
An Autonomous Train Controller with
Risk Analysis using

System-Theoretic Process Analysis

Rasmus Niels Janssen

Bachelor Thesis
March, 2025

Prof. Dr. Reinhard von Hanxleden
Real-Time and Embedded Systems Group

Department of Computer Science
Kiel University

Advised by
Dr.-Ing. Alexander Schulz-Rosengarten

M.Sc. Jette Petzold

Selbstständigkeitserklärung

Hiermit erkläre ich, dass ich die vorliegende Arbeit selbstständig verfasst und keine
anderen als die angegebenen Quellen und Hilfsmittel verwendet habe.
Weiterhin erkläre ich, dass die digitale Fassung dieser Arbeit, die dem Prüfungsamt
per E-Mail zugegangen ist, der vorliegenden schriftlichen Fassung entspricht.

Kiel,

iii

Abstract

The REAKT project is an initiative aimed at developing new mobility concepts for
public transport in rural areas by reactivating old shut-down railway tracks. The
project aims to build small, autonomous, on-demand train carriages that can be called
via an app. To be able to have multiple trains drive on the same route, which are
mostly single-track lines, Single-Track Transfer Traffic is proposed. During this, trains
safely dock together anywhere on the track to exchange passengers, thereby allowing
multiple vehicles on the same track.

This thesis is part of the REAKTOR student project, which is a first attempt to
develop concepts and implementations to make an autonomous vehicle function as
proposed and consist of multiple theses. In this thesis, an autonomous train controller
is developed which is able to control a train model and is able to transport passengers
safely to their destination at a reasonable pace. To ensure the controllers safety a
System-Theoretic Process Analysis (STPA) is done, which is a risk analysis technique
developed by Leveson and based on system theory. A Safe Behavior Model (SBM)
is generated based on the STPA, to ensure safe behavior of the controller and thus
safe behavior of the train. Using the SBM and a control structure modeled in the STPA
an implementation of the autonomous controller for different test environments is
presented. Further implemented is the interface of the controller to other theses of
REAKTOR.

In addition to the controller implementation, a concept for Single-Track Transfer
Traffic is proposed and a separate STPA is build, analyzing the risks of the concept.

v

Acknowledgements

First of all, I want to thank Prof. Dr. Reinhard von Hanxleden for the opportunity to
write this thesis and be part of the REAKTOR project.

I would further like to thank the entire Real-Time and Embedded Systems group
for their friendliness and the constructive and helpful feedback I received during
this bachelor’s thesis. In particular, I want to thank my advisors Dr.-Ing. Alexander
Schulz-Rosengarten and M. Sc. Jette Petzhold for their continuous guidance and help
throughout the research and writing process.

Furthermore, I want to express my thanks to my fellow students in the REAK-
TOR student project, for making this whole process a fun, interesting and valuable
experience.

Lastly, I want to express my utmost gratitude to my family, who always supported
me throughout my studies and helped whenever they could.

vi

Contents

1 Introduction 1
1.1 Problem Statement . 2
1.2 Outline . 3

2 Preliminaries 5
2.1 System-Theoretic Process Analysis . 5

2.1.1 Define Purpose of the Analysis 6
2.1.2 Model the Control Structure . 6
2.1.3 Identify Unsafe Control Actions 7
2.1.4 Identifying Loss Scenarios . 8
2.1.5 STPA Outputs and Traceability 9

2.2 Used Technologies . 10
2.2.1 KIELER . 10
2.2.2 Pragmatic Automated System-Theoretic Process Analysis . . . 10

2.3 REAKTOR Student Project . 10
2.3.1 On-Demand App . 11
2.3.2 Management System . 11
2.3.3 Remote Controller . 12
2.3.4 AI-Obstacle Detection . 12
2.3.5 Physical Units . 12

3 Related Work 13
3.1 MONOCAB . 13
3.2 Autonomous Train Concepts . 14
3.3 Comparison . 17

4 System Theoretic Process Analysis 19
4.1 STPA for Autonomous Controller . 19

4.1.1 Define Purpose of the Analysis 20
4.1.2 Modeling the Control Structure 21
4.1.3 Identifying Unsafe Control Actions 26
4.1.4 Identifying Loss Scenarios . 29

4.2 Single-Track Transfer Traffic STPA . 31
4.2.1 Define Purpose of the Analysis 31

vii

Contents

4.2.2 Model the Control Structure . 32
4.2.3 Identify Unsafe Control Actions 34
4.2.4 Identify Loss Scenarios . 36

5 Safe Behavior Model 39

6 Implementation 41
6.1 Module Implementation . 43
6.2 1:32 Model REAKTOR Implementation 45
6.3 Digital Twin Implementation . 46

7 Evaluation 47
7.1 Testing the Controller Independently 47
7.2 Testing with other REAKTOR Theses 48

8 Conclusion 49
8.1 Summary . 49
8.2 Future Work . 49

Bibliography 51

List of Abbreviations 53

viii

List of Figures

1.1 1:32 REAKTOR prototype . 2

2.1 Example control structure of an automatic door [Tho13] 7
2.2 Example Unsafe Control Actions (UCAs) for the open door control

action [Tho13] . 8
2.3 Traceability diagram for STPA [LT18] . 9
2.4 Traceability diagram of theses in the REAKTOR student project 11

14figure.caption.10
3.2 Grade of automation for train control system [YZT19] 15
3.3 Autonomous train design approach by Trentsaux et al. [TDO+18]. . . 16
3.4 Operational modes of main controller [PHL22] 17

4.1 Control structure of the autonomous controller. 22
4.2 Process model of the operating controller. 24
4.3 UCAs of Drive Controller for decelerating. 26
4.4 UCAs for drive controller changing driving direction to backwards. . 27
4.5 Diagram showing how the identified components of the STPA are

connected. 30
4.6 Relationship graph of Single-Track Transfer Traffic STPA. 32
4.7 Control Structure for Single-Track Transfer Traffic 33
4.8 UCAs for management system sending notification to the trains to

dock together. 34
4.9 UCAs for the train adjusting speed during safe docking 35

5.1 Visualization of the SBM for the Drive Controller as SCChart. 40
5.2 States for acceleration and deceleration while driving forwards. 40

6.1 Flow diagram for autonomous controller 42

ix

Chapter 1

Introduction

Climate change is one of the biggest and hardest problem the current and future
generations have to solve. Reducing the carbon-dioxide footprint of humanity is one
of the ways to combat climate change that can be applied to almost every aspect
of society. One of these aspects is mobility. In Germany, a mobility transition is
happening. In parts, it is trying to shift from cars with combustion engines to electric
vehicles. Another idea is trying to reduce the amount of cars in general by expanding
and developing public transport, which generates less CO2 per person1. Although
expanding public transport in urban areas with a lot of commutes and making it more
accessible is a feasible option, the same approach is not feasible in rural areas with a
much lower daily demand. On top of that, there is already an existing shortage of
skilled workers in Germany that does not allow increased train throughput. However,
not all is negative. Since 1990, many rural railway tracks were shut down in Germany
but not removed 2, meaning infrastructure for trains still exists, that public transport
initiatives can reactivate and use.

The REAKT project3 is such an initiative to develop new mobility in rural areas by
reactivating these tracks. The goal is to develop small autonomous passenger vessels
that can be called on-demand via an app. Most of the shutdown tracks are single-track
lines, but having only one train for the track will be problematic, resulting in long
waiting times for passengers if multiple demand it at the same time at different parts
of the track. To be able to have multiple trains drive simultaneously on one track,
Single-Track Transfer Traffic is proposed. During this, the trains shall safely dock
together at any point on the track, exchanging passengers. Once all passengers are
transferred to their respective vehicle, they reverse directions and take the exchanged
passengers to their destination. The project has access to a 17-kilometer-long, shut-
down railway track between Malente and Lütjenburg that is used for researching and
testing these concepts4. By developing small autonomous on-demand vehicles, this

1https://www.de-hub.de/en/blog/post/mobility-turnaround-in-germany-less-traffic-more-networking/
2https://www.eba.bund.de/DE/Themen/Stilllegung/ListenStatistiken/listenstatistiken_node.html;jsessionid=

B273C648819AE255A1CE9898CCFE20BE.live21301
3reakt.sh
4https://www.schiene-m-l.de/

1

https://www.de-hub.de/en/blog/post/mobility-turnaround-in-germany-less-traffic-more-networking/
https://www.eba.bund.de/DE/Themen/Stilllegung/ListenStatistiken/listenstatistiken_node.html;jsessionid=B273C648819AE255A1CE9898CCFE20BE.live21301
https://www.eba.bund.de/DE/Themen/Stilllegung/ListenStatistiken/listenstatistiken_node.html;jsessionid=B273C648819AE255A1CE9898CCFE20BE.live21301
reakt.sh
https://www.schiene-m-l.de/

1. Introduction

Figure 1.1. 1:32 REAKTOR prototype

project avoids the problems of lower demand and skilled worker shortages while
simultaneously making it accessible every time of the day at any point of the track.

This bachelor’s thesis is part of the REAKTOR project, a student project aiming
to make an autonomous vehicle function as proposed. The student project consists
of multiple other bachelor’s and master’s theses that all interact with each other to
create a concept and the first implementation of a working autonomous train. To test
this project, a 1:32 scale prototype, as can be seen in Figure 1.1, and a digital twin of
the Malente-Lütjenburg railway track are used. In addition, a full-scale prototype is
developed by the Real-Time Systems and Embedded Systems work group.

1.1 Problem Statement

This bachelor’s thesis builds a safe autonomous train controller. The controller must
be able to take control of the train, take input from various other components, and
give accordingly output to the physical units of the train. It must be scalable to work
on all three proposed testing environments, and more. The controller must engage
in a safe docking procedure with another train for the Single-Track Transfer Traffic,
when commanded to do so. To ensure safety, a risk analysis using System-Theoretic
Process Analysis (STPA) is used to identify potential losses and hazards and minimize
their risk. Further a Safe Behavior Model (SBM) based on the analysis is generated, so
that the identified unsafe behavior does not occur [PH25].

2

1.2. Outline

1.2 Outline

The next chapter introduces the foundation of this thesis, such as the connection
to the other theses of REAKTOR, the process of STPA and other technologies and
programs used. Chapter 3 reviews related work on autonomous train vehicles and
existing projects for on-demand public transport. In Chapter 4, the STPA for the train
is performed, as well as an separate STPA for the safe docking procedure. Chapter 5
covers the Safe Behavior Model, which will be generated based of the STPA. In
Chapter 6, the implementation of the controller in Python is described. This includes
a deeper look into the implementation of the modulation of the control structure
and the interface to the other thesis in the REAKTOR student project. Chapter 7 then
evaluates the functionality of the controller to control a train, the functionality of the
interface to the programs developed in other REAKTOR theses, and the scalability of
the controller. In the last chapter, the thesis is concluded with a summary and future
work.

