
Modelling real world applications in
Lingua Franca

Robin Mithoff

Bachelorthesis
September 28, 2023

Prof. Dr. Reinhard von Hanxleden
Real-Time and Embedded Systems Group

Department of Computer Science
Kiel University

Advised by
Malte Clement

Selbstständigkeitserklärung

Hiermit erkläre ich, dass ich die vorliegende Arbeit selbstständig verfasst und keine
anderen als die angegebenen Quellen und Hilfsmittel verwendet habe.
Weiterhin erkläre ich, dass die digitale Fassung dieser Arbeit, die dem Prüfungsamt
per E-Mail zugegangen ist, der vorliegenden schriftlichen Fassung entspricht.

Kiel,

iii

Abstract

In contemporary software development, creating concurrent, distributed, and real-
time systems is crucial, especially for industrial companies like Scheidt & Bachmann,
which focus on safety-critical transport and railway systems. The conventional com-
putational models, including SCCharts, employed for designing these systems often
compromise determinism. The current thesis investigates the applicability and ben-
efits of utilizing Lingua Franca, a coordination language, as a supplementary tool
for documenting and testing such systems developed at Scheidt & Bachmann using
SCCharts. Through a careful exploration and re-implementation of certain SCCharts-
modeled components into Lingua Franca, the study sought to understand Lingua
Franca’s advantages, features, and constraints within a real-world system context.
Two approaches were primarily explored - a conceptual rebuilding in Lingua Franca
and orchestrating interaction between components in Lingua Franca. Subsequent
analysis identified that while direct re-implementation might introduce complexities,
particularly in capturing state transitions and concurrent behaviors, one approach,
using Modal Reactor within Lingua Franca revealed a more consistent and intuitive
pattern for modeling and documenting concurrent interactions. The study, however,
concluded that while Lingua Franca presented a coherent and intuitive modeling
alternative with deterministic behavior assurance, the task of rebuilding existing SC-
Chart systems solely for enhanced documentation was deemed infeasible for Scheidt
& Bachmann. The thesis suggests a potential direction for future work in integrating
SCCharts within Lingua Franca to leverage event-driven behaviors inherent in both
paradigms, aiming towards a more robust, testable, and well-documented concurrent
distributed system. The insights obtained from this investigation lay out a foundation
for exploring an integrated approach that might foster better testability and reliability
in concurrent distributed systems’ development and maintenance.

Acknowledgements

Embarking on this thesis journey has been an enlightening experience, revealing
the intricacies of the complex topics I aimed to explore. My time spent working
alongside the committed teams at Kiel University and Scheidt & Bachmann has not
only propelled my knowledge and understanding to new heights but has also left a
lasting impression on my academic trajectory.

v

I extend my sincere appreciation to Prof. Dr. Reinhard von Hanxleden for his
unwavering support and keen insights throughout this endeavor. His encouragement
and straightforwardness have been crucial in navigating the challenges encountered
along the way. I am indebted to him for providing a conducive work environment
and for his genuine care towards my academic progression.

My gratitude also goes to Malte Clement, whose patience and dedicated supervi-
sion have been nothing short of inspiring. His availability and constructive advice
have been instrumental in refining my understanding and execution of the task at
hand. The journey would have been a lot tougher without his encouraging words
and valuable feedback.

I am grateful for the technical guidance and insights shared by Alexander Schulz-
Rosengarten. His profound knowledge of Lingua Franca considerably enriched my
work, aiding in overcoming technical hurdles that seemed insurmountable.

The practical experience and professional relationship fostered with Scheidt
& Bachmann have significantly contributed to my thesis. Their technical acumen,
supportive work environment, and the real-world perspectives they offered have been
invaluable. The financial support provided also eased the journey, for which I am
thankful.

A special note of thanks goes to Hauke Fuhrmann, Deputy Head of Develop-
ment, for making it possible to undertake my thesis at Scheidt & Bachmann. His
patience, timely advice, and unwavering support despite his tight schedule, are highly
appreciated.

