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Zusammenfassung

Bei der Spieleentwicklung gibt es eine Vielzahl verschiedener Anwendungen von Zustand-
sautomaten, aber die eingebauten Lösungen leiden unter einer Reihe von Einschränkungen.
Diese Einschränkungen bestehen entweder in Form von Funktionalität oder dadurch, dass sie
nur für bestimmte Aufgaben anwendbar sind. Eine fehlende Implementierung verlangsamt
den Entwicklungsprozess, da der Entwickler nur einen begrenzten Werkzeugsatz verwenden
kann oder das gewünschte Verhalten überkompliziert beschreiben muss. Das größere Problem
ist jedoch, dass diese Implementierungen meist nur für einen Anwendungsfall konzipiert sind.
Dies lässt die Entwickler im Wesentlichen auf sich allein gestellt, wenn sie Zustandsautomaten
für andere als die vorgesehenen Anwendungsfälle nutzen wollen.

In dieser Arbeit soll dieses Problem durch die Einführung einer synchronen Sprache
namens SCCharts behoben werden. Zudem wird untersucht, wie gut diese Sprache in den
Arbeitsablauf der Spieleentwicklung integriert werden kann. Die Sprache wurde entwickelt,
um deterministische endliche Zustandsautomaten für sicherheitskritische Anwendungen zu
erstellen und kommt zudem mit vielen eingebauten Features, die die Entwicklung erleichtern.
SCCharts ist geeignet, um komplexe Automaten zu modellieren, die nicht nur einfach zu
lesen, sondern auch zu simulieren sind, noch bevor sie in ihre Umgebung integriert werden.
Wenn dieser Ansatz übernommen wird, könnte dies zu Spielen führen, die stabiler sind,
weniger Bugs aufweisen und einfacher zu warten sind.
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Abstract

Game development makes use of a multitude of different applications of state machines, but
the built-in solutions suffer from a couple of limitations. These limitations are either in form
of functionality or by being only applicable to specific tasks. An implementation that lacks
features slows down the development process, since the developer can only use a limited
toolset or must describe the desired behavior in an overcomplicated fashion. However, the
bigger issue is that, most of the time, these implementations are designed for only one specific
use case in mind. Most of the time the engine specific implementations are designed with a
single task in mind. This essentially leaves the developers on their own if they want to use
state machines for other use cases than the ones provided.

This thesis aims to alleviate this issue by considering a synchronous language named
SCCharts and tries to investigate, how well this language can be integrated into the game
development workflow. The language is designed to create deterministic finite state machines
for safety-critical applications and comes with many built-in features, which ease development.
As such, the language is suitable to model complex automata, that are not only easy to read,
but also to simulate, even before integration them into their environment. If adopted, this
approach could lead to games that are more stable, include fewer bugs, and are easier to
maintain.
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Chapter 1

Introduction

1.1 Motivation

There are many aspects of game development that act according to specific states. Consider
something simple like a door. A door can be open or shut or even locked. If it is locked,
it cannot be opened and if it is open, it cannot be locked. This can easily be written in
simple code since it is an uncomplicated example. However, with the help of a finite state
machine, FSM for short, the structure is more obvious and the states can be well defined.
A state machine can also be visualized to increase readability and therefore maintainability.
Additionally, it is easier to come back later and add additional states or functionality to
the FSM than it is to rewrite the code of a more or less hardcoded behavior not split into
distinct states. The choice of whether or not to use a finite state machine becomes clearer
as the implementations get more complex. That is why most game engines feature at least
one implementation of a state machine. Unreal Engine 4 (further denoted as UE4), for
example, features an excellent implementation of such an FSM, however, this is limited to
3D skeletal animations. Godot, on the other hand, offers a state machine implementation
that can be used for anything, but whose feature set is relatively limited. It has only a very
basic implementation of an FSM, which contrary to the UE4 implementation can be used for
anything.

The goal of this thesis is to evaluate the integration of a domain-specific language for FSMs
in game development. The considered language will be SCCharts, a synchronous language
mainly used for embedded systems that can be compiled to C code, among other languages,
which can be integrated into most engines as external libraries. The language is textual but
features a graphical representation of the written code live with an automated layout as well
as other features, such as the ability to build hierarchical FSMs and model verification.

1.2 Related Work

The need for a solid state machine implementation to use in games becomes apparent when
looking at different game engines and their respective implementation. Firstly, there is Unity’s
implementation of state machines [Uni21]. Their approach is mainly meant for animating
2D/3D animations but is, however, not strictly limited to this application. The existence
of numerous guides and wikis which describe how to implement an FSM besides the one
delivered by a game engine implies that another kind of tooling is needed. For example, the
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1. Introduction

guide [Sho20] and the wiki [Unk12] describe how to implement an FSM in Unity.
However, this is not unique to Unity. Developers encounter similar limitations with other

engines. Godot for example also brings its own implementations of a state machine called
AnimationTree [LMG20]. However, this again comes with its own limitations and restrictions,
mainly defined by functionality. The AnimationTree should be able to animate pretty much
any property in any node or resource [LMG20], which would be more flexible than the Unity
implementation. That is of course if their claim holds that they have the most flexible animation
systems that you can find in any game engine [LMG20]. Still, there are many websites, blogs and
videos that can easily be found with a quick google search that highlights that this is simply
not enough.

Lastly, there is the Unreal Engines implementation of state machines. Their system
is very sophisticated, integrated and tailored for a specific use case, which limits its use
to 3D animation [Epic]. They also feature another implementation, namely Behavior Trees
[Epia], but they are also tailored to be used in the development of AI behavior. Epic, the
developer of the Unreal Engine, also acknowledges the need for another kind of FSM by
producing a live training tutorial that is available on YouTube [Epib]. There are also a couple
of implementations available on the Unreal market place, e.g. [Rec19], [L16]. There also exists
an FSM designed to be very close to the original UE4 state machine but for 2D animation
[Stu], which is a recipient of an Epic MegaGrant, which is Epics program of funding projects
of any kind developed with or for the Unreal Engine.