3

Chapter 2

Preliminaries

This chapter introduces the technology concepts used in this bachelor’s thesis. In
Section 2.1, a deeper insight into STPA is given; Section 2.2 introduces the technologies
used in this thesis. Lastly, Section 2.3 displays and explains the REAKTOR student
project and how the theses are interconnected with each other.

2.1 System-Theoretic Process Analysis

System-Theoretic Process Analysis (STPA) is a relatively new risk analysis technique
developed by Leveson and Thomas [LT18]. It is based on System-Theoretic Accident
Model and Processes (STAMP) [Lev12]. STAMP itself is based on system theory, where
the system is treated as a whole and not just as a result of many independent
components. In system theory, properties emerge not only from the individual
components but also from the interactions and relationships between them. STAMP is
a model or a set of assumptions on how accidents occur based on system theory and
is used by STPA as a foundation.

This foundation gives STPA an advantage compared to other more traditional risk
analysis methods such as Fault Tree Analysis (FTA) [HRV+81], Failure Modes and
Effects Criticality Analysis (FMECA) [BPR93], Event Tree Analysis (ETA) [II05], or
Hazard and Operability Analysis (HAZOP) [Kle99], where hazards and risk arise only
from failures of individual components. STPA is able to identify all the risk scenarios
identified by these traditional techniques, as well as more previously undetected
scenarios that arise from unsafe interactions between components. The results of STPA
can be used to create new restrictions, evaluate design decisions, identify leading
indicators for potential accidents, create test cases, etc. [LT18].STPA consists of four
consecutive steps:

1. Define Purpose of the Analysis

2. Model the Control Structure

3. Identify Unsafe Control Actions

5

2. Preliminaries

4. Identify Loss Scenarios

It can be iterated as often as modifications are necessary and can be applied during
the whole development process.

2.1.1 Define Purpose of the Analysis

The first step of STPA is defining the purpose of the analysis. In this step, stakeholders,
losses, and hazards are identified. Stakeholders are any kind of people that are
involved in the system, such as users, the government, etc. Losses involve something
that is of any value to a stakeholder. This can be grave losses such as the loss of life,
but also less grave losses such as the loss of a mission or customer satisfaction.

After that, system-level hazards can be identified. Hazards are any kind of state in
the system which, in a worst-case scenario, can lead to losses. With the hazards iden-
tified, System-level Constraint (SC) are created that specify conditions or behavior for
the system, which prevents hazards. Each constraint should be linked to the hazard,
it prevents. As an example, an automatic train door results in the following [Tho13]:
Losses:

L-1: Loss of life or injury
Hazards:

H-1: Doors close on a person in the doorway [L-1]
H-2: Doors open when the train is moving or not in a station [L-1]
H-3: People are unable to exit during an emergency [L-1]

System-level constraints:
SC-1: Doors must stay open if a person is in the doorway [H-1]
SC-2: Doors must stay closed when the train is moving or not in a station [H-2]
SC-3: Doors must be able to open during an emergency [H-3]

2.1.2 Model the Control Structure

In the second step, a control structure is built. It is an abstract model that defines
system components and the interactions and relationships between them. This control
structure is hierarchical and generally consists of the following elements: Controllers,
control actions, feedback, other input or output from components that is neither a
control action nor feedback, and controlled processes. The vertical structure represents
control and authority. Components in higher layers have authority over those in lower
layers. Higher components can send control actions down to components in lower
layers. Lower-level components can give feedback to higher-level components about
their current status. This creates a control-feedback loop between the controller and

6

2.1. System-Theoretic Process Analysis

.

Figure 2.1. Example control structure of an automatic door [Tho13]

the controlled process. Further, controllers on the same level can communicate with
each other outside of this control-feedback loop.

After modeling the control structure, responsibilities are assigned to the different
components. These responsibilities are refined system-level constraints that specify
what each component needs to do to fulfill the constraint.

An example of a control structure for the automatic train door can be seen in
Figure 2.1. In the figure, the AutomatedDoorController is able to send control actions
to open/close the door to the DoorActuator, which then mechanically moves the
PhysicalDoor. The position of the door can then be read by the DoorSensors that give
feedback to the controller about the position of the doors and if it is clear. Thereby
a control-feedback loop is constructed. A possible responsibility of the DoorSensors
could then be:

R-1: If the door is not clear, it may not be closed [SC-2]

2.1.3 Identify Unsafe Control Actions

The third step is to identify UCA. An UCA consist of a control action, and a context in
which it, becomes dangerous and leads to a hazard. There are four ways a UCA can
occur:

Ź Not providing control action

Ź Providing control action

Ź Providing control action too early, too late, or in the wrong order

7

2. Preliminaries

.

Figure 2.2. Example UCAs for the open door control action [Tho13]

Ź Providing control action for too long or stopping too soon

These types need to be considered for all control actions. It is possible to have multiple
UCAs for the same type while not having any for another type. An example of UCAs
for providing the open door command can be seen in Figure 2.2. The figure shows
UCAs of all four types and in which hazards they result. A UCA for not opening the
door is, for example, in the case of emergency evacuation.

Similarly to SCs, Controller Constraints (CCs) can be defined to specify the con-
troller’s behavior to prevent UCAs.

2.1.4 Identifying Loss Scenarios

The last step is to identify loss scenarios. Loss scenarios describe the real-life factors
that lead to UCAs and hazards. Losses can be differentiated into two categories:
scenarios that lead to UCAs and scenarios in which control actions are improperly
executed.

For the first, scenarios can generally be identified by working backward from
UCAs, and they can be further categorized into unsafe controller behavior and causes
of inadequate feedback and information. There are four general reasons for controller
malfunctions that lead to loss scenarios: physical controller failures, inadequate
control algorithms, unsafe controller input, and an inadequate process model. To find
causes of inadequate feedback and information, the source of the feedback needs to
be examined.

8

2.1. System-Theoretic Process Analysis

Figure 2.3. Traceability diagram for STPA [LT18]

The second type of scenario can also be divided into two types: scenarios involving
the control path and scenarios related to the controlled process. The first generally
identifies whether something is faulty between sending and receiving the control
action. If this is not the case, the second type could apply, where control actions are
transferred successfully but not executed effectively or are overridden. Some example
scenarios for UCA-4 identified in Figure 2.2 are:

UCA-4: Doors commanded open while train is in motion [H-2]

Scenario 1 for UCA-4: While the train is in motion, the door actuators
have a mechanical malfunction, causing the doors to open [UCA-4].
As a result, passengers may fall off the train. [H-2]
Scenario 2 for UCA-4: While the train is in motion, the automatic door controller
receives inadequate feedback about the train motion, thinking that the train
stands still [UCA-4]. As a result, passengers may fall off the train. [H-2]

2.1.5 STPA Outputs and Traceability

Figure 2.3 shows the traceability diagram of the STPA analysis, giving an overview
of how the results of the STPA are connected to each other. The control structure is
thereby closely connected to every STPA output, although it is not explicitly visual-
ized. The results of the STPA can be used in various ways, such as finding design
recommendations, driving new design decisions, creating requirements, evaluating
existing designs, etc. [LT18].

9

2. Preliminaries

2.2 Used Technologies

Multiple preexisting technologies are used for the STPA process and SBM generation
and execution in this thesis.

2.2.1 KIELER

The KIELER project1 is a research project about enhancing the graphical model-based
design of complex software systems. It is developed by the Real-Time and Embedded
System group at Kiel University. It researches among other things Sequentially
Constructive Charts (SCCharts), which are a synchronous state chart dialect with
sequentially constructive semantics. These SCCharts are used in this thesis to model a
SBM, to ensure the safety of the autonomous controller.

2.2.2 Pragmatic Automated System-Theoretic Process Analysis

Pragmatic Automated System-Theoretic Process Analysis (PASTA)2 is a tool imple-
mented as a Visual Studio Code (VS Code) extension by Petzold et al. [PKH23]. PASTA
provides a domain-specific-language for STPA and provides the user with validity
checks and automation. The main advantage of PASTA in comparison to other tools is
the visualization of STPA. The visualization is split into two graphs: The control struc-
ture and a traceability diagram similar to that in Figure 2.3 [PKH23]. These graphs
give an overview of relationships in the STPA and help to make them much more
comprehensible. In addition, options are provided to hide specific subcomponents,
adjust how they are visualized, or change the color style of the visualization.

PASTA also offers safe behavior model generation, creating SCCharts based on the
STPA or for a specific controller in it, by generating Linear Temporal Logic (LTL)
formulas out of UCAs. The generated SBM is not necessarily complete but provides a
good foundation that covers safety as well as aliveness properties [PH25].

2.3 REAKTOR Student Project

This section presents the interconnections between the different theses of the REAK-
TOR student project and the connection of them to this thesis. A traceability diagram
is depicted in Figure 2.4 giving an overview of the project and is further discussed in
the next sections.

1https://github.com/kieler
2https://marketplace.visualstudio.com/items?itemName=kieler.pasta

10

https://github.com/kieler
https://marketplace.visualstudio.com/items?itemName=kieler.pasta

2.3. REAKTOR Student Project

Figure 2.4. Traceability diagram of theses in the REAKTOR student project

2.3.1 On-Demand App

The on-demand app provides a user interface where passengers can call the train on
demand to a position on the track, get in and then drive to their destination. After
being used to call the train, the app sends a job with all the important details to the
management system.

2.3.2 Management System

The management system is responsible for assigning the job from the app to the cor-
rect vehicle and giving the train controller the train’s destination. It passes information
about the train’s status between it and the app user.

The management system is also responsible for identifying when Single-Track
Transfer Traffic must be initiated between two trains and then providing the command
to the train controller to safely dock together to exchange passengers.

11

2. Preliminaries

2.3.3 Remote Controller

The remote controller can take over the train and control it remotely if necessary.
This is useful in emergency situations or when train components fail. For this, the
autonomous controller must be able to be switched on and off to allow the remote
controller to have full control over the vehicle and to release the control so that the
autonomous controller can continue after the problems have been resolved.

2.3.4 AI-Obstacle Detection

The AI obstacle detection identifies potential objects on the track using cameras and
sensors. If any objects are identified on the track or close to it, a signal is given to the
autonomous controller to inform it about the potential danger.