Nis Wechselberg and Merlin Kötzing have been remarkable in providing the
necessary technical knowledge regarding the systems at Scheidt & Bachmann, which
were integral to my project. Their openness and readiness to assist are attributes that
have made a positive impact on my work.

Further, I appreciate the effort of Nis Wechselberg, Merlin Kötzing, Daniel Gre-
vismühl, and Malte Clement in participating in my survey, contributing critical data
that was essential for the analyses performed.

This thesis marks the culmination of an enriching phase of my academic journey
at Kiel University. The knowledge gained, relationships formed, and experiences
shared have been formative, leaving a significant imprint as I transition into the next
phase of my life.

Lastly, to my peers, friends, and family who have been a source of moral support,
thank you for being there, for the discussions that sparked insight, and for the shared
moments that lightened the journey. Your belief in me has been a pillar of strength,
propelling me towards the finish line with enthusiasm and resolve.

vi

Contents

1 Introduction 1
1.1 Related Work . 3
1.2 Problem Statement . 4
1.3 Outline . 5

2 Foundations & Used Technologies 7
2.1 Actors . 8
2.2 Logical Time and Superdense Time . 9
2.3 Reactors and Reactions . 11
2.4 Timers, States, Actions, Preambles and Composition 17
2.5 Modal Reactors & Deadlines . 23
2.6 Distributed Execution . 26

3 Concepts & Implementation 31
3.1 Conceptional considerations . 36
3.2 Implementation: State Variables . 38
3.3 Implementation. Reactors & State Variables 44
3.4 Implementation: Modes . 45

4 Evaluation 49
4.1 Evaluating the Implementation . 49
4.2 Opinions from Developers . 51
4.3 The CAL Theorem . 52

5 Conclusion & Further Work 59

A Source Code: Modal Reactors Implementation 61

B Source Code: Reactors & State Variables Implementation 69

Bibliography 81

vii

List of Figures

2.1 Simplified brakeing system model . 9
2.2 Lamport Clock Modell . 10
2.3 Brakes LF . 13
2.4 Brakes expanded LF . 13
2.5 More detailed version of the running example 18
2.6 Sensors reactor as modal reactor . 24

3.1 Overview of different systems at S&B 32
3.2 History state machine with SCChart . 34
3.3 Simu state machine SCChart . 35
3.4 Top level reactor of HistoryStateMachine.lf 37
3.5 Expanded top level reactor of state variable approach 39
3.6 Scheduled actions on a timeline . 42
3.7 Expanded History reactor of reactor approach 45
3.8 Expanded Simu reactor of reactor approach 45
3.9 Expanded History reactor of mode approach 47
3.10 Expanded Simu reactor of mode approach 48

4.1 Diagram of interlocking and OS component in LF 57

ix

List of Tables

xi

List of Tables

PTIDES Programming Temporally Integrated Distributed Embedded Systems

RTI Run Time Infrastructure

LF Lingua Franca Coordination Language

iUZ IntegrierteUnterzentrale

SCChart Sequentially Constructive Chart

S&B Scheidt&Bachmann

iBS IntegriertesBediensystem

iBS-Z integriertesBediensystem ´ Zentrale

iBP integrierterBedienplatz

RS railway systems

ADAS advanced driver-assistance systems

OS Operating Station

xii

Chapter 1

Introduction

One of the many interesting tasks in software development is to build concurrent,
distributed, time sensitive and reactive systems. Contemporary computational models
used to build concurrent systems, such as Publish-Subscribe frameworks, actor models
or shared memory concepts, often sacrifice determinism [MLB+23].

Publish-Subscribe is a messaging protocol used in concurrent and distributed sys-
tems where the publishers send messages without the need to know who will receive
them. The subscribers express interest in one or more messages, and only receive
messages that are of interest, without the need to know who sent them. Messages
are typically sent to a central broker or event bus that manages the distribution, even
though it could be achieved without a central intermediary by invoking events in
the subscriber directly. The Publish-Subscribe model often involves asynchronous
communication, where the publisher does not wait for a response from the subscriber,
hence there is no ordering guaranty of the messages by default. This asynchronous
behavior can lead to non-determinism because the order in which messages are
received and processed by subscribers can vary based on timing, network delays, and
system load. Additionally, if multiple subscribers are competing for resources, the
order of message processing can also vary, leading to different outcomes in different
runs.