1.3 Finite State Machines

1.3.1 Introduction to finite state machines

Finite state machines, also called finite automata, belong to the field of automata theory. They
were originally proposed to model brain functionality, according to Hopcroft et. al., however,
they were found to be extremely useful for a wide range of use cases [ED79]. Since their
introduction, FSMs are used to model all kinds of different behavior. Such an automaton
consists of a finite set of states and a set of transitions between two states. The transitions
have a condition and an action. If the condition on a specific transition is met, the transition
is taken and the correlating action is executed. This is the most basic example of an FSM,
but even with this simplification, complex systems can be built which can also be visualized.
Consequently, FSMs are a useful tool for the expression of behavior that can be distilled in
distinct states and corresponding actions, which are performed once a transition is taken.

To demonstrate this, the simple door example from the introduction will be elaborated.
The door could have the state open iff it is open, and closed iff it is not open. Accordingly, one
would define transitions from open to closed if the door opens and, in the context of a game,
the engine could play the opening animation as the action of the transition. A more complex
but still simple example, considering what is used in modern games, would be the sprite
animation control of a moving 2D character. One possible implementation for this is shown
in Figure 1.1, which was created using Unity.
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1.4. FSM inside Unreal Engine 4

Even though it is still rather elementary, it gets hard to read and therefore to build upon
or maintain. Figure 1.2 shows the same behavior as in Figure 1.1, this time with SCCharts. At
first glance, this could look a bit overwhelming. Since a hierarchical approach is used, the
nested diagram in Figure 1.3 and the top-level diagram in Figure 1.4 can be viewed separately.
This allows us to get a better understanding of what is going on in a more complex FSM
compared to one big chart. Also, this illustrates the use of a divide and conquer approach,
since first a smaller problem for one cardinal direction only is solved. In this specific case
Figure 1.3 is, in essence, the core of the chart in Figure 1.2. It describes the state change
for one direction and can be reused for all other cardinal directions. That means that the
FSM one needs to focus on is smaller, since the underlying functionality is abstracted. This
can lead to a significant increase in productivity that increases further as models get more
and more complicated. Furthermore, the developer does not need to worry about the layout
and spend valuable time arranging the FSM or click through a GUI. The reason for this is
the automated layouting that makes SCCharts easy to read without the need for manual
interference. For example, the automaton in Figure 1.2 is automatically created by compiling
the lines of code in Listings 1.1 and 1.2, which both reside in the same file. This enables to
reference the SCChart directly without the need to import an external SCChart, which can
also be done and is described in the SCCharts syntax documentation [SS20].

Further, it is also possible to blend out the nested FSM to first get a more abstract view on
the general behavior of this, as seen in Figure 1.4

1.3.2 Use Cases

Typical use cases, as hinted in Section 1.2, include but are not limited to animations of any
kind and AI behavior. Apart from that, basically anything that can be described using states
can be designed with an FSM in a controlled and predictable way. Since most implementations
of FSMs are deterministic, meaning that all events and actions are well-defined at any point in
time, the stability of the whole system increases. Unwanted behavior could also be expressed
with the help of model checking [Sta19] with linear temporal logic.

1.4 FSM inside Unreal Engine 4

The UE4, as well as most modern game engines, supports at least one type of state machine.
However, these usually either lack features, as in Unity or Godot, or are limited to specific
use cases like in UE4, or both. UE4 has a matured state machine with visual simulation and
debugging well-integrated in the engine. These state machines are limited to skeletal mesh
animation [Epic]. The engine also has an implementation for AI, as previously mentioned,
namely the Behavior Tree. The Behavior Tree can in essence also accomplish similar tasks as an
FSM in some manner but is much better suited for the use in an AI.

This leaves the developer essentially with no built-in solution for an FSM outside of the
typical use cases. This means the developer has to either create one themselves, buy one from
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1. Introduction

Figure 1.1. 2D character FSM to handle cardinal sprite direction made in Unity

the market or abstain from the use of an FSM altogether. The UE4 team at Epic acknowledges
this in some way by providing an example of how to write an FSM in C++ for UE4 in a live
training session published on YouTube [Epib].

1.5 Hybrid systems

Besides state machines, SCCharts can also handle hybrid systems like PID controllers. These
are control loop mechanism, which are used in the real world for example in cruise mode for
cars for acceleration and deacceleration control or to supervise the regulation of heater. In
games, these can be used to control similar matter, but there are many other implementation
possibilities, like Quadrotor Simulator [San17], which is also implemented in Unreal.

1.6 SCCharts

1.6.1 Introduction to SCCharts

SCCharts is a synchronous language developed at the Christian-Albrecht University of Kiel
by the Real-Time and Embedded Systems group. The name stands for Sequentially Constructive
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1.6. SCCharts

Figure 1.2. The same FSM as in Figure 1.1 built with SCCharts
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1. Introduction

Figure 1.3. One cardinal direction of Figure 1.2

Statecharts and has its main footing in the world of embedded real-time systems. According
to von Hanxleden et. al, the language is designed with safety-critical applications as well as
easy adaptation in mind [HDM+14]. With this language, it is possible to build deterministic
automata, which even operate concurrently, without introducing any race conditions.

Furthermore, due to the rich features as well as the graphical visualization, automated
graph drawing, and the ability to compile to different languages like Java or C. As such,
SCCharts is not only limited to embedded real-time systems, but can effectively be used
wherever an FSM or hybrid system is needed. Since game development has many areas
where FSMs are extremely useful, SCCharts can increase maintainability, as well as improve
the debugging process and the overall workflow. SCCharts comes with many features like
automated graph drawing, different types of transitions as well as conflict evaluation at
compile-time and a visual simulation. Especially the simulation becomes increasingly handy
while developing or debugging more complex systems. The interested reader who wants to
learn more about SCCharts is referred to [SL20].

1.6.2 Advantages of SCCharts

As stated above SCCharts comes with many useful features that ease development, reduce the
risks of errors and can therefore increase productivity. In addition to those already mentioned,
these functions include various types of transitions that help build sophisticated functionality
with just a few keywords. It is also possible to build nested SCCharts by referencing other
SCCharts and therefore to build a hierarchy, which follows the Write-Things-Once (WTO)
principle, which further increases maintainability and productivity.