2.3.5 Physical Units

The physical units are the different test environments for the REAKTOR project. It
includes a 1:32 model train with a Raspberry Pi, a digital twin, and in the future, a
prototype of a full-scale version. The digital twin will be able to simulate multiple
small vehicles on a digital recreation of the railway track between Malente and
Lütjenburg. This recreation allows the autonomous controller to control the digital
vehicles to simulate the real-world application of the project.

12

Chapter 3

Related Work

In Germany several other projects are working to revive train transport in rural
areas of Germany. One of these projects is MONOCAB discussed in Section 3.1.
In addition, there have been multiple other projects that have analyzed the safety
of autonomous train controllers and proposed a design for commercial use. Some
of them are introduced and discussed further in Section 3.2. Lastly, a comparison
with the autonomous controller proposed in this thesis and the different approaches
presented in this chapter is made in Section 3.3.

3.1 MONOCAB

MONOCAB1 is a project developed by the OWL University of Applied Sciences and
Arts, Hochschule Bielefeld (HSBI), and Frauenhofer IOSB-INA under the direction of
Prof. Dr.-Ing. Thomas Schulte.

Similarly to the REAKT project, the objective of MONOCAB is to make public
transport more accessible in rural areas by reactivating shut-down railway tracks.
They develop small gyro-stabilized vehicles that are able to balance on just one rail of
the traditional railway track, as shown in Figure 3.1. They are thin enough that two
vehicles can pass each other on a single track line. These small vehicles are supposed
to drive on-demand around the clock for 365 days a year and can hold between 4-6
passengers each.

The MONOCAB can operate completely autonomously using advanced envi-
ronmental sensing systems, including radar and camera sensors, to ensure the
safety of passengers. To ensure smooth operation, the MONOCAB is equipped
with communication systems for vehicle-to-vehicle communication, as well as vehicle-
to-infrastructure communication, enabling remote control and management of the
MONOCAB fleet.

1https://www.monocab-owl.de/
2https://www.monocab-owl.de/presse-downloads

13

https://www.monocab-owl.de/
https://www.monocab-owl.de/presse-downloads

3. Related Work

Figure 3.1. Two MONOCAB vehicles driving side by side2.

3.2 Autonomous Train Concepts

There have already been multiple successfully implemented autonomous train sys-
tems, starting all the way in 1968 with the London Victoria Line. Although this
underground line still required a driver to open and close doors, it was the first train
to drive autonomously. Since then, many metros have used Autonomous Train Opera-
tors (ATOs), meaning a system responsible for operating trains without direct human
intervention, with different amounts of automatization. To categorize this automati-
zation for trains, Fei Yan et al. [YZT19] have proposed a Grade of Automation (GoA)
system, depicting the different grades of automatization as shown in Figure 3.2. In the
figure, STO stands for Semi-automated Train Operation, DTO stands for Driver-less
Train Operation, and UTO stands for Unsupervised Train Operation. The London
Victoria Line has a GoA of 2, since only driving and stopping are done automatically.
Today’s projects, such as REAKT or MONOCAB, aim to achieve a GoA of 4 for their
vehicles.

With autonomous controllers trying to achieve higher GoAs the safety of these
trains is also further discussed. Tonk et al. [TCB+23] proposed a methodology to be
used to ensure the safety of autonomous trains. The methodology divides the train
into three hierarchical system levels:

1. Overall System level

2. AI-Based Component level

3. AI/ML Software level

14

3.2. Autonomous Train Concepts

Figure 3.2. Grade of automation for train control system [YZT19]

The lowest level concerns the safety issues related to the learning-based software
used in safety-related applications. The middle level concerns the risks emerging
due to insufficient performance of the components. The highest level represents the
autonomous train. It determines GoA, the specific environment of the train, and it
identifies hazards related to the aspects of autonomy. To fulfill the challenges in this
top level of the methodology, a safety analysis, similar to the one in this thesis, must
be done, where especially the trains environment and the hazards are identified.

Trentesaux et al. [TDO+18] propose a way to slowly integrate automatization into
existing train operation with an iterative design process to be able to test and validate
intermediate stages of the process. They propose two different methods for this step.

The first method will progressively transfer driving tasks from the driver to the
autonomous train while simultaneously progressively transferring supervision tasks
to the driver. Thereby typically following the GoA levels.

The second method is to immediately transfer all driving tasks away from the
driver, giving him only supervision tasks from the beginning. In this method, there are
two approaches to implement the autonomous train. The first approach implements
a simplified version of the complete decision-making and learning process, including
everything, and then slowly improves on simple scenarios. After that, it improves
on more complex ones until the train is working in the entire environment. The
second approach consists of sequentially implementing each function of the decision
progress of the train, only moving to the next one once the current one has been fully
validated.

Trentesaux et al. [TDO+18] also propose a design approach for an autonomous
train as shown in Figure 3.3. The train follows a predefined operation plan while

15

3. Related Work

Figure 3.3. Autonomous train design approach by Trentsaux et al. [TDO+18].

constantly checking for environmental changes to which the train needs to adapt.
If an unusual situation occurs, the train adapts its operating plan accordingly if
necessary.

Peleska et al. [PHL22] propose another approach to an autonomous train controller
with GoA 4, with a lot of design restrictions, such as vehicle-to-vehicle communication.
The deliberately conservative architecture they propose serves as a thought experi-
ment, whether such a GoA 4 system could be certified on the basics of the CENELEC
standards [EN11; Kar24; Std19] and the ANSI/UL 4600 pre-standard [Koo22], being
the first "fairly-complete" document addressing system-level safety of autonomous
vehicles.

In addition, they propose an architecture with a kernel at its center. The architec-
ture also includes multiple positioning systems, communication systems, juridical
recording, and different obstacle detection methods such as cameras, radar, and

16

3.3. Comparison

Figure 3.4. Operational modes of main controller [PHL22]

lasers. In addition, it consists of multiple supervision components securing passenger
safety. The central kernel makes its autonomous decision based on the input of the
other modules that are executed via a train interface module. The kernel consists
of four operating modes, which can be seen in Figure 3.4. In the Autonomous Nor-
mal Operation (ANO) mode, the train is fully functional as an autonomous train,
driving normally. In the Autonomous Degraded Operation (ADO) mode, the train
is still driven autonomously by the controller, but with a reduced performance, for
example, a lower speed. In case of failure, where the train can no longer be driven
autonomously, the kernel switches to the Non-Autonomous Control (NAC) modes.
In the NAC-R-Controller, the controller can be remotely controlled by a person, while
for the NAC-M-Controller, a train driver must physically board the train and drive it
manually. The approach is developed for freight trains and metros, while declaring
itself infeasible for high-speed passenger trains, as existing obstacle detection can
only be used reliably at speeds of less than 120 km/h.

3.3 Comparison

This thesis proposes a controller for autonomous trains with a hierarchical control
structure. The main controller, being the decision making controller at the highest level
of the structure. Similarly to the main controller proposed by Peleska et al. [PHL22],
this thesis controller consists of multiple driving modes, depending on the outside
environment. In this way, the train can operate autonomously with reduced speed,
when some smaller obstacles are detected close to the track, without instantaneously
needing human assistance. However, there is also the possibility of human interference

17

3. Related Work

in emergency situations, using the remote controller. The flow of the controller process
is implemented similarly to the approach presented by Trentsaux et al. [TDO+18],
but in a less abstract way. The difference from these systems is having a clearly
ordered hierarchical control structure divided into different modules. The proposed
one implements the trains ability to drive and navigate itself autonomously, but it is
possible to add further subsystems that keep communicating with the controller to a
minimum and fulfill their own responsibilities. A future controller for light could, for
example, be responsible for everything regarding light and handle minor problems
that occur. Communication to the train controller can then be kept minimal, making
intervention only necessary when the light controller is in an emergency mode. The
approach in this thesis also creates a controller that is easily scalable for different
vehicles when combined with the other theses of the REAKTOR student projects.
This way, the interface to the management system, remote controller and AI-obstacle
detection does not need to change.

18

Chapter 4

System Theoretic Process Analysis

The goal of this thesis is to build an autonomous train controller. The highest priority
for this is not only to build a controller that is able to drive a train but also to ensure
maximum safety. To ensure the safety of the vehicle and passengers, it is imperative
that a risk analysis is performed. The autonomous controller needs to know how
it is supposed to react in every possible situation, as well as avoiding to do things
that would fall under common sense of a human driver, such as accelerating while
braking. For this, I performed an STPA, as described in Section 2.1.1 using PASTA.
The analysis is divided into two use cases. A general STPA of the controller and
its control of the train is performed in Section 4.1. A second STPA, for the use case
scenario of Single-Track Transfer Traffic, where the trains safely dock together to
exchange passengers on the track, is performed in Section 4.2. The reason for doing
two separate STPAs is that the use cases are too different and analyzing both in the
same analysis would drastically increase complexity and reduce clarity.

4.1 STPA for Autonomous Controller

I conducted an STPA for an autonomous train driving on a single-line track. The main
goal is to drive safely and fulfill the following objectives:

Ź Drive from A to B

Ź Track its own position

Ź Accelerate gently

Ź Stop safely at its destination

Ź React accordingly to obstacles

Ź Remote control

With these basic goals for the train, I performed a STPA to ensure that the controller
executes them safely.

19

4. System Theoretic Process Analysis

4.1.1 Define Purpose of the Analysis

The first step is to identify the stakeholders. I considered the possible users and
operators of the train and determined their stake in the system. The main stakeholders
are passengers, the operating group, and the manufacturer. Passengers are interested
in safe, swift, and efficient travel between two points. Operators and manufacturers
are interested in satisfied customers. These stakes can be converted into losses, as
seen in Listing 4.1.

1 Losses

2 L1 "Loss of life or injury"

3 L2 "Loss of operating components, vehicle or infrastructure"

4 L3 "Loss of Communication"

5 L4 "Loss of mission"

6 L5 "Loss of customer satisfaction"

Listing 4.1. STPA Losses for the autonomous controller

The losses are hierarchically ordered from worst to least worst. The worst possible
loss for stakeholders is an accident that leads to injury or death. Other losses include
costly damage to the incorporeal structure, the train losing its ability to communicate,
or the train not being able to reach its destination.

Afterwords, the hazards leading to these losses are identified as shown in List-
ing 4.2.

