCCharts, a synchronous state
machine-based language. A prototype of a model-based SCCharts debugger has been created and two
small studies were conducted to evaluate its useability and intuitiveness.
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Chapter 1

Introduction

Many real-time systems have high requirements for safety and thus code correctness. While for some
high-risk systems, such as power plant controls or aviation software, formal verification is commonly
used today [BBD+17], testing remains the main way of finding faults in code for most applications
[OR14]. Many faults become apparent and easy to fix once they are discovered, however, some are
harder to locate and require extensive debugging. This becomes particularly difficult for heterogeneous
systems where components are developed using different languages since in that case, no single
debugger can be used for the whole system. The concept of model-based design usually results in such
systems.

In model-based-design, an additional abstraction level, usually in form of a new modelling language,
is added on top of a pre-existing general-purpose language, the host language. Much like other high-
level languages, this addition does not bring more expressiveness since the new language is compiled
into an equivalent program in the host language. However, the new modelling language usually makes
developing certain types of software easier and quicker since less code needs to be written, helping
manufacturers to reduce development time while increasing quality [DF07].

As mentioned above, this improvement comes at the cost of some difficulties during debugging.
While debuggers for both the host and the model-based language may be available, projects will
often consist of both code hand-written in the host language and code generated from a model. The
model can then be used as a high-level control instance that orchestrates the system’s behavior, while
hand-written host language code handles low-level I/O and other tasks. The debugger for the host
language works on both the generated and the hand-written code, but not on the original model,
which leaves it up to the user to relate the generated code with the original model. On the other hand,
the debugger for the model-based language can be used on the source model, but oftem does not take
interactions with other parts of the project into consideration if they were written in the host language.

Therefore, this thesis presents concepts for debugging such heterogeneous projects with an aug-
mented debugger for the host language. Such a debugger runs on the host-language code, but aids the
user in relating the source model with the code generated from it.

1.1 Debugging Overview

To give a better idea of the expectations towards a debugger, this section will cover the basic underlying
concepts of debugging.

1.1.1 Breakpoints

The main idea behind a debugger is to examine a program while it is running to understand its
inner workings in a way that would not be possible simply by running it and observing the input /
output behavior. However, most debuggers do not actually allow interactions while the program is
running, since its state is changing too quickly in that case. Instead, they allow the user to interrupt

1



1. Introduction

Figure 1.1. An example of Debugging in the Eclipse IDE.

the program’s execution, effectively freezing the associated memory and allowing interaction with it
before resuming.

A common concept to achieve such interruptions in a controlled way is that of breakpoints. Break-
points are markers that are associated with a certain event in the program, e. g., the execution of
a certain instruction or the occurrence of an exception. The program will run normally up to the
occurrence of the specified event, which will then lead to a program suspension. After the user is done
with examining the program state, they can then resume the program until the next breakpoint is hit
or the execution terminates.

Depending on the language and debugger, the options for breakpoints and when they can be set
may differ. For Java, the Java Virtual Machine (JVM) provides support for setting breakpoints at any
time during execution, be the program suspended or running, if in debug mode. Figure 1.1 shows an
example of an Integrated Development Environment (IDE) with Java debugging support. A breakpoint
on line 11 caused the execution to suspend there.

Other languages may require a compilation with certain debug flags and breakpoints placed before
compilation to allow proper suspension in the desired locations.

1.1.2 Displaying and Editing the Memory State

Once the execution has been suspended, the debugger must present the current state of the program
to the user and possibly allow interaction with it. Most debuggers for imperative languages will allow
the user to view the contents of the program’s runtime memory, showing variable values, stack state
or register values. Debuggers integrated in IDEs will usually highlight the line of code on which
the program has been suspended, making it easy for the user to spot the current program state. In
Figure 1.1, line 11 is highlighted in green since the program has been suspended there. The view to
the left shows the current call stack of the suspended thread.

Once the user has seen the memory state, they may use appropriate inputs to influence the
execution the way they need to to test certain behavior. However, since that may not always be possible,
many debuggers will also allow direct interaction with the program memory while suspended. With
such features, the user can simply set internal variables to their desired values even if that would not
be possible in a regular program run. To the right of Figure 1.1, the variables in the current scope can
be read and edited.

2



1.2. SCCharts as an Example Language

1.1.3 Step-by-Step execution

If the user wants to examine the program execution in small steps, placing a breakpoint on (almost)
every line is tedious. Therefore, an important functionality of each debugger is to execute the code
step by step without the use of breakpoints. Most debuggers support three stepping modes: Step into,
Step over and Step return [LKV11]. Any step will suspend when a breakpoint is hit before the step ends.

The Step into command will also suspend at the first code location on the next lowest hierarchy
level, the Step over command suspends when the next code location on the present hierarchy level is
reached, and Step return only suspends when arriving at a code location on the next highest level. The
exact concept of hierarchy levels and code locations depends on the language under analysis and can
therefore not be generalized easily.

For imperative languages such as C or Java, each line of code is considered a code location. In the
example program in Figure 1.1, Step over will therefore go to line 12 in the same method, Step into

will go to line 17, the first line of the called method, and Step return will leave the current method
and end on line 6 in the next highest method.

1.2 SCCharts as an Example Language

As a running example of a model-based language, SCCharts will be used throughout this thesis.
SCCharts is a model-based synchronous language proposed by von Hanxleden et al. [HDM+13]. Since
it has been designed for safety-critical applications, it is suitable for modelling complex control systems
where the generated code is embedded into a host-language project. Therefore, the language suits as
an example for this thesis. To illustrate and validate the presented approaches, I have implemented a
demonstrator for SCCharts.

While SCCharts are a graphical, state-machine based language, a textual editor for easy editing
is available, coupled with an automatically generated diagram representation. When the model is
finished, it can be compiled to a host language such as C or Java using a variety of different compilation
approaches. The language and its compilation are introduced in more detail in Section 2.1.

Figure 1.2 shows the SCCharts editor along with the automatically synthesized diagram next to
it. The bottom view shows the compiler selection where different compilation approaches and target
languages can be selected.

1.3 Problem Statement

As mentioned above, model-based programs can either be debugged directly with a specialized
debugger for the modelling language or a more general one for the host language. Debugging the
source model is useful for component testing and for finding logical errors in the model itself. However,
detecting problems arising from the interactions between the model and its surrounding code can
only be done through integration tests conducted with the full system, which is not possible using a
debugger for the modelling language.

For this purpose, a debugger for the host language must be used to be able to observe both the
hand-written and the generated code. Another reason to use a debugger on the generated code rather
than the source model is that most code generators are not formally verified, therefore there is no
guarantee that an error-free source model leads to error-free generated code. The topic of formal
verification is covered in more detail in Section 2.4.
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Figure 1.2. An example SCChart within the development environment.

However, the debugger for the host language only works on that language’s abstraction level, not
taking into consideration the overlying structure of the model. Depending on the compiler, there may
be great structural differences between original and generated code. In some cases, the compiler focuses
on performance, code size or similar metrics while not putting any emphasis on code readability. Even
though there has been recent progress in generating more human-readable code from model-based
languages [SMH18], the following issues remain when using host-language debuggers on generated
code.

Navigating the generated code is hard. While the generated code is structured according to the
source model, finding the code corresponding to certain model elements may be difficult. Navigating
the source code efficiently requires detailed knowledge about the code generation process and the
different transformations applied.

Placing breakpoints is non-trivial. If one wants to place breakpoints in the generated code, it may
be difficult to find the appropriate code location(s). Depending on the model structure and compiler,
model-to-model (m2m) transformations may be applied during the compilation progress, replacing
complex source model elements with a set of multiple semantically simpler constructs. Without
detailed knowledge of these transformations and the host language constructs they result in, it may be
hard to impossible to find appropriate code locations for breakpoints.

Regular debugging tools do not offer enough information. When a breakpoint within the generated
code is hit, it may be hard to find out what part of the model triggered the breakpoint. Even if one can
determine the correct model element, this does not necessarily tell the user everything they need to
know about the model’s state. Even after finding the model element triggering the breakpoint, the
values of I/O variables or internal states remain hidden from the user, again requiring knowledge
about the code generation process to find the values within the generated code’s runtime memory.
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1.4 Goals

This thesis contributes concepts for debugging heterogeneous projects containing code generated from
model-based languages. The main goal is to facilitate debugging within the hostcode environment to
seamlessly integrate with the existing workflow and tooling for that language without confronting the
user with any of the above challenges. To illustrate the concepts, a demonstrator implementation for
SCCharts is developed as part of the thesis.

The following sections present different functionalities that such a debugger needs to provide.
More details on the features and concepts for realizing them can be found in Chapter 4.

1.4.1 Setting Breakpoints

As mentioned above, finding the right place in the code for a breakpoint is non-trivial. Therefore,
the tool needs to offer a mechanism to easily place breakpoints on model elements without the user
needing to find the appropriate location(s) in the generated code. Depending on the language, this can
either be done in a text editor by selecting the desired line of code or in a graphical view of the model
for visual modelling languages.

When the user places a breakpoint on the source model element, the tool needs to automatically
determine the appropriate code location(s) in the generated code and place a breakpoint in each one
of them. This way, the execution of the generated code will suspend appropriately when the model
element is reached. Note that the appropriate location for breakpoints depends on the breakpoint
semantics; this topic will be discussed in more detail in Section 4.1.

1.4.2 Displaying Runtime Information

Section 1.3 stated that the information provided by the regular host language debuggers does not
suffice for debugging the source model appropriately. Therefore, the tool needs to visually indicate the
state of the source model whenever a breakpoint is hit.

There are many ways of doing this. Some approaches for visualizing the state of a program are
discussed in Chapter 2. For visual languages, highlighting parts of the model is an option while many
textual languages opt for highlighting the executing line of code along with tooltips for variables
displaying their runtime values.

1.4.3 Stepping

There are two possible ways a debugger can support stepping through the generated code. Since the
debugging of heterogeneous projects with both generated and hand-written host language code is
the goal, the tool needs to support at least stepping on the host language level. This way, the user
is able to step through their host language project as usual and when stepping into the generated
code, the tool seamlessly displays the same information for the current code location as it would for a
breakpoint in the same place. When stepping out of the generated code, the user can seamlessly return
to debugging their hand-written code. In this variant, stepping would be supported on statement and
method level in the generated code, but not on the original model level.

The second variant is to implement a custom debug model for the modelling language, allowing to
interpret the different stepping commands with respect to the model and regardless of the unterlying
host language. For this concept, the tool needs to translate each step on the model level into a step (or
a sequence of steps) on the host language level. Even though this variant introduces more complexity
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to the tool, it may be useful especially since it does not require the user to understand the structure of
the generated code.

1.4.4 Minimal Invasiveness

To achieve all of these goals, it is necessary to modify the code generation process. However, an
important goal is to ensure that these modifications are as minimally invasive as possible. One
important reason is that compilers, particularly compiler optimizations, are correctness-preserving,
which means that a correct source program will be translated to a correct target program (if no bugs in
the compiler are present). Copperman [Cop94] emphasizes that this means a correct compiler may still
change the behavior of incorrect programs through optimizations, perhaps even making them correct.
Therefore, the same code that is debugged should be deployed later on to ensure that all bugs have
been found. Introducing a performance overhead to facilitate debugging will thus also slow down the
finished product.

Another reason is to ensure simplicity of the generated code to allow for easier verification and
validation. Section 2.4 gives more details on formal verification and why simple code is preferrable for
that purpose.

1.5 Outline

The next chapter highlights some existing work from a wide range of topics related to this thesis.
Debugging in different variants, formal verification as an alternative to debugging generated code,
algorithm visualization as a form of visual feedback on the program’s execution and other topics
are covered. Chapter 3 explains technologies used in the implementation of the demonstrator. In
Chapter 4, design considerations, breakpoint semantics, visual syntax and other preliminary decisions
are discussed before Chapter 5 gives details on how the decisions made before were realized in the
concrete implementation. An evaluation of the implemented demonstrator is presented in Chapter 6,
before Chapter 7 concludes with a summary of what has been achieved and an outlook at future
work.
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Chapter 2

Related Work

This chapter presents a selection of publications thematically related to this thesis in various ways.
Each publication is summarized and put into perspective regarding my topic.

In Section 2.1, the family of synchronous languages and the SCCharts language are explained
since both some related work and the concepts presented later require a basic understanding of the
synchronous model of computation. Section 2.2 presents different approaches to compiling model-
based languages. Lena Grimm’s Bachelor’s thesis on debugging SCCharts is presented in Section 2.3.
Afterwards, Section 2.4 deals with formally verified compilers since they offer an alternative to
manually debugging and verifying generated code.

Section 2.5 presents existing applications of compiler tracing in debugging while Section 2.6
explains different approaches to visualizing the runtime state of a program. Finally, other approaches
to easier debugging of model-based code with semi-automatically generated debuggers in Section 2.7
and a model-level debugger for cyber-physical systems in Section 2.8 are shown.

2.1 Synchronous Languages

Synchronous Languages are a set of programming languages mainly used for safety-critical real-time
systems. Many synchronous languages follow a model-based approach and are compiled to a host
language such as C or Java. The generated code can then be further compiled using a standard
compiler for that language. For this reason, the debugging concepts presented in this thesis can be
applied to them well. Even though each one has its own Model of Computation (MoC), most of them are
based on the Perfect Synchrony hypothesis [BG92]:

A perfectly synchronous system executes each one of its reactions in zero time. Therefore, all
outputs are generated at the same time the corresponding inputs are read. The execution is divided
into logical ticks, where each tick is conceptually instantaneous and consists of reading inputs and
producing the corresponding outputs. Each tick or macrostep consists of a finite number of microsteps,
each of which is executed atomically and synchronously. This means that on a real machine, each tick
can be executed in a finite amount of time, while a program run can be infinite since it may contain an
infinite number of ticks.

With synchronous languages, deterministic concurrency can be achieved [BCE+03], and since their
semantics are often mathematically defined, programs written in them are generally well-suited to be
formally verified.

2.1.1 Constructiveness and Signals

To achieve deterministic concurrency, perfect synchrony does not suffice. Defining all reactions as
instantaneous may still lead to race conditions if different threads write to the same variable in the
same tick. Therefore, additional semantic restrictions need to be defined and checked at compile time.
To this end, many synchronous languages use signals and check the program for constructiveness.
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A signal is similar to a physical wire in a circuit and can either be present or absent in each
tick. The state of the signal is not preserved across tick boundaries. It is considered present if and
only if it is emitted during the current tick and will remain so throughout the entire (conceptually
instantaneous) duration of it. One of the first languages to introduce the concept of perfect synchrony
and signals was Esterel [Ber00], a textual language developed by Gérard Berry and his team.

Present X else emit X;

Listing (2.1) A contradictory Esterel program. The signal
changes state after it was already read in the same tick,
making its state non-consistent.

Present X then emit X else emit X;

Listing (2.2) A logically correct, but non-constructive
Esterel program.

Figure 2.1. Example Esterel Programs.

When executing an Esterel program, each signal must be assigned a unique value for each tick.
If there is no such assignment or multiple consistent options exist, the program is logically incorrect.
Listing 2.1 shows such a program. However, even if there is exactly one valid assignment, that
assignment may be hard to find.

Listing 2.2 shows a program which is logically correct. X has to be present since otherwise, the
else-branch would lead to X becoming present later after being read as absent, which is not allowed.
However, there is no way to determine the value of X without speculatively executing all possible
program paths.

A constructive program must have a unique valid assignment for each signal in each tick that can be
computed without speculative execution. Constructiveness is thus a restriction of logical correctness.
For example, adding emit X; as the first line in Listing 2.2 would mean that without any speculative
execution, the compiler can determine that X must be present. This way, an assignment is found and
can be validated without needing to try every possible value for X. With the added emit statement,
Listing 2.2 becomes constructive; without it, it is rejected by the compiler.

2.1.2 SCCharts and the Sequentially Constructive MoC

For state-based contexts, e. g., in automation or safety, formalisms based on Mealy automata [Mea55]
are commonly used. David Harel [Har87] proposed Statecharts, an extension of these automata with
hierarchical and parallel components. Charles André developed a synchronous implementation of
Statecharts called SyncCharts [And95].

Sequential Constructiveness

With perfect synchrony and constructiveness checks, many synchronous languages such as SyncCharts
offer determinism and sound semantics, leading to safer programs that are easier to verify than non-
synchronous ones [BBD+17]. However, the compiler checks greatly restrict the set of programs that are
accepted, imposing a steep learning curve and reduced flexibility on the programmer, especially when
accustomed to non-synchronous imperative languages.

Therefore, von Hanxleden et al. [HMA+14] proposed a conservative extension of the perfectly
synchronous MoC of SyncCharts called the Sequentially Constructive (SC) MoC. This extension relaxes
the constructiveness requirement to make programming easier while not sacrificing any soundness of
the associated semantics.
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In the SC MoC, all variable and signal operations in concurrent regions are scheduled according
to the Initialize-Update-Read (IUR) protocol. This means that variable initializations (assignments)
are always scheduled before updates (e. g., increments), which in turn come before read operations.
Multiple parallel operations that are associative (e. g., parallel increments) are allowed since they can
be scheduled arbitrarily without influencing the outcome. Conflicting ones where the IUR protocol
does not define a clear order (e. g., parallel initializations with different values) are detected and
rejected by the compiler. Sequential non-concurrent accesses can manipulate a variable an arbitrary
number of times even within the same tick since this cannot introduce any ambiguity.

With this extension, the programmer is more flexible in writing their code without being restricted
as heavily as with a perfectly synchronous MoC. All sequentially constructive programs can be statically
assigned a scheduling for their variable accesses, which is then applied during code generation to
ensure a deterministic program outcome.

SCCharts and their Semantics

An extension of SyncCharts based on the SC MoC is SCCharts, proposed by von Hanxleden et al.
[HDM+14]. Much like SyncCharts, SCCharts is a graphical state-machine based language designed
for programming safety-critical real-time systems and is used today in industrial contexts such as the
development of railway interlocking systems.

Figure 2.2 shows an example SCChart called ABRO. It waits for two boolean inputs A and B before it
sets its output O to true. Whenever R is present, the program and the output are reset.

SCCharts are inherently concurrent; parallel regions such as HandleA and HandleB are executed
concurrently. Dashed transitions are immediate, meaning they can be executed in the same tick their
source state is entered as long as their trigger evaluates to true. Other transitions only become active
in the next tick after their source state has been entered, so for example, the ABRO SCChart reacts to
neither A, B nor R in the first tick of its execution since none of the respective transitions are active yet.

To leave hierarchical states with inner behavior, three types of transitions can be used. A termination
transition is indicated by a green triangle at the start and can only be taken after all of the source
state’s inner regions have reached a final state, which are indicated by a double border. Weak abort

transitions are plain arrows without any additional markers and can be taken any time their trigger is
true, provided they are immediate or the state has been entered in a previous tick. When a state is left
through a weak abort transition, the behavior of all of its inner regions is executed for the rest of the
tick before being aborted. Contrarily, a strong abort transition, indicated by a red circle at its start,
will immediately exit the state when triggered, without executing any of the inner behavior.

Each state may have entry, exit and during actions. These are executed when the state is entered
or left or once per tick in which the state is active, respectively. For example, the entry action on state
ABO will cause the output O to be set to false in the first tick and after each reset.

Various other complex features are available, however, they are not relevant here and thus omitted.

2.2 Model-Based Compilation Approaches

To compile SCCharts and most other model-based languages, multiple steps are used. The model is
often passed through a series of m2m transformations, replacing complex features such as aborts with
multiple semantically simpler constructs, before the actual gode generation step. While this process
makes further compilation simpler since fewer constructs need to be considered, the model structure
may be heavily altered, making the transformed model and consequently the generated code hard to
understand for the user.
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Figure 2.2. An Example SCChart.

Three different approaches to compiling model-based languages are presented here, all of which
are available for SCCharts. Chapter 4 discusses ways in which the debugging concepts proposed in
this thesis can be applied to all three. However, the demonstrator has been implemented exclusively
for the state-based approach since it is best suited for model-based debugging.

2.2.1 State-Based Compilation

The state-based compilation approach was proposed by Smyth et al. [SMH18], and contrary to earlier
proposals [HDM+13], it focuses more on code readability than on pure performance. The design idea
is to generate code that would be easy to relate to the source code in order to facilitate verification and
general understanding. This approach is therefore likely to be used in scenarios where debugging
and verification are desired and is thus particularly suited for demonstrating the debugging concepts
proposed in this thesis.

All SCCharts compilation systems start by transforming complex features away, yielding so-called
core SCCharts with a reduced set of features. The state-based code generator then generates a Java class
consisting of the following components:

Ź an Interface object containing all input and output variables of the SCChart. All fields of this object
are directly writeable.

Ź a TickData object containing contexts for all root-level regions.

Ź one enum per region containing all states of that region.

Ź one Context class for each region. This class contains information on the region’s thread status
(whether the region still has work to do in the current tick) as well as the active state of that region
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and contexts for subregions.

Ź one method per state. This method calls all of its subregions’ methods in scheduling order, then
checks whether a transition needs to be taken. Transitions are checked in priority order, and if
one transition’s guard evaluates to true, the context’s active state is set to the transition’s target
state and the control is passed back to the parent region of the current state. An example method
generated for a state can be seen in Listing 2.3.