Furthermore, the KIELER IDE, designed for the use with SCCharts, automatically gen-
erates graphs that facilitate understanding of the functionality of the design. This opens up
the possibility even for developers who are not used to code to understand the automata
and what is happening by simply looking at the diagrams instead of the code. Another very
convenient tool is the simulation in conjunction with the highlighting of current and previous
states to test the design even before integrating it into the engine or any other environment.
More about SCCharts’ syntax can be found in the respective documentation [SS20].
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1.6. SCCharts

scchart Character {

output string ID

input bool up,down,left,right

region {

initial state Down is CardinalDirection( down to direction,

up to oppositeDirection,

ID to ID,

"DownIdle" to IdleID,

"RunDown" to RunID)

if up && !down go to Up

if left && !down go to Left

if right && !down go to Right

state Left is CardinalDirection( left to direction,

right to oppositeDirection,

ID to ID,

"LeftIdle" to IdleID,

"RunLeft" to RunID)

if right && !left go to Right

if up && !left go to Up

if down && !left go to Down

state Right is CardinalDirection( right to direction,

left to oppositeDirection,

ID to ID, "RightIdle" to IdleID,

"RunRight" to RunID)

if left && !right go to Left

if up && !right go to Up

if down && !right go to Down

state Up is CardinalDirection( up to direction,

down to oppositeDirection,

ID to ID,

"UpIdle" to IdleID,

"RunUp" to RunID)

if down && !up go to Down

if left && !up go to Left

if right && !up go to Right

}

}

Listing 1.1. The 2D character SCCharts source code of the graph in Figure 1.2

7



1. Introduction

Figure 1.4. The collapsed version of the chart in Figure 1.2

Additionally, it is also possible to build timed automata in SCCharts. According to Schulz-
Rosengarten et al., timed automata are used to model the behavior of real-time systems over
time [lzRosengartenvHMdS+18a]. By using these automata, it is possible to model, e.g.,
cruise control for a car or stabilization control for a helicopter in dependence of real-time. In
SCCharts this can be accomplished by using clocks. These create an internal variable deltaT,
which can be written from the environment. In the case of a game environment, one can pass
the time of the last frame, also called delta time, to the SCChart deltaT variable. This also
takes any time dilation effects which may happen in a game into account, and the automaton
act accordingly.

1.6.3 External Library

For the SCCharts implementation approach, external libraries have been shown to be the
most flexible solution. As stated in the Microsoft documentation: The use of DLLs helps promote
modularization of code, code reuse, efficient memory usage, and reduced disk space. So, the operating
system and the programs load faster, run faster, and take less disk space on the computer. [Mic20] This
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1.6. SCCharts

scchart CardinalDirection {

input bool direction

input bool oppositeDirection

input string IdleID

input string RunID

output string ID

region {

initial state Idle {

entry do ID = IdleID

}

immediate if direction && !oppositeDirection go to Run

state Run {

entry do ID = RunID

}

if !direction go to Idle

if direction && oppositeDirection go to Idle

}

}

Listing 1.2. The CardinalDirection source code referenced in Listing 1.1

holds true not only for Microsoft’s dynamic-link libraries (DLLs) but also for the Linux or
iOS libraries.

This means, even though this example is demonstrated with UE4 in mind, the SCCharts
libraries are essentially engine independent and could not only be used in different UE4
projects but also in different game engines or applications altogether.

Furthermore, most game engines support the use of linked libraries. In fact, they suggest
it as the general approach to include third-party code.

1.6.4 Integration into Unreal Engine

For this thesis, the Unreal Engine 4.26 has been chosen as an example engine, mainly it
comes with a build tool that automatically compiles the C code generated by SCCharts to
external libraries for the most common architectures, which eased development. However,
this example can be implemented in any engine that features the use of external libraries like
Unity or Godot.

To be compliant with the UE4 specifications the external libraries are implemented via
plugins as described.

In UE4 external libraries are implemented via plugins, which follow the UE4 specifications.
A template for the UE4 Plugin with a minimal SCCharts for personal or commercial can be
found in the provided repository [Ras21b].

9



1. Introduction

Further documentation about plugins in UE4 can be found in the documentations provided
by Epic [Epid].
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Chapter 2

Limitations

Since we make use of external libraries such as DLLs, which are only used for Windows,
the code must be compiled for all desired operating systems unless this is handled by the
engine itself, which is the case for UE4. Moreover, the setup can create some overhead and
should be used with its own IDE. Furthermore, it could be possible that the developer needs
to manage the external libraries themselves. This means not only to compile the libraries but
also to manage instances since by design an instance of an external library shares its memory
space. In other words for a state machine built like described in this thesis a separate external
library instance for each separate Actor in the game is needed. Fortunately, this is handled
automatically by most modern game engines like Unity, Godot and Unreal.
It is also possible that the engine, or more specifically the programming language that is
used by it, is not capable of handling the debugging with an attached debugger of external
libraries. This could increase difficulties when trying to find problems which is a general
issue when using external libraries. The aforementioned obstacle is further compounded by
the fact that the C code created by the SCCharts compiler is generated and therefore most of
the times not as easy to read as code written by humans. The readability in the case of the
generated code depends on the chosen compilation system for the SCCharts compiler. The
state-based compilation creates the code that is easiest to read for humans compared to other
code generation options.

It is also not possible unless with extensive overhead and C and C++ knowledge to call
functions on objects passed directly to the SCChart. This means in most cases a wrapper is
needed to integrate the SCCharts with the host code base. The wrapper not only needs to call
the functions on the desired objects but also needs to manage the state returned in one way
or another from the SCCharts compiled code.
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Chapter 3

Implementation

3.1 Requirements

Before one can start with the development of SCCharts a couple of things are needed in
order to allow a smooth workflow. To develop SCCharts it is possible to download either
the KIELER IDE or KEITH. KEITH is an IDE for Model-Driven Development which is based
on KIELER [SD]. However, KEITH does not yet come with all the features present in the
KIELER IDE yet. The Kiel Integrated Environment for Layout Eclipse Rich Client, or short
KIELER, is a research project about enhancing the graphical model-based design of complex
systems, according to the website [SSa]. As stated, KIELER supports more features at the time
of writing, which is why it was chosen for this thesis instead of KEITH. It is also of advantage
to download the Kieler Command Line Compiler [Kico], or KiCo CLI for short, since this
allows a more comfortable compilation process. Lastly, some kind of game development
environment is needed, preferably an IDE. For simple games this could of course be ignored.
As a game engine as stated above UE4 was chosen for this task, with version 4.26.