1 Hazards

2 H1 "System integrity is lost" [L1,L2,L3,L4,L5]

3 H2 "Vehicle exceeds safe-operating envelope for its environment (

Speed, Lateral/Horizontal forces)" [L1,L2]{

4 H2.1 "Vehicle exceeds safe speed limit of the track"

5 H2.2 "Vehicle accelerates too fast"

6 H2.3 "Vehicle decelerates too fast, while not performing a

Emergency Stop"}

7 H3 "Vehicle comes too close to objects on track" [L1,L2]

8 H4 "Vehicle loses communication to infrastructure or other vehicles"

[L3,L4]

9 H5 "Vehicle loses connection while being controlled by remote

controller" [L1,L2,L3,L4]

10 H6 "Insufficient positional awareness of the vehicle on the track" [L1

,L2,L4]

Listing 4.2. Hazards of the autonomous controller

20

4.1. STPA for Autonomous Controller

Hazards and losses are kept to a minimum, which is the common practice for STPAs.
The first hazard describes any part of system integrity that is lost, meaning that
one or multiple system components experience failure, which can lead to the whole
system failing and there by endangering passengers and outsiders. The second hazard
has been divided into sub-hazards for the different ways, the train risks losses when
driving and stopping without constraints. H2.3 for example, can lead to passengers
flying through the train when it decelerates as fast as possible. H4 is the risk of losses
when communication fails. This includes communication to the management system,
meaning that the train cannot receive more destinations to drive to, and it includes
the risk of losses during Single-Track Transfer Traffic. For each hazard, a System-level
Constraint (SC) is defined. The SC establishes basic conditions to prevent the hazard
from occurring. As an example, the SC to prevent H2 and its sub-hazards can be seen
in Listing 4.3. The SCs describe abstractly how these hazards can be prevented. For
example, H2.3 can be prevented by stopping the train at an acceptable speed when
not making an emergency stop. The full list of SCs can be found on github.

1 SystemConstraints

2 SC2 "Vehicle may not exceed the safe-operating envelope for its

environment" [H2]{

3 SC2.1 "Vehicle may not exceed the safe speed limit of the track" [

H2.1]

4 SC2.2 "Vehicle may not accelerate too fast" [H2.2]

5 SC2.3 "Vehicle my not deccelerate too fast, while not performing a

Emergency Stop" [H2.3]

6 }

Listing 4.3. System-level constraints for H2.3 of the autonomous controller

4.1.2 Modeling the Control Structure

With the losses and hazards identified, the next step is to model the control structure
of the autonomous controller. The control structure is not an implementation, but a
functional model of the controller implemented later. The modeled control structure
for the controller is shown in Figure 4.1. The structure is divided into two sections:
the off-board section and the on-board section.

The off-board section contains everything that is not physically on-board the train
but interacting with it and includes the Remote Controller and the Management
System of the trains. These components are implemented in other theses of the
REAKTOR student project and need to have an interface to the autonomous controller.

21

https://github.com/reakt-sh/reaktor-artifacts

4. System Theoretic Process Analysis

Figure 4.1. Control structure of the autonomous controller.

The remote controller must be able to take over the train remotely, control it, and
then release it again. This is done in emergency situations where it is not possible
for the autonomous controller to drive safely due to unknown factors. These factors
could be objects on the track or system components that are failing. In this case, the
human controlling the remote controller will have full authority over the train without
the autonomous controller interfering. To overtake the train, the remote controller
can send control actions to overtake the train. If this control action succeeds, the train
sends a confirmation that the overtaking was successful. When controlling the train
remotely, it has the possibility to adjust the speed and driving mode, which means the
direction or an emergency stop. To successfully control the train, the remote controller
receives feedback from the train about the train’s current speed, location, and drive
mode. It also receives a connection to the train’s cameras for a live video broadcast of
the track in front of the train, but no further information by the AI-obstacle detection
or other subsystems supporting the autonomous driving of the train, as it is unknown
how reliable their information are in emergency situations. The full responsibility lies
within the decision making of the human driver steering the train remotely. If the
remote control is finished, it can then release its control of the train and let the train

22

4.1. STPA for Autonomous Controller

drive autonomously again.
The management system must be able to set the destination of the train, finish or

cancel it, and give the train commands related to safe docking, which will be further
discussed in the STPA regarding the Single-Track Transfer Traffic in Section 4.2. To
perform its duties, it has the corresponding control actions. In return, the management
system receives information about the trains current track position and speed. It also
receives confirmation of the control actions it has sent.

The on-board section contains everything that is physically on-board the train.
At the lowest hierarchy level are the physical units. These include every physical
controlled process on the train itself, e.g. the motor, brakes, communication sys-
tems, GPS sensors, cameras, etc. The physical units give feedback to the different
higher-level components and only receive control actions to execute by them. The
autonomous controller itself is divided into a module for track navigation, which
allows for more modularity regarding information about the railway track and two
controllers: OperatingController and DriveController.

Operating Controller

The operating controller is the decision-making controller. It receives input and feed-
back from several other components, such as AI-obstacle detection, drive controller,
management system, and remote controller. Based on these inputs, it determines
the behavior of the train. The process model of the operating controller is shown
in Figure 4.2. The process model consists of a lot of variables needed by the oper-
ating controller to calculate the trains behavior. mode indicates the current mode
of the operating controller, similar to the main controller proposed by Peleska et
al. [PHL22]. At first, the controller is initializing itself and other train systems over
which it has control. Then it switches between normal, degraded, and emergency
mode, depending on the input it receives from AI-obstacle detection. In normal
mode, the train drives normally; the degraded mode is a mode defined to ensure that
the train can drive autonomously with caution when potential objects are close to
the train. In this mode, the train drives at reduced speed, depending on the risk of
danger the controller has received, to be able to stop quickly if an emergency occurs.
If the controller switches to emergency mode, an emergency brake is immediately
applied stopping the train. This is of course a drastic measure that is very uncom-
fortable for passengers and violates H2. Therefore, it must be ensured that the train
only makes an emergency stop when it is really necessary. The toggleable variables
remotecontrol and sa f eDocking can be changed by the off-board section to put the
train in a special mode for remote control and Single-Track Transfer Traffic. These
variables are separate from mode, to prevent the possibility that the autonomous

23

4. System Theoretic Process Analysis

Figure 4.2. Process model of the operating controller.

controller can change them unintentionally. The process model also includes multiple
variables that store feedback received from other components used to determine the
controllers behavior. These include the current mode of the drive controller, the train’s
position, possibly measured using GPS, its destinations, current speed, and driving
direction. In addition, it calculates the distance to the train destination to reduce the
speed accordingly and stop gently at the destination, not violating H2. The operating
controller can send gpsPosition to the TrackNavigation module where it is converted
to track kilometers. Track kilometers ease calculations of distances on the tracks much
easier than using raw GPS coordinates or other positioning technologies. With the
help of this module, the train can also receive the desired speed it needs to drive
depending on its operating mode.

The operating controller itself does not directly command the motor to accelerate,
decelerate, etc. Instead, it sets the speed and driving mode of the second controller:
the drive controller.

Drive Controller

The drive controller is the controller that directly controls the physical motor and
brakes. The drive controller has variables storing the current speed of the train
received as feedback from the physical parts, and has three different operating modes:

24

4.1. STPA for Autonomous Controller

driving forward, driving backward, and emergency stop. This mode is set directly by
the operating controller. The drive controller also receives the desired speed the train
should accelerate/decelerate to. It is the drive controllers responsibility to slowly
reach this desired speed. For example, if the train is driving with 30 km/h forward
and receives a desired speed of 70 km/h from the operating controller, the train
should not try to accelerate to 70 km/h as fast as possible, but at a reasonable pace.
The drive controller is also responsible for ensuring that there are no sudden changes
of the driving directions and that the train is fully stopped before changing directions.
A normal, non-emergency stop is made, by decelerating to 0 km/h.

The drive controller is also responsible for converting the speed from km/h into
the corresponding value the physical unit can process. For example, km/h must be
converted into PWM for the 1:32 REAKTOR prototype. The drive controller will later
be implemented as SBM, which is further discussed in Chapter 5.

Track Navigation

The module TrackNavigation is responsible for all the information on the physical
track the train is driving on. This unit stores information about the length of the track
and divides it into intervals of speed limit, telling the operating controller how fast the
train can drive. This module is also responsible for converting the GPS position into
the corresponding position on the track as a track kilometer and gives the operating
controller the direction in which it needs to drive to reach its destination.

Other Subsystems

Other subsystems include systems on the train with which the operating controller
needs to interact. As of know, this includes the AI-obstacle detection, but it can also
be expanded with future sub-systems in the train, such as a possible door controller
or lights controller.

The last step in modeling the control structure is to assign refined SCs as responsi-
bilities to the different controllers. All responsibilities are publicly available on github,
but an example of a responsibility for the operating controller implementing SC 2.1 is:

1 R1 "Give control action to reduce speed, if vehicle goes over desired

speed, while not being remote controlled."[SC2.1]

25

https://github.com/reakt-sh/reaktor-artifacts

4. System Theoretic Process Analysis

Figure 4.3. UCAs of Drive Controller for decelerating.

4.1.3 Identifying Unsafe Control Actions

In the third step Unsafe Control Actions (UCAs) are identified. For this, every single
control action in the control structure is examined and possible UCAs are identified
in the different ways they can occur. The UCAs have been implemented in PASTA via
context tables, which contain concrete values of the process model variables, which
lead to the control action being an UCA. These are also needed to generate a SBM for
the drive controller based on the STPA. The UCAs for being in the normal or degraded
operating mode and for driving backward and forward are identical, except for this
variable. This is because the responsibilities of the train do not change based on the
direction it drives and the desired speed is adjusted in the degraded mode, meaning
that the train should also not drive above this adjusted speed then. Therefore, I will
only show the UCAs for the normal mode while driving forward. The complete list of
UCAs can be found on github.

Here, I will only show a few examples of UCAs. The first are UCAs that directly
influence the motor and brakes of the train, i.e. the control actions provided by the
drive controller. In Figure 4.3 the UCAs for the drive controller decelerating are shown.

The control action to decelerate contains multiple UCAs. UCAs have been identified
for not decelerating, decelerating too late, or stopping too soon. All these cases
happen if the train is driving faster than desired. These UCAs make it, so that the
train continues to drive too fast, putting both the train and the passengers at risk.
There has not been an UCA identified for when deceleration is provided, as it may be
uncomfortable and unnecessary at certain times, but it is not hazardous or unsafe.

26

https://github.com/reakt-sh/reaktor-artifacts

4.1. STPA for Autonomous Controller

Figure 4.4. UCAs for drive controller changing driving direction to backwards.

For acceleration, the identified UCAs belong to the opposite UCA types, compared to
deceleration. There have been identified multiple UCAs for providing acceleration,
such as accelerating during an emergency stop or accelerating when the train has
already reached its desired speed. On the contrary, there have not been defined any
UCAs for not accelerating, accelerating too late, etc. For example, if the train’s desired
speed is 50 km/h, but it only drives 30 km/h and does not accelerate, it is again not
dangerous, but merely inconvenient.