Ź one method per region, such as the one shown in Listing 2.4. This method simply calls the
appropriate state method for the current active state of that region found in the corresponding
context object.

Ź reset and tick functions to be called from outside the generated code

1 private void ABRO_statewaitA(ABRO_regionR2Context

context) {

2 if (context.delayedEnabled && (iface.R)) {

3 context.delayedEnabled = false;

4 context.activeState = ABRO_regionR2States.DONEA1;

5 }

6 else if (context.delayedEnabled && (iface.A)) {

7 context.delayedEnabled = false;

8 context.activeState = ABRO_regionR2States.DONEA1;

9 } else {

10 context.threadStatus = ThreadStatus.READY;

11 }

12 }

Listing (2.3) Code generated for a state

1 private void ABRO_regionR1(ABRO_regionR1Context

context) {

2 while (context.threadStatus == ThreadStatus.

RUNNING) {

3 switch (context.activeState) {

4 case WAITAB:

5 ABRO_statewaitAB(context);

6 // Superstate: intended fall-through

7

8 case WAITABRUNNING:

9 ABRO_statewaitAB_running(context);

10 break;

11

12 case DONE1:

13 ABRO_statedone1(context);

14 break;

15

16 case _AC1:

17 ABRO_state_AC1(context);

18 break;

19 }

20 }

21 }

Listing (2.4) Code generated for a region

Figure 2.3. Code extracts generated with the state-based approach. Names shortened for better readability.

2.2.2 Priority-Based Compilation

The priority-based compilation approach was originally proposed by von Hanxleden et al. in 2014
[HMA+14] and extended by Lars Peiler in 2017 [Pei17]. As opposed to the state-based approach, no
static schedule is computed. Instead, lightweight application-level threads and a dynamic scheduler
are used. This approach brings faster average execution times than both the netlist- and state-based
approaches [Pei17; SMH18] as well as a drastically reduced number of generated variables compared
to the netlist-based approach, which is particularly important for embedded applications with low
runtime memory such as the Lego Mindstorms Platform [SMS+19]. Another advantage over the original
netlist-based approach is that the priority-based compilation supports certain types of immediate
loops, which are rejected by the netlist-based compiler.
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Normalization and SCG

As with all SCCharts compilation chains, the first step in priority-based compilation is to transform
the model until it only contains a small set of constructs that are straightforward to compile further.
This transformation ends when a normalized SCChart has been created. Normalized SCCharts contain
an even further reduced set of features than core SCCharts and only consist of the following features:

Ź immediate transitions with a single effect and no trigger

Ź immediate transitions with a trigger and no effects

Ź delayed transitions with neither trigger nor effects

Ź parallel regions and hierarchy

Ź final states and termination transitions

This normalized SCChart is then mapped to a Sequentially Constructive Graph (SCG) consisting of
statement nodes containing variable assignments, fork / join constructs or conditional expressions
as well as control flow edges that can be either delayed or immediate. On this SCG, the analysis of
dependencies and the assignment of priorities can be performed.

Dependencies and Priority Assignment

As mentioned in Section 2.1.2, SCCharts follow the Initialize-Update-Read (IUR) protocol. When the
SCG has been generated, IUR dependencies are added as extra edges. For example, an initialization of
a variable has to be scheduled before a concurrent read access to the same variable, therefore an edge
starting at the initialization and ending at the read is added.

In the next step, each node is assigned a node priority. Nodes with a higher priority must be
executed before concurrent ones with a lower priority; if two nodes have the same priority, their order
of execution does not matter.

Since the IUR protocol only affects actions within the same tick, delayed edges do not need to be
considered. Surface nodes, located at the start of each delayed edge, as well as the program’s exit
node are assigned priority 0. From then on, each node without outgoing IUR edges is assigned the
maximum priority of its successors. Nodes with outgoing IUR edges receive either their sucessors’
priority or the dependency edge’s target node’s priority plus one, whichever is higher.

This way, it can be ensured that the source node of the dependency always receives a higher priority
than that of the target node and the priorities in sequential statements monotonically decrease.

From these priorities, each thread is assigned a priority identifier (prioID) based on its thread ID
and the node priorities it contains. Nodes with lower priorities generally receive lower prioIDs. While
non-concurrent threads may have the same prioID, statically concurrent threads must not. Therefore,
the prioIDs can be used to uniquely identify each thread.

An example of an SCG with assigned node priorities and prioIDs can be found in Figure 2.4.

Runtime Scheduling

While the original priority-based compilation approach uses C as a target language and heavily relies
on preprocessor macros for scheduling, a Java version exists that uses a standard superclass containing
all required methods as a basis for priority-based code. For consistency among the approaches, the
Java version will be considered here.
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Figure 2.4. SCG of the ABRO example with assigned priorities. Node priorities are red while prioIDs are blue.

In code generation, an enum containing labels for various code locations is created. These include
entry labels for each region of the SCChart as well as labels for each place where a priority change
happens, i. e., where an SCG node with an outgoing IUR edge was located.

The current state of each application-level thread is kept using various arrays. These keep track of
active threads (threads that still have work to do in the current tick), alive threads (threads that have
been forked, but not yet joined) and for each thread, the label where its execution is to be resumed,
i. e., a program counter.

While there are still active threads, the one with the highest priority is set as active thread and a
portion of its code is executed. The program logic itself is organized in a large switch statement that
executes a section of code based on the current program counter of the active thread. An extract of
such a switch statement can be seen in Listing 2.5. The section ends when the program reaches either
a join, a delayed edge (in which case the thread becomes inactive), or a priority change (in which case
the thread remains active, but yields control).

Whenever control is taken away from a thread, its program counter is updated to the label where it
stopped and the active thread with the highest priority is scheduled again. This process repeats until
there are no active threads left, at which point the tick ends. At the beginning of the next tick, all alive
threads become active again.
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1 while (!isTickDone()) {

2 switch (state()) {

3 case ABROEntry:

4 O = false;

5 fork(State._L_1, 1);

6 gotoB(State._L_0);

7 if (true) break;

8

9 case _L_0:

10 fork(State.HandleB, 2);

11 gotoB(State.HandleA);

12 if (true) break;

13

14 case HandleA:

15 pauseB(State._L_2);

16 if (true) break;

17

18 case _L_2:

19 if(R){

20 gotoB(State._L_3);

21 } else {

22 gotoB(State._L_4);

23 }

24 if (true) break;

25

26 case _L_3:

27 termB();

28 if (true) break;

29 [...]

30 }

31 }

Listing (2.5) Code extract from priority-based code

1 public void logic() {

2 _g5 = _pg14_e1;

3 _g10 = _pg14;

4 _g14_e1 = !(_g5 || _g10);

5 _g6_e1 = !_g5;

6 _g7 = _g5 && !R;

7 _g5 = _g5 && R || _g7 && A;

8 _g11_e2 = !_g10;

9 _g12 = _g10 && !R;

10 _g10 = _g10 && R || _g12 && B;

11 _g11_e2 = (_g6_e1 || _g5) && (_g11_e2 || _g10) &&

(_g5 || _g10);

12 _g11 = _g11_e2 && !R;

13 if (_g11) {

14 O = true;

15 }

16 _g6_e1 = _g11_e2 && R || _g11;

17 _g6 = _pg20;

18 _g15 = !_g6;

19 _g13 = _g6 && R;

20 _g19_e2 = (_g14_e1 || _g6_e1) && (_g15 || _g13) &&

(_g6_e1 || _g13);

21 _g19 = _GO || _g19_e2;

22 if (_g19) {

23 O = false;

24 }

25 _g14_e1 = _g19 || _g7 && !A;

26 _g14 = _g19 || _g12 && !B;

27 _g20 = _g19 || _g6 && !R;

28 }

Listing (2.6) Code extract from netlist-based code

Figure 2.5. Example code generated with priority- and netlist-based approaches.

2.2.3 Netlist-Based Compilation

Similarly to the priority-based approach, the source model is simplified through a set of m2m
transformations until a normalized SCChart with a reduced set of features is left. This model is then
mapped to an SCG. However, since this approach does not use dynamic scheduling, the concurrency
within the SCG needs to be eliminated and the SCG must be sequentialized.

To this end, the SCG is split into basic blocks. A basic block is a set of SCG nodes that will always be
executed in the exact same order, i. e., it does not contain any conditionals or incoming dependency
edges. The former may lead to different executions depending on the conditional’s result while the
latter may mean that between the node with the incoming edge and its predecessor, a node in another
thread must be executed to satisfy the dependency. Delayed edges also separate basic blocks.

For each basic block, a guard is computed. The guard is a boolean value that determines whether
the block should be executed. For the first block of the program, the guard is true in the first tick. For
blocks following after a conditional statement, the guard is true iff the conditional’s guard is true (i. e.,
the conditional is executed this tick) and the conditional’s result corresponds to the block’s branch
condition. If a block follows after a delayed edge, its guard is true if the guard corresponding to the
block before the delayed edge was true in the previous tick. Blocks that start with an incoming IUR
dependency have their guard as true if the guards of both the previous block in the same thread and
the origin of the IUR edge are true.
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The guard’s computations are added as assignment nodes to the SCG, located at the beginning of
their respective basic blocks. The blocks are then sequentially ordered in a way that the sequential
control flow within each thread is preserved while all concurrent variable accesses (including the
guards) follow the IUR protocol. Delayed edges can be removed since they are now represented
by the guards being stored across ticks. If such an ordering cannot be found, e. g., due to circular
dependencies between parallel threads, the program is rejected.

Since a logical circuit is to be synthesized and variables should behave similar to wires in a real
circuit, they cannot change values arbitrarily. To achieve a stable circuit, wires should retain their values
throughout a tick, similar to signals in perfectly synchronous languages as presented in Section 2.1.
In SCCharts, the SC MoC allows for variables and signals to change values during a tick, however.
Therefore, multiple assignments to the same variable are split into separate instances, similar to Static
Single Assignment (SSA) [App98]. This is only possible if there is a finite (and statically known) number
of assignments to each variable in a tick, thus the netlist-based approach conservatively rejects models
containing any immediate control flow cycles.

Once sequentialized and split, an SCG with no concurrency, single assignments to each variable
and no delayed edges is left. This SCG can then be translated to a circuit network comprised of gates
and registers that can be represented by either a program or a real circuit. A Java example of such a
circuit network can be seen in Listing 2.6.

2.3 Debugging SCCharts

One closely related work is Lena Grimm’s Bachelor’s Thesis on debugging SCCharts [Gri16]. Grimm
proposed a debugger for SCCharts that allows the user to place breakpoints in SCCharts models, which
then suspend the model’s execution in the appropriate place when run in a simulator. Breakpoints are
placed in the model’s source code using the text editor provided for SCCharts editing much like line
breakpoints in any general-purpose language. The breakpoints are then also visually indicated in the
automatically generated diagram. The functionality of the tool is highlighted in Figure 2.6.

Since the debugger is coupled to a simulation on model level, it is mainly useful for debugging
SCCharts models on their own and for finding bugs on the model level. The approach is completely
independent from the compiler used for code generation. It was integrated seamlessly into the
SCCharts development workflow and worked much like what developers are used to from other
languages.

One drawback resulting from the use of the simulator is that some breakpoints cannot suspend
the execution immediately since the simulator only supports a macro-level step size. For that reason,
the execution sometimes suspends in a location with no breakpoint because the execution has passed
through a breakpoint in the previous step, leading to possible confusion.

The main difference to this thesis is that due to the isolated nature of the simulation, no pro-
grammatical interaction with the model is possible. For example, having multiple models ticking
one after the other and possibly influencing each other’s interface variables or having host-code calls
from within the model is not possible. Therefore, the model itself can be debugged well, however,
integration tests of the entire system consisting of generated code from potentially multiple SCCharts
models, wrapper code handling I/O for the models and other host code interacting with the models
are not supported.
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.

Figure 2.6. SCCharts debugging components added by Lena Grimm [Gri16]

2.4 Formal Verification

One key reason why debugging the generated code rather than the source model is essential is the
fact that most compilers, even though thoroughly tested, have never been formally verified. Therefore,
one cannot simply assume that the generated code is semantically equivalent to the source model.
Particularly in safety-critical applications, even small uncertainties are not tolerable.

If one wants to ensure correct behavior of the generated code, only two options remain. One
option is to prove the desired properties for the generated code itself, e. g., using model checking.
Model checking is a technique where properties of programs can be modelled and checked as logical
formulae, e. g., in Linear Temporal Logics (LTL). Tools for model checking are available for most high-level
languages, such as the one for SCCharts proposed by Andreas Stange [Sta19]. With this method, errors
introduced by the compiler can be caught since the generated code is examined directly. However,
formulating and testing sufficient properties becomes more and more difficult with increasing code
complexity and decreasing abstraction level. Therefore, proving correctness properties on generated
code is generally undesirable.

The second option is to use a formally verified compiler similar to the one Bourke et al. [BBD+17]
propose for Lustre, a synchronous dataflow language used in many safety-critical infrastructure
applications. For their compiler, they formally specify the semantics of source, intermediate and target
language and prove that any source program is mapped to a fully equivalent target program.

Even though formally verifying an entire compiler is a complex and time-consuming task, it is then
sufficient to only prove correctness properties on (relatively simple) source models with existing model
checkers and other tools for high-level languages, since the semantic equivalence proof of the compiler
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guarantees that said properties will also hold for the generated code. However, using formally verified
compilers is only suitable for languages whose syntax and semantics are fixed, since any change to
either will lead to the need for a re-verification of the compiler. It is important to note here that the
target program generated by the Lustre compiler is not yet executable, but rather a C program that
needs another compilation step using a regular C compiler. To ensure that the semantic equivalence is
preserved through this step as well, Bourke et al. use a formally verified compiler for a subset of C
called CompCert [Ler09].

2.5 Compiler Tracing and its Applications

A key compiler feature used for this thesis is the tracing functionality, i. e., a mapping between source
and target model elements that enables the user to track model elements and their derivatives through
the compilation process. With that knowledge, a model-based debugger can relate generated code
to the source model elements it was created from, allowing the debugger to both find appropriate
locations in the generated code to set breakpoints for the user and to extract runtime information from
the generated program during debugging. Section 4.2 describes how tracing information can be used
for these purposes.

Exploiting tracing for debugging is not a new concept, however. This section presents a set of
debugging applications where the same technology is used.

2.5.1 Performance Debugging

In their 2008 paper [JHR+08], Ju et al. propose a new approach to Worst-case Execution Time (WCET)
analysis for Esterel code using compiler tracing functionality.

As stated in Section 2.1, in synchronous languages such as Esterel, it is assumed that each tick
is performed instantaneously with no time passing in between microsteps. However, since in reality,
such programs are compiled to a host language (e. g., C), microsteps are in fact executed sequentially
and there may well be time passing in between two microsteps, for example due to scheduling
interference. However, a generated host language program still effectively meets the requirement of
perfect synchrony if a tick is always completely computed before the next set of input events arrives,
guaranteeing that inputs remain constant throughout a tick. The WCET analysis therefore computes
an upper bound to the maximum time a tick’s computation may take to ensure that the synchrony
assumption is never violated.

Due to the fact that the code under analysis is always generated from Esterel models, Ju et al. are
able to find tighter estimates for the WCET in their particular case than other, more generic tools can.
Additionally, they employ advanced infeasible code analysis and allow the user to place source-code
level annotations to signal to the tool that certain paths cannot occur in a real program run.

However, their main contribution is a critical path highlighting in the source model. Whenever the
WCET analysis finds a possible execution that takes longer than the time between inputs, it would
usually be hard for the programmer to determine what parts of the source model contribute to the path
being too slow, especially for complex models. The tool proposed by Ju et al., however, automatically
highlights all source statements contributing to the critical path, making it immediately clear to the
programmer where the problem is caused. This critical path highlighting on model level can be seen
in Figure 2.7.

Contrary to the concepts proposed in this thesis, this approach does not directly contribute to
debugging a program in the classical sense. However, it still helps the user improve their generated
code by pointing out potential problems in the source model, thus following a very similar approach.
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Figure 2.7. Example Esterel program with critical path highlighting as proposed by Ju et al. [JHR+08]

Also, even though slow execution is not primarily seen as a bug by many programmers, it may cause
behavior not matching the specifications in safety-critical real-time applications and therefore needs to
be eliminated just as any other bug would.

2.5.2 Debugging Optimized Code

Another area where it is necessary to find an appropriate mapping between written and actually
executing code is in debugging in the presence of compiler optimizations. In 1994, Copperman [Cop94]
described the problem of optimizations in combination with debugging. He points out that even
though compiler optimizations should be correctness-preserving, they may still change the behavior of
code being debugged since that code is unlikely to be correct. Therefore, it is necessary to debug the
code with the optimizations, which may in turn lead to issues with breakpoint locations and variable
values.

In non-optimized code, there often is a block of machine instructions associated with each source
statement. If that is the case and the blocks are concatenated in the order of statements in the source
model, placing a breakpoint at the start of that block will implement the desired breakpoint semantics.
With optimizations in place, however, there may not be an obvious place to put a breakpoint since
machine instructions may be left out or swapped around for faster execution, interleaving parts of
consecutive source statements and thus removing clear statement boundaries.

Another issue described by Copperman is caused by non-current variables, i. e., variables that do not
have the value one would expect from reading the source code. For example, constant propagation
and dead code elimination may lead to variable assignments being deleted. If variable a is assigned a
constant value c and then variable b is assigned a, one would expect that a = c after the last statement.
However, a compiler with optimizations enabled may delete the assignment to a if the value of a is
never read again and directly assign b = c. A debugger queried for the value of a would then display
an unexpected, or non-current value for a.

Copperman therefore presents a method to automatically determine whether variable values in
optimized code are non-current and if so, to display a warning to the user along with an explanation
of how the value came to differ from the expected one. To achieve this, flow graphs storing the
relation between declarations and memory locations are used. To map between the non-optimized and
optimized versions of these graphs, compiler tracing is used. Analyses on these data structures can be
conducted to find parts of statements that have been moved by optimizations as well as determine
non-current variables and the cause of their unexpected values.

Copperman follows a similar goal to that of this thesis, namely to close the user’s mental gap
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between generated and original code. The alterations introduced by compiler optimizations may be
similar to those made by m2m transformations in model-based design. However, Copperman’s main
focus lies on individual variables and their values while this thesis aims to visualize the program’s
memory state as a whole.

2.5.3 Transparent Debugging of Dynamically Optimized Code

Traditional compiler optimizations are applied statically at compile time, resulting in binary code that
does not necessarily resemble the source program’s structure. In contrast to that, dynamic optimization
occurs at runtime and is achieved by analyzing the runtime behavior of the program before adding
optimizations to it. A key challenge in this field is the instrumentation code introduced at compile
time to switch control between the actual program and the optimizer periodically. This serves to
regularly permit the optimizer to perform optimization passes, altering the code structure according to
an analysis of the past program performance. Not only does the debugger need to find an appropriate
mapping between source code and dynamically changing optimized code, it also needs to filter out all
actions performed by the instrumentation code and the optimizer to hide them from the user.

Kumar et al. [KCS09] propose a debugging framework called DeDoc to transparently debug code
even in the presence of dynamic optimizations. To meet the requirements listed above, they use a
virtual debugging environment in which the program under debugging runs. The program is divided
into traces, i. e., blocks of instructions without jump instructions, and control is transferred to the
optimization engine after each trace. The engine can then either run an optimization pass on the
previous trace if that trace has been executed sufficiently often that optimizing it may be worthwhile,
or dispatch the next trace.

Native debuggers can then be adapted to not target a regular execution of the program under
analysis, but rather the debug engine. The engine will keep track of all dynamic optimizations and
generate debug information for the native debugger to mask the fact that the optimizations have
occurred dynamically, effectively allowing the debugger to apply the same methods as for statically
optimized code, which most modern compilers can handle already.

Especially for model-based languages with dynamic optimizations or models intended for running
on systems with native dynamic optimizers, the concepts presented by Kumar et al. may need to be
considered for model-based debugging, too.

2.6 Visual Debugging

A key goal of this thesis is to provide visual feedback on a running program, effectively visualizing
the algorithm modelled by it. However, the concept of algorithm visualization is not new.

In their 1994 paper on visual debugging [MS94], Mukherjea and Stasko propose a concept to easily
create algorithm animations for debugging. According to them, algorithm animation is a technique to
visually present the “big picture” of an algorithm, allowing the viewer to understand the fundamental
concept behind it. Since those animations are very specific to the algorithm that is being visualized,
they are hard to automatically generate and are usually made by hand for teaching and demonstration
purposes.

Contrarily, data structure visualization automatically synthesizes views of low-level data structures
at runtime, which may be useful for debugging. However, such visualizations cannot convey the
full concept of the program and are only useful if the idea behind the program has already been
understood by the user.
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Figure 2.8. Visual debugging tool Lens as proposed by Mukherjea and Stasko [MS94].

The approach of Mukherjea and Stasko is to provide a simple tool for algorithm visualization
that allows programmers to quickly make a visualization of their system under development without
needing extensive knowledge of graphics programming or the specific animation toolkit to allow the
use of animated views even during debugging.

To achieve this, they built a tool called Lens that incorporates a palette-based graphical editor to
create animations, a source code view and a debugger console in the same window. The tool can
be seen in Figure 2.8. The available animation components have been selected based on a study on
animations created with previous tools and the most commonly used features there. The debugger
can be used to step through the program at runtime while the animation window will display the
current state of the program according to the model built by the programmer.