3.2 Plugin Template (Unreal)

To get SCCharts inside UE4 working, one needs to take a look into UE4’s approach for
including non-native code. Non-native code can be any code that is itself not written inside
the Unreal environment. This code can for example be C or C++ code. As it turns out,
SCCharts can compile down to C code, which can easily be integrated inside UE4 since the
engine is based on C++ itself. This is not a hard requirement, however, since external libraries
are used which should work just as fine in any game engine.

3.3 General Workflow

The general workflow for using SCCharts inside UE4 starts by finding an applicable problem
where the use of FSMs or hybrid systems makes sense. Thereafter, a plugin is needed for
the SCCharts integration. After the plugin has been properly created the next step in line
is to write the SCChart inside KIELER. Since SCCharts uses automated graph drawing the
layout is handled automatically and can be calibrated to one’s liking. The automated layout
offers an accessible overview of the flow inside a chart without the need to position the
states and transitions by hand. This also reduces development time especially if changes

13



3. Implementation

are in order later in the process. After the chart is completed, one can start the KIELER
SCCharts simulation to verify that the implementation satisfies the requirements and make
necessary adjustments. It is also possible to further visualize the simulation [SSb] besides
the visualization in KIELER using Scalable Vector Graphic (SVG) images. This, however, is
something that is not further discussed in this thesis.

Subsequently, the SCChart needs to be compiled to one of the supported target languages.
To accomplish the compilation in a way that is convenient for the developer in case further
changes are in order the KIELER Compiler, for short KiCo, can be used. With KiCo it is
possible to compile the charts with a command-line interface (CLI) or via a script and hooks,
to automate this process. As of the time of writing the KiCo does not come with its own
documentation, besides the --help command inside the CLI. However, the KiCo CLI should
be simple enough to be used without any further need for documentation besides that.

After the successful compilation, a wrapper class is needed inside UE4 to interact with
the code in a way that compiles to C++.

From here on it is possible to go back and forth between the UE4 development environment
and the SCCharts development. The code gets automatically compiled into the UE4 Plugin
folder. Only if significant changes are made to the chart an update to the UE4 wrapper class
is needed. Significant changes that force a change to the wrapper class include but are not
limited to adding or removing input and/or output variables inside the SCChart that UE4
should interact with. Nested SCCharts that are not directly accessed via the wrapper class
should not press for changes to the wrapper.

3.4 Plugin Creation (UE4)

To start using SCCharts as discussed in Section 3.3, a project needs to be opened and a plugin
added to it. For this thesis the choose the Blank Plugin has been chosen for the implementation
in this thesis. Documentation about plugins and how to create them can be found inside the
Unreal Engine 4 documentation [Epid].

For this thesis, a repository with a variety of project files including a blank project with a
blank plugin created inside it containing the basic files linked to the open project is provided.

To be able to call functions from the compiled SCCharts, Unreal needs to know what
to expose so it can be accessed the way UE4 intends it. For this, the build file needs to be
modified as shown in Listing 3.1.

With this, the classes and functions created in the plugin can be accessed in the main
project. Normally the SCCharts-generated C code must first be compiled to a library file
like dynamic-linked libraries for Windows. Fortunately, UE4 has a convenient build tool that
takes care of that for us. If this should be integrated inside another engine, the library files
may need to be compiled manually. After this is done, the C code that is generated by the
SCCharts compiler simply needs to be added to the plugin’s source code. To call for example
the tick() function, the generated header file needs to be included and the include keyword
needs to be surrounded by the extern block. This is because otherwise the included C code
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3.5. The first SCChart inside Unreal

PublicIncludePaths.AddRange(new string[] {

"../Plugins/<PluginName>/Source/<PluginName>//Public"

});

PrivateIncludePaths.AddRange(new string[] {

"../Plugins/<PluginName>/Source/<PluginName>/Private",

"../Plugins/<PluginName>/Source/<PluginName>/Classes"

});

PrivateDependencyModuleNames.AddRange(new string[] {

"<PluginName>"

});

Listing 3.1. Modified <myProject>.build.cs to enable function calls

extern "C" {

#include "/<path to>/<header file>.h"

}

Listing 3.2. Include wrapper to prevent name mangling

function names get mangled so that linkage errors can occur on compilation. An example is
shown in Listing 3.2.

Additionally, a C++ class named FirstSCChart from inside the engine for the plugin has
been created. This class acts as a wrapper that wraps the needed function nicely inside the
plugin source code. That way one only needs to call the created C++ functions outside of the
SCCharts plugin.

3.5 The first SCChart inside Unreal

For the sake of getting started with SCCharts inside UE4, a demonstration is given on how to
implement a small SCChart shown in Figure 3.1. A possible SCCharts implementation for
this state machine is shown in 3.3.

This introductory FSM has only two states A and B. Every tick the automaton switches
between these states and sets the text to Hello, iff it is in state A or to Unreal World, iff B is
the current state of the machine. For initialization purposes, the start text is set to an empty

Figure 3.1. First simple SCCharts to bring to UE4
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scchart FirstSCChart {

output string text = ""

region {

initial state A {

entry do text = "Hello"

} go to B

state B {

entry do text = "Unreal World"

} go to A

}

}

Listing 3.3. FirstSCCharts source code

string.
After successfully setting up the project as described in Section 3.4, it is now possible to

include the compiled SCCharts and call its functionality inside the engine. To compile the
SCCharts to the desired plugin folder the KiCo CLI is used with a batch file as displayed in
Listing 3.4.

call kico-win.bat Test.sctx -o <Drive>:\path\To\Plugin\Folder ^

-s de.cau.cs.kieler.sccharts.netlist

Listing 3.4. Batchfile content for compilation with KiCo

The -o argument specifies the output destination folder. While working on the thesis it is
redirecting roughly to path\to\project\SCChartsForGames\Plugins\FirstSCChart. Additionally,
the -s argument specifies the desired system that the compiler uses to compile the SCChart.
The de.cau.cs.kieler.sccharts.netlist system has been chosen because it suffices for the needs of
this thesis. A list for possible compilation systems can be shown within the KicO CLI with the
command --list-systems for common systems only or --list-all-systems to list all available
systems including internal systems.