More UCAs have been identified when changing directions. UCAs for changing the
direction from forward to backward are shown in Figure 4.4. UCA15 shows, that it is
dangerous not to change direction when told and the train is at a complete stop. This
is because if the train was to accelerate again, it would be in the other direction then
intended, leading to unknown consequences. Another UCA is changing directions,
while the train has not reached a complete stop, which would lead to extremely
harsh direction change and possible vehicle damage. Preventing this UCA prevents a
possible cause of H2 in a way that extreme forces do not affect passengers. Further
UCAs have been identified for the drive controller to ensure that an emergency stop is
taken immediately when ordered and to ensure that the train arrives at a complete
stop.

For the operating controller the identified UCAs for the control actions to the track
navigation module are mainly specified to ensure that the train regularly updates
its current position and asks for the speed limit it is allowed to drive. The tracking
of the trains position is relevant in all situations, regardless of whether the train
is driven autonomously or remotely. Requesting the speed limit is not necessary
during remote control, as the controller should only be driven remotely in emergency

27

4. System Theoretic Process Analysis

situations, where it is unknown how reliable the onboard subsystems are. This model
therefore assumes responsibility for a well-trained human driver to be able to access
the situation accordingly. The operating controllers actions to the drive controller are
used to set the speed of the train, the driving direction, and to initiate emergency
brakes. For setting the speed, again it is not unsafe to have a speed below the speed
limit, but it is undesired, as it means that the train needs much more time than
necessary. However, it is unsafe to not reduce speed if the train goes above the
speed limit. In addition, it is dangerous to set the speed above 0 km/h during the
emergency mode, as this risks that the train does not stop as quickly as possible. The
UCAs regarding the acceleration of the drive controller should be able to correct this
UCA, but it is best to prevent it from possibly being able to happen.

Other UCAs include the controller not performing the actions to reduce the speed
in time. UCAs identified for initiating an emergency stop happen, when the controller
gives out the command while not in the correct mode or similarly, does not initiate
an emergency stop, or does it too late, if one is needed. The full list of UCAs can be
seen on github.

Any UCAs related to Single-Track Transfer Traffic are discussed in the separate
STPA in Section 4.2. UCAs regarding to the management system and remote controller
are only identified in a simplistic way, as their process models are not within the
scope of this thesis.

Further this STPA includes Desired Control Actions (DCAs), which contrary to
UCAs are control actions that are desired to occur. These are identified to ensure that
the above-mentioned uncomfortable and inconvenient, but not unsafe actions can
be prevented. For example, is it never unsafe that the train does not accelerate, even
though its speed is below the limit, but it is desired to do so. Examples of DCAs are,
accelerating when driving to slow, not decelerating when driving the speed limit,
and not performing an emergency stop, when it is not necessary. These DCAs are also
used, to generate the SBM discussed in Chapter 5.

Lastly, Controller Constraints (CCs) have been defined for each UCA identified,
similar to the SCs defined in the first step. These CCs aim to constrain the correspond-
ing control action, so that UCAs are prevented from occurring. An example of an CC
for UCA1 is shown in Listing 4.2.

1 ControllerConstraints

2 C1 "Drive Controller may not accelerate during an emergency stop" [UCA1]

28

https://github.com/reakt-sh/reaktor-artifacts

4.1. STPA for Autonomous Controller

4.1.4 Identifying Loss Scenarios

In the last step, this thesis defined loss scenarios. Each scenario is tied to a UCA and
the respective hazard created. Some examples of scenarios for the drive controller
can be seen in Listing 4.4.

1 LossScenarios

2 Scenario1 for UCA1

3 "An control action to accelerate has been delayed because of a failure in

the system and is now send while performing an emergency stop."[H1,H3]

4 Scenario2 for UCA1

5 "The controller receives an action, setting the desired speed above 0 and

thereby accelerating, before changing the drive mode from ’

EmergencyStop’."[H1]

6 Scenario3 for UCA1

7 "The operating controller has send an action to swtich mode to forward/

backward and accelerate, but the action to switch mode has been

delayed or is lost."[H1]

8 Scenario5 for UCA2

9 "The controller has received an incorrect current speed from the physical

units, leading it to accelerate above the desired speed. The reason

for this can be:

10 - Measuring has been unprecise due bad calibration

11 - Information about the speed has been delayed, causing the controller

to recieve out of date speed values"[H2.1]

12 Scenario49 for UCA32

13 "Controller incorrectly believes, the drive controller is already driving

forwards, causing it not to send the action to change."[H2]

Listing 4.4. Example loss scenarios

The first three scenarios describe a possible cause for the drive controller to accelerate
during an emergency stop, namely a physical controller failure and unsafe controller
input. Scenario5 describes a possible cause for the controller to accelerate above the
desired speed and the last scenario shows that the operating controller does not
change the direction in which the train is driving, because it thinks that the train is
already driving this direction. This can happen due to an inadequate process model
or control algorithm.

Scenarios usually have all kinds of different causes. Most controller scenarios
are caused by unsafe controller input, delays, or incorrect feedback received. Unsafe
inputs can be received from inadequate control algorithms that give an action that is

29

4. System Theoretic Process Analysis

Figure 4.5. Diagram showing how the identified components of the STPA are connected.

generally unsafe, such as in Scenario2, where the drive controller receives the input
to accelerate while still in emergency mode. With a correct control algorithm, the
operating controller should never send out such an action but always switch the
modes before accelerating. An example of a UCA resulting from delays can be seen in
Scenario3. Here, the operating controller has a correct control algorithm and sends
out the action to switch the mode of the drive controller before setting the desired
speed. The problem arises because the first action is delayed and arrives after the
second. An example of receiving incorrect feedback can be seen in Scenario5. Here,
the measured speed of the train does not match the real speed. The reason for this
could be many. The scenario mentions two possible reasons, poor calibration of the
measuring unit and a delay on the feedback causing the received train speed to be out
of date. Most other identified scenarios are usually also related to receiving incorrect
feedback or unsafe controller input. This feedback and input is sent by inadequate
control algorithms or controller failures. An overview how all the Scenarios, UCAs,
hazards, etc. are connected to each other is shown in Figure 4.5. This figure only
shows the UCAs regarding the drive controller’s control action to accelerate. The
complete diagram shows the connections between the components for all control
actions.

30

4.2. Single-Track Transfer Traffic STPA

4.2 Single-Track Transfer Traffic STPA

A second separate STPA has been conducted for the special case of Single-Track
Transfer Traffic, where the trains must dock safely together, so that passengers can
switch vehicles. The train’s capabilities to drive during this procedure, has been
discussed in the original STPA in Section 4.1 applies. This STPA identifies only the
specific risks that apply during Single-Track Transfer Traffic in addition to the risks
during normal driving.

The process proposed by this thesis for Single-Track Transfer Traffic is the fol-
lowing: The management system identifies when Single-Track Transfer Traffic is
necessary and notifies both trains. The notification includes the means for the trains
to establish a connection for communication with each other. Both trains need to
confirm safe docking, switch into a safe docking mode, and establish communication
between each other. The trains then regularly exchange their current position on the
track as track kilometers and adjust their speed to the distance between them. At
some point, the trains come too close for accurate positioning using GPS or something
similar. At this point, the trains switch to distance sensors, which will measure the
distance between the trains, using different sensors based on distance. The trains are
steadily decreasing speed until they stop and make contact. Upon contact, different
sensors confirm the successful maneuver. Lastly, before departing and breaking the
connection, both trains need to switch destinations, as they resume driving in the
direction they came from.

If one of the trains is remotely controlled, this thesis proposes two different
concepts on how it should affect Single-Track Transfer Traffic. The first is simply
that the remote driver performs the maneuver manually. This requires the driver to
know that the train he steers is engaging in Single-Track Transfer Traffic. A second
concept would need the train to abort safe docking when it is taken over remotely.
Since remote takeover is only supposed to happen in emergency cases, it is likely that
the train is already unable to dock safely against another train for unknown reasons.
Therefore this STPA uses the second concept.

4.2.1 Define Purpose of the Analysis

The stakeholders and losses are unchanged from the general STPA discussed in Sec-
tion 4.1.1 and the hazards identified there generally also apply during driving. Specific
hazards related to Single-Track Transfer Traffic have been identified additionally in
Listing 4.5

1 Hazards

31

4. System Theoretic Process Analysis

Figure 4.6. Relationship graph of Single-Track Transfer Traffic STPA.

2 H1 "Vehicle loses communication to other vehicle during safe-docking-

procedure" [L3]

3 H2 "Vehicles dock with too much speed against each other" [L1,L2,L3,L4,L5]

4 H3 "Vehicle thinks it docked succesfully, while not being docked" [L1,L5]

5 H4 "Vehicles are not informed correctly that they need to dock" [L1]

6 H5 "One or both trains are unable to perform the maneuver"[L1]

7 H6 "Vehicles calculate incorrect distances between each other"[L1,L2]

Listing 4.5. Identified hazards related to safe docking of the trains.

All these identified hazards can be seen as sub-hazards of the original hazards in the
first STPA. As an example, H1 is a specification of the original hazard: "Vehicle loses
communication to infrastructure or other vehicles". If this hazard occurs, both trains
are no longer able to get accurate information on the distance of the other vehicle.
This leads to them unable to complete the procedure safely, as they cannot accurately
calculate the distance between them, and thus decelerate to the correct speed. A direct
consequence of this is in the worst case H2, where the trains crash. Further hazards
can arise due to sensor failures or intern train problems discussed in the first STPA.
For each hazard a SC is defined, stating constraints to prevent them. The connection
between the losses, hazards and SCs can be seen as a relationship graph in Figure 4.6.

4.2.2 Model the Control Structure

For the control structure, the management system must be able to signal both trains
that a Single-Track Transfer Traffic is initiated. Both trains must communicate with
each other, passing different information needed for the docking. A minimized control
structure can be seen in Figure 4.7. The control structure of each train is the same as
in the first STPA, seen in Figure 4.2. However, in this one, there is a different focus
on the physical units. The focus shifts away from the interaction with the motor,
brakes, and sensors used for obstacle detection and instead focuses on sensors used

32

4.2. Single-Track Transfer Traffic STPA

Figure 4.7. Control Structure for Single-Track Transfer Traffic

to measure distance during safe docking and whether the vehicles have docked
together successfully. Multiple distance sensors are used for the precision needed
when docking. These include longer range sensors, such as laser sensors with a range
of about 50 meters. For closer ranges, ultrasonic sensors can be used, which are
extremely accurate but are limited to a range of only a few meters at maximum.