Mukherjea and Stasko come to the conclusion that their system is well-suited for rapid prototyping
of animations and the visualization of small, “classical” computer science problems such as sorting or
graph algorithms. However, the ease of use comes at the cost of a reduced set of features that leads to
less flexibility when designing more complex animations.

2.7 Semi-Automatic Debugger Generation

When implementing Domain-Specific Languages (DSLs) manually, a lot of components are either
necessary for the language’s execution (e. g., parsers, interpreters / compilers) or desirable for an
efficient workflow (e. g., IDE support such as syntax highlighting, error markers, outline views).
While implementing all these components by hand can be time-consuming and repetitive, modern
language workbenches such as Xtext [EV06] can automatically generate many of them from language
specifications.

Lindeman et al. [LKV11] propose an extension to such a language workbench that also generates
debuggers for DSLs with minimal effort. Usually, specifying a debugger and correctly integrating
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it into an existing IDE is tedious and complex since many components of the debugger (such as
debug events, a custom debug model and a matching frontend) need to be integrated. Also, debuggers
are specific to the language they were written for, since they need to navigate the language’s scope
hierarchy. When a session is suspended, debuggers must display meaningful information relating
the current execution state with the source code. This means that for every DSL, a separate debugger
needs to be implemented.

Lindeman et al. propose a modular debugger system with a generic debugger backend that is
integrated into the Eclipse IDE as well as a declarative system to specify debuggers for DSLs that
can communicate with the backend. Their system is based on aspect-oriented programming concepts
where a user declaratively specifies patterns for code locations where debug events would need to
occur (e. g., where a program step ends) along with DSL code snippets that emit those events. The
system then automatically adapts every program during compilation before it is translated to the host
language to ensure proper communication with the debugger. Based on the different types of events
specified for the language, a debugger module is generated on top of the generic backend.

This approach guarantees that when debug events are generated, the original model structure is
available and therefore, mapping the events to source code locations is simple. Also, the fact that only
DSL constructs are added makes the specification independent of the compilation process and can
thus support multiple compiler backends with ease.

The resulting debuggers allow the execution of generated code from a DSL while stepping through
the source model in a user-defined granularity. Using this concept, debuggers implemented for model-
based debugging could be extended to support stepping not only on the host-language level, but also
on the model level. For SCCharts, this could mean stepping over a tick or skipping the execution
of a certain region independently from the code generation approach. Due to the semi-automatic
generation, the effort for this method would be lower than manually implementing such functionality.

2.8 Model-Level Debugging

In the domain of Cyber-Physical System (CPS) programming, software is written to control physical
entities using sensors and actuators. While these systems have high requirements in terms of safety,
they are also often programmed using a variety of different languages.

Djukić et al. [DPL16] describe an example scenario using three different types of model-based
DSLs to program a single robot arm: one for control logic, one for specifying physical properties of
the robot arm and one that describes the environment where the system will operate. All of these
languages are compiled to a common host language and executed together, which makes it difficult
for the programmer to understand what parts of the generated code originate from what modelling
language and how they interact with one another.

To tackle this problem, Djukić et al. propose an interactive debugging environment where the
source models are automatically compiled each time they change and a dynamic visualization of the
entire source system is generated. An example visualization of the robot arm system can be seen
in Figure 2.9. This visualization shows a diagram of the different model parts written in different
languages, circuit-like connections where values are exchanged and sliders and switches to allow the
user to dynamically set model parameters or sensor inputs. The system can then be either simulated
locally or executed on multiple real hardware devices connected to the debugging system to allow for
a realistic debugging scenario.

Djukić et al. focus on the interactions between different submodels developed in different languages
and visualizing the system as a whole in a novel way. The integrated simulation capabilities and
the integration of debugging on the target devices shows the focus on low-level control systems. In
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Figure 2.9. An example system as visualized by the model-level debugger proposed by Djukić et al. [DPL16].

contrast to that, the concepts proposed in this thesis follow the approach of seamlessly integrating
with debugging tools for the host language and the visualizations already present for the modelling
language. The goal here is to create an unobtrusive, general-purpose debugging tool. The aspect of
handling multiple languages and their interactions at once is not covered.
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Chapter 3

Used Technologies

This chapter gives an overview of technologies used in the implementation of this project. While
some of them are generally suited for implementing model-based debuggers, others are specific to the
demonstrator for SCCharts implemented here. Only a brief note on the usage of each technology is
given; more implementation details are covered in Chapter 5.

3.1 The Eclipse Platform

The Eclipse IDE is a modular development platform designed to support various languages and
development tasks through the use of plugins. This way, a customized application can be assembled to
suit the needs of a particular user group without introducing unnecessary performance or disk space
overhead through unused features.

The following sections present the extension point system that allows easy integration of new
features into Eclipse, the Java Development Toolkit providing IDE support for Java, available debugging
features in Eclipse and an overview of KIELER, an Eclipse product for SCCharts development and
layout that the demonstrator is based on.

3.1.1 Plugin Infrastructure and Extension Points

Most of Eclipse’s functionality is organized in plugins. A large selection of plugins is available
online1, either by themselves or pre-assembled into packages, so-called features. Complete ready-to-use
applications including all features required for a certain task, called products, are also available.

To allow interaction between plugins, Eclipse offers extension points. An extension point is an
interface provided by one plugin where other plugins can connect if they meet certain requirements.
Extension points and the corresponding extensions are defined using the Extensible Markup Language
(XML).

For example, a new view can be registered by adding an extension using the extension point views
provided by the plugin org.eclipse.ui. The extension requires a pointer to a class extending ViewPart
(also provided by org.eclipse.ui), a name for the view and a unique ID, as well as other optional
fields. The view will then be accessible both within the code (e. g., to include it in a perspective) and to
the user (e. g., via the quick access menu, using the name specified in XML). An example of the XML
definition can be seen in Listing 3.1.

1https://marketplace.eclipse.org
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1 <extension

2 point="org.eclipse.ui.views">

3 <view

4 category="de.cau.cs.kieler"

5 class="de.cau.cs.kieler.sccharts.ui.debug.view.DebugDiagramView"

6 id="de.cau.cs.kieler.sccharts.ui.debug.debugDiagram"

7 name="Debug Diagram"

8 restorable="true">

9 </view>

10 </extension>

Listing 3.1. An example extension definition, taken from the de.cau.cs.kieler.sccharts.ui plugin.

3.1.2 Java Development Toolkit

Eclipse’s Java Development Toolkit (JDT) provides extensive IDE support for the Java language. Besides
editors for Java files, it provides helpful features such as an outline view that facilitates understanding
the structure of large code files as well as extension points to programmatically access the Abstract
Syntax Tree (AST) underlying the code files. Noteably, it also comes with a Java debugging frontend
integrated into the IDE, which the demonstrator implementation is largely based on.

3.1.3 Debugging in Eclipse

Eclipse has a language-independent debugging framework that can be expanded using extension
points. To adapt this framework for a particular language, several components need to be specified.

The debug model is a visual representation of the program structure. For classical imperative
languages such as Java, such a model consists of (representations of) threads, stack frames, variables
and similar components. An instance of this debug model can then be attached to a program launch
in Eclipse, allowing it to visualize the state of that particular launch. Such an attached debug model is
referred to as a debug target.

The standard Eclipse debug controls can then be used to send commands to the debug target. It
is up to the execution environment to react to these commands appropriately. If a custom language
interpreter is used, it needs to support suspending, stepping and similar operations by itself.

Breakpoints, Debug Events and Listeners

To facilitate debugging, the Eclipse platform provides a set of central event producers, to which
listeners can be attached, following the observer pattern [GHJ+94], through the use of extension points.

One of these components is the BreakpointManager. It can be used to programatically set and remove
breakpoints on resources (such as source code files). When a debug run starts, the BreakpointManager
will ensure that all relevant breakpoints are added to the launch and removed when the user removes
them. Similarly, when a breakpoint is hit, the BreakpointManager will notify all registered breakpoint
listeners and suspend the execution if required. The listeners may vote whether the execution should
be suspended.

Whenever the state of the debug target changes (through reaching a breakpoint, but also user
actions such as clicking the debug controls), DebugEvents are fired, which all registered listeners will be
informed about. For example, an editor can use this mechanic to know when to update the currently
highlighted line.
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Figure 3.1. Debug perspective in Eclipse. Views rearranged for better presentation.

Other Debugging Tools in Eclipse

Apart from the internal components mentioned above, the UI of Eclipse contains many features geared
towards debugging, bundled in the Debug perspective. All of these tools can be seen in Figure 3.1.

Debug view (on the left) This view shows the DebugModel of the current launch, including the stack state
in which the current thread was suspended.

Expressions view (left center) Here, the user can enter expressions in the target language that can be
evaluated based on the runtime memory state during debugging. This is helpful to check invariant
properties of the program or other conditions.

Breakpoints view (right center) In the breakpoints view, the user can see and control all breakpoints
in the current workspace. Each breakpoint can be individually enabled and disabled, deleted or
modified. This view also allows the user to specify conditions under which breakpoints should be
active to avoid unnecessary suspensions.

Variables view (on the right) This view shows the values of all variables in the current scope. For
non-primitive values, clicking the field name will reveal information on the contained fields and
their values. This view also allows the user to choose new values for each variable to interact with
the runtime state of the program.

Debug Shell (on the bottom) Finally, this shell can display the result of evaluating expressions either
entered directly into it or selected in the editor at runtime.

While all of these views are useful in some contexts, the breakpoints and variables views are most
relevant to this thesis. Neither the demonstrator nor any of the presented concepts use the remaining
components, even though they may become relevant for future work.
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Figure 3.2. A screenshot of the KIELER SCCharts development perspective. It features an editor for SCCharts
code, a transient diagram view, and a compiler selection view.

3.2 KIELER

The Kiel Integrated Environment for Layout Eclipse RichClient (KIELER)2 is an Eclipse product developed
by the Real-Time and Embedded Systems group3 at Kiel University.

KIELER is centered around the development and simulation of SCCharts as well as automatic
graph layout. For these purposes, a fully functional text editor to write and edit a textual representation
of SCCharts, diagram synthesis support to transiently display the SCCharts written in the editor and a
model-based compiler [SSH18] are provided. The example debugger for the SCCharts language has
been integrated with KIELER as well.

Automatic layout of SCCharts and other graphs is provided by the KIELER Lightweight Diagrams
(KLighD) view framework [SSH13] along with the Eclipse Layout Kernel (ELK)4, which brings a large
set of layout algorithms and its own graph language. ELK and KLighD can be used to automatically
layout and display a large variety of graphs.

The compiler offers modular model-to-model (m2m) transformation systems to compile SCCharts
models to a set of host languages including C, Java and VHDL. Due to the modular nature of
the compilation, it is straightforward to add processors or entire compilation chains for custom
applications. A screenshot of the KIELER SCCharts development perspective can be seen in Figure 3.2.
The following sections discuss the basic functionality of the compiler required for this thesis; a more
detailed breakdown can be found in [SSH18].

2http://rtsys.informatik.uni-kiel.de/kieler
3http://www.rtsys.informatik.uni-kiel.de
4https://www.eclipse.org/elk
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Figure 3.3. The KIELER compiler selection with the state-based compilation system and intermediate results.

3.2.1 Modular Compilation Systems

A key feature of the KIELER compiler is the modular compilation concept. Developers can implement
processors, which are able to perform a single m2m transformation step (e. g., removing all instances of
a specific high-level SCCharts feature and replacing them with appropriate lower-level constructs).
Input and output model types may differ (e. g., for the final code generation step), but most processors
will typically perform transformations within the same model type.

Using a simple DSL, multiple processors (and other systems) can be assembled into a compilation
system. This way, subsystems can be defined and reused in multiple compilation systems, making it
easy to combine various frontends with multiple backends.

Based on the input and output types of the processors, KIELER offers only the matching systems
when compiling a certain type of model. The compilation process itself executes all processors
sequentially and stores each intermediate model. This way, the user can inspect the different states
and transformations the process went through. The KIELER compiler selection with the state-based
compilation chain selected can be seen in Figure 3.3. Intermediate models can be accessed by clicking
the blue boxes in each compilation step.

3.2.2 Model Tracing

Apart from saving and displaying the intermediate transformation steps, the compiler also allows for
tracing. Processors that support tracing will offer a mapping between original and generated model
elements, i. e., each generated model element can be mapped back to the original element it was
generated from. If the entire compilation chain supports tracing, it is therefore possible to determine
the source model element for every component in the transformed model and vice versa.

It is important to note here that the tracing information is provided by the compiler environment
and is thus only available during compilation and only to the processors that are part of the compilation
chain currently being executed. If tracing information is required after the compilation finishes, e. g.,
at runtime, it needs to be persisted elsewhere.
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Chapter 4

Design and Concept

This chapter presents debugging concepts for model-based languages. As stated in Chapter 1, the
main goal is to allow debugging of generated code without the need for the user to manually navigate
it. While many concepts presented here can be applied to various model-based languages, some are
exclusive to statechart-like languages and others must be adapted quite specifically to the respective
use case. SCCharts is used as an example modelling language where appropriate.

As mentioned in Section 2.2, the demonstrator implementation does not cover all possibilities
discussed here and, while aiming to be as modular as possible, it only covers a single SCCharts
compilation system, namely the state-based compilation, as presented in Section 2.2.1, for Java.
Chapter 5 gives implementation details and highlights places where other actions need to be taken
for other host languages. Concepts for debugging SCCharts code generated using other compilation
approaches can be found at the end of this chapter.

Section 4.1 describes the process of defining language-specific semantics for breakpoints, which is
the base of the automatic breakpoint placement discussed in Section 4.6. In Section 4.2, approaches for
persisting tracing information for use at runtime are discussed while Section 4.3 describes how the
source model can be made available to the debugger at runtime. Design choices for the debugger’s
user interface, particularly for graphical languages, are discussed in Section 4.4.

After these rather general sections, the concrete implementation requirements are presented using
the SCCharts demonstrator as an example. Section 4.5 discusses how the requirements to the code
generator can be realized for an SCCharts compilation chain. In Section 4.6, the process of finding the
correct breakpoint locations according to the desired semantics is shown before Section 4.7 describes
how relevant runtime information can be extracted from the debugging environment to be shown to
the user. Finally, Section 4.8 and Section 4.9 give ideas on how the demonstrator could be adapted for
other SCCharts compilation approaches as futher examples.

4.1 Breakpoint Semantics

As described in Section 1.4.1, the tool needs to automatically determine appropriate code locations
to set breakpoints associated with model elements. However, finding these locations is not trivial,
especially since they depend on the desired semantics for model-level breakpoints.

This decision must be made for each language individually since the types of breakpoints depend
largely on the language’s model of computation as well as the use cases of the language. This section
discusses possible semantics for breakpoints associated with different SCCharts model elements as an
example.

4.1.1 State Breakpoints

For breakpoints in text-based languages, it is common to see them triggered each time a line of code
is executed. If a method with a method breakpoint is called multiple times or a loop with a line
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(a) Source region (b) Transformed and annotated region

Figure 4.1. Original and transformed model extract. A total of four states are generated from state Pnone in the
original model.

breakpoint in it runs repeatedly, the breakpoint is triggered each time. If that behavior is not desired,
many debuggers offer options such as conditional breakpoints (which are only triggered when a
certain expression evaluates to true) or hit counts (which will only enable the breakpoint after being
hit x times).

Following a similar approach, implementing breakpoints on SCCharts states as simple line break-
points inside the method(s) generated for a state (or a method breakpoint on the method(s)) seems to
be reasonable. However, this leads to multiple disadvantages.

Firstly, since multiple methods may be generated from a single source-level state due to new states
being introduced during the m2m transformations performed by the compiler, this approach leads
to multiple breakpoints being triggered per state. For the example shown in Figure 4.1, a breakpoint
placed on the source state Pnone leads to four breakpoints being placed, one on each of the methods
corresponding to the states generated from Pnone. This causes multiple suspensions and the user
having to hit resume four times even though nothing changed for them.

Secondly, since SCCharts are not necessarily intended to be used in an event-driven way (i. e., a tick
is performed every time an input event arrives), but may also be used in a time-driven way (i. e., a tick
is performed every x milliseconds)1, suspending the execution every time the method associated with
a state is executed potentially leads to many suspensions where the program state has not changed at
all compared to the last suspension.

Therefore, the semantics of state breakpoints in the demonstrator is to suspend the execution once
as soon as the state is entered. All following ticks where the state associated with the breakpoint
remains active do not cause a suspension. However, as soon as the state is left, the next time it is
re-entered (even if that occurs within the same tick), the breakpoint is triggered again.

This way, the user can track when the state is entered and therefore get an understanding of how
the SCChart transitions between states without unnecessary suspensions when nothing changes.

4.1.2 Transition Breakpoints

Apart from breakpoints on states, one may want to place breakpoints on transitions as well. Even
though observing when a transition has been taken by placing a breakpoint on the transition’s target

1Timed SCCharts [SHM+18] are an exception, where the time between ticks can be adjusted at runtime depending on the
frequency of expected input events. Here, one could argue that suspending in every tick would in fact be desirable.
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Figure 4.2. AlarmSound region from the AlarmSystem SCChart.

state is possible in theory, this becomes confusing as soon as the target state has multiple incoming
transitions. At the same time, this method only allows to see that a transition has been taken after the
fact, without allowing the user to observe the evaluation of the transition’s guard or even changing
some of its components at runtime.

From this idea, two different possibilities for breakpoint semantics arise. Both appear equally valid,
even though their applications lie on two different levels of granularity. A user may either be interested
in the transition being taken, i. e., the effect being executed and the target state becoming active, or the
transition being checked, but not necessarily taken, i. e., the guard being evaluated.

The first case may seem more practical since it follows the idea of breakpoints tracking how the
SCChart transitions between states described above. However, it may well happen that the SCChart is
in a certain state and the user expects it to take a certain transition, but that does not happen. In that
case, neither of the types of breakpoints introduced so far help since neither of them is triggered when
the source state has already been entered, but the outgoing transition is not taken. Considering the
example in Figure 4.2, a user may either be interested in the moment the alarm is triggered (i. e., the
transition from NoAlarm to Alarm being taken) or perhaps in examining each component of the guard
when the alarm does not turn off when expected to (i. e., the guard on the transition from Alarm to
NoAlarm evaluating to false).

To allow the user to observe the evaluation of the transition’s guard or even influence it, a second
type of transition breakpoint is introduced. Note that it should be possible to place both types of
breakpoint on the same transition without them interfering.

Transition Taken Breakpoints

As described above, this type of breakpoint is triggered once when a transition is taken, i. e., its guard
evaluates to true. Since multiple actions may happen during the transition (e. g., multiple effects, the
target state being set, ...), the breakpoint suspends on the first one of these actions to be executed.
When the transition is taken a second time (even within the same tick), the breakpoint is triggered
again.

Transition Check Breakpoints

This type of breakpoint is triggered every time the transition’s guard is evaluated, regardless of when
the state has been entered or whether the transition is taken. This way, the user can observe each
component of the guard expression precisely at the time the guard is evaluated to detect issues. As
described previously, this type of breakpoint may lead to many suspensions with no changes in
between them.
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1 /**
2 * State Pnone (-441546422)

3 */

4 private void TRAFFIC_LIGHT__EA_Exit6(TRAFFIC_LIGHT_regionPedestrianContext context) {

5 if (context.delayedEnabled && (!iface.Error)) { // Transition Error (Priority 1) -> Normal (-450882192)

6 context.delayedEnabled = false;

7 context.activeState = TRAFFIC_LIGHT_regionPedestrianStates._AABORTED2;

8 } else {

9 context.threadStatus = ThreadStatus.READY;

10 }

11 }

Listing 4.1. Example code with generated marker comments. Names shortened for better readability.

4.1.3 Other Breakpoints

The three types of breakpoints described above have been implemented in the demonstrator. More
types of breakpoints would bring an increase in flexibility when debugging, but also require more
training for the users.

The required types of breakpoints depend largely on the features most used in a model. For
example, some models may rely largely on core SCCharts features such as states and transitions, using
few advanced constructs. For these models, it is preferrable to have few types of breakpoints to reduce
complexity of the UI and make the tool simpler overall. However, a user relying heavily on actions
may find that not being able to place breakpoints on them hinders debugging. Therefore, adding
a new type of breakpoint to place on entry, exit and during actions may be desirable in the future.
However, the evaluation studies described in Chapter 6 suggest that the three types of breakpoints
presented above may be sufficient.

4.2 Markers in Generated Code

Section 3.2.2 introduced the concept of compiler tracing. With this feature, it is possible to easily
determine what model elements in the transformed model were generated from what source elements.
This information is required later since the generated code usually allows only a mapping back to the
transformed model, not to the source model.

However, as mentioned earlier, the tracing information is only available during the compilation
process, not at runtime when it is needed. Therefore, it has to be persisted. This is done using comments
in the generated code which are either attached to methods in the form of Javadoc comments or added
to certain lines as end-of-line comments. A detailed description of how these comments can be created
during the code generation process can be found in Section 4.5. A code excerpt with such marker
comments for a state and its transitions can be found in Listing 4.1.