For the first SCChart, an Actor is created from inside the engine named AFirstSCChart.
On compilation, UE4 creates the necessary C++ files. Inside AFirstSCChart.cpp there is the
template created by the engine. For initialization the lines in Listing 3.5 are added to the
void AFirstSCChart::BeginPlay() function in Listing 3.5, which is called as soon the game starts
and therefore before the void AFirstSCChart::Tick(float DeltaTime) function to reset the values
of the SCChart.

FistSCChart is the wrapper class mentioned before. In order for the FSM to run properly
the reset() function has to be called before any invocation of the tick() function. This is due to
internal SCCharts specification and if it is not called future invocations of the tick(&TickData)

function are not executed as expected.
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3.5. The first SCChart inside Unreal

// Called when the game starts or when spawned

void AFirstSCChart::BeginPlay() {

// generated by UE for inheritance

Super::BeginPlay();

// The SCCharts FSM needs to be ressetted before it can receive the first tick

SCChartsFSM.Reset();

}

Listing 3.5. BeginPlay function of AFirstSCChart

void FirstSCChartFSM::Reset() {

reset(&tickData);

}

Listing 3.6. Reset function wrapper of FistSCChart

This is taken care of by the function FistSCChart.Reset() that initializes or resets the
SCCharts inside Unreal, which is the wrapper needed to communicate with the SCCharts
generated C function in Listing 3.6.

The argument TickData is the construct generated by the SCCharts compiler that holds the
necessary values like input, output as well as all internal variables used by the chart.

To test the FSM, the function Tick(float DeltaTime) must be called which can be done
inside the aforementioned void AFirstSCChart::Tick(float DeltaTime) like described in Listing
3.7

where FistSCChart.Tick() is a wrapper around the SCChart generated tick function in the
same sense as the FistSCChart.Reset() wrapper was. The UE_LLOG macro enables us to print
something to the logs so one can see if the code is working as intended. The Warning enum
marks this text as a warning, so it is written in yellow in the logs so it can be distinguished
more easily from the rest.

// Called every frame

void AFirstSCChart::Tick(float DeltaTime){

Super::Tick(DeltaTime); // generated by UE for inheritance

SCChartsFSM.Tick();

// this prints a yellow Warning with the string inside TEXT(..) and the text received

// from the SCCharts which is located under tickdata as are any other input or output

// variable

UE_LOG(

LogTemp, Warning, TEXT("SCChart output: %s"), *FString(SCChartsFSM.tickData.text)

);

}

Listing 3.7. Tick function of AFirstSCChart Actor
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Figure 3.2. UE4 log output of the AFirstSCChart

After adding the Actor to the open scene and running the game the functions are executed
in the aforementioned order and as a result, the output in Figure 3.2 is produced.

3.6 Elevator

3.6.1 The idea

An elevator is a good example for the use of an FSM because it has distinct states in which
it should behave a certain way and is also used inside games. It is also possible to build a
simple elevator implementation to get started and test the results and then later build upon
this to further refine or improve the earlier functionality. Especially the latter conveyed itself
to be very convenient while implementing the first more complex SCCharts for this thesis.

3.6.2 FSM modeling in SCCharts

For the elevator, a relatively simple design approach was chosen. The elevator waits for input,
can move to a desired floor and can open or close doors. This defines the main behavior
for the elevator and illustrates the use of SCCharts for this example and the corresponding
workflow. The elevator’s implementation graph is shown in Figure 3.3. Furthermore, the
elevator has three main states as well as 4 substates. If the elevator’s FSM is in the superstate
Idle it does not move and waits for input. If it received input in form of the integer input
variable targetFloor it takes one of the two outgoing transitions to the MovingUp or MovingDown

state iff it resides in the RdyForTakeoff state. This requirement is because the used outgoing
transitions are join transitions. This special kind of transition can only be taken if the exiting
superstate, in this case, the Idle state, dwells inside its final state in the tick the conditions
of the transition are met. This behavior is depicted by the little green arrows at the start of
the transitions which indicate the join transitions as well as the double outline for the final

state. Besides the final state, the Idle state has three more substates. These substates signal to
wait or either open or close the doors.

In the states MovingUp and MovingDown the FSM outputs the signals moveUp or moveDown respec-
tively as well as the integer variable numFloorsToMove. The variable numFloorToMove exposes to
the outside how many floors the elevator must move to reach the target floor. The FSM resides
inside one of the moving states until the input variable currentFloor is equal to targetFloor. If
the condition is satisfied the transition back to the Idle state is taken.
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To communicate with its environment, the FSM outputs an integer variable called stateID.
This variable represents the state in which the FSM resides in the current tick. This variable
needs to be evaluated inside the plugin’s source code to determine in which state the SCCharts
is currently. This is a common way for synchronous languages to communicate with their
environment and comes with the advantage that the environment can easily be changed or
adopted without the need for change to the model itself. The complete source code for the
elevator SCCharts shown in Figure 3.3 is presented in Listing 3.8.

3.6.3 Unreal Engine integration

To make use of the compiled SCCharts code, a wrapper is needed as described in Section
3.3. The wrapper code is shown in Listing 3.12 as well as the header file in Listing 3.13. The
functionality like pressing a button or moving the elevator is modeled with the help of UE4’s
Blueprints. They are contained in the GitHub repository since they are not part of this thesis.
Nevertheless, to serve as an example the event that moves the elevator is laid out in Figure
3.4.

The handling of the stateID received from the SCChart FSM is done in C++ code and
shown in Listings 3.9 and 3.10. The header file is displayed in Listing 3.11, which declares the
functions for the Blueprint and the FSM interactions. Any function with the macro UFUNCTION

(BlueprintCallable) is marked as being callable from Blueprints and the macro UFUNCTION(

BlueprintImplementableEvent) declares a function that is implemented in Blueprints instead of
C++ code. These functions allow communication with the Blueprints and execution of specific
actions in accordance with the state ID received from the FSM.