Actors, briefly discussed in Chapter 2, are mathematical models that are used for
concurrent computation. In the actor model, actors are the primary units of computa-
tion, each encapsulating state and behavior, that can send and receive messages and
have an internal changeable state. Actors only process one message at a time and
communicate exclusively through message passing, ensuring isolation. Actors refer-
ence each other and therefore share the internal information with other connected
actors. In a distributed system, when using the TCP/IP-Protocol, message ordering is
guarantied by definition for the communication between two actors.

With an actor receiving two messages, each from a different actor, there is no
guarantee in general in which order those messages are processed, thus sacrificing
deterministic behavior.

Shared memory protocols, and implementations of concurrent systems using that
protocol, often use multiple threads, reading and writing to a shared memory space.

1

1. Introduction

If not handled with caution, race conditions can occur if two or more threads access
shared data at the same time. Even when basic solutions such as shared memory locks
are used, other problems such as deadlocks can occur. Therefore the outcome of a
system using shared memory depends on many factors, which subsequently leads to
non-deterministic behavior. However, even if there is a policy in place such as “always
use the most recent data”, failures can not be ruled out, as the example of NASA’s
Toyota Study1 shows. The study involved a detailed analysis of Toyota´s electronic
throttle control system that caused at some instances an unintended acceleration of
the car. The system involved multiple microprocessors that communicate with each
other using shared memory. While there was no electronic flaw found in the system,
the study concluded that the system is untestable. This results from the vast number
of possible states that are caused by the memory sharing and policy of accessing it.
Hence, the absence of determinism in concurrent and distributed systems, can cause
failures not only in the system itself, it also makes it difficult to test for unintended
behavior.

Therefore the need for reliable concurrent and distributed systems is an important
aspect for many industrial companies that build safety-critical real time systems, such
as Scheidt&Bachmann (S&B), that specialize in transport and railway systems (RS).
The IntegriertesBediensystem (iBS) is one of their products that is a collection of many
integrated components with a specialized purpose. One of those components is the
integrierterBedienplatz (iBP) that allows RS operators to control, manipulate and com-
municate with connected components such as interlocking systems, level crossings,
cameras and more from a user interface. The logic behind the iBP is controlled by
yet another component of the iBS, the integriertesBediensystem ´ Zentrale (iBS-Z). In
the process of accessing distributed components there is often another product, the
IntegrierteUnterzentrale (iUZ), as middleware involved. At present the iBS and the
iUZ and its subunits consist of several sub components, which themself provide
stand-alone services. Those sub components communicate with each other over a
network if necessary in order to provide a service.

These components are currently modeled using a customized version of Sequen-
tially Constructive Charts (SCCharts). SCCharts is a visual modeling language developed
at Kiel University. It is designed to specify and implement reactive, real-time systems
in a modular and compositional manner. It was developed to overcome several of
the limitations and ambiguities associated with the original statechart formalism
[HDM+14]. The synchronous model of computation helps, among other features, to
ensure deterministic behavior in systems built with SCCharts. The graphical represen-
tation of SCCharts aims to make system specifications, behavior and communication,

1https://www.nasa.gov/topics/nasalife/features/nesc-toyota-study.html

2

1.1. Related Work

more intuitive and easier to reason about and therefore potentially be supplemental
for documentation. Nonetheless, some of the sub components of S&Bs products are
modeled and build in separate SCChart instances, even if they interact with each other
in a running system. While this still provides the features of SCCharts for the sub
system itself, deterministic behavior between those components can not be guarantied
by default. Furthermore, SCChart diagrams might help to understand the semantics
of the sub system, the interaction between different components is not represented
in the same way. S&B seeks to evaluate alternatives that can be used in addition to
the contemporary documentation of systems build with SCCharts. Moreover, writing
concurrent and distributed software systems that are verifiable and testable is not a
trivial task, due to challenges regarding consistency and availability in these systems,
even for professional developers at S&B.