The idea behind these marker comments is to create an association between source model element
and code location, allowing both the placement of breakpoints in the generated code and the extraction
of runtime information in relation to the source model. Without these markers, there would be no way
to determine that the method in the example above was generated from the entry action of state Pnone

of the original model.
While some may consider it better style to use Java annotations for this purpose, using comments

brings some advantages. Firstly, they are not only useful for the tool to determine where to place
breakpoints and to interpret them later on, but also for the user when reading the generated code.
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Thanks to the comments, the user can now easily see what methods are generated from what source
elements and thus better understand the structure of the code. Secondly, and perhaps more importantly,
comments do not influence the runtime behavior of the code outside a debugging environment. As
stated in Sections 1.4.4 and 2.4, interference with the code’s runtime behavior needs to be kept to a
minimum, which annotations cannot guarantee since they will always be active at runtime. Another
advantage of using comments over annotations is that the concept can be transferred more easily to
other target languages such as C, where annotations may not be available, but comments are.

4.3 Source Model Access

The previous section discussed how to preserve the tracing information until it is needed at runtime
to map the generated code to the original model. However, for this to be possible, access to the source
model itself is also required. This can be achieved by placing a string variable containing a file path
pointing to the original source file in the generated code at compile time.

Since developer teams usually use a clearly organized project structure and someone debugging
code generated from a source model usually has access to the original source file, it seems reasonable
to assume that the source model is available at runtime from a location already known at compile
time. The model file can then be loaded at runtime using the standard model parser.

In case the source file was unavailable at runtime, the compilation chain could easily be altered to
include not only the file path, but the entire file content in the generated code and parse the model
from there using a standalone parser. This option would eliminate the need for the original model file,
but at the cost of introducing a larger string variable into the code, resulting in potentially decreased
performance at runtime for large models.

Following the reasoning presented in the previous section and Section 1.4.4, it would be ideal to be
able to remove the path variable as well and replace it with a comment to minimize the impact on
runtime behavior. For breakpoint placement and extraction of runtime data, using comments is viable
since the editor containing the source code is always open when either occurs. However, there are
instances where the original model must be retrieved without the editor being open and thus without
access to the source code, therefore comments cannot be used here. When the path is located in a
String variable in the class under debugging, it can be extracted from the runtime stack. Details on
when this occurs can be found in Section 5.6.

4.4 User Interface

To make a debugger as intuitive as possible even for new users, a well-designed User Interface (UI) is
key. This refers both to the useability of the tool without much instruction and the newly introduced
components fitting in with the design of the development environment and the current workflow.

When integrating a new debugger with an existing IDE, it is therefore advisable to use existing
debuggers for that IDE as a guideline. For this reason, many of the Eclipse debug controls already
present (i. e., buttons for starting / stopping / resuming a debug run, stepping etc.) have been reused
without changes in the demonstrator to make the user feel at home. The remaining components have
been designed to fit in with KIELER and the SCCharts development process. The user interface with
the relevant components marked can be seen in Figure 4.3.

Chapter 6 presents two small studies conducted with both professional SCCharts developers and
computer science students that tested the demonstrator and were asked to evaluate, among other

33



4. Design and Concept

Figure 4.3. The demonstrator’s user interface with components relevant to debugging highlighted.

criteria, the ease of use and intuitiveness of the UI design. According to these studies’ participants, the
design goals have been largely met.

4.4.1 Debug Diagram View

Depending on the language and the desired debugging workflow, it may not be necessary to introduce
any new views at all. As an example, debugging Java code in Eclipse does not require any Java-specific
components since all necessary functionality is already provided by the Eclipse platform and its
debugging plugin. Especially for text-based imperative languages, using these components makes
sense.

However, for graphical languages such as SCCharts, custom views are required to display visual
debugging information in addition to that provided by the standard Eclipse views. When debugging
generated code, the views provided by the platform display host-language-level information on the
execution; to add a layer of abstraction and display the information on the model level, other means
are required.

Therefore, the demonstrator introduces a new UI component, the DebugDiagramView. This view
is based largely on KIELER’s KLighD view [SSH13], but bears some key differences, which are
summarized in Figure 4.4. The regular KLighD view is transiently linked to active SCCharts editors,
meaning that it always displays the model being edited there, or a placeholder message if the active
editor does not contain an SCChart. The view diverts from this behavior if intermediate models from
the compiler view are selected or during simulation, in which case it displays the selected model
regardless of editor, possibly with some highlighting in the case of the simulation.

While it would be possible to add the mode of displaying the model associated with a generated
code file in a host language editor to the same view, this may lead to confusion since there is no way
of distinguishing between the model being displayed for the currently open SCCharts editor and the
same model being shown for the generated code during debugging.
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Scenario KIELER Diagram View DebugDiagramView
Active SCCharts Editor displays SCChart empty
Active Java editor (generated code) empty displays SCChart
Active Java editor (other code) empty empty
Intermediate compiler result selected displays intermediate

model
empty

Running simulation displays SCChart with
runtime information

empty

Running debug session empty displays SCChart with
runtime information

Figure 4.4. Comparison of use cases for diagram views in KIELER.

Also, allowing the user to set and remove breakpoints by clicking model elements in the view
requires changes to the diagram synthesis, which are detailed in Section 5.5.2. It is not trivial to detect
which of the two types of model is being displayed, and thus whether the current model needs the
adapted synthesis.

Since the regular KLighD view’s functionality of interacting with SCCharts editors, the compiler
and the SCCharts-level simulation is not required when debugging generated code, the KLighD view
can be used as before during development, while the new Debug Diagram View is used in the debug
perspective. This way, the user will never need to have both views open at the same time.

4.4.2 Setting Breakpoints

To circumvent the need for the user to set breakpoints in the generated code, an option to set
breakpoints on the model level is required. These breakpoints must then be coupled to host language-
level breakpoints according to the breakpoint semantics as described in Section 4.1.

For textual languages, using a double click next to the model line where a breakpoint should be
placed follows a common way of setting breakpoints and will therefore be intuitive for developers
with experience in debugging other textual languages. For graphical languages such as SCCharts, a
similar approach can be used by allowing the user to set and remove breakpoints by clicking model
elements in the graphical debug view mentioned above.

This approach has been chosen for the SCCharts demonstrator, even though the language is used
with a text editor and automatically synthesized visual representations. The main advantage is that
using the newly introduced DebugDiagramView eliminates the need for an SCCharts editor displaying
the source model during debugging. To allow the user to set breakpoints on the source code, which
they may be more familiar with, an additional mapping between generated code, displayed diagram
and the source model code would be required to allow the user to quickly identify which source-level
breakpoint has been hit to allow them to interact with it seamlessly. Since there is no other use for
the source model code in the debugging scenario and the Debug Diagram View is already available
anyway, directly clicking model elements to set and remove breakpoints is the adequate way.

To set or remove a breakpoint on a state, the user can double-click anywhere on the state, much
like one would double-click next to a line of source code to place a breakpoint. For transitions,
Section 4.1.2 lists two different types of breakpoints, which require separate keybindings. Since the
TransitionTakenBreakpoint is semantically more similar to the StateBreakpoint and is considered the
default transition breakpoint, it can be placed and removed through double-clicking a transition. For
the TransitionCheckBreakpoint, the behavior is more intrusive and there are fewer use cases for it,
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Figure 4.5. Different types of breakpoints as displayed by the Debug Diagram View.
Note that the red circle indicates a Strong Abort transition and is not related to debugging.

therefore it can only be placed by holding shift while double-clicking a transition.

4.4.3 Visual Semantics

An essential part of debugging is to examine the runtime state of a program while it is suspended.
While Eclipse and other IDEs already offer a selection of debugging components, which were presented
in Section 3.1.3, most of them are hardly suited for displaying information graphically. The newly
introduced DebugDiagramView and similar components can fill this role, however, they need a visual
semantics that clearly communicates the desired information even to users new to the language.

Breakpoint Markers

As explained in the previous section, the view can be used to set and remove breakpoints in the source
model. To indicate whether a breakpoint has been set on a model element, clear markers are required.
The demonstrator uses circular markers similar to those used in common debuggers for text-based
languages to indicate line breakpoints.

For states, the markers are placed in the top left corner, with some distance to ensure they do
not collide with the rounded corner and be well visible. They use a dark blue color to follow the
blue-themed color scheme of SCCharts and to resemble common debugger breakpoints. In Figure 4.5,
a StateBreakpoint can be seen on the state noFire.

For transitions, breakpoints are placed on the graph edge near the middle of the transition.
They cannot be placed precisely in the middle since both types of breakpoints may be placed
on the same transition, requiring them to fit next to each other. To indicate similar semantics,
TransitionTakenBreakpoints use the same marker as StateBreakpoints, while the TransitionCheck-

Breakpoint uses a bright yellow marker to clearly distinguish the two types. Examples of each marker
can also be found in Figure 4.5.

If the visual syntax of the language already contains similar constructs, markers should be chosen
that can clearly be distinguished from those constructs. SCCharts contain strong abort transitions,
indicated by a red circle at the beginning of the transition, however the clear difference in color, size
and placement between those circles and breakpoint markers allow for differentiation. Finding out
whether using differently shaped markers to further avoid confusion outweighs the disadvantage of
less resemblance with traditional line breakpoints would require a study outside of this thesis.

Highlighting

While setting and removing breakpoints is possible at any time the matching generated code editor is
open, regardless of whether a debug session is currently running, the DebugDiagramView displays addi-
tional information during debug sessions. Figure 4.6 shows an example diagram during debugging.
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Figure 4.6. An SCChart during a debug run. Red frames indicate active states, green backgrounds mean executing
elements.

Depending on the language’s model of computation, a variety of information can be available and
relevant at a given time. For example, debuggers for visual dataflow languages such as SCADE2 may
display the equation currently being evaluated along with current variable values. On the other hand,
debugging state-machine-based languages such as SCCharts profits from highlighting active states
and transitions, especially in concurrent contexts.

Since SCCharts may contain concurrent regions, which are sequentialized during state-based
compilation as described in Section 2.2.1, the generated code always runs in a single thread and thus,
only one method can be currently running when the execution is suspended. However, the regions’
context datastructures always keep information on active states even for currently inactive regions. A
more detailed description of how runtime information is extracted in the demonstrator can be found
in Section 4.7.

If there are multiple parallel regions in the current scope, there may therefore be multiple active
states (i. e., states the SCChart is currently in), but only one of them can be executing (i. e., one of
its associated methods is running). For surrounding scopes, the same rules apply iteratively, where
superstates are considered to be executing when one of their associated methods is currently on the
callstack, even if it has called another (substate’s) method.

Since both of these classes of states are relevant to understanding the current state of the model as
a whole, they need to be highlighted in the diagram in a way that makes them clearly stand out from
non-highlighted states while minimizing the potential for confusion between the two.

To indicate that a state is active, it receives a red outline. Red is chosen here since the highlighting of
active states in the KIELER simulation uses the same color, so experienced SCCharts developers will
recognize the semantics conveyed by the outline. Since the root state will always be active when the
generated code is executing, the red outline is omitted to reduce visual clutter.

For executing states and other model elements, a green background was chosen, with a color closely
resembling the one used by Eclipse when highlighting the currently executing line of code in an
editor. Again, experienced developers can immediately associate the color with the current instruction

2https://www.ansys.com/en-gb/products/embedded-software/ansys-scade-suite
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pointer. Here, the root state also receives a green background even though it is always executing when
a breakpoint within the SCChart is hit. This is to make sure that there is a clear visual difference
between the diagram while debugging and while no session is active, even if the currently active and
executing states within the diagram are very small or otherwise hard to spot.

It is important to note that even though red and green may be hard to distinguish for some users,
the fact that one is used for background and the other one for foreground coloring should still make
it possible for those users to use the tool. This tradeoff has been accepted in favor of the advantages
listed above.

Figure 4.6 shows all of these highlightings in practice. State Normal is active and executing, as well
as its substate Cyellow. Since the TransitionTakenBreakpoint between Cyellow and Cred has been hit,
the transition is currently executing and thus highlighted, too. In the parallel Pedestrian region, no
states are currently executing due to the sequentialization, but state Pred is active nonetheless.

4.5 Changes to the Compilation Chain

The previous sections outlined requirements and concepts for debugging model-based languages in
general. This one and the following sections are closer to the demonstrator implementation and put
more focus on SCCharts and KIELER since the approaches are closely tied to the language and the
debugging environment. Technical details of the implementation can be found in Chapter 5.

This section focuses on integrating the required marker comments and source model references
into a state-based compilation system, using the state-based Java code generation for SCCharts as an
example.

4.5.1 Adding Debug Markers

Since the tracing information is only accessible during compilation, the compilation chain needs to be
extended by an additional step or processor to support debugging. This processor runs as the last one
on model level before the actual code generation. This way, it can be ensured that all elements used in
the code generation are present already when this step runs and no model elements can be introduced
afterwards.

Using Tracing to Determine Source Elements

The processor relies on the tracing mechanic described in Section 3.2.2 to determine the source model
elements for all generated ones. This mechanic may be supported in different ways, depending on the
compiler. The KIELER compiler’s environment provides a mapping between source and transformed
model elements or vice versa, provided that all processors in the compilation chain support tracing,
i. e., correctly register the alterations they make in the compiler environment.

Since no m2m transformations in KIELER ever create a single model element from multiple source
elements, the mapping from transformed to source elements will always yield a single source for each
transformed model element (or possibly none if the tracing chain is incomplete). For other languages or
compilation systems where this is not the case, the following concepts need to be adapted accordingly,
e. g., by including a list of model elements instead of a single one.
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Figure 4.7. A transformed and annotated SCCharts model. Comments attached to model elements are displayed
as yellow boxes.

Annotations and Comment Format

Once the source model element has been determined for an element in the transformed model, the
processor can attach a comment to the transformed element, much as a user could in the source code.
In the case of SCCharts, the annotated model can be examined as an intermediate compiler result; an
example extract from a transformed and annotated model can be found in Figure 4.7.

If there are user comments already present, the new comment annotation is added last. In contrast
to the tracing data, these comment annotations are not part of the compiler environment, but of the
transformed model, and will thus remain available.

The comments use a specific format expected in later steps that was designed to be machine-
readable, but also helpful for a human reader looking at the generated code. Most importantly, the
comments must uniquely identify each model element. Since in many languages, different model
elements may have the same name as long as they reside in different scopes, simply annotating
the source model element’s name is not sufficient. However, including the name makes it easier to
determine a selection of potential matches before comparing other, more unique identifiers. An added
benefit of including the actual name is that it makes reading the code much easier for humans.

Apart from the source model element’s name, the comments contain a hash over a fully qualified
name of a model element, including all parent scopes’ names. Since no two model elements may have
the exact same hierarchy of parents as well as the same name, this ensures unique hashes for each
element3.

The exact comment format used to mark SCCharts states and transitions in the demonstrator
implementation is described in Section 5.3.

4.5.2 Template Adaptations

After the m2m transformations are complete, code is generated from the transformed model in the last
compilation step. For SCCharts, this step is template-based and changing the template is sufficient;
for other approaches, the compiler must be adapted accordingly. To make the tracing information
available at runtime, the code generator needs to include the marker comments added in the previous
step.

For model elements that have methods associated with them, such as the states in SCCharts, a
leading comment containing the comment annotations of the respective model element can be added
to the method. This ensures that the marker comments can always be found in a pre-defined place.

For other model elements, such as transitions in SCCharts, there may be multiple lines of code
generated from them within a method. In SCCharts, these lines are enclosed within an if-statement,
with the condition being the transition’s guard and the body containing its effects. Since comments

3Technically, random hash collisions may occur. However, using a modern hashing algorithm and considering the comparably
low number of model elements in most practical models, the probability of a hash collision is negligible.
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Extract selected
model elements

Compute name
and name hash

Find matching
marker comments

Place breakpoints
at fixed offset

Figure 4.8. Steps to placing a breakpoint corresponding to a model element selected by the user.

cannot be attached here, they are added after the if-condition marking the transition’s guard as
end-of-line comments instead. For other model elements with no such block structure, an appropriate
location must be determined according to the language-specific breakpoint semantics.

Additionally, if enums are used to store the active state, they must be extended by a String field
containing the same value that is used to mark the state’s methods. This way, it is possible to extract
the active source model states from the model’s internal storage.

4.6 Finding Breakpoint Locations

When the user double-clicks a model element in the diagram view, breakpoints must be set in the
appropriate code location(s) automatically. After Section 4.1 introduced the desired semantics for the
breakpoints and Section 4.5 described how marker comments are placed in the generated code, this
section presents an implementation concept for finding the correct breakpoint locations for a model
element. A high-level overview of the concept can be seen in Figure 4.8.

It is important to note that since breakpoints are set by clicking the diagram view, the source
model being displayed there is thus already available. And since the diagram view always displays the
model associated with the active editor, this in turn means that whenever the user sets a breakpoint
on a model in the diagram view, the active editor contains the corresponding host language code,
which makes it easy to locate the appropriate file to set breakpoints in. Even though the breakpoint
types used as examples in this section are SCCharts specific, the general concept can be applied to all
model-based languages where the code generation follows a similar state-based pattern.

4.6.1 State Breakpoints

Since the source model is available and the state that is clicked can be identified by the KLighD
framework, the state’s full name hash can be computed. Using regular expressions, all comments
matching the marker comment pattern described in Section 4.5 can be located. Knowing the specific
template format and that the marker comment is always added last, the first line of the method body
is always located a fixed number of lines after its marker comment, which allows the tool to place a
breakpoint there for each method associated with the given state. In the example shown in Listing 4.2,
a user clicking state Pnone in the diagram view can expect the tool to place a breakpoint on line 5,
since that line is located exactly three lines after the marker comment unambiguously marking the
shown method as pertaining to Pnone. The specific distance of three lines between marker comment
and desired breakpoint location depends on the code generation and desired breakpoint semantics
and must be adapted for each compilation chain individually.

To implement the state breakpoint semantics described in Section 4.1.1, the breakpoints must be
registered by state so that whenever a StateBreakpoint is triggered, said breakpoint as well as all other
StateBreakpoints associated with the same state can be disabled.

However, re-enabling the breakpoints when the state is left is not as trivial since taken transi-
tions do not usually trigger any events visible to the debugger. Therefore, artificial TransitionWatch-
Breakpoints are added to all of the state’s outgoing transitions. The placement of these breakpoints
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1 /**
2 * State Pnone (-441546422)

3 */

4 private void TRAFFIC_LIGHT__EA_Exit6(TRAFFIC_LIGHT_regionPedestrianContext context) {

5 if (context.delayedEnabled && (!iface.Error)) { // Transition Error (Priority 1) -> Normal (-450882192)

6 context.delayedEnabled = false;

7 context.activeState = TRAFFIC_LIGHT_regionPedestrianStates._AABORTED2;

8 } else {

9 context.threadStatus = ThreadStatus.READY;

10 }

11 }

Listing 4.2. Example code with generated marker comments. Names shortened for better readability.

is the same as for TransitionTakenBreakpoints, which is described in detail in the following section.
However, a TransitionWatchBreakpoint does not need to suspend the debug session when hit, nor be
displayed to the user in the diagram view. Breakpoint listeners are still notified, however, and can thus
detect that the transition has been taken and its source state must have been left. With this knowledge,
all StateBreakpoints associated with the transition’s source state can be re-enabled.

4.6.2 Transition Breakpoints

Setting transition breakpoints of either type follows a similar pattern as for state breakpoints. From the
known model, selected transition and editor, a regular expression can be used to find all code locations
associated with the given transition. Even though there usually is just one marker for simple transitions,
some cases (e. g., strong abort transitions) may cause multiple code locations to be generated from
a single source transition. Listing 4.2 shows such a case: The transition marker in line 5 belongs to
a strong abort transition in the original model, going from state Error to state Normal. Lines of code
generated from this abort transition appear in every child state of Error, which Pnone is one of.

From the structure of the template used in code generation, it is known that the marker comment
is always located on the same line as the transition’s guard expression. Therefore, TransitionCheck-
Breakpoints can be placed on each line with a matching marker comment, so line 5 in our example.
Accordingly, TransitionTakenBreakpoints (and TransitionWatchBreakpoints mentioned in the previous
section) are placed one line below the marker, so on the first line of the if-statement’s body. This way,
the TransitionCheckBreakpoint is triggered whenever the if-statement’s guard is evaluated, but the
TransitionTakenBreakpoint only triggers when the transition’s body is run. Here, it is worth noting
that even if the transition does not have an effect, there will still be at least one line in the body to set
the context’s active state to the transition’s target state, making this method safe for those cases, too.

4.7 Retrieving Runtime Information

Whenever a debug session is suspended on a breakpoint introduced by the debugger, a collection
of data on the currently running session is displayed to the user as described in Section 4.4.3. How
the highlighting of active and executing model elements is implemented is presented in Section 5.5;
this section describes how the different pieces of information can be extracted from the runtime
environment. While presented specifically for SCCharts here, other model-based and host languages
can be analyzed in the same way, as long as the runtime information is accessible in a similar way to
what is described here.
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1 /**
2 * The runtime thread data of region

3 */

4 public static class TRAFFIC_LIGHT_regionR0Context {

5 ThreadStatus threadStatus;

6 TRAFFIC_LIGHT_regionR0States activeState;

7 TRAFFIC_LIGHT_regionCarContext TRAFFIC_LIGHT_regionCar

= new TRAFFIC_LIGHT_regionCarContext();

8 TRAFFIC_LIGHT_regionPedestrianContext

TRAFFIC_LIGHT_regionPedestrian = new

TRAFFIC_LIGHT_regionPedestrianContext();

9 [...]