3.6.4 Demonstration of the elevator

The source code and the project files for this example can be found in the GitHub repository
[Ras21a]. A visual representation of the result is uploaded to YouTube and can be found
under [Rasa]. Also, Figures 3.5, 3.6 and 3.7 show screenshots of the elevator and the SCCharts
with the current state highlighted. In Figure 3.5, the elevator can be seen waiting for user
input. The Figure 3.6 shows the elevator closing the doors after the passenger pressed a
button of another floor. And lastly, the elevator moves down, which is shown in Figure 3.7

3.7 Rolling ball

3.7.1 The idea

The rolling ball implementation demonstrates one possibility of how a hybrid system could
be used in a game environment. The ball has a target speed and a Proportional Integral
Derivative (PID) controller to control said speed in dependence of the current speed as input.
This is quite similar to how cruise control in cars work but simplified. It is also notable that
the rolling ball can climb steep slopes as well as stairs since the acceleration received from the
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scchart Elevator {

input signal doorOpen

input int currentFloor, targetFloor

output signal moveUp, moveDown

output int stateID, numFloorsToMove

region {

// The initial State where this FSM initially starts

initial state Idle {

// here the elevator doors would open

initial state OpenDoors {

entry do stateID = 1

}

if doorOpen go to WaitForInput

// this state is essentially an Idle state where the elevator

// waits for its input

state WaitForInput {

entry do stateID = 2

}

if targetFloor != currentFloor go to CloseDoors

// this state handles the door closing

state CloseDoors {

entry do stateID = 3

}

if !doorOpen go to RdyForTakeoff

// final state signaling that the elevator can move

final state RdyForTakeoff

}

// here is a join transition which can only be taken

// if the state it is coming from resides in a final state

if targetFloor > currentFloor join to MovingUp

if targetFloor < currentFloor join to MovingDown

// if this elevator is in this state it is moving upwards

state MovingUp {

entry do stateID = 4

entry do numFloorsToMove = targetFloor - currentFloor

entry do moveUp

}

// if the elevator stopped moving it returns to the Idle state

if targetFloor == currentFloor go to Idle

// if this elevator is in this state it is moving downwards

state MovingDown {

entry do stateID = 5

entry do numFloorsToMove = currentFloor - targetFloor

entry do moveDown

}

// if the elevator stopped moving it returns to the Idle state

if targetFloor == currentFloor go to Idle

}

}

Listing 3.8. The SCCharts source code of the graph in Figure 3.3 for the Elevator
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Figure 3.3. The SCCharts of the Elevator

Figure 3.4. The Blueprint that moves the elevator
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#include "Elevator.h"

// Sets default values

AElevator::AElevator() {

// Set this actor to call Tick() every frame. You can turn this off to

improve performance if you don’t need it.

PrimaryActorTick.bCanEverTick = true;

}

// Wrapper to relay the press of the button up to the FSM

void AElevator::PressBtn(int Floor) {

Queue.Enqueue(Floor);

}

// Updates the doorOpen value inside the SCCharts model to reflect the same value

inside the game

void AElevator::UpdateDoorStatus(bool isOpen) {

Elevator.InputDoorOpen(isOpen);

}

// Updates the currentFloor value inside the SCCharts model to reflect the same

value inside the game

void AElevator::UpdateFloorStatus(int Floor) {

CurrentFloor = Floor;

Elevator.tickData.currentFloor = Floor;

}

// Calls the elevator to the given floor

void AElevator::CallElevator(int Floor) {

// this Queue holds the requested number of floors in order of the requests

given

Queue.Enqueue(Floor);

}

// Called when the game starts or when spawned

void AElevator::BeginPlay() {

Super::BeginPlay();

// The SCCharts FSM needs to be ressetted before it can recive the first tick

Elevator.Reset();

}

Listing 3.9. Utility functions of the elevator Actor
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// Called every frame

void AElevator::Tick(float DeltaTime) {

Super::Tick(DeltaTime);

Elevator.Tick();

DebugStateID = Elevator.tickData.stateID;

int NextFloor = -1;

// Check if the state changed. This is necessary to prevent opening the

// doors repeatedly if they are already open

if (Elevator.LastStateID != DebugStateID) {

switch (DebugStateID) {

case 1: // State: OpenDoors

// Open the doors at the floor given by the SCCharts value

currentFloor

OpenOutsideDoors(Elevator.tickData.currentFloor);

OpenElevatorRoomDoors(); // also opens the Elevator doors

break;

case 3: // State: Wait

// Close the doors at the floor given by the SCCharts value

currentFloor

CloseOutsideDoors(Elevator.tickData.currentFloor);

CloseElevatorRoomDoors(); // also closes the Elevator doors

break;

default:

break;

}

} else if (Elevator.LastStateID == 2) {

// the Queue that holds the requested floor destinations

if ( Queue.Dequeue(NextFloor)) {

// if Dequeue was successful at dequeuing,

// the value is written to the SCCharts targetFloor value

Elevator.tickData.targetFloor = NextFloor;

}

}

// handles the output signals of the SCCharts

if (Elevator.tickData.moveUp) {// if moveUp is present

// move the Elevator up by the given number of floors

MoveElevator(true, Elevator.tickData.numFloorsToMove);

}

if (Elevator.tickData.moveDown) {// if moveDown is present

// move the Elevator down by the given number of floors

MoveElevator(false, Elevator.tickData.numFloorsToMove);

}

}

Listing 3.10. The tick function of the elevator Actor
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class SCCHARTSFORGAMES_API AElevator : public AActor {

GENERATED_BODY()

public:

// Sets default values for this Actor’s properties

AElevator();

UFUNCTION(BlueprintCallable)

void PressBtn(int Floor);

UFUNCTION(BlueprintCallable)

void UpdateDoorStatus(bool isOpen);

UFUNCTION(BlueprintCallable)

void UpdateFloorStatus(int Floor);

UFUNCTION(BlueprintImplementableEvent,BlueprintCallable)

void OpenOutsideDoors(int Floor);

UFUNCTION(BlueprintImplementableEvent,BlueprintCallable)

void CloseOutsideDoors(int Floor);

UFUNCTION(BlueprintImplementableEvent,BlueprintCallable)

void OpenElevatorRoomDoors();

UFUNCTION(BlueprintImplementableEvent,BlueprintCallable)

void CloseElevatorRoomDoors();

UFUNCTION(BlueprintImplementableEvent,BlueprintCallable)

void MoveElevator(bool Up, int NumOfFloors);

UFUNCTION(BlueprintCallable)

void CallElevator(int Floor);

// Called every frame

virtual void Tick(float DeltaTime) override;