The remote controller functions the same as during normal driving, allowing it to
take over the train at any time. If the remote controller takes over the train during
safe docking, it will be canceled. The management system can send control actions
to initiate and abort safe docking and receives confirmations from the train on the
status. It receives constant updates on the position and speed of the train, as it does
during normal driving, enabling the system to track the train in real time. The trains
can establish a connection with each other, allowing them to exchange information
about their location needed to calculate the distance between them. In addition, they
can inform each other about a possible abort if one of the trains cannot perform a safe
docking for some reason. Lastly, responsibilities have been assigned to the different
components. The responsibilities for the distance and docking sensors are shown in
Listing 4.6.

1 DockingSensors{

2 R8 "Confrim if the vehicles have docked together"[SC3]

3 R9 "Confirm that docking was at a safe pace, without damaging to

vehicles"[SC2]

4 }

5 DistanceSensors{

6 R10 "Give the correct distance between vehicles, when they are close

enough to measure"[SC6]

7 }

Listing 4.6. Responsibilities of the different components during safe docking.

33

4. System Theoretic Process Analysis

Figure 4.8. UCAs for management system sending notification to the trains to dock together.

The sensor’s responsibilities are to provide the controller with accurate information
about the environment of the trains. Responsibilities for the management systems are
to manage the Single-Track Transfer Traffic by notifying the right trains at the right
time. The train controller’s responsibility is to adjust the train’s speed based on the
distance between vehicles and to ensure that safe docking can be performed without
interruption. The full list of responsibilities can be found on github.

4.2.3 Identify Unsafe Control Actions

The next step is to identify UCAs. This STPA analyses only a concept for Single-Track
Transfer Traffic, without an exact process model for the management system or exact
units to communicate. Therefore, this identification of UCAs, especially for UCAs
send by the management system, is a bit more abstract. The identified UCAs for
the management system notifying the trains, to safely dock together are shown in
Figure 4.8. These UCAs show, that it is extremely important for the management
system to inform the trains about Single-Track Transfer Traffic at the correct time,
and only if it is necessary. If the trains are not notified or are notified too late,
the best case is that the trains driving operation comes to an unexpected halt. The
worst case is that both trains crash. However, it is also unsafe to provide the action

34

https://github.com/reakt-sh/reaktor-artifacts

4.2. Single-Track Transfer Traffic STPA

Figure 4.9. UCAs for the train adjusting speed during safe docking

when it is not necessary or the trains are unable to carry it out, as this leads to
unknown consequences. UCAs related to aborting safe docking, whether the abort
comes from the management system or one of the trains, are pretty similar to the
UCAs in Figure 4.8. It is unsafe not to abort the procedure or to abort it too late when
the trains cannot perform it, but it is also unsafe to abort it without proper reason, as
this leads to unknown consequences.

Further UCAs are related to not sending information on the position of trains
on the track during the entire process, starting too late or stopping too soon. It is
extremely important that the trains have accurate knowledge about the distance
between them, to minimize risk when docking together. The operating controller
also needs to adjust the trains speed when both vehicles approach each other. UCAs
identified for speed adjustment are shown in Figure 4.9. These UCAs are all related
to H2, which means that if they occur, the trains risk crashing together. Therefore, it
is vital that the controller has a good control algorithm to prevent these UCAs from
occurring. These UCAs occur during the calculation of the distance to the vehicle
using the GPS position calculated to a track position of the other vehicle, where the
train does not adjust its speed correctly. Additional UCAs occur when distance sensors
are used to identify the opposing train. At that point, the trains must decelerate to a
minimum speed when approaching. Going faster could result in a to hard contact
when docking, risking damaging the train or passengers.

35

4. System Theoretic Process Analysis

In the end CCs for each UCA have been defined, to constrain the UCAs from
occurring, similar to how the SCs were defined.

4.2.4 Identify Loss Scenarios

The last step is to identify loss scenarios. Most scenarios in which actions are not
provided, even though they should be, can be traced back to inadequate feedback
and information. Examples of this can be seen in Listing 4.7.

1 Scenario28 for UCA25

2 "The train receives incorrect or outdated positioning information from the

other train, leading it to calculate a distance between them, that

does not correspond to reality"[H2]

3 Scenario29 for UCA26

4 "The distance sensors do not identify the other train correctly, leading

the train to not slow down further"[H2]

5 Scenario30 for UCA26

6 "The distance sensors measure an incorrect distance to the other train,

that is way to far away."[H2]

Listing 4.7. Loss scenarios for UCA23 and UCA24

In these scenarios, the operating controller receives incorrect information about its
position relative to the other vehicle. This leads the controller in the worst case to
think that the vehicles are still far from each other, and therefore leads the train to
not decelerate or even to start accelerating. Other scenarios for the controller not
providing actions, such as sending an abort request when necessary, can be due to
an inadequate control algorithm or process model, where the train already thinks it
send the signal. A vital piece of this control structure, where a lot of UCAs can arise
is the connection that must be established between vehicles. A lot of UCAs occur in
scenarios where there is an unstable connection, such as the scenarios which can be
seen in Listing 4.8

1 Scenario19 for UCA21

2 "The train wants to send out the notification to abort, but needs to

establish a connection with them first because:

3 - The connection was lost prior

4 - A connection was never established

5 - A former connection had faults and needed to be re-established

6 This leading to delayed notifations."[H2]

7 Scenario21 for UCA22

36

4.2. Single-Track Transfer Traffic STPA

8 "The connection is establish incorrect or lost, therefore the train can

not send its position on the track."[H2,H6]

Listing 4.8. Loss scenarios

Scenario19 shows a scenario in which the signal to abort is sent too late to the other
train, because it first must establish a new connection, as the former was lost or
faulty. This could cost valuable time, where the trains do not decelerate when moving
towards each other. Scenario21 shows a scenario, where the train must not abort but
can not send its position to the other train because the connection is not established
correctly. This way the trains do not know how far away they are from each other
and therefore they can not slow down appropriately, and in a worst-case scenario,
they trains are too fast once the distance sensors detect them and cannot slow down
enough to safely dock together. The full list of scenarios can be found on github.

37

https://github.com/reakt-sh/reaktor-artifacts

Chapter 5

Safe Behavior Model

In this chapter, a Safe Behavior Model (SBM) is constructed for the implementation
of a safe drive controller, that ensure that the UCAs and DCAs identified in the STPA
hold. Using the drive controller constructed in the STPA and its related UCAs and
DCAs, PASTA provides generation of a SBM as an SCChart. Since the SBM is based
on LTL formulas generated out of the UCAs and DCAs of the drive controller, the
generated SBM is correct by construction [PH25]. Thus, a SBM has been generated
covering safety properties. I further added initialization of variables and calculations
of intern values. The SBM receives two inputs, the desired speed the train should
accelerate to and the desired driving mode, e.g. forward, backward, or emergency
stop. These are the values of the control actions that the drive controller receives from
the operating controller. The output values are the current speed to which the train
should accelerate and the current drive direction to which the train should drive,
which are the values that the drive controller converts into a format the physical units
of the train can process and then gives these converted values to the physical units,
thereby changing the train’s speed or direction. A visualization of the full SBM can
be seen in Figure 5.1. During initialization, the desired speed is set to 0 km/h and
the driving mode is set to forward. After initialization, the SBM starts in the initial
state NoAction. In this state, the outputs do not change and remain the same. When
the SBM receives an input changing the desired speed, the train changes to the states
acc f orwards or dec f orwards seen in Figure 5.2. These states are for accelerating and,
respectively, decelerating while driving forward. There are separate states for driving
backward, as a way to ensure that if the SBM receives the input to change direction,
while driving faster than 0 km/h, the train slowly decelerates to 0 km/h driving
the old direction before switching, thus avoiding any harsh direction changes. When
entering the state, the output drive mode is set to 2, meaning forward. If the train was
already moving forward, nothing changes, but if it was in a different mode before,
the train now switches direction to driving forward. During acceleration, the train
speed is then increased by one for every step taken by the SBM until it is equal to the
desired speed. In that case, the train returns to NoAction. If the SBM receives a new
input on the desired speed, it will go to the correct state to reach the new desired
speed. The same applies to decelerating, with the only difference being that the train

39

5. Safe Behavior Model

Figure 5.1. Visualization of the SBM for the Drive Controller as SCChart.

Figure 5.2. States for acceleration and deceleration while driving forwards.

speed is reduced by one per step and not below zero. The states accbackwards and
decbackwards function in the same way when the train is traveling backward.

If the SBM receives the input changing the driving mode to emergency stop, the
SBM will immediately switch to the brake state. In this state, the train will immediately
set the speed output to 0 and the train mode output to 1, giving the command to
make an emergency stop. The SBM will not switch out of this state until the train’s
drive mode is changed.

Using Kiel Integrated Environment for Layout Eclipse Rich Client (KIELER), the
SBM has been converted from a functional SCChart into a Python class. This class gives
full functionality of the SBM for the implementation of the drive controller, ensuring
that the control actions given to the physical units do not violate any UCAs and follow
the DCAs. The class consists of class functions that allow the user to reset the SBM and
to simulate a step of the SBM with the given input.

40

Chapter 6

Implementation

The implementation of the controller as a program is done in Python. I built a foun-
dational implementation that is used to implement the controller for the specific test
models. Based on this foundation I have further implemented specific implementa-
tions for the 1:32 model REAKTOR prototype and the digital twin. An implementation
for the full-scale REAKTOR prototype has not been done, as the prototype has not
been built yet. Further, it should be noted that the concepts of Single-Track Transfer
Traffic are noted in the implementation, but not implemented. The reason for this is
that the prototypes used for testing are not ready to test two trains safely docking
together.