10 }

Listing (4.3) Context object generated for a region. Names
shortened for better presentation.

1 /**
2 * Enumeration for all states of the region

3 */

4 public enum TRAFFIC_LIGHT_regionR0States {

5 NORMAL("State Normal (1131102381)"),

6 NORMALRUNNING("State Normal (1131102381)"),

7 ERROR("State Error (998096258)"),

8 ERRORRUNNING("State Error (998096258)"),

9 __EA_INIT18("State TRAFFIC_LIGHT (-934068026)");

10

11 private String origin;

12 TRAFFIC_LIGHT_regionR0States(String origin) {

13 this.origin = origin;

14 }

15

16 public String getOrigin() {

17 return origin;

18 }

19 }

Listing (4.4) Generated enum of a region’s states

Figure 4.9. Code extracts from TrafficLight SCChart.

4.7.1 Active States

As presented in Section 2.2.1, there is a Context structure in the generated code for each region in
an SCChart containing the currently active state. One such structure can be seen in Listing 4.3. The
root context is always stored in a variable with a pre-defined name, so this variable can be extracted
from the runtime heap of the thread that has been suspended. This context structure (just as any
non-root ones) contains one threadStatus field (line 5), one activeState field (line 6) and any number
of contexts representing the state of subregions.

The threadStatus field contains one of four possible values, which can be used to determine
whether the region has been initialized yet or whether it has already terminated. Both for unitialized
and terminated regions, the active state of it and all of its subregions should be disregarded. These
regions occur within states which are not currently active and do therefore not have an active state.

In the activeState field, an enum value pertaining to the currently active state of the region is
stored. An example enum for the root region of the TrafficLight SCChart can be seen in Listing 4.4.
Since the adapted template added a marker string to these enum values, they can then be used to find
the corresponding model element to highlight.

Any other field can be assumed to contain the context for a subregion, which is recursively searched
for active states to be highlighted.
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Extract method
or line from

runtime memory

Check for
marker comment

Extract name
and name hash
from comment

Find matching
model element

Figure 4.10. Steps to extracting executing model elements from the program’s runtime memory.

4.7.2 Executing States

While the active states can be read directly from memory, determining the executing states requires
the use of the callstack’s structure. Starting at the topmost stack frame, each method on the stack is
analyzed and if it is generated from a state, said state is considered to be executing.

To determine whether the method was generated from a state, the fact that most Eclipse editors
provide an Abstract Syntax Tree (AST) representation of their content can be exploited. From the AST of
the active editor, all methods are retrieved that have the same name as the one the current stack frame
belongs to. After finding the method, the attached comment can be parsed and mapped to a source
model state with the same method as above. Whenever a method appears on the callstack that cannot
be found in the current editor or does not have a comment matching the expected marker format, it is
ignored.

Note that when a StateBreakpoint is hit, said breakpoint contains the information what state it
belongs to, thus the mechanism described here is not required. In that case, determining the state
associated with the breakpoint along with its parent states becomes trivial. The procedure described
here is needed when the execution is suspended for reasons other than a StateBreakpoint (e. g., a
TransitionBreakpoint or the end of a debug step).

4.7.3 Executing Transition

Determining the currently executing transition works via the current instruction pointer of the running
debug session, which Eclipse provides in the form of the line currently being executed. The simplest
approach is to check, again using a regular expression, whether the current line contains an end-of-line
comment matching the expected marker comment format for transitions and if so, to retrieve the
transition using the information from the comment as in the previous cases.

Another option is to use the AST representation in the editor to determine not only the current
line, but the surrounding syntactic construct (e. g., a block statement or method). This way, any line
within the body of the transition can be mapped to the marker comment on the guard, thus allowing
more precise highlighting. This option can be explored further in the future.

Here, it is worth noting that the executing transition should be highlighted if a user step ended on
the transition or if a transition breakpoint on it was triggered. However, when a state breakpoint is
triggered, the first outgoing transition should not be highlighted to avoid confusion, even if the first
line of the method body (where the StateBreakpoint is placed) is often also the location of the first
transition’s guard (where the corresponding TransitionCheckBreakpoint is placed).
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(a) A simple SCChart.

1 switch (state()) {

2 case NoLineForBEntry:

3 pauseB(State._L_0);

4 if (true) break;

5

6 case _L_0:

7 termB();

8 if (true) break;

9 }

Listing (4.5) Priority-based code generated from the SCChart. There is
no line of code corresponding to state B.

Figure 4.11. A priority-based compilation example. Source state B does not appear in the generated code.

4.8 Implementation Approach for Priority-Based Compilation

Even though the state-based code generation approach generates particularly readable and easy-to-
debug code, other compilation approaches for SCCharts exist and have been implemented. While
these other approaches generate code that is less readable for humans, the generated code may
be a lot more performant than with the state-based variant [SMH18]. As further examples of how
model-based debugging can be realized for different code generation approaches, this section presents
an implementation concept for the priority-based approach while the following section focuses on the
original netlist-based approach. Both approaches were introduced in Section 2.2.

4.8.1 Marker Comments

To allow model-based debugging of priority-based code, marker comments must be introduced in
appropriate places as described in Section 4.2. However, finding appropriate marker locations is more
difficult than for state-based code since the priority-based code has a vastly different structure than
the source model.

For SCCharts, the priority-based compilation system transforms the model into an SCG before
generating code. Through tracing, each SCG node can be mapped to the original model element it
was generated from. This could, for example, be used to annotate each assignment or each guard
originating from a transition with a marker comment at the end of the line similar to transition marker
comments in the state-based approach. However, some model elements may not appear in the SCG at
all. Since the code is generated from the SCG, they do not appear in the code, either. As an example,
consider Figure 4.11. While state A as the initial state appears and has an associated pause statement
in line 3(since its outgoing transition is delayed) and state C appears, too (in the form of the term

statement in line 7 that terminates the main thread), there is no trace of state B in the generated code.
B neither causes a delay, which would require a pause, nor does it have guarded outgoing edges
requiring a guard evaluation.

In state-based code, this problem does not occur since even an unguarded and non-delayed
transition needs to execute at least one line in its body to set the region’s active state to the transition’s
target. Since priority-based code does not actively track the current state, these transitions can simply
be omitted. For languages other than SCCharts, similar problems may occur.

However, whenever a state has either an outgoing edge with a guard or a delayed outgoing edge,
there must be a label corresponding to it in the generated code. In either case, there is a chance that
the state is not left in the same tick it is entered in, thus requiring a pause. When an unguarded
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1 case UnguardedDelayedEntry: //State marker here

2 pauseB(State._L_0); //Transition marker here

3 if (true) break;

4

5 case _L_0:

6 termB();

7 if (true) break;

Listing (4.6) Generated code extract for an unguarded,
but delayed transition

1 case GuardedImmediateEntry: //State marker here

2 if(anInput){ // Transition marker here

3 gotoB(State._L_0);

4 } else {

5 gotoB(State._L_1);

6 }

7 if (true) break;

8

9 case _L_0:

10 termB();

11 if (true) break;

12

13 case _L_1:

14 pauseB(State._L_2);

15 if (true) break;

16

17 case _L_2:

18 gotoB(State.GuardedImmediateEntry);

19 if (true) break;

Listing (4.7) Generated code extract for a state with an
outgoing immediate, but guarded transition

Figure 4.12. Code examples for marker placement in priority-based code.

delayed transition goes out, the execution resumes in the next tick at another label corresponding to
the next action to be executed after the state has been left. An example for such a state can be seen
in Listing 4.6. In that case, placing a marker on the label of the corresponding pause statement will
suffice. If an immediate, but guarded outgoing transition is present, like in Listing 4.7, a label marking
the beginning of the state is required since the same behavior needs to resume at the beginning of
each tick until the transition is taken. In the example, execution starts in line 1 in the first tick. If the
outgoing transition is not taken, the execution goes to _L_1, where it pauses until the next tick starts.
In the next tick, it resumes at _L_2, from where it returns to the initial label in line 1. In this cases, a
marker can be placed on the line with the state’s entry label.

When there are no guarded and no delayed outgoing transitions present, the marker for the state
can safely be placed on the next state’s entry label, resulting in multiple stacked markers on the same
line. When suspending on said line due to a breakpoint, the breakpoint can contain information on
what state the breakpoint was intended for. When using the stepping functionality, the intermediate
state can simply be omitted and the last marker of the line (i. e., pertaining to the last state in the
intermediate chain) can be assumed as active. Since there is no code associated with the intermediate
state (and in particular, no priority change), there is no possibility of parallel threads performing
changes in between the two states.

Similarly, markers for transitions can always be placed on the conditional statement evaluating
their guard, if any, or the pause statement if unguarded, but delayed. For immediate, unguarded
transitions, the marker can be placed on the target state. Here, it should be placed on the line after the
label to ensure that the markers for transitions are always on executable lines of code.

4.8.2 Setting Breakpoints and Extracting Runtime Information

As described above, most states have either a label or a pause statement associated with them. The
remainder are states with no inner behavior, no guarded nor delayed outgoing transitions, in which
case their marker is located on the next state.
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In either case, a breakpoint can be placed on the line of code after the marker, i. e., the first line of
the corresponding case-block. If the marker stores the state it belongs to, this information can trivially
be retrieved at runtime. However, if this information is lost (e. g., if the breakpoint has been recreated
after a restart of Eclipse), the comment needs to be parsed as described in Section 4.7. In the rare
case of multiple state markers on the same line, the breakpoint can default to the last one since the
previous states do not contribute to the model’s behavior and placing the breakpoint on either location
is equivalent.

To place transition breakpoints, a similar logic applies. For transitions with clear associated code
locations, e. g., if they have guards or effects, their marker is placed on these locations. If the transition
is unguarded and delayed, the marker is placed on the pause statement belonging to it and if neither
is the case, the marker is located on the next state’s first executable line. In either case, the breakpoint
can simply be placed on the line with the marker. Similarly to the state breakpoints, the breakpoint
itself can store the transition information, which can be recovered from the marker comment if lost.

Information on the active states of each region can be retrieved from the program counter and the
labels it stores. For the currently running thread, it suffices to mark the executing state(s) as active
following the method above. All other threads are either not alive (i. e., not yet started or already
terminated) or suspended on a label, which can be accessed through the program counter field. Since
the labels are enum values, they can be augmented with marker strings similarly to the activeState

values in the state-based approach. With these marker strings, the state’s marker string and thus the
original model element itself can be extracted and highlighted.

4.9 Implementation Approach for Netlist-Based Compilation

The netlist-based compilation approach for SCCharts was first proposed by von Hanxleden et al. in
2014 [HDM+14]. Similar approaches exist for other languages. The idea behind this approach is to
synthesize a logical circuit implementing the behavior modelled by the SCChart. This circuit can then
either be simulated in software by expressing it as a set of boolean variables and assignments in a
language such as C or Java, or hardware can be synthesized from it via a compilation to VHDL.

While the priority-based approach has faster average tick times and scales better, the netlist-based
approach has a smaller jitter in tick times and is thus more predictable [Pei17]. It is currently also the
only compilation approach for SCCharts that allows for hardware synthesis.

4.9.1 Marker Comments

Similarly to the priority-based approach, a transition’s effect as well as its condition can be tracked
from the source model all the way down to the sequentialized SCG. For transitions with a trigger, the
trigger expression is evaluated and stored in a generated guard variable. This variable is then used to
determine whether the effect, if any, should be executed as well as whether the next block should be
active. Placing a marker on the effect is only possible where one is present. Otherwise, the transition’s
trigger is only evaluated as part of the next block’s entry guard, as shown in line 12 of Listing 4.8,
where anInput is the trigger of an immediate transition with no effects. The line where the next block’s
entry guard is evaluated isn’t a suitable place either since that guard will be evaluated regardless of
whether the transition is taken, and even regardless of whether the source state is active.

However, a marker on the guard can be useful for placing a TransitionCheckBreakpoint anyway, as
discussed in the following section. For TransitionTakenBreakpoints, a marker should be placed on the
guard variable’s declaration so that a variable breakpoint can be placed on it at runtime. Unguarded
delayed transitions, as shown in Listing 4.9, can be handled similarly since they are taken when
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1 public boolean anInput;

2 public boolean _g1;

3 public boolean _g4; //State marker here

4 public boolean _GO;

5 public boolean _cg1;

6 public boolean _TERM; //TransitionTaken marker here

7 public boolean _pg1;

8

9 public void logic() {

10 _g4 = _pg1;

11 _g4 = _GO || _g4;

12 _TERM = _g4 && anInput; //TransitionCheck marker

here

13 _g1 = _g4 && !anInput;

14 }

Listing (4.8) Generated code extract for a state with an
outgoing immediate, but guarded transition

1 public boolean anInput;

2 public boolean _GO;

3 public boolean _TERM; //State marker here

4 public boolean _pGO; //TransitionTaken &

TransitionCheck marker here

5

6 public void logic() {

7 _TERM = _pGO;

8 }

Listing (4.9) Generated code extract for an unguarded,
but delayed transition

Figure 4.13. Code examples for marker placement in netlist-based code.

the previous block’s guard was present in the past tick, so they have a guard expression similar to
transitions with triggers.

Immediate transitions with no trigger nor effect do not appear in the generated code, similarly as
in the priority-based approach, making it impossible to place a breakpoint on them directly. However,
by the same reasoning as there, they do not have effects on the runtime state of the program and thus,
it is safe to place the marker on the target state instead.

For states with guarded or delayed outgoing transitions, at least one guard is required since in
either case, the state may not be left in the same tick it was entered. Whenever such a guard evaluates
to true, the corresponding state must be active. Therefore, a state marker should be placed on the
guard’s declaration. With a similar reasoning as above, states that have a single unguarded and
immediate outgoing transition can have their marker placed on the transition’s target state instead.

4.9.2 Setting Breakpoints

As described previously, all guards are evaluated in each tick regardless of whether the respective
state or transition is active. Therefore, placing breakpoints on the line(s) where they are evaluated
causes a suspension in each tick, which is not desired.

Instead, variable breakpoints, or watchpoints, can be placed on the guards themselves. A watchpoint
in Java is a type of breakpoint that is coupled not to a code location, but a field or variable instead.
It can be configured to suspend the execution either when the variable is accessed or exclusively on
writes. As all Java breakpoints, it can also be tied to a condition, which can be any Java expression
evaluating to a boolean. Thus, placing a watchpoint on a transition’s target’s entry guard variable that
is only activated on write access, coupled with the condition that the variable’s value must be true, only
suspends the execution the moment the guard evaluates to true, which corresponds to the transition
being taken. Therefore, such a breakpoint can be used to implement TransitionTakenBreakpoints for
guarded or delayed transitions.

TransitionCheckBreakpoints should be triggered every time the SCChart is in the transition’s
source state and the trigger is evaluated. Since being in the source state is represented by a known
guard, a watch breakpoint on the transition’s target’s entry guard can be used here as well. Just as
for the Transition Taken Breakpoints, it should be only be activated when the guard is written, not
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when it is read. However, its condition should not be the guard itself being true (i. e., the transition
being taken), but rather the source state’s guard being true (i. e., the SCChart is in the source state
and the guard is evaluated). Without this additional condition, the breakpoint would trigger each tick
regardless of active state.

StateBreakpoints can be placed similarly to TransitionTakenBreakpoints. If there are multiple
outgoing transitions for a single state, multiple guards may be present. Placing a breakpoint on each
one of them is required. To avoid multiple suspensions, TransitionWatchBreakpoints can be used as
presented in Section 4.6 for the state-based approach.

4.9.3 Extracting Runtime Information

When a breakpoint is triggered, the currently executing model element can be determined either from
the breakpoint itself storing its associated state or transition or, if that information is unavailable, from
the comment on the breakpoint’s line. This procedure is similar to that presented for the other two
approaches, only that here, the Java editor’s AST may need to be used to locate a variable’s declaration
to retrieve the respective end-of-line comment for the watchpoints.

Executing Model Elements

However, determining the executing state or transition in other scenarios (e. g., when a debugging
step ends) may be difficult. Extracting the active states from netlist-based code is not simple, either.
Figure 4.14 summarizes possible ways of determining the active and executing state for netlist-based
code and their advantages and drawbacks.

If a step happens to end on a line with a marker comment, that comment can be used to determine
the executing state. Otherwise, however, there is no way to determine the executing source model
element just from the current code location. All code is located in a single method, the guard’s names
do not permit any conclusions as to the model element’s original names and the SCG nodes have
been reordered. Therefore, searching through the previously executed lines until a marker comment is
found does not guarantee that the current line belongs to the same element.

Without greatly altering the structure of the generated code, determining the executing model
element purely from a line of code may only be possible by adding marker comments to every line
in the generated code, annotating the source model element it was generated from. Whether or not
this method is sensible depends on different factors. On the one hand, the code becomes less readable
through the introduction of a large amount of clutter and its size increases considerably. In turn,
debugging the code using stepping becomes viable. The increased code size may be tolerable since
comments do not influence the runtime behavior or executable size outside of debugging. One could
argue that the decreased readability is less of a problem than it would be for other code generation
approaches since netlist-based code is hardest to read by humans out of all three approaches anyway
[SDH19]. Therefore, even without adding any clutter, the netlist-based approach can be considered a
poor choice for scenarios where the generated code is intended to be read by humans.

Active States

With netlist-based code, finding the active states of an SCChart requires extensive search. There
is no central variable that stores the active state for each region. Instead, each state has its own
guard(s) irrespective of region. One could scan all guards belonging to states and, if true, consider the
corresponding state active. However, since all guards are re-evaluated in every tick, this method may
yield a partially incorrect list depending on the point of the tick function where it is applied.
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Comments on every lines Scanning all guards
+ Can determine executing state reliably + No additional comments required
+ No influence on runtime behavior + No influence on runtime behavior
- Visual clutter in the source code - Requires scanning all variables in every tick
- Large increase in source code size - Requires large amounts of bookkeeping

Figure 4.14. Approaches to determining active and executing states in netlist-based code and their advantages
and drawbacks.

If a state’s guard is true and has not yet been evaluated in the present tick, it can only be seen that
it was active in the past tick. Since the SCG sequentialization preserves the ordering of code in each
thread, neither its outgoing transitions nor any of the following states have been evaluated, and the
state can thus still be considered active. If the guard has been evaluated to false in the present tick,
it can be assumed as inactive since the same guard cannot be evaluated again in the same tick due
to the SSA-like variable separation. However, if the guard has been evaluated to true in the present
tick, that only means that the state has been active at some point during the present tick. Its outgoing
transitions or any following states may have been evaluated already, too, which means that it may no
longer be active. In such a case, one could keep the state as potentially active. If another state from
the same region is found that is potentially active in the same tick, but evaluated later, the first state
should be marked as inactive. If no further states from the same region are found to be potentially
active, one can consider the first state truly active.

However, this method requires a large amount of bookkeeping, mapping of states to their re-
gions and keeping track of guards that have been evaluated already, which may introduce a major
performance overhead especially when debugging larger models.
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Chapter 5

Implementation

After the design decisions and goals were outlined, this chapter presents the implementation details
for the demonstrator created as part of this thesis. As mentioned before, the implementation provides
a fully functional model-based debugging environment for state-based SCCharts compilation to Java.
Where applicable, changes required for other target languages will be discussed.

5.1 Plugin Setup

The demonstrator has been integrated into KIELER, which is based on the Eclipse platform. Since
Eclipse is highly modular, all code for the demonstrator needs to be organized into plugins. Since its
functionality is specific to SCCharts and part of the core development process, there is no separate
debugging plugin; instead, all code from this project has been integrated into the de.cau.cs.kieler.

sccharts and de.cau.cs.kieler.sccharts.ui plugins (from now on referred to as “the SCCharts plugin”
and “the UI plugin”) already containing all previous core functionality.

The separation into UI and non-UI plugins serves to ensure that all code with UI dependencies (e. g.,
views, menu contributions, breakpoint listeners) is collected in a joint plugin while UI-independent
components (e. g., parsers, compilation systems) reside within a plugin that has no such dependencies,
thus allowing easier use of these components outside the IDE where the UI dependencies would be
unavailable.

5.2 Modularity

This section gives an overview of the different components used in this project. To make it as easy as
possible to adapt the tool for different host languages and compilation approaches, the code has been
split to allow the reuse of code wherever possible. Figure 5.1 presents the different components and
whether they can be reused in scenarios other the one implemented here. Details on the implementation
of each component is given in the following sections.

As can be seen in the topmost group, several components are completely independent from
both the host language Java and the state-based compilation approach being used. This includes
the DebugAnnotations processor, which is responsible for generating the marker comments from the
tracing information provided by the compiler environment as described in Section 4.5.1. Since this
operation runs on the model level, it is independent from the further compilation backend as long
as said backend supports including the marker annotations in the generated code appropriately. The
group also includes all code related to displaying, highlighting and interacting with the diagrams,
since it was designed to operate purely on model elements, thus being independent from all specifics
of host language and generation approach.