UPROPERTY(BlueprintReadOnly)

int DebugStateID = 0; // to display the SCCharts

TQueue<int> Queue; // to queue button input

protected:

// Called when the game starts or when spawned

virtual void BeginPlay() override;

ElevatorFSM Elevator = ElevatorFSM();

bool bDoorOpen;

UPROPERTY(BlueprintReadWrite)

bool bMoving;

UPROPERTY(BlueprintReadWrite)

int CurrentFloor;

};

Listing 3.11. Header file of the elevator Actor
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#include "ElevatorFSM.h"

extern "C" {

#include "../kieler-gen/Elevator.h"

}

// Wrapper for the SCCharts tick function. Also saves the last StateID

void ElevatorFSM::Tick() {

LastStateID = tickData.iface.stateID;

tick(&tickData);

}

// this increments the target floor

void ElevatorFSM::inputUp() {

tickData.iface.targetFloor = tickData.iface.currentFloor + 1;

}

// this decrements the target floor

void ElevatorFSM::inputDown() {

tickData.iface.targetFloor = tickData.iface.currentFloor - 1;

}

// updates the doorOpen value in the FSM

void ElevatorFSM::inputDoorOpen(bool isOpen) {

tickData.iface.doorOpen = isOpen;

}

// wrapper to reset the FSM

void ElevatorFSM::Reset() {

reset(&tickData);

}

Listing 3.12. The C++ source code of the wrapper for the SCCharts in Figure 3.3

FSM reaches high enough levels to enable this behavior. There is, however, an implemented
accelerations limit to prevent too erratic behavior.

3.7.2 FSM modeling in SCCharts

The rolling ball is a simplification of a cruise control problem. The aim is to hold a constant
speed level by adjusting the acceleration as needed. For this to work, the SCChart needs
to know the current speed as well as the time. The time is internally accumulated via a
clock construct and an input variable deltaT. To calculate the appropriate acceleration change,
a PID controller is used as stated before. The PID controller is a control loop mechanism
that continuously calculates an error by the means of proportional, integral and derivation
action, as the name suggests. The proportional control takes the current error multiplied by a
calibration variable KP.
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#pragma once

#include "CoreMinimal.h"

extern "C" {

#include "../kieler-gen/Elevator.h"

}

class SCCHARTSFSM_API ElevatorFSM {

public:

ElevatorFSM();

~ElevatorFSM();

void Tick();

void Reset();

void inputUp();

void inputDown();

void inputDoorOpen(bool isOpen);

TickData tickData = TickData();

int LastStateID;

};

Listing 3.13. The C++ header code of the wrapper

Figure 3.5. The elevator waiting for input

26



3.7. Rolling ball

Figure 3.6. The elevator closing the doors

Figure 3.7. The elevator moving to the third floor

27



3. Implementation

However, this alone would not be very accurate since the proportional action can only
react to the error margin directly with no regards to factors like time. This is where the
integral and deviation part comes into play. The integral part of the controller accumulates the
data over time and takes action not only to the error itself like the proportional action but also
in consideration of the time since the system is running. Lastly, the derivative action takes the
rate of change into account and can increase precision by dampening the output to prevent
overshooting. Altogether, the PID controller can accurately control a model if calibrated well
enough. Since this is only an example of how to use SCCharts inside a game environment the
calibration is only loosely configured to get a running system and is not part of this thesis.

To model the PID controller in SCCharts the dataflow syntax is used. Dataflow is a
programming paradigm that represents applications as a directed graph similar to a dataflow
diagram [Sou12]. This paradigm is also known from other languages like Lustre and VHDL
where the flow of data is one of the main aspects. With the use of the dataflow syntax inside
SCCharts, one can conveniently model PID controller calculations. The resulting SCCharts
is shown in Figure 3.8 and the correlated source code in Listing 3.14. More about SCCharts
implementation of the dataflow paradigm as well as the use of real-time inside timed automata
can be found in the SCCharts’ syntax documentation [SS20] and the documentation about
timed automata [Sch20] respectively.

3.7.3 Unreal Engine integration

As described in Subsection 3.6.3, after compiling the finished SCCharts, a wrapper is needed
to interact with UE4. The header file shown in Listing 3.15 declares the needed functions in
order to interact with the SCCharts C code. The Tick function takes two arguments, Velocity
and DeltaTime. The Velocity is simply the current velocity of the ball and the DeltaTime again
is the time between the current and the last game frame. The source file containing the
implementations is shown in Listing 3.16. Besides the Tick function and the Reset function
known from the previous example in Section 3.6.3 a Setup(...) function was implemented.
This function is used to calibrate the PID controller in the Actor class that uses this wrapper.
The Actor’s header in Listing 3.17 declares the needed functions and variables which get
implemented in Listing 3.18. In this case, in contrast to the Elevators implementation, all of
the functionality needed for the rolling ball is contained in Listing 3.18 with no additional
Blueprints. Furthermore, the calibration used for the PID controller contains empirical values
only that suffice for demonstration purposes.

3.7.4 Demonstration of the rolling ball

As with the demonstration of the Elevator, only a live or video presentation would be
appropriate to accuratly demonstrate this case. The demo for the rolling ball is available as
a UE4 project in the SCCharts for UE4 Demo repository [Ras21a] and a video showing the
rolling ball on YouTube [Rasb]. Nevertheless, Figure 3.9 shows how the rolling ball traverses
over the obstacle course at different points in time. The rolling ball is able to maintain the
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Figure 3.8. The SCChart of the rolling ball

desired speed relatively accurate, even when climbing stairs.
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@ClocksUseSD

scchart RollingBall {

output float accel // output acceleration change

input float targetV = 10 // target velocity input

input float currentV = 0 // current velocity input

input float Kp, Ki, Kd // PID calibration variables input

input float dT = 0 // delta Time input

float prevError = 0 // error in the previous tick

float error = 0// divergence from the target velocity

float P, I, D // internal variables for PID calculation

clock t = 0 // clock for real time calculation

dataflow:

prevError = error

error = targetV - currentV

P = Kp * error

I += error * t

D = (currentV - prevError)/t

accel = P + Ki * I + Kd* D

}

Listing 3.14. The C++ header code of the SCCharts wrapper class

#pragma once

#include "CoreMinimal.h"

extern "C" {

#include "../kieler-gen/RollingBall.h"