The controller process is shown using a flow diagram which can be seen in
Figure 6.1. The controller starts by initiating. Then, it is checked whether the train
is controlled remotely. If this is the case, the controller checks whether this is the
first iteration, where the train is being controlled remotely. In case this is true, a
flag is set, and additional info needed by the remote controller is sent. Then it is the
controller’s task to pass along the desired speed and mode from the remote controller
to the train. If the train is not controlled remotely, the controller checks, if it was
notified by the management system, to perform Single-Track Transfer Traffic. When
the controller was notified, the train must follow the safe docking process proposed
in Section 4.2. This concept is not implemented for the train as of yet, as indicated
by the green box, and remains for future work. If the train is not supposed to dock
to another train, it checks if it has a destination to drive to. If not, it waits until it
receives one from the management system. Once it has a destination, it checks the
outcome of the AI-obstacle detection represented as a danger score. This score of 0 to
100 shows the risk of obstacles, identified by cameras and sensors. When the score
is higher than 90, the train switches to emergency mode and makes an emergency
stop. When it is between 60 and 90, the train switches to degraded mode. When the
score is below that, it drives in normal mode. The train then gets its position on the
track, for example as GPS coordinates, and converts it into a position represented as
track kilometers. Afterwords, the controller checks if it is still driving in the correct
direction. If this is not the case, it needs to change direction. After that, it calculates
how far it is from its destination. When the train is close to its destination, about 1 km

41

6. Implementation

Figure 6.1. Flow diagram for autonomous controller

42

6.1. Module Implementation

away, the train reduces its speed, calculating its desired speed based on the allowed
speed limit and the remaining distance. As soon as it has reached its destination, it
stops and waits for a new destination. When the train is more than a kilometer away
from its destination, the speed limit for the train on this part of the track is identified.
If it differs from the current speed that the train is driving, the speed is changed.
Any speed changes, changes in drive direction, or emergency stops declared by the
controller in this iteration will be given as input to the SBM, which generates the
speed and direction, which should be set. In the end, these outputs are converted into
a form that can be given to the motor. This is done as long as the SBM is still in an
accelerating or decelerating state. Once the SBM is in the state NoAction, which means
that the train has reached its desired speed and direction, the process starts from
the beginning with a new iteration, checking whether the train is being controlled
remotely.

6.1 Module Implementation

As shown in the control structure of the STPA, the controller is divided into three
main modules: OperatingController, DriveController, and TrackNavigation. Further,
there are clients for the remote controller and management system on the same
device, allowing them, to request information and set specific variables, such as a
destination, in the operating controller. This implementation for the autonomous
controller described here is a foundation from which the specific implementations for
the different environments can be built.

Operating Controller

The operating controller consists of a main function that implements the flow diagram
up to the SBM. The implementation varies very little from the flow diagram, the only
difference being that acceleration or deceleration is limited to 5 km/h for each
iteration. The reason for this is because the implementation is only done using one
thread, if acceleration or deceleration was not limited, the train would reach its
speed limit, which can take a while, before starting a new iteration in the process
flow. If AI-obstacle detection detects something during this, the controller can only
react to the input in the next iteration. As an example, if the train is supposed to
accelerate from 0 km/h to 50 km/h in one step, and the AI-obstacle detection detects
mid-way something in the track with a score high enough to force an adjustment,
the train would only react to it after reaching the desired speed of 50 km/h. This is,
of course, far too late. By accelerating in steps of 5 km/h, the controller can check

43

6. Implementation

the danger assessment sent by the AI-obstacle detection 10 times in the same time
frame. In addition, the arrival of the train at its destination is implemented with
the precision of stopping the train within 10 meters. The controller can be started
by starting this main function. Once started, it will control the train autonomously
without needing additional user input in a continuous loop. To stop this loop and,
thereby, the program, the keyboard interrupt is used, which gently stops the train
and then correctly exits any existing programs used.

The management system’s and remote controller’s clients can receive and set
different variables in the operating controller’s process model. For the management
system, this includes setting, getting and deleting the destination, getting the current
track position, and getting the current train speed. The remote controller has the
ability to take over and release the autonomous controller and to set the speed and
mode of the train, receiving these values back as feedback. Lastly, it consists of a
connection to the AI-Obstacle detection. The connection is built using a web-socket
and then requests the current danger score identified by the detection. There is an
existing risk of false positives. To avoid making an emergency stop for a false positive,
multiple scores are requested, and the average score is returned for the autonomous
controller to use.

Drive Controller

The functionality of the drive controller has already been implemented via the SBM
discussed in Chapter 5. Now the only thing left is to implement a wrapper for the
drive controller, updating the SBM when a change in speed or mode is sent by the
operating controller. For this, two functions setDriveControllerMode(mode : int) and
setSpeed(currentSpeed : int, desiredSpeed : int) are available. These functions receive
the input values for the SBM from the operating controller. After computing the next
step of the SBM, the output values received from it must then be transformed into a
format that the physical units can read and then send to them to execute. This has
to be done individually for each implementation for different vehicles. Lastly, the
wrapper consists of an initialize() and exitController() function, where the SBM and
other programs used in the wrapper are initialized at the beginning and shut down
correctly at the end.

Track Navigation

This module stores track information and is used by the operating controller to
calculate or obtain different important values. The track is stored as a dictionary,
split into different intervals with a respective speed limit. For this implementation,

44

6.2. 1:32 Model REAKTOR Implementation

a simplistic version of the 17 kilometer long Malente-Lütjenburg track was taken,
dividing it into 3 different speed intervals, as this was enough to test the controllers
capabilities. The knowledge of the track must be obtained before driving. To obtain
the speed limit, the function getDesiredSpeed(trackPosition) identifies the current
interval in which the train is in and returns the speed limit of it. The function
f indTrackPosition(GPSPosition) finds the current track position based on the po-
sitioning system used and needs to be adjusted accordingly to the system used.
Other functions allow the operating controller to calculate the reduced speed when
in degraded mode, obtain the driving direction, and calculate the distance to the
destination.

Clients for Remote Controller and Management System

These clients each operate on their own thread and are in constant connection to
the servers of the remote controller and the management system. They are able to
set variables and obtain the value of variables using the functions in the operating
controller, to fulfill the purposes of their respective component. Using this interface
design allows for a capsulation of the different components. Further, additional clients
for different systems can easily be implemented and have the possibility to receive
the values of variables and set them. When doing this, possible conflicts between
clients must, of course, be analyzed. The implementation of the clients has been done
by their respective thesis.

6.2 1:32 Model REAKTOR Implementation

The controller has been implemented for the 1:32 model REAKTOR prototype. The
prototype uses a Raspberry Pi 3, which is connected to a stripped-down engine. In
the above section, the foundation for the autonomous controller was already built
following the flow diagram in Figure 6.1. This implementation uses the foundation
and builds upon it by implementing a drive controller wrapper for the model train.
To control the inputs and outputs of the Pi, a Pigpio daemon is used. It is initialized
together with the SBM, setting the correct pins. The train mode is set by adjusting pins
19 and 26. The train speed is set by adjusting the Pulse Width Modulation (PWM) set
in a range of 0 and 100. The wrapper takes the output of the SBM and converts it into
input for the pins and into PWM. For converting km/h into the correct PWM a linear
function is used. Using exitController() when interrupting the operating controller
allows us to properly shutdown Pigpio before exiting the program.

Tracking the location of the train is difficult. Since the model track is only a small

45

6. Implementation

circle a few meters in length, using any positioning system such as GPS for this is
not an option. Instead, I tracked the position using time, measuring the time between
each loop of the operating controller. Using this time difference, the old position of
the train, the train speed and driving direction, the trains position can be tracked as
track kilometers. The formula when driving forward is:

oldPosition + (currentSpeed ˚ (timePassed
3600))

The result is then rounded down to four decimals, and in case the train is driving
backward, the position is subtracted instead. If the train is not driving, the position
does not change. If the train is driving, the amount of meters is added/subtracted
by multiplying the trains’ speed with the time difference since the last loop. Since
the time difference is expressed as seconds, km/h is converted to km/s. To test this
implementation, I have multiplied the position change by a factor of 12, to reduce
waiting times during testing.

For testing this implementation, a Pigpio daemon must be started. After that,
Main.py can start the autonomous controller, the remote client, and the management
system’s client.

6.3 Digital Twin Implementation

The implementation for the digital twin also uses the foundation built in Section 6.1.
In addition, this implementation does not need to convert the position of the train
to track kilometers, as the digital twin uses them to position the train already. On
request, it then gives the information already in the required form.

To read or set values in the digital twin, a web-socket is used. Connecting to the
correct vehicle requires a vehicle ID, which must be known beforehand if there are
multiple vehicles simulated. To set the speed and direction, the controller must then
post this information using requests.post() to the vehicle. The digital twin takes the
speed input in km/h, so it is not necessary to convert the SBM output. To test this
implementation, the application for the digital twin must be started on the same
computer on which the autonomous controller is run. If a different computer is used,
the URL used to connect to the digital twins trains must be changed accordingly.

46

Chapter 7

Evaluation

To evaluate the concepts of the autonomous controller, it is tested. The autonomous
controller has been tested both independently and in combination with the other
theses of the REAKTOR student project. The testing was done using both the controller
implementations of the 1:32 model train and the digital twin.

7.1 Testing the Controller Independently

When I independently tested the controller in the 1:32 model train, the functions of
the other REAKTOR theses were mocked in a simplistic way. The testing was done in
different stages. In the first test, the controllers ability to drive the train forwards and
backwards from point A to B while driving normally was tested. For this, random
destinations on the track were generated and the danger score given by the mock
AI obstacle detection was set to 0, meaning that the train would drive permanent
in normal mode during this test. This test showed that the controller was capable of
gently accelerating the train, driving to its destination. During driving, it successfully
adjusted its speed to the changing speed limits given by the track navigation module.
When approaching its destination, the train would slowly reduce its speed and stop
within 10 meters of the track kilometer that was its destination. The second stage was
to simulate the controller reaction to different inputs from the mocked AI-obstacle
detection. For this, I let obstacle detection generate a random danger score between
0 and 100, with different probabilities. When driving, the controller successfully
switched to the degraded mode, when receiving a high enough danger score, where
it reduced its speed according to the score. In addition, it performed an emergency
stop, when it received a score greater than 90. During this testing, the controller’s
ability to reach its destination was not impaired, other than the desired adjustments
to the speed. A video of the train driving can be found on github.

47

https://github.com/reakt-sh/reaktor-artifacts

7. Evaluation

7.2 Testing with other REAKTOR Theses

Further testing was done in combination with the other theses, with the main goal
of testing the functionality of the interface between them and the controller and to
test if the controller’s ability to control the train is impaired. We tested different
scenarios. The first scenario was again the normal use of the train with a clear track.
The controller received a destination from the management system and slowly accel-
erated to the allowed speed limit. When approaching the destination, the controller
gently decelerated the train until it stopped at the destination. This test showed
that the controller successfully received a destination from the management system,
showing that the interface between them functions. Additionally, no impairment of
the controllers ability to drive was detected. For the next test, different obstacles
were placed on the track, to test the trains reaction to these objects when they were
identified by AI-obstacle detection. During this test, the train responded accordingly,
by reducing its speed when objects were identified near the track and making an
emergency stop for objects identified as on the track by the AI-obstacle detection.
After the objects were removed, the train continued to drive normally. During this
test, the remote controller also took control of the train. When the remote controller
took over, the autonomous train controller did exactly as told. It no longer made its
own decisions for the train, but instead just passed the speed and direction given
by the remote controller to the train. This test showed that the interfaces with the
AI-obstacle detection and remote controller work as intended. Both of these cases
were tested for the 1:32 model train and the digital twin, where no differences in
controller behavior could be seen, supporting the argument that the controller is
easily scalable for different vehicles.