The center group contains components that are specific to Java and the Eclipse JDT, but can still be
reused for other compilation approaches generating Java code. This group includes the debug listener
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reusable across
Component Location host lan-

guages
compilation
approaches

DebugAnnotations processor processors.statebased 3 3
Diagram Actions & Hooks ui.debug.actions /

ui.debug.hooks

3 3

Highlighters ui.debug.highlighting 3 3
Debug Diagram View ui.debug.view 3 3

Debug Listener ui.debug.breakpoints 7 3
Breakpoint implementations ui.debug.breakpoints 7 3
Diagram Part Listener ui.debug.view 7 3

Template adaptations processors.statebased.

lean.codegen.java

7 7

Debug Breakpoint Manager ui.debug.breakpoints 7 7
Model Breakpoint Manager ui.debug.breakpoints 7 7

Figure 5.1. Different components and their reusability across different languages and compilation approaches.
Note: prefix de.cau.cs.kieler.sccharts. omitted on all locations.

that listens for Java breakpoints being triggered, as well as debug events emitted when the debug
run starts, stops or is interrupted. Furthermore, it contains concrete implementations of the different
breakpoint types for Java, which are trivial and thus not further described here, and a part listener
used to detect changes of the active editor to ensure that the diagram view always displays a diagram
matching the code currently being viewed. The latter is Java-specific since it extracts the model path
from Java editors when opening, which would need to be adapted to work with editors for other
languages.

The final group includes adaptations to the code generation template to include the additional
marker comments, which is only applicable to this particular scenario and needs adaptation for any
other use case. It also includes the main debug breakpoint manager responsible for retrieving the
runtime information from the current execution, as well as the model breakpoint manager responsible
for managing breakpoints and highlightings for a specific model, both of which are highly specific to
both the compilation approach and the Java language.

5.3 Changes to the Compilation Chain

As described in Section 4.5, the compilation chain needs to be adapted in order to preserve the tracing
information until it is needed by the tool during debugging. For this purpose, marker comments are
attached to the transformed model elements, which are then included in the generated code by the
code generation step.

The marker comments include a name hash rather than the object’s hashCode provided by Java.
This way, each state and transition can be uniquely identified even if the model has been reloaded
(and the Java objects representing them are thus no longer identical). In Java, hashes over strings do
not depend on the string’s object identity as they would for other objects, but only on the characters
included in them. Therefore, they are a prime candidate for this use case. In other languages, one
would need to ensure that the hashing algorithm used has the same property.

The hash is computed over a fully qualified name of the model element since multiple states may
have the same names if they are located within separate regions. Therefore, the DebugAnnotations
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(a) Extract fron source model under compilation.
The code on the right is generated from a state
introduced through an abort transformation on a
higher hierarchy. level.

1 /**
2 * State Cnone (-76957626)

3 */

4 private void TRAFFIC_LIGHT_state__EA_Exit8

5 (TRAFFIC_LIGHT_regionCarContext context) {

6 if (context.delayedEnabled && (!iface.Error)) { // Transition

Error (Priority 1) -> Normal (-450882192)

7 context.delayedEnabled = false;

8 context.activeState = TRAFFIC_LIGHT_regionCarStates.
_AABORTED3;

9 }

10 else if (context.delayedEnabled && (iface.Sec)) { //

Transition Cnone (Priority 1) -> Cyellow (1365165695)

11 context.delayedEnabled = false;

12 context.activeState = TRAFFIC_LIGHT_regionCarStates.

CYELLOW13;

13 } else {

14 context.threadStatus = ThreadStatus.READY;

15 }

16 }

(b) Java code generated from state Cnone. Names shortened for better
readability.

Figure 5.2. Source model excerpt and generated code.

processor concatenates all names of parent states and regions, which are available from the source
model, before computing the hash and adding it to the marker comment. At runtime, the same (static)
method can be called to compare the hashes found in the generated code to those computed from the
source model, thus recognizing the model elements. An example of a source model excerpt and a part
of the code generated from it with the marker comments can be seen in Figure 5.2.

For states, the comment format is State <stateName> (<nameHash>), where <stateName> is the name
of the source model state and <nameHash> is the fully qualified name hash discussed above. Transitions
cannot be uniquely identified using only the source and target states since there may be multiple
transitions connecting the same pair of states. Therefore, both the comment format and the hash
computation for transitions include not only the source and target states, but also the transition
priority in the source state. The full comment has the format Transition <sourceStateName> (Priority

<priority>) -> <TargetStateName> (<transitionHash>). Here, the <transitionHash> contains the fully
qualified names of both associated states as well as the transition priority.

Before this thesis, the state-based compilation approach for Java did not include any comment
annotations in the generated code, even if they were present in the source model, e. g., due to the user
attaching them to a model element in the SCCharts editor. Now, they are included above the method
as Javadoc comments if attached to a state and after the guard as end-of-line comments for transitions.
If multiple comment annotations are present for a single model element, they are added in the order
present in the model.
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Figure 5.3. Different listeners and their uses.

5.4 Listeners

A key implementation challenge is to keep the generated code being displayed in the editor, the
source model, the breakpoints and their associated model elements and the diagram view with the
information on the running debug session synchronized at all times. For this purpose, a set of listeners
is used to catch Eclipse-internal events that require updates to some of the debugging components.
An overview of the listeners and their purposes can be found in Figure 5.3.

5.4.1 Breakpoint Listener

One key component is a JavaBreakpointListener that also listens to DebugEvents. It serves to notify
the main DebugBreakpointManager of breakpoints being added and removed, debug runs starting and
ending and the debug session being resumed and suspended (the latter either due to breakpoints
being hit or a step ending). All of these events are categorized and filtered, then passed on to the
DebugBreakpointManager, which then reacts appropriately.

To extend the debugging interface for other host languages, it is either possible to add a new
listener propagating another set of debug events to the same breakpoint manager, extending the
class to provide additional functionality to support said language, or to implement a separate debug
manager fed by another listener.

5.4.2 Part Listener

To ensure that the DebugDiagramView is always synchronized to the currently active editor, a PartListener

needs to be used. If registered at startup, it is notified each time a new view is activated (i. e., clicked
by the user or otherwise brought to focus). The notification events are filtered and all those that
concern any editor are passed on to the DebugBreakpointManager. With this information, the active
model can then be changed either to match the newly activated generated code, if present, or to a
blank placeholder model.
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Figure 5.4. Process triggered by resource changes.

5.4.3 Resource Change Listener

The DebugBreakpointManager keeps a central registry of SCCharts models and their associated Model-

BreakpointManagers and highlighters based on the file paths the models can be found under. This way,
the identification can persist even after the editors, model objects and names in the source files have
changed. Using this method for the model files to buffer them across editor activations improves
performance since they do not need to be loaded from mass storage each time an editor is activated.

To ensure that model files are reloaded if they change on disk, a ResourceChangeListener is used.
Without this listener, changes in the source model cannot be reflected in the diagram displayed by
the debugging tool without a restart of the entire IDE. This listener implementation is short and
thus realized anonymously within the DebugBreakpointManager class. All of the effects caused by the
ResourceChangeListener are summarized in Figure 5.4. The different components involved in managing
and highlighting models can be found in Figure 5.5.

Another scenario where this listener is required stems from the way Eclipse handles breakpoints
in source files that have their content changed externally. This situation, while not as prominent
during manual testing, is more common in a real-world scenario where the compilation of a changed
SCCharts model is not carried out manually using the KIELER compiler selection view, but rather by
an external Continuous Integration (CI) tool or any automatic build service such as Maven1. In case of
such an external update to the file opened in an Eclipse editor, the content is refreshed, leaving all
line breakpoints on the lines where they were before, even if those lines are now blank or otherwise
non-sensible breakpoint locations.

Since the breakpoints here have associated model elements, it is especially crucial that they are
always located in the right locations. Therefore, the ResourceChangeListener detects changes to the
workspace’s resource tree, both from within Eclipse and external, and notifies the DebugBreakpoint-

Manager about them. If a generated code file with breakpoints in it is affected, all breakpoints in the
respective file are cleared and replaced in the updated positions. If a breakpoint’s associated model
element is no longer present in the model, the breakpoint is removed.

1http://maven.apache.org
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Figure 5.5. Model management and highlighting components.

5.5 Diagram View and Highlighting

As mentioned in Section 4.4.1, the DebugDiagramView used to display the source model along with
highlightings is derived from KIELER’s KLighD view. Since almost all required functionality is present
in KLighD already, the implementation of the view itself contains mostly wrappers for KLighD
functions to ensure easy and safe use elsewhere in the project. Most of the differences to the regular
KLighD view in terms of highlighting and editor linking are caused by the listeners and other
components using the view differently, not the view itself.

5.5.1 Highlighting

To ensure correct highlighting even if multiple models are running at the same time and the user
switches between them, there is a separate DebugHighlighter object for each model, managed centrally
by the DebugBreakpointManager. These components and their purposes are summarized in Figure 5.5.
This highlighter object can add and remove highlightings for the different model elements on demand,
using the mapping between source model and displayed diagram provided by KLighD. Depending
on whether active or executing elements are highlighted, new backgrounds and foregrounds are
dynamically added to and removed from the diagram. The DebugHighlighter is also responsible for
adding and removing breakpoint markers to the diagram on request. This can be achieved by creating
a new KEllipse with the appropriate size and color, then adding it as a child to the desired graph
element.

The Highlighter also offers an option to clear all highlightings, which is used each time the execution
resumes or terminates so that outdated information is no longer displayed. In case highlightings are
lost due to a new diagram layout (e. g., after hitting the refresh button on the diagram view or after
editors were switched), a reapplyAllHighlights() method offers an option to update the mapping
between the unchanged source and the newly created graphical model, then re-highlight everything
as before.

In case the source model has changed on disk and is reloaded, the mapping cannot be re-
stored as simply since now, both the source and the graphical model are lost. In that case, the
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ModelBreakpointManager responsible for the model can provide a mapping from old to new model
elements, which is implemented based on the full name hash mechanism described in Section 5.3.
If a highlighted model element is still present and none of its parents have been renamed, it can be
recovered and re-highlighted using this method. If the element cannot be found, the highlighting is
deleted. As soon as the generated code is updated and a new step is performed, the highlighting
works correctly again.

5.5.2 Synthesis Hooks

To allow the user to interact with the diagram, KLighD provides an interface for Actions that can be
attached to graphical elements during the diagram synthesis and then triggered by the user, e. g., by
double-clicking the model element, depending on the action.

To ensure that the user can set breakpoints on model elements, SynthesisHooks are registered via
the Eclipse extension point mechanism to add appropriate Actions to all model elements where the
user should be able to trigger breakpoints. These hooks are executed along with the regular layout run
each time the diagram view changes its content.

When an Action is triggered, KLighD passes an ActionContext object to it, which then allows it to
determine what model elements have been clicked, which is reported to the DebugBreakpointManager.

5.6 Extracting Runtime Information

As described in Section 4.7, runtime information can be extracted from generated code. Whenever a
breakpoint is triggered, breakpoint listeners are notified and given both the breakpoint responsible for
the suspension and the Thread object that has been suspended. The Thread object includes all runtime
variables, stack frames and other information required for determining active and executing model
elements. On the other hand, the breakpoint includes information on the model element associated
with it and the type of breakpoint, influencing what needs to be highlighted.

Visualizing the runtime information in the diagram view requires the correct model to be present.
The diagram view is locked to the active editor, and Eclipse automatically switches to the editor
associated with a breakpoint when it is hit. However, breakpoint managers are notified before the
editor is switched. Thus, if the breakpoint is located in the editor that was active before, the correct
model is present in the diagram view and correctly registered. If the breakpoint causes an editor switch,
runtime information cannot be visualized straight away and the marker comments are unavailable at
the time where the breakpoint is triggered. It then has to be registered that a certain breakpoint was
hit, and when the editor switch is triggered by Eclipse and the PartListener induces a model switch,
the runtime information can be extracted and visualized.

This delay between the breakpoint being triggered and the editor becoming active is also the
reason why the path to the source model has to be included as a variable rather than a comment,
as mentioned in Section 4.2. When a breakpoint is hit, the tool must check whether the suspended
runtime thread matches the currently loaded model and the active editor. Since it cannot rely on the
editor content and thus comments to do that, the runtime thread’s memory must contain a model
identifier. For this purpose, the model’s source file path is used.
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Chapter 6

Evaluation

To evaluate the benefits of model-based debugging, the demonstrator implementation has been given
to a group of around ten professional developers working on safety-critical railway systems using C,
Java and SCCharts. All of them were familiar with SCCharts and Java debugging before and therefore
able to evaluate the benefits of a new tool compared to their usual workflow.

A demonstration of the tool and the workflow it proposes has been given to them. Since this
demonstration took place several days before they started actually working with the tool, an additional
Visual Debugging Cheatsheet has been handed out to remind them of the available functionality and
how to access it. The cheatsheet can be found in Appendix A. After a week of working with the tool, a
questionnaire was handed out to them to evaluate three main questions:

Ź How well designed is the UI? In particular, how intuitively does it integrate into the existing
workflow?

Ź How stable and performant is the tool? In particular, does it run slowly? Do crashes / exceptions
occur?

Ź How useful are the provided features? Is there any key functionality missing?

The full questionnaire can be found in Appendix B. Out of all candidates, two completed the
survey1. Despite the low number of participants, their expertise makes the results from said survey
valuable. An evaluation of the results from this study can be found in Section 6.1.

Nevertheless, a second study has been conducted to reach a larger number of participants. For that
study, both advanced master’s and PhD students of computer science have been given an intentionally
errorneous model and a set of bug reports with the assignment to find the line of code causing the bug
and describe how to fix it. Since some of the participants here were less proficient both in debugging
Java code and SCCharts development than the professionals participating in the first study, two groups
were formed. One group used the model-based debugging demonstrator while the control group used
regular Java debugging and the standard SCCharts simulation without any new debugging features.
The study was conducted completely online and participants were required to run a development
version of KIELER on their personal computers2. While a short timeframe and some technical issues
prevented some candidates from participating, five volunteers completed the second study. Details on
the settings, the used model and an evaluation of the results can be found in Section 6.2.

Finally, Section 6.3 relates the results from both studies and draws conclusions for the model-based
debugging approach in general and the demonstrator implementation in particular.

1The low percentage of participants completing the survey in time may be partially caused by the COVID-19 pandemic and
the logistical challenges imposed by it.

2A more controlled setting with prepared computers and a personal introduction were not achievable due to the continued
COVID-19 regulations
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6. Evaluation

6.1 Evaluation with Professional Developers

At the beginning of the questionnaire, the participants were asked to give information on the models
they worked with and how long they used the tool before filling the survey. Both participants stated
that their models had just under 40 states and they used the tool for 2 and 5 hours, respectively. While
this is longer than the fifteen minutes given to the participants in the second study, it still is not long
enough to fully get used to the tool. However, it is enough to get a good impression and to encounter
obvious issues if there are any. The models both participants worked with contained concurrency and
a number of entry, exit and during actions, but few other, more advanced SCCharts features.

6.1.1 Integration into the Existing Workflow

Three questions from the first section of the questionnaire are aimed towards the integration into the
developer’s existing workflow. Figure 6.1 is a box plot. Box plots show the range between minimum
and maximum value for a dataset with a line in between marking the median of all answers. For
example, to the statement “I had to change my habits to use the new tool”, one developer agreed
while the other disagreed, so the median of both lies in between.

As this figure shows, the participants state that the newly introduced components integrate well
with the existing KIELER environment, but that they still need time to get used to the new tool. It can
be expected that after some more time working with the tool, the initial issues of remembering the
features will be mitigated.

completely
agree

agree disagree completely
disagree

The newly introduced IDE components
stand out from what I am used to.

I still have trouble remembering what
features are available in the new tool.

I had to change my habits to use the new
tool.

Figure 6.1. Results concerning the integration into the existing workflow.

6.1.2 UI and Useability

The remaining questions in the first section examine the perceived useability of the tool and the
intuitiveness of the UI. In Figure 6.2, it is clearly visible that both participants agreed that the
demonstrator is an improvement compared to using a regular Java debugger to debug generated code
and that they would like to keep using the tool in the future. They also agreed that it did not take too
long to get used to the tool, even though there may still be room for improvement as stated in the
previous set of questions. Both agreed that the highlighting used in the diagram made sense, possibly
confirming that relying on pre-existing color schemes as described in Section 4.4.3 improved diagram
readability for experienced users. In terms of available features, both participants were satisfied even
though one sees room for improvement.

As remarks for the first section, both had suggestions for improvement. One pointed out that
contrary to the regular KLighD view known from SCCharts development, the DebugDiagramView does
not offer any layout options, which makes it hard to navigate the diagram for users that usually rely on
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completely
agree

agree disagree completely
disagree

I quickly got used to the new functional-
ity.

The highlighting used in the diagram
makes sense to me.

I want to keep working with the tool in
the future.

I am missing important features in the
tool.

I prefer using the regular Java debugger
over this tool.

Figure 6.2. Results concerning UI and useability.

them. The other participant suggested that there should be an option to lock the DebugDiagramView so
that one can switch editors, e. g., to view the SCChart’s source code, without the diagram disappearing.

6.1.3 Stability and Performance

A section on stability and performance was included for two main reasons. Firstly, even though the
goal of the study is not only to evaluate the demonstrator, but also the concepts presented in this thesis,
collecting feedback to improve the tool is still important. Secondly, finding out whether participants
had technical issues with either performance problems or crashes helps interpret their feedback on
useability.

As Figure 6.3 shows, both participants largely agreed that the performance and reaction speed of
the tool was adequate. However, one should consider that the models they used were rather small
and thus, these results were to be expected. While one user seemed to face no technical issues at all,
the other one reported that there were error messages disrupting their workflow and consequently
also agreed that the tool needs to be improved before it can be released. In the remarks section, they
pointed out that the tool worked quite well after some initial technical difficulties. However, they
also stated that the link between diagram view and editor seems “quite fragile”, which may need
improvement in the future.
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completely
agree

agree disagree completely
disagree

The tool feels slow to use.

I saw error messages that disrupted my
workflow.

The tool behaves as I expect it to.

I like the speed at which the tool reacts
to inputs and events.

The tool needs more work to become
stable before it is ready to use.

The tool makes me wait.

Figure 6.3. Results concerning stability and performance.

6.1.4 Questions on Breakpoints

The last section of the questionnaire contained a variety of questions on features that can be split into
two main categories: questions concerning breakpoints and stepping. The first question serves to get a
basic impression of whether the participants like the features currently available in the tool, to which
both of them strongly agreed.

For breakpoints, the questions are designed to find out whether the participants used certain types
of breakpoints currently available to determine whether some may be superfluous. At the same time,
some aim towards currently unimplemented types of breakpoints and whether the participants would
find them useful. Figure 6.4 shows that both participants agree that all present types of breakpoints
are useful and behave as expected. From Figure 6.5, it becomes clear that both participants think that
introducing more breakpoints is not required to properly use the tool and that the complexity would
increase too much. Still, one of the participants states that they wanted to place breakpoints on model
elements where breakpoints are not supported from time to time. This may be due to them not being
used to the tool as much and may decrease over time.
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completely
agree

agree disagree completely
disagree

I set lots of breakpoints on states.

I don’t see why anyone would set (yel-
low) Transition Check breakpoints.

All the breakpoints behave as I expected.

(Blue) Transition Taken breakpoints help
me understand my model.

I find it useful to have two types of tran-
sition breakpoints.

Figure 6.4. Results concerning the usage of present breakpoint types.

completely
agree

agree disagree completely
disagree

To work properly, I need more types of
breakpoints.

It’s not a problem that I cannot set break-
points on during actions.

Introducing more types of breakpoints
would make the tool too complex.

Sometimes, I wanted to place breakpoints
on elements I couldn’t place them on.

Figure 6.5. Results concerning the introduction of new breakpoint types.

6.1.5 Questions on Stepping

The final questions of the last section dealt with the stepping support provided by the debugger. Here,
the opinions of the professional developers differ: One used the stepping support more and thinks
that an additional model-level stepping mode on macro step granularity would be useful, while the
other used stepping less and does not see the need for such a mode. However, both of them agreed
that the stepping support is in a good place as it currently stands.

completely
agree

agree disagree completely
disagree

I rarely used the stepping functionality of
the debugger.

There should be a separate stepping
mode to skip the current tick.

The stepping support is in a good place
right now.

Figure 6.6. Results concerning the stepping support of the debugger.
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6.2 Evaluation with University Members

The second study has been conducted using Google Forms3. Screenshots of each page of the survey
can be found in Appendix C. Since a variety of students and university employees participated and
two groups were formed, it was not possible to give an introduction in person. Instead, the online
form included instructions for downloading and installing the current KIELER nightly build including
the latest version of the model-based debugging demonstrator. A download link for the code to be
debugged was also provided, along with instructions for importing it in KIELER. Participants were
advised to not open the code before being told to do so to ensure that every participant would have
the same amount of time to understand the code.

6.2.1 Study Setup

After finishing these preparations, participants were randomly assigned a group. The remainder of the
survey was separate for each group. Since Google Forms does not directly support random group
assignments, a question with two possible answers in randomized order was used. Participants were
asked to select the topmost option, which then redirected them to one of two followup sections.

After the group assignment, each group was shown an introductory video consisting of a common
welcome message and a common explanation of the study setup, the model to be debugged and the
assignment as well as an introduction to the technologies to be used. The experimental group received
an introduction to the model-based debugging demonstrator, its functionalities and how to use it. A
link to the debugging cheatsheet already used in the first study was given to them as well. The control
group instead received an introduction to both debugging the generated Java code as well as KIELER’s
simulation mechanism to allow them to use all of the debugging options existing prior to this thesis.