}

class ROLLINGBALLHS_API RollingBallHybridSystem {

public:

float Tick(float Velocity, float DeltaTime);

void Reset();

void Setup(float TargetSpeed = 50, float Kp = 1 , float Ki = 1, float Kd = 1)

;

TickData TickData;

};

Listing 3.15. The C++ header code of the wrapper
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#include "RollingBallHybridSystem.h"

float RollingBallHybridSystem::Tick(const float Velocity, const float DeltaTime)

{

TickData.deltaT = DeltaTime;

TickData.currentV = Velocity;

tick(&TickData);

return TickData.accel;

}

void RollingBallHybridSystem::Reset() {

reset(&TickData);

tick(&TickData);

}

void RollingBallHybridSystem::Setup(const float TargetSpeed, const float Kp,

const float Ki, const float Kd) {

TickData.Kp = Kp;

TickData.Ki = Ki;

TickData.Kd = Kd;

TickData.targetV = TargetSpeed;

}

Listing 3.16. The C++ source code of the wrapper class RollingBallHybridSystem
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#pragma once

#include "CoreMinimal.h"

#include "GameFramework/Pawn.h"

#include "RollingBallHybridSystem.h"

#include "RollingBall.generated.h"

UCLASS()

class SCCHARTSFORGAMES_API ARollingBall : public APawn {

GENERATED_BODY()

public:

// Sets default values for this pawn’s properties

ARollingBall();

virtual void Tick(float DeltaTime) override;

virtual void SetupPlayerInputComponent(

class UInputComponent* PlayerInputComponent

) override;

protected:

virtual void BeginPlay() override;

UPROPERTY(BlueprintReadWrite)

// the 3D Ball object in the world which is also the root of this Actor

UPrimitiveComponent* Component;

// The SCChart wrapper class

RollingBallHybridSystem RollingBallHS;

};

Listing 3.17. The C++ header file of the RollingBall Actor
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#include "RollingBall.h"

ARollingBall::ARollingBall() {

// Set this pawn to call Tick() every frame. You can turn this off to

improve performance if you don’t need it.

PrimaryActorTick.bCanEverTick = true;

}

void ARollingBall::BeginPlay() {

Super::BeginPlay();

Init();

}

// function to initialize the Actor

void ARollingBall::Init() {

RollingBallHS.Reset();

RollingBallHS.Setup(100, 25, 10, 0.25);

}

void ARollingBall::Tick(float DeltaTime) {

Super::Tick(DeltaTime);

// retrieve the current velocity as a vector

const FVector V = GetVelocity();

// the new acceleration for this tick returned from the SCCharts wrapper

// the Tick function receives the current velocity vector V’s magnitude to

// so the total direction independent speed is used

float Accel = RollingBallHS.Tick(V.Size(), DeltaTime);

GEngine->AddOnScreenDebugMessage(-1, 15.0f, FColor::Yellow, FString::Printf(

TEXT("Accel %f"), Accel));

// This limits the Acceleration to |Accel| <= 10000 to prevent to erratic

behavior

Accel = FMath::Sign(Accel) * FMath::Min<float>(FMath::Abs(Accel), 5000);

if (IsValid(component)) { // checks if the component is exists

// sets the newly received acceleration as the new force for the ball in

x direction

Component->AddForce(FVector(Accel,0,0), NAME_None, true);

}

}

// created by UE4

void ARollingBall::SetupPlayerInputComponent(UInputComponent*
PlayerInputComponent) {

Super::SetupPlayerInputComponent(PlayerInputComponent);

}

Listing 3.18. The C++ source code of the RollingBall Actor
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Figure 3.9. The rolling ball at different points in time from left to right
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Chapter 4

Conclusion

The idea to use SCCharts as a means to improve the design and development workflow
for games has shown to be very useful. The overhead is relatively small compared to the
advantages of using a pre-built sophisticated language for FSM in comparison to writing
the alternatives. With its many features, it is possible to create robust FSMs that can also
be visualized. The different kinds of languages features like advanced transitions or nested
state machines allow for defining complex behavior in a simplified fashion. The simulation
provided by the KIELER IDE aids development and increases the iterability of the design
by testing specific behavior without the need to run it in a complete game environment. To
reduce errors one can make use of the integrated simulation in SCCharts IDE as well as use
model checking to describe unwanted behavior even before building the FSM. The automated
layout generated from the written code offers an accessible overview of the FSM and allows
to find mistakes by reading the chart instead of understanding the logic inside the code.

Since it is not possible in most engines to include the generated SCCharts code directly,
one has to first compile the SCCharts to e.g. C code. After the code generation, a wrapper is
needed in most cases which then has to be compiled as a linked library. Furthermore, the
ability to call functions on objects directly can only be achieved with even more overhead
unless SCCharts can compile to the engines natively supported language. Therefore, the
states must be evaluated in the environment it is implemented in. This means that another
possibility for errors exists, because not only can the SCCharts implementations be erroneous
but also in the place where the states are being evaluated and the correlation functions are
called.

All in all, SCCharts is a versatile language that aids in the development process of games
at any scale and increases readability by a well designed automated layout that reduces time
and effort previously put into manual layouting.

If this approach is adopted in future game projects, it could lead to more robust games
with fewer bugs which would be beneficial not only to developers but also to the company
images as well as for the players.
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Chapter 5

Future Work

After testing how well SCCharts can be integrated into a game development environment, it
is interesting to see where else it would be applicable. One of the main development issues
though is the need to create separate wrappers and to compile libraries instead of being able
to use the engine’s host code. In the future, however, this requirement could be alleviated
for engines that support native C++. This is because the C++ compilation is in the backlog
of the SCCharts development team at the Christian-Albrecht University of Kiel. This opens
up a simpler, more powerful workflow for supporting engines since the functions could
be called directly on the object instances. This would reduce the amount of work required
to communicate with the game environment and eliminate a potential source of error by
containing all the logic needed in one place instead of spreading it across a SCChart, a
wrapper and a class.

Furthermore, the model verification, which is not further elaborated in this thesis, could
be a very useful tool in building more robust games. One could state the behavior in linear
temporal logic that is known to be problematic or reported by players to cause issues. The
model verification would then check whether or not this issue could arise and the developer
can fix the problematic area by using the feedback provided by the model checker.
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