48

Chapter 8

Conclusion

In this chapter, a short summary of the contributions of this thesis is presented. After
that, potential future work for the autonomous controller is presented.

8.1 Summary

In this thesis, I presented the concepts of an autonomous train controller for the
REAKTOR student project. Using a STPA, potential hazards and dangerous interac-
tions of the train controller were identified and a control structure was modeled. The
controller consists of two main controllers and a module regarding the navigation
of the railway track. The operating controller is the decision making controller and
receives input from other systems and makes decisions for the train based on them.
The drive controller, implemented as an SBM, ensures that these decisions are executed
safely and accelerates or decelerates the train. The SBM was generated based on the
STPA and then extended further. In addition, concepts for two trains docking together
on the tracks are presented to realize Single-Track Transfer Traffic.

The testing of the controller on a 1:32 model train and digital twin revealed that it
functioned in different scenarios as intended. The testing further revealed that the
interfaces to the management system, AI-obstacle detection, and remote controller
function as intended.

8.2 Future Work

Future work for this project includes a controller implementation for testing on the
Malente-Lütjenburg track. Currently, a full-scale prototype is under construction that
will be able to drive on the research track. To test the controller for this prototype, an
implementation must be built. To do this, the foundation I built can be used. Then
further, it must be implemented, how the outputs of the SBM in the drive controller
are converted into a format, which the motor and brakes of the prototype can process,
and how the physical units receive these outputs. In addition, the positioning system
used for the train must be converted into track kilometers and the physical track

49

8. Conclusion

must be implemented in more detail in the track navigation module. This includes
detailed track intervals with correct speed limits.

In the future, the concepts for Single-Track Transfer Traffic must be implemented,
to be able to realize the concept for rural public transport proposed by the REAKT
project. To implement and test the concept of Single-Track Transfer Traffic, two testing
vehicles with communication systems are needed. The testing vehicles need to be able
to send their own position to the other vehicle and decipher the position of the other
vehicle when received. In addition, these vehicles need distance sensors to safely
receive the distance to the other vehicle on the last few meters, when geo-positioning
gets to imprecise.

50

Bibliography

[BPR93] Robert J Borgovini, Steve Pemberton, and Michael J Rossi. Failure mode,
effects, and criticality analysis (fmeca). 1993. url: https://api.semanticscholar.
org/CorpusID:107361063.

[EN11] BS EN. “50128 (2011). railway applications-communication, signalling
and processing systems: software for railway control and protection
systems”. In: International Electrotechnical Commission (2011).

[HRV+81] D F Haasl, N H Roberts, W E Vesely, and F F Goldberg. Fault tree
handbook. Tech. rep. Nuclear Regulatory Commission, Washington, DC
(USA). Office of Nuclear Regulatory Research, Jan. 1981. url: https :

//www.osti.gov/biblio/5762464.

[II05] Clifton A. Ericson II. “Event tree analysis”. In: Hazard Analysis Techniques
for System Safety. John Wiley Sons, Ltd, 2005. Chap. 12, pp. 223–234.
isbn: 9780471739425. doi: https://doi.org/10.1002/0471739421.ch12. eprint: https:

/ / onlinelibrary . wiley . com / doi / pdf / 10 . 1002 / 0471739421 . ch12. url: https : / /

onlinelibrary.wiley.com/doi/abs/10.1002/0471739421.ch12.

[Kar24] Beate Karlsen. Humans: trouble, or treasure in the eyes of en 50126-1:2017 rail-
way applications - the specification and demonstration of reliability, availability,
maintainability and safety (rams). eng. Student Paper. 2024.

[Kle99] Trevor A. Kletz. Hazop hazan: identifying and assessing process industry
hazards. CRC Press, 1999. doi: https://doi.org/10.1201/9780203752227.

[Koo22] Philip Koopman. Ul 4600: standard for safety for the evaluation of autonomous
products. https://users.ece.cmu.edu/~koopman/ul4600/index.html. Dec. 2022.

[Lev12] Nancy G. Leveson. Engineering a safer world: systems thinking applied to
safety. The MIT Press, Jan. 2012. doi: 10.7551/mitpress/8179.001.0001. url: https:

//doi.org/10.7551/mitpress/8179.001.0001.

[LT18] Nancy G. Leveson and John P. Thomas. STPA handbook. 2018. url: https:
//psas.scripts.mit.edu/home/get_file.php?name=STPA_handbook.pdf.

[PH25] Jette Petzold and Reinhard von Hanxleden. “Safe behavior model synthe-
sis: from STPA to LTL to SCCharts”. In: 13th International Conference on
Model-Based Software and System Engineering. Jan. 2025, pp. 133–140. doi:
10.5220/0013091600003896.

51

https://api.semanticscholar.org/CorpusID:107361063
https://api.semanticscholar.org/CorpusID:107361063
https://www.osti.gov/biblio/5762464
https://www.osti.gov/biblio/5762464
https://doi.org/https://doi.org/10.1002/0471739421.ch12
https://onlinelibrary.wiley.com/doi/pdf/10.1002/0471739421.ch12
https://onlinelibrary.wiley.com/doi/pdf/10.1002/0471739421.ch12
https://onlinelibrary.wiley.com/doi/abs/10.1002/0471739421.ch12
https://onlinelibrary.wiley.com/doi/abs/10.1002/0471739421.ch12
https://doi.org/https://doi.org/10.1201/9780203752227
https://users.ece.cmu.edu/~koopman/ul4600/index.html
https://doi.org/10.7551/mitpress/8179.001.0001
https://doi.org/10.7551/mitpress/8179.001.0001
https://doi.org/10.7551/mitpress/8179.001.0001
https://psas.scripts.mit.edu/home/get_file.php?name=STPA_handbook.pdf
https://psas.scripts.mit.edu/home/get_file.php?name=STPA_handbook.pdf
https://doi.org/10.5220/0013091600003896

Bibliography

[PHL22] Jan Peleska, Anne E. Haxthausen, and Thierry Lecomte. “Standardisation
considerations for autonomous train control”. In: Leveraging Applications of
Formal Methods, Verification and Validation. Practice. Ed. by Tiziana Margaria
and Bernhard Steffen. Springer Nature Switzerland, 2022, pp. 286–307.

[PKH23] Jette Petzold, Jana Kreiß, and Reinhard von Hanxleden. “Pasta: prag-
matic automated system-theoretic process analysis”. In: 2023 53rd Annual
IEEE/IFIP International Conference on Dependable Systems and Networks
(DSN). 2023, pp. 559–567. doi: 10.1109/DSN58367.2023.00058.

[Std19] EN50129 Std. “Railway applications-communications, signalling and
processing systems-safety related electronic systems for signalling”. In:
European Committee for Electrotechnical Standardisation (CENELEC) (2019).

[TCB+23] Abhimanyu Tonk, Mohammed Chelouati, Abderraouf Boussif, Julie Beu-
gin, and Miloudi El Koursi. “A safety assurance methodology for au-
tonomous trains”. In: Transportation Research Procedia 72 (2023). TRA
Lisbon 2022 Conference Proceedings Transport Research Arena (TRA
Lisbon 2022),14th-17th November 2022, Lisboa, Portugal, pp. 3016–3023.
issn: 2352-1465. doi: https://doi.org/10.1016/j.trpro.2023.11.849. url: https://www.

sciencedirect.com/science/article/pii/S235214652301147X.

[TDO+18] Damien Trentesaux, Rudy Dahyot, Abel Ouedraogo, Diego Arenas,
Sébastien Lefebvre, Walter Schön, Benjamin Lussier, and Hugues Chéri-
tel. “The autonomous train”. In: 2018 13th Annual Conference on System of
Systems Engineering (SoSE). 2018, pp. 514–520. doi: 10.1109/SYSOSE.2018.8428771.

[Tho13] John P. Thomas. “Extending and automating a systems-theoretic hazard
analysis for requirements generation and analysis”. PhD thesis. Mas-
sachusetts Institute of Technology, 2013, pp. 64–68.

[YZT19] Fei Yan, Shijie Zhang, and Tao Tang. “Autonomous train operational
safety assurance by accidental scenarios searching”. In: 2019 IEEE Intel-
ligent Transportation Systems Conference (ITSC). 2019, pp. 3488–3495. doi:
10.1109/ITSC.2019.8917006.

52

https://doi.org/10.1109/DSN58367.2023.00058
https://doi.org/https://doi.org/10.1016/j.trpro.2023.11.849
https://www.sciencedirect.com/science/article/pii/S235214652301147X
https://www.sciencedirect.com/science/article/pii/S235214652301147X
https://doi.org/10.1109/SYSOSE.2018.8428771
https://doi.org/10.1109/ITSC.2019.8917006

List of Abbreviations

ATO Autonomous Train Operator

CC Controller Constraint

DCA Desired Control Action

GoA Grade of Automation

KIELER Kiel Integrated Environment for Layout Eclipse Rich Client

LTL Linear Temporal Logic

PASTA Pragmatic Automated System-Theoretic Process Analysis

PWM Pulse Width Modulation

SBM Safe Behavior Model

SCChart Sequentially Constructive Chart

SC System-level Constraint

STAMP System-Theoretic Accident Model and Processes

STPA System-Theoretic Process Analysis

53

8. List of Abbreviations

UCA Unsafe Control Action

VS Code Visual Studio Code

54

	Introduction
	Problem Statement
	Outline

	Preliminaries
	System-Theoretic Process Analysis
	Define Purpose of the Analysis
	Model the Control Structure
	Identify Unsafe Control Actions
	Identifying Loss Scenarios
	STPA Outputs and Traceability

	Used Technologies
	KIELER
	Pragmatic Automated System-Theoretic Process Analysis

	REAKTOR Student Project
	On-Demand App
	Management System
	Remote Controller
	AI-Obstacle Detection
	Physical Units

	Related Work
	MONOCAB
	Autonomous Train Concepts
	Comparison

	System Theoretic Process Analysis
	STPA for Autonomous Controller
	Define Purpose of the Analysis
	Modeling the Control Structure
	Identifying Unsafe Control Actions
	Identifying Loss Scenarios

	Single-Track Transfer Traffic STPA
	Define Purpose of the Analysis
	Model the Control Structure
	Identify Unsafe Control Actions
	Identify Loss Scenarios

	Safe Behavior Model
	Implementation
	Module Implementation
	1:32 Model REAKTOR Implementation
	Digital Twin Implementation

	Evaluation
	Testing the Controller Independently
	Testing with other REAKTOR Theses

	Conclusion
	Summary
	Future Work

	Bibliography
	List of Abbreviations