Study Assignment

Both groups were given the same assignment and the same model to debug. After the code was
briefly explained to them to ensure that its semantics was clear, a list of three bug reports were given,
describing problems with the model. These bug reports were intentionally unconcise to simulate a real
situation where a person may report the bug who is unfamiliar with the exact structure of the model,
thus not naming the responsible component, but rather describing the observable behavior. The exact
bug reports and the causes for them are described in Section 6.2.2. Using the tools provided for the
respective group, each participant had 15 minutes to fulfill the following assignments:

Ź read the bug reports,

Ź open the provided code, and

Ź debug the code until they can locate the line of code causing each bug.

After the timer ran out or all bugs had been found, participants were asked to report for each of
the three bugs

Ź whether they found the bug’s cause,

Ź if yes, what file they found the cause in (source model or Java environment),

Ź what line the cause was located on, and
3https://www.google.com/forms/about/
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Ź a brief description on how to fix the bug.

The last three points only serve to validate whether the participant actually identified the cause
of the bug or just believed that they did. Participants were also asked to report the amount of time
they used to find the bugs, which serves to determine what group was faster to find the bugs. An
evaluation of this section can be found in Section 6.2.2. After these quantitative results, they were also
asked to give qualitative feedback. The qualitative section differed between groups and is evaluated in
Section 6.2.3.

Provided Code

Both groups were given the same code, consisting of an SCCharts model of a fictional building’s
alarm system, the code generated from it using the state-based approach for Java, and a matching Java
environment containing necessary hostcode functions, a main function to instantiate the model and
repeatedly call the tick function. The full hostcode environment and the SCCharts source file can be
found in Appendix C.

The provided AlarmSystem SCChart can be seen in Figure 6.7. Its inputs include a second signal set
to present once a second to provide a notion of time to the model as well as a fireOut signal. fireOut
is used to determine when a fire has been truly put out by firefighters, since the fact that no smoke
detectors are triggered anymore does not necessarily mean that it is safe to turn off the fire system.
The system also has a day input, which switches between two operating modes, day and night.

The fictional building has a total of five rooms, each equipped with a fire sensor, a motion detector,
a light and a sprinkler device. All of these are organized in boolean arrays, with each room having
a unique index across all arrays. fireSensors and motionDetectors are inputs while lightsOn and
engageSprinklers are outputs, supposedly connected to actuators in the building. In case of either
an intruder or a fire, there is also a alarmSound, which can be controlled by the AlarmSystem using a
boolean output.

The following is the intended behavior of the model:

switch lights During the day, lights turn on in a room whenever the respective motion detector is
triggered. They stay on until the motion detector is no longer triggered for five consecutive seconds.
When the system enters Night mode, all lights are disabled until Day mode is entered again.

detect fires When any fireSensor is triggered, the system enters Fire mode. The respective sprinkler is
engaged and firefighters are alerted using the hostcode method callFirefighters(). The inhouse
alarmSound is enabled and is toggled every second to achieve a beeping sound. Even if no smoke is
detected any longer, all active sprinklers and the alarm sound stay on until fireOut is reported
using the appropriate input.

detect intruders When in Night mode, motion detectors are used to detect intruders. When a motion-

Detector is triggered at night, the inhouse alarmSound is enabled and toggled every second. The
system also alerts the police using the callPolice() hostcode method. To disable the alarm, the
system is switched to Day mode since this allows searching for the intruder using the building’s
lights and prevents the police from triggering the alarm again.

6.2.2 Quantitative Results

Both groups were asked to find a set of three bugs. The following paragraphs list each bug along with
the description given to the participants (in bold text), an explanation of where in the model its cause
is located and the survey results from both groups.
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Figure 6.7. AlarmSystem SCChart used in the online study.
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Figure 6.8. AlarmSound region of the AlarmSystem SCChart. An incorrectly guarded transition from Alarm to NoAlarm

causes the alarm sound to be turned off even if one of two alarm causes is still present.

1

2

Found
Not found

(a) Experimental group

1

1

Found
Wrongly located

(b) Control group

Figure 6.9. Number of participants from either group that found bug #1.

Bug #1: No Alarm Sound

When an intruder or a fire is detected, the automatic alerts to police and firefighters work as
expected, however the in-house alarm siren does not seem to operate at all.
The cause for this issue lies in the AlarmSound region of the AlarmSystem SCChart, which is shown in
more detail in Figure 6.8. Instead of disabling the alarm sound when neither an intruder nor a fire are
present, the state Alarm is left as soon as one of them is absent, meaning that a fire without an intruder
(or vice versa) will cause the alarm sound to be disabled one tick after it was enabled.

This bug is not trivial to find since the alarmSound output is in fact correctly set to true in the tick
after entering Alarm, provided that second is currently present. This behavior lead some participants
to believe that the model did in fact work as intended. However, the outgoing weak abort transition
triggers in the same tick and sets alarmSound back to false immediately, meaning that for an observer
outside the model, the alarmSound does not turn on.

As Figure 6.9 shows, only one participant from each group found the transition’s guard as the
reason. One participant in the control group, even though unsure, suspected that the behavior was
caused by fire sensors not being reset. However, since they are an input parameter, the model should
not reset them themselves.

Bug #2: Wrong Mode after Fire

When a fire alarm has been triggered and then reset, the system does not appear to return to the
correct operation mode sometimes.

This bug report is relatively vague and actually covers two bugs, however, one of them can only be
found by either looking at the code or setting internal variables, not through the program’s interface.

Looking at the SystemStatus region shown in Figure 6.10, one can see that after a fire occurred, the
system always returns to Day mode, even if it was in Night mode before the fire occurred. Instead, it
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Figure 6.10. SystemStatus region of the AlarmSystem SCChart. From state Fire, the status always returns to Day

mode regardless of whether it was day or night before the fire.
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Figure 6.11. Number of participants from either group that found bug #2.

should return to either Day or Night depending on the value of the day input (which may have changed
during the fire). This bug was reported by one participant from the control group and since it is a bug
in the model, it has been counted as correctly located. However, it is not a critical bug since at night,
the system status will return to the correct operation mode in the next tick.

In addition, the bug described above only occurs when setting the internal fire variable by hand
using debugging tools. According to the model’s documentation and its interface, this variable is not
to be set externally. Instead, the input signal fireOut should be used to signal that the system may
return to regular operation. Using this input, however, the system remains in Fire mode since all
sprinklers are disabled, but the internal fire variable is never reset. This more critical bug has been
found by the other participant in the control group while nobody in the experimental group found
either bug.

Bug #3: Lights

The lights should turn on after a motion detector is triggered in the matching room and turn back
off 5 seconds after the sensor no longer detects motion. The lights turn on as expected, but will
then stay on during the entire day until the system changes to night mode.

As Figure 6.13 shows, all but one participant believed they found this bug, however only one of
them presented a solution that would work, though it was not the intended one. Whenever a motion
detector is triggered during the day, the checkMotionDetectors() method called by the AlarmSystem each
tick will detect it and switch the light on. As Listing 6.1 shows, this method will set enableLightTimer
for the respective light to true and set the matching lightTimer to 0 while also switching on the light.
Consequently, tickLightTimers(), which is called by a during action on the AlarmSystem root state each
tick and can be seen in Listing 6.2, checks whether any lightTimer exceeds LIGHT_ON_TIME. If that is
the case, the respective light is turned off. From the name tickLightTimers, one could expect that the
lightTimers are also increased every second here; however, they are not, nor anywhere else. Thus, all
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Figure 6.13. Number of participants from either group that found bug #3.

light timers remain at 0 until lights are globally disabled when the system switches to Night mode.

The intended fix is to alter tickLightTimers() to also increase the light timers every second, however,
none of the participants suggested this change. One member of the experimental group suggested
that one should add a self transition on state lightsEnabled that increments light timers every second,
which would be a valid option and is thus counted as correctly identified. Another participant from
the experimental group said that a new region should be added to call tickLightTimers() regularly,
perhaps overlooking the during action doing that already. From the control group, one participant said
disableLights() needs to be called along with checkMotionDetectors(), however, that would lead to
the lights being turned off immediately after the sensor stops registering movement without respecting
a timer. The other member of the control group wrote that checkMotionDetectors() should “increment
the lights in timer”, which may go in the right direction, but is not sufficiently clear to be counted as
correct.

130 /**
131 * Check whether any lights should be turned on.

132 * If so, turn on the respective lights and start a

timer

133 * to ensure that they are turned off after an

appropriate time.

134 */

135 public static void checkMotionDetectors(boolean[]

mds, boolean[] lightsOn, boolean[]

enableLightTimer, int[] lightTimers) {

136 for (int i = 0; i <= mds.length - 1; i++) {

137 if (mds[i]) {

138 lightsOn[i] = true;

139 enableLightTimer[i] = true;

140 lightTimers[i] = 0;

141 }

142 }

143 }

Listing (6.1) checkMotionDetectors() function from
AlarmSystemEnvironment.java.

116 /**
117 * Check whether any lights should be turned off.

118 * This should occur if they have been on for longer

than

119 * @link{AlarmSystemEnvironment#LIGHT_ON_TIME}

seconds.

120 */

121 public static void tickLightTimers(boolean[] enabled

, int[] timers, boolean[] lightsOn) {

122 for (int i = 0; i < enabled.length; i++) {

123 if (enabled[i] && timers[i] > LIGHT_ON_TIME) {

124 enabled[i] = false;

125 lightsOn[i] = false;

126 }

127 }

128 }

Listing (6.2) tickLightTimers() function from
AlarmSystemEnvironment.java.

Figure 6.12. Extracts from AlarmSystemEnvironment.java. Light timers are started when a sensor is triggered and
when they exceed LIGHT_ON_TIME, they are disabled. However, light timers are never actually increased.
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6. Evaluation

Total Time

After noting the bugs they found, participants were asked to give the total time they took to find the
bugs. As Figure 6.14 shows, all participants from the experimental group missed at least one of the
bugs and therefore, all of them took the maximum time of 15 minutes. Both members of the control
group took slightly less than that, however each one of them misjudged at least one of the bugs, so
neither of them correctly found all bugs within the time limit, either.

5 10 15

Control group

Experimental group

Figure 6.14. Total time in minutes taken by participants.

6.2.3 Qualitative Results

After evaluating the number of bugs found by participants, each group was presented a set of questions
to evaluate their opinion on the provided model and bug reports as well as on the debugging methods
they used. The first set of questions was designed to be independent of the debugging method and
could therefore be identical for both groups. This allows to differentiate between perceived difficulty
of finding the bugs and understanding the model to find out whether one of the methods makes it
easier to understand the provided code. However, this data should be interpreted with particular care
due to a large spectrum of skill levels within the participants group and its small size. The results may
also be skewed by the fact that most participants were familiar with KIELER and the simulation used
by the control group beforehand, making it naturally easier to use for them.

As expected, Figure 6.15 shows that the experimental group considered the bugs harder to find
than the control group while also agreeing that there was too little time to find them all (Figures
6.15d and 6.15c). Figure 6.15f may show a reason for the faster times of the control group: While the
experimental group states to not have found many bugs just by looking at the code, thus using the
new demonstrator they were unused to, the control group seems to have spent less time debugging
and more time reading the code, finding the bugs by pure experience and thinking rather than using
the SCCharts simulation as intended.

The experimental group did not find the bug reports as helpful (Figure 6.15b), perhaps due to
difficulties reproducing the bugs using the new debugging features. However, Figures 6.15a and
6.15e show that the experimental group found the model significantly more intuitive and easier
to understand. While this may be pure chance due to the low number of participants, it may also
indicate that the model-based debugger helps to understand the model under debugging. Further
interpretation of the results can be found in Section 6.3.
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completely
agree
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disagree
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Experimental
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(a) I understood the model quickly.

completely
agree

completely
disagree

Control
group

Experimental
group

(b) The bug reports helped me search effectively.

completely
agree

completely
disagree

Control
group

Experimental
group

(c) There was enough time to find all bugs.

completely
agree

completely
disagree

Control
group

Experimental
group

(d) Some bugs were really hard to find.

completely
agree

completely
disagree

Control
group

Experimental
group

(e) The model was intuitive to me.

completely
agree

completely
disagree

Control
group

Experimental
group

(f) I found some of the bugs just by looking at the code.

Figure 6.15. Results of questions on model and bug reports.
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Control Group Feedback

After the questions on the model and bug reports discussed above, the control group was given a
small set of questions on the debugging methods they used. These mainly serve the purpose of finding
out whether the users liked the debugging experience they had and whether they prefer that method
over using a specialized debugger for Java code generated from SCCharts as presented in this thesis.
As Figure 6.16 shows, both participants agreed that the present debugging methods of KIELER were
unintuitive and not suited for solving debugging tasks like the one presented in this study. Both stated
that they would rather exchange this method for a specialized debugger, confirming the need for such
a tool when debugging model-based languages.

completely
agree

agree disagree completely
disagree

The available debugging methods were
intuitive to me.

The tool I used was suited for the job.

I would prefer using a debugger special-
ized in SCCharts generated code.

I want to keep using this method in the
future.

Figure 6.16. Feedback from the control group on the debugging methods they used.

Experimental Group Feedback

The experimental group was asked for feedback on the demonstrator implementation to complement
the findings from the first study. To keep the total study time manageable for the participants, fewer
questions were used than for the professional developers. The findings from this set of questions can
be found in Figure 6.17.

The experimental group confirmed that the diagram highlighting makes sense to them, which
the professional developers in the first study had established. Contrary to them, the participants of
the second study stated that they had little to no trouble remembering the available features, which
perhaps is due to the short time between introduction and actual use in the second study compared
to the first one. The participants also agreed that they want to keep using the tool in the future and
prefer it over the SCCharts simulation and a regular Java debugger.

However, a central point of criticism was that the demonstrator needs a better way of setting
variable values during the execution. Currently, if one wants to change values of any variables, be
it internal or interface ones, that has to be done using the Java variables view provided by Eclipse.
This method requires knowledge about the memory structure of the generated code and is especially
difficult if one never used it before, just like the participants.

Setting values during the execution is made even more difficult due to the different timing of
reading variables. Since the SCChart is sequentialized during compilation, model elements are executed
in a fixed order each tick. If one wants to set a variable during a tick, it may well be that when a
certain breakpoint is reached and one can thus edit the variable, the point where it is read has already
been executed for the tick. Especially for signals, this is a major problem since their value is reset after
each tick, requiring the user to find a breakpoint location before the read access to the variable by
themselves.
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Consequently, participants rated the tool as less intuitive than the professional developers, who
perhaps did not encounter this issue. Some of the participants also stated that the tool needs more
features and improvements before being released, explicitly requesting a better option to set variable
values during the execution. Concepts for how this can be achieved can be found in Section 7.2.

completely
agree

agree disagree completely
disagree

The available debugging methods were
intuitive to me.

The tool I used was suitable for the job.

I would rather use a regular Java debug-
ger and the SCCharts simulation than the
tool provided.

I had trouble remembering the features
of the tool.

I want to keep using the tool in the fu-
ture.

Before being released, the tool needs to
be improved.

The diagram highlighting makes sense to
me.

The tool needs more features to be use-
ful.

Figure 6.17. Feedback from the experimental group on the demonstrator.
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6.3 Evaluation Summary

The two studies described in this section both gave mostly consistent results within each group. Even
though it needs to be emphasized once again that neither study had enough participants to make the
results reliable, they show a clear trend that could be confirmed or refuted by a followup study with
more participants in the future.

The combination of the two studies suggests the following trends concerning the demonstrator
implementation:

The demonstrator is superior to a regular debugger and the KIELER simulation. All participants agreed that
using the new debugger is preferrable over the pre-existing variants. Everyone who used it wants
to keep using it. The control group from the second study did not use it, but deem the pre-existing
variants inappropriate and would prefer a specialized tool such as the demonstrator.

The features currently available are useful for debugging. Especially the professional developers in the first
study, who were directly asked about the separate features, stated that each individual feature
had its place and was useful. Two of the three members of the second study’s experimental group
agreed that the tools was intuitive and suitable for debugging, indirectly confirming that the tool
was useful in its current state.

The User Interface is decent, but can be improved. All participants that used the tool stated that the visual
semantics and the highlighting made sense to them. The first study’s participants confirmed that
the new components integrated well with KIELER and their workflow. However, the second study
suggests that a better way to manipulate the program’s runtime memory is needed.

The quantitative section of the second study showed that the users from the experimental group
all appeared to struggle with the tool and its controls, therefore not being able to find many of the
bugs and nobody finishing within the fifteen-minute time limit. All three described their struggle with
the tool and its usage in the free text section of the survey. Since the professional developers from the
first study did not report such problems apart from one of them wishing for an option to lock the
diagram view, this may be due to the short time and the fact that the participants were unaccustomed
to the tool. To clarify this, a follow-up study could build upon a similar experimental group, but
use a control group of people who are unfamiliar with the KIELER simulation. This way, it could be
examined whether the new tool is particularly difficult to get used to or whether the control group in
this study was simply faster due to their previous experience.

Another aspect of the quantitative analysis is that from the experimental group, only one bug was
reported incorrectly by one person and many were reported as not found. Contrarily, in the control
group, all bugs were reported as found while half of these reports were actually incorrect. While this
may simply be due to the fact that the experimental group’s members did not have enough time to
even look for all bugs, it may also suggest that using KIELER’s simulation and the standard debugger
leads users to glance over the code and believing that they found the issue while they have in fact
not. This hypothesis is supported by the fact that both members of the control group stated that they
found some bugs just by looking at the code, however, another study would need to confirm this with
a broader number of participants and a more even start for both groups as described above.
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Chapter 7

Conclusion

In this chapter, the problems, proposed concepts and study findings are summarized before giving an
outlook at future work for improving the demonstrator implementation.

7.1 Summary

Chapter 1 presented the concepts of debugging in general and model-based languages. It was
established that in a model-based scenario, regular debuggers specialize in either the model-based
language, disregarding host code surrounding the model in a real application, or the host language,
allowing for debugging of both generated and surrounding code. The latter option comes at the cost of
not being able to visually examine the state of the source model since the debugger only displays the
memory state of the generated host language program. For this purpose, a model-based debugger can
be used on the generated code that can help the user relate the generated code’s state with the source
model it was generated from. Such a debugger should allow the user to set breakpoints on model level,
which are then automatically mapped to host language breakpoints in the appropriate code locations.
When such a breakpoint is hit or the execution suspends for another reason, the current state of the
source model should be extracted from the generated code’s runtime memory and displayed to the
user on model level.

Chapter 2 presented the family of synchronous languages and in particular SCCharts, which is
used as an example language both for explaining language-specific aspects of model-based debugging
and for the demonstrator implementation. A previous approach to debugging SCCharts and various
compilation approaches for model-based languages were presented. The chapter also outlined concepts
for debugging of optimized code and WCET analysis for synchronous languages, both of which rely
on compiler tracing, a key functionality exploited for model-based debugging. As an alternative way
of visualizing a program’s state, a method for algorithm animation was presented. The topic of formal
compiler verification as a means to avoid debugging generated code altogether discussed, as well as
the option of semi-automatically generating debuggers to reduce implementation effort. Finally, a
work on debugging of heterogeneous projects consisting of multiple modelling languages was shown.

In Chapter 3, the Eclipse IDE, the KIELER platform and its model-based compiler were introduced.
The concept of model-based debugging was introduced in detail in Chapter 4. Preliminary design
decisions such as desired semantics for model-level breakpoints, ways to persist the compiler tracing
information in the generated code and options to ensure access to the source model at runtime were
discussed first. For SCCharts, three types of breakpoints with different semantics were introduced
to ensure that a large enough variety is available for all application scenarios while keeping the
complexity manageable. The tracing information is persisted using marker comments to keep the
runtime memory clean of them, facilitating formal verification and improving performance. To access
the source model, a variable must be used to make it available even when the matching editor is
currently unavailable.
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Following these decisions, a UI was designed to facilitate setting of breakpoints, displaying the
runtime state of the model and controlling the debug session’s flow. The source model is displayed
to the user and highlighted with runtime information using a visual semantics that is familiar to
experienced users from other contexts. The keybindings for setting breakpoints and the control of
the debug flow have been designed to be as similar to pre-existing debuggers as possible to make
them intuitive. Using SCCharts as an example, it was shown how marker comments with tracing
information can be created at compile time and how these markers can be used to place breakpoints
automatically and to extract runtime information on active and executing model elements from the
generated code’s runtime memory. Breakpoint locations are determined using regular expressions
scanning the code for matching marker comments, as well as using the AST of the editor. Active states
can be determined from the runtime memory of the program directly while executing elements are
located using the editor, regular expressions and marker comments. Finally, the aspects specific to
the state-based code generation approach were revisited and possible adaptations for both priority-
based and netlist-based compilation approaches were presented. The concepts presented here can
be applied to the other code generation approaches, too. However, developing the adaptations for
priority-based and netlist-based code confirmed that state-based code is clearly the most suitable of
the three for model-based debugging and it was thus a good choice to implement the demonstrator
for that approach.

Chapter 5 gave implementation details of the demonstrator created for SCCharts. Plugin and
code structure, marker comment format and background listeners used to synchronize diagram view
and active editor were discussed. The code for the model-based debugger has been integrated into
pre-existing KIELER plugins and some components can be reused for other compilation approaches or
host languages. Marker comments were designed to both be human-readable and uniquely identify a
model element, therefore they include a hash over the model element’s fully qualified name and the
element name itself.

A set of listeners is used to keep track of events that require reactions from the debugger. When
the debug session is suspended, a listener starts the process of extracting and displaying the current
memory state. To keep the active editor and the diagram view synchronized, a PartListener is used.
Since changes to the workspace’s resource tree may require reloading of source models or adjustment
of breakpoint positions, these events are tracked, too. Highlightings and breakpoints are managed
per model to ensure that if multiple models run in the same debug session, their respective data is
cleanly separated. Some of the described implementation details have been added later after receiving
feedback, or the need for them was discovered during testing. If the code structure and required use
cases had been planned out in more detail before implementing, the tool could have been better from
the start, allowing for earlier evaluation and thus potentially more study participants.

In Chapter 6, two separate studies were presented that have been conducted to evaluate useability
and intuitiveness of the demonstrator. The first study was conducted with two professional SCCharts
developers who used the demonstrator as part of their everyday workflow before answering qualitative
questions on useability, features, performance and stability. In the second study, participants were
given an intentionally flawed SCCharts model, its hostcode environment and bug reports describing
the flaws. One group was given the model-based demonstrator while a control group used a standard
Java debugger and the pre-existing SCCharts simulation. Both studies suggested that the model-based
debugger is superior to the pre-existing options and that participants prefer using it in the future, even
though some technical improvements and an improved way of interacting with the model’s runtime
memory are desirable. They also confirmed that the diagram highlighting is intuitive and the different
types of breakpoints are useful to them. Due to the low number of participants in both studies, the
results should be confirmed or refuted using a followup study with more participants.
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Figure 7.1. KIELER simulation variables view. A similar feature could be implemented for the model-based
debugger in the future.

All in all, design, implementation and evaluation have shown that model-based debugging is a
viable concept to find errors in model-based code. The most challenging task when implementing
the demonstrator was to choose a code structure that would allow for a maximum of reuseability
while still being intuitive and following best practices of software engineering. While the usage of
KIELER-internal components has been comparably easy, largely due to personal support of the KIELER
development team, getting my code to work with Eclipse-internal components has been challenging at
times.

The biggest challenge, however, was designing the second study. Here, I had to create a model
that would be complex enough to keep participants from spotting errors at first glance while being
easy enough to debug within fifteen minutes, using a tool the participants never used before. An
introductory video needed to be made that would make the structure and assignment clear without
giving away any of the bugs; the questionnaire had to be brief to keep the total time manageable for
participants while covering all important aspects. Had there been more time for this process, the study
could have been designed even more carefully, which would perhaps have lead to more balanced
results, especially in the quantitative section.

7.2 Future Work

Even though the study participants confirmed that the demonstrator is suited for the task of finding
bugs in mixed model-based and host-language code, they gave feedback on what could be improved.
This section presents these points in detail and how they can be adressed in the future. Alongside this
feedback, other ideas for extensions and improvements are presented.

7.2.1 Better Access to Runtime Variables

The main feedback from the second study was that setting input values for the SCChart using the
standard Eclipse variables view was tedious. In fact, some participants stated that this was the main
reason they ran out of time to find all bugs. While this may improve over time as the users get more
accustomed to the memory structure and the process of setting variables with the provided means, the
issue of variables being set after they are read due to the scheduling order determined at compile time
remains. To tackle this issue and to become generally more user-friendly, the demonstrator should
provide a better way of reading and writing runtime variables.

For the SCCharts simulation already present in KIELER, a custom view to show and edit the
variables of the model under simulation is available. This view can be seen in Figure 7.1. It allows to
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see not only the current, but also past values for each variable. Boolean variables can be toggled by
simply clicking their field in the User value column, others can have their value entered there.

Using a similar custom view for debugging would make accessing and setting runtime variables
much easier than the default Eclipse one. Displaying live values at any given time where the debug
session is suspended can be achieved by reading the corresponding values from runtime memory;
keeping track of past values may be hard to impossible. To ensure that setting a variable value by hand
has the expected effect, a breakpoint can be placed on the first line of the SCChart that is executed.
When this breakpoint is hit, the memory state of the program can be set to the desired value by the
program before resuming the execution. While this suspension does not need to be visible to the user,
it ensures that each variable edit is executed at the beginning of the next tick.

The issue of variables being edited during a tick, but not having an effect until the next one cannot
be solved this way. To circumvent this problem, an option to suspend the execution manually at the
start of the next tick could be introduced. This way, a user can then set variable values and immediately
see their effects, much like they can in the SCCharts simulation.

7.2.2 Improve Linking of Editor and Diagram View

In the studies, some participants reported that the link between editor and diagram view was either
unstable, sometimes not updating properly, or behaved unexpectedly. Especially when changing from
generated code to source SCChart, they would prefer if the diagram view retained the SCChart it
currently displays. To this end, a Lock diagram option could be introduced that simply keeps the
current diagram in the view, regardless of editor changes. This way, users can decide themselves
whether they want the diagram view to be linked to the editor or not. More testing should be done to
catch corner cases in which the linking does not currently work as expected.

7.2.3 Support for Other Compilation Approaches and Host Languages

As presented in Sections 4.8 and 4.9, model-based debugging is possible for other compilation
approaches, too. Extending the tool to support these use cases would make it more flexible and allow
the debugging of less human-readable, but more performant code, too. For maximum compatibility,
the demonstrator should also support other host languages, particularly C. C is commonly used for
embedded applications, making it the prime host language for SCCharts designed for such scenarios.
With a model-based debugger supporting C, such applications could be debugged more effectively.
Remote debugging features of C debuggers such as gdb1 could even support model-based debugging
of code running on the target system.

7.2.4 Additional Information in the Diagram

Currently, the diagram view only displays the diagram, along with active and executing states as
well as breakpoint markers. However, other information may be useful to the user, too. For example,
if a model is instantiated multiple times, the runtime state for each one is visualized in the same
view. If they tick sequentially, this means that for each tick, the user will see multiple visualizations
with different states, leading to possible confusion. This issue can be mitigated by adding an instance
identifier to the diagram, e. g., as a suffix to the diagram name. With this identifier, the user can more
easily distinguish between values belonging to different instances of the same model.

1http://gcc.gnu.org/onlinedocs/gcc-4.6.4/gnat_ugn_unw/Remote-Debugging-using-gdbserver.html
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Figure 7.2. Simulated SCChart with live values in the diagram. A similar feature could be useful for the model-
based debugger.

To further improve accessibility of the memory state, live values could be displayed in the diagram.
This option already exists for the SCCharts simulation and can be seen in Figure 7.2. As can be seen
there, variables will have their current values annotated in parentheses wherever the variable name
occurs in the diagram, e. g., in declarations or transition triggers. With this feature available in the
DebugDiagramView as well, examining the memory state would become even easier.
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Appendix A

Debugging Cheatsheet

The following document has been given to study participants working with the demonstrator tool to
remind them of the available features and their semantics, if necessary.

Visual Debugging Cheatsheet

This cheatsheet gives a brief overview of functionality available in the new visual debugging tool.

Debug Diagram View

The debug diagram view is the heart of the new tool. It will display the diagram along with breakpoints
and highlightings whenever a suitable file is opened in the Java editor.
It can be opened by entering Debug Diagram into Eclipse’s Quick Access field (the magnifying glass
icon in the top right corner) and selecting Debug Diagram (KIELER) from the drop-down menu.
The view will automatically display the appropriate model along with any breakpoints set previously.

Setting and Removing Breakpoints

Breakpoints on states:

Ź Set and removed by double-clicking a state

Ź Indicated by a blue circle in the top-left corner of the state

Ź Triggered once when the state is entered

Ź Only triggered again after the state is left, then re-entered

Transition Taken Breakpoints:

Ź Set and removed by double-clicking a transition

Ź Indicated by a blue circle near the middle of the transition

Ź Triggered once when the transition is taken

Transition Check Breakpoints:

Ź Set and removed by holding shift and double-clicking a transition

Ź Indicated by a yellow circle near the middle of the transition

Ź Triggered every time the transition’s guard is evaluated
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NOTE: Due to a known bug, shift + double-click will currently be interpreted as a simple double-click
at the same time, thus placing a Transition Taken breakpoint as well. As a temporary workaround, it is
necessary to remove that Transition Taken breakpoint by hand by double-clicking the transition again
(without holding shift).

Diagram Highlighting

Ź States currently active on SCCharts level have a red foreground (i.e. red text and border)

Ź States currently being executed on Java level (a subset of active states) have a green background
(approximately the same color as the current instruction pointer in the Java editor)

Stepping

Ź The tool supports regular stepping mechanisms of the Java debugger

Ź Use the step into, step over and step return buttons in the top toolbar or the corresponding hotkeys
(F5 through F7 by default).

Ź The diagram will highlight the appropriate model elements as for breakpoints

Ź SCCharts-specific step sizes (e.g. skip tick) are not available.
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Questionnaire for Professional Developers

This questionnaire has been handed out to professional SCCharts developers after they used the demonstrator
implementation for a week to evaluate it. The space for remarks after each section has been removed to better
accommodate the questionnaire in this thesis.

Evaluation of Model-Based Debugging

Dear participant,
thank you for taking this brief survey on the model-based debugging approach you have been testing recently.
By filling this questionnaire, you greatly help me evaluate my progress and improve the implementation in
the future.
Please mark one clear answer for every question provided (unless stated otherwise). If you change your mind
after marking a box, please fill it out completely and mark your new answer as usual.
This survey is anonymous and only serves the evaluation of the debugging tool. No personal data is gathered
nor processed.

About how many hours have you worked with the tool before filling
this survey? (Please round to full hours)

About how many states did the biggest model you worked with include
before starting the compilation process?

What SCCharts features did your models use? (Please check all of them)
� Parallel Regions � During Actions � Entry Actions � Exit Actions
� History Transitions � Strong Abort Transitions � Weak Abort Transitions
� Count Delay Transitions � Referenced SCCharts � Dataflow Regions

Useability and Integration strongly
agree

agree disagree strongly
disagree

The newly introduced IDE components stand out from
what I am used to.

� � � �

I quickly got used to the new functionality. � � � �
The highlighting used in the diagram makes sense to me. � � � �
I still have trouble remembering what features are available
in the new tool.

� � � �

I want to keep working with the tool in the future. � � � �
I am missing important features in the tool. � � � �
I prefer using the regular Java debugger over this tool. � � � �
I had to change my habits to use the new tool. � � � �
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Stability and Performance strongly
agree

agree disagree strongly
disagree

The tool feels slow to use. � � � �
I saw error messages that disrupted my workflow. � � � �
The tool behaves as I expect it to. � � � �
I like the speed at which the tool reacts to inputs and
events.

� � � �

The tool needs more work to become stable before it is
ready to use.

� � � �

The tool makes me wait. � � � �
Features strongly

agree
agree disagree strongly

disagree
I like the features currently available. � � � �
I set lots of breakpoints on states. � � � �
I don’t see why anyone would set (yellow) Transition
Check breakpoints.

� � � �

To work properly, I need more types of breakpoints. � � � �
It’s not a problem that I cannot set breakpoints on during
actions.

� � � �

All the breakpoints behave as I expected. � � � �
(Blue) Transition Taken breakpoints help me understand
my model.

� � � �

I find it useful to have two types of transition breakpoints. � � � �
Introducing more types of breakpoints would make the
tool too complex.

� � � �

Sometimes, I wanted to place breakpoints on model ele-
ments I couldn’t place them on.

� � � �

I rarely used the stepping functionality of the debugger. � � � �
There should be a separate stepping mode to skip the
current tick.

� � � �

The stepping support is in a good place right now. � � � �

General remarks

Below, you have extra space for remarks not fitting into any of the above categories. What did you like, what bothered
you? What can be improved and what helped you the most? What errors did you encounter while using the tool?

Thank you again for your participation!
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Online Survey for University Members

This chapter contains screenshots of the different questionnaire sections used in the online survey
conducted with university members. The results and their evaluation can be found in Section 6.2.

Figure C.1. Welcome page with instructions for KIELER installation and code import.
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Figure C.2. Group assignment page of the study. Symbols were used to not give away which group has what
purpose.

Figure C.3. Confirmation page to ensure that all preparations have been taken
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Figure C.4. Group-specific page with instructional video and links.

1 #resource "src/AlarmSystemEnvironment.java"

2

3 scchart AlarmSystem {

4

5 /** Present once a second */

6 input signal second

7 /** Indicates that a fire that has been active is now out */

8 input signal fireOut

9

10 /** Array of smoke detectors, one per room */

11 input bool fireSensors[5]

12 /** Array of motion detectors, one per room */

13 input bool motionDetectors[5]

14

15 /** Indicates whether it is day or night */

16 input bool day

17

18 /** Indicates whether a fire is currently active */

19 bool fire = false
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20 /** Indicates whether there currently is an intruder */

21 bool intruder = false

22

23 /** Count how long the lights in each room have been on */

24 int lightTimers[5]

25 /** Indicates whether the light timer in each room should be ticking */

26 bool enableLightTimer[5]

27

28 /** Controls the lights in each room */

29 output bool lightsOn[5]

30 /** Controls sprinklers in each room */

31 output bool engageSprinklers[5]

32 /** Controls an alarm siren used for both intruders and fire alarm */

33 output bool alarmSound

34

35 /* References to external hostcode functions defined by the environment */

36 @hide extern @Java "AlarmSystemEnvironment.callFireFighters" callFireFighters

37 @hide extern @Java "AlarmSystemEnvironment.callPolice" callPolice

38 @hide extern @Java "AlarmSystemEnvironment.tickLightTimers" tickLightTimers

39 @hide extern @Java "AlarmSystemEnvironment.checkMotionDetectors" checkMotionDetectors

40 @hide extern @Java "AlarmSystemEnvironment.disableLights" disableLights

41 @hide extern @Java "AlarmSystemEnvironment.checkFireSensors" checkFireSensors

42 @hide extern @Java "AlarmSystemEnvironment.fireSprinklers" fireSprinklers

43 @hide extern @Java "AlarmSystemEnvironment.disableSprinklers" disableSprinklers

44 @hide extern @Java "AlarmSystemEnvironment.checkForIntruders" checkForIntruders

45

46 /* Always have active light timers running */

47 during do tickLightTimers(enableLightTimer, lightTimers, lightsOn)

48

49 /**
50 * Region to control the overall status of the system.

51 * Day and night mode control whether motion detectors should be used

52 * for switching lights or for detecting intruders.

53 */

54 region SystemStatus {

55

56 initial state Day

57 if fire abort to Fire

58 if !day go to Night

59

60 state Night

61 if fire abort to Fire

62 if intruder abort to Intruder

63 if day go to Day

64

65 state Fire {

66 entry do callFireFighters()

67 }

68 if !fire go to Day

69

70 state Intruder {

71 entry do callPolice()

72 }

73 if !intruder go to Night

74

75 }

76

77 /**
78 * Region to control lights during the day.
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79 * Whenever the motion detector in a room is triggered, said room’s lights

80 * should turn on for a while, then back off after the sensor has not been triggered for a while.

81 * At night, lights are disabled.

82 */

83 region Lights {

84 initial state lightsEnabled {

85 during do checkMotionDetectors(motionDetectors, lightsOn, enableLightTimer, lightTimers)

86 }

87 if !day go to lightsDisabled

88

89 state lightsDisabled {

90 entry do disableLights(enableLightTimer, lightsOn)

91 }

92 if day go to lightsEnabled

93 }

94

95 /**
96 * Region to detect intruders during the night.

97 * When a motion detector is triggered at night, the alarm goes off.

98 * When the intruder has been caught, the system must be switched to day mode,

99 * then back to night mode to disable the intruder alarm.

100 */

101 region IntruderDetection {

102 initial state alarmDisabled

103 if !day go to alarmEnabled

104

105 state alarmEnabled {

106 during do intruder |= checkForIntruders(motionDetectors)

107 }

108

109 if day do intruder = false go to alarmDisabled

110 }

111

112 /**
113 * Region to detect a fire.

114 * When a smoke detector is triggered, firefighters are alerted and

115 * sprinklers in that area are engaged. Sprinklers remain on until

116 * firefighters report fireOut.

117 */

118 region FireDetection {

119 initial state noFire {

120 during do fire |= checkFireSensors(fireSensors)

121 }

122 if fire abort to Fire

123

124 state Fire {

125 during do fireSprinklers(fireSensors, engageSprinklers)

126 }

127 if fireOut do disableSprinklers(engageSprinklers) go to noFire

128 }

129

130 /**
131 * Region to produce an alarm sound. If either fire or intruder are present,

132 * the alarm sound beeps once a second. When neither is present,

133 * the alarm is off.

134 */

135 region AlarmSound {

136 initial state NoAlarm

137 if fire || intruder go to Alarm
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138

139 state Alarm {

140 initial state SoundOff

141 if second do alarmSound = true go to SoundOn

142

143 state SoundOn

144 if second do alarmSound = false go to SoundOff

145 }

146 if !fire || !intruder do alarmSound = false go to NoAlarm

147 }

148

149 }

Listing C.1. Full source code of AlarmSystem SCChart used in the study.

1 /**
2 * Environment for the AlarmSystem SCChart used for

3 * a study on model-based debugging.

4 *
5 * THIS ENVIRONMENT AND THE MODEL CONTAIN INTENTIONAL ERRORS.

6 *
7 * @author stu121235

8 */

9 public class AlarmSystemEnvironment {

10

11 /** Time in seconds that the light should be on after the sensor was triggered */

12 public static final int LIGHT_ON_TIME = 5;

13

14 private static AlarmSystem system = new AlarmSystem();

15

16 public static void main(String[] args) {

17

18 /* Instantiate and initialize SCChart */

19 system.reset();

20

21 /* Save last time second was present */

22 long lastSecond = System.currentTimeMillis();

23

24 while(true) {

25

26 /* Check whether a second has elapsed */

27 long currentTime = System.currentTimeMillis();

28 if (currentTime - lastSecond >= 1000) {

29 lastSecond = currentTime;

30 system.iface.second = true;

31 }

32

33 /* Perform tick */

34 system.tick();

35

36 /* reset signals */

37 system.iface.second = false;

38 system.iface.fireOut = false;

39 }

40 }

41

42 /**
43 * Calls the firefighters.

44 */
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45 public static void callFireFighters() {

46 System.out.println("Calling firefighters...");

47 }

48

49 /**
50 * Calls the police.

51 */

52 public static void callPolice() {

53 System.out.println("Calling police...");

54 }

55

56 /**
57 * Checks whether any motion detector has been triggered.

58 * If so, trigger intruder alert.

59 */

60 public static boolean checkForIntruders(boolean[] sensors) {

61 for (int i = 0; i <= sensors.length - 1; i++) {

62 if (sensors[i]) {

63 return true;

64 }

65 }

66 return false;

67 }

68

69 /**
70 * Checks whether any fire sensor has been triggered.

71 * If so, trigger fire alarm.

72 */

73 public static boolean checkFireSensors(boolean[] sensors) {

74 for (int i = 0; i <= sensors.length - 1; i++) {

75 if (sensors[i]) {

76 return true;

77 }

78 }

79 return false;

80 }

81

82 /**
83 * Engage sprinklers in all areas where smoke is present.

84 */

85 public static void fireSprinklers(boolean[] sensors, boolean[] sprinklers) {

86

87 for (int i = 0; i < sensors.length - 1; i++) {

88 if (sensors[i]) {

89 // Note that sprinklers are never disabled here.

90 // This only happens if the fireOut signal occurs.

91 sprinklers[i] = true;

92 }

93 }

94 }

95

96 /**
97 * Disable all sprinklers.

98 */

99 public static void disableSprinklers(boolean[] sprinklers) {

100 for (int i = 0; i <= sprinklers.length - 1; i++) {

101 sprinklers[i] = false;

102 }

103 }
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104

105 /**
106 * Turn off all lights.

107 * Also stop all light timers since they are no longer needed.

108 */

109 public static void disableLights(boolean[] enabled, boolean[] lights) {

110 for (int i = 0; i < enabled.length; i++) {

111 enabled[i] = false;

112 lights[i] = false;

113 }

114 }

115

116 /**
117 * Check whether any lights should be turned off.

118 * This should occur if they have been on for longer than

119 * @link{AlarmSystemEnvironment#LIGHT_ON_TIME} seconds.

120 */

121 public static void tickLightTimers(boolean[] enabled, int[] timers, boolean[] lightsOn) {

122 for (int i = 0; i < enabled.length; i++) {

123 if (enabled[i] && timers[i] > LIGHT_ON_TIME) {

124 enabled[i] = false;

125 lightsOn[i] = false;

126 }

127 }

128 }

129

130 /**
131 * Check whether any lights should be turned on.

132 * If so, turn on the respective lights and start a timer

133 * to ensure that they are turned off after an appropriate time.

134 */

135 public static void checkMotionDetectors(boolean[] mds, boolean[] lightsOn, boolean[] enableLightTimer, int[]

lightTimers) {

136 for (int i = 0; i <= mds.length - 1; i++) {

137 if (mds[i]) {

138 lightsOn[i] = true;

139 enableLightTimer[i] = true;

140 lightTimers[i] = 0;

141 }

142 }

143 }

144

145 }

Listing C.2. Full code of AlarmSystemEnvironment used in the study.
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