This thesis explores the Lingua Franca Coordination Language (LF) as a tool for
additional documentation of systems build at S&B with SCChart. In addition to that,
LF is evaluated as a potential tool for testing or simulating systems in terms of the
communication of concurrency. LF is a coordination language designed to address the
challenges associated with concurrent and distributed systems, particularly those that
require precise timing and deterministic behavior [MLB+23]. It is not a programming
language by itself. Programs written in LF are processed by the LF-Codegenerator that
outputs target code for the specified target language. LF is based on a reactive model
of computation, where the system reacts to events that occur at discrete points in time.
The timing of events is precisely defined, and the reactions to events are deterministic.
It is possible to build entire systems from scratch in LF, because the main functionality
is derived from the specified target language. Nonetheless, the focus lies on the
orchestration of the interaction between components and guaranteeing deterministic
behavior and precise timing on concurrent and distributed systems. In order to
achieve the desired conditions LF utilizes the concept of logical time and, specific
scheduling policies and the Reactor model is a deterministic extension of the actor
model [LL19]. Moreover, LF offers interactive diagrams that facilitate navigation
through components and their underlying logic. Users can click on reactors and
reactions to expand or collapse their details.

1.1 Related Work

The author is not aware of any other work done that specifically aimed at rebuilding
real world systems in LF using SCChart notation. Although, many publications and
contributions by the LF community have been instrumental and crucial for this
thesis. They provided practical and real world examples, that which influenced the

3

1. Introduction

understanding and application of LF while developing different systems throughout
this this endeavor.

In the domain of distributed embedded systems, especially concerning safety-
critical applications like autonomous driving, the issues of nondeterminism arising
from existing asynchronous frameworks are prominent. An attempt to address this
problem is demonstrated in the work by [BLW+22], where the authors introduced
Xronos, an open-source framework built on top of Lingua LF. LF, akin to SCChart,
incorporates the reactor model facilitating deterministic interactions among vari-
ous physical and logical timelines, therefore advancing the predictability of system
behavior. The discussed case study centers around transitioning the open-source
autonomous driving software, Autoware.Auto2, from ROS3 to Xronos. This transition
showcases notable advancements in addressing nondeterminism, identifying timing
faults, and enhancing the predictability of coordination across components. This
endeavor reflects the core spirit of the translational efforts explored in this thesis,
albeit through a different notation and within a distinct domain.

The paper by [LBL+23a] explores the challenges in tiered distributed computing
systems, particularly focusing on data consistency and availability amidst varying
network latencies. The authors introduce the Consistency, Availability, apparent
Latency (CAL) theorem and apply LF to manage these challenges. Through LF, they
explicitly define availability and consistency requirements, and utilize the CAL
theorem to derive essential network latency bounds, guiding the system design
within these heterogeneous network environments. This work is relevant to this thesis
as it showcases a practical application of LF in addressing real-world system design
challenges, and it provides a precedent for the exploration carried out in this thesis
regarding the use of LF and SCChart notation in rebuilding real-world systems.

The PhD thesis by [Loh20] provides a number of practical examples that were
significantly helpful in understanding different features and aspects of LF and in
developing systems for the present work.

1.2 Problem Statement

To investigate potential benefits of leveraging LF for the development process at
S&B,it is necessary to explore how system components, modeled with SCCharts, can be
translated or re-implemented into a LF system. This will shed light on the advantages,
features and limitations of LF within the context of an existing real world system.

2https://autoware.org/
3https://www.ros.org/

4

1.3. Outline

As previously mentioned, one problem is that if components that interact with
each other are modeled separately with SCCharts, the actual interaction might not
be obvious from the visualized documentation. Especially in complex distributed
systems it potentially adds an auxiliary level for documentation, that is more readily
comprehensible.

Currently, S&B uses custom algorithms and tests to make assumptions about the
properties of software systems, its components and the networks on which those
systems run. This is by no means a trivial and easy to replicate task. While LF offers
an alternative approach to build entire systems in a deterministic and testable way,
it is not the goal of S&B to find a substitute framework and to rebuild their existing
systems with it for several reasons. Instead, they seek an approach that can help
orchestrate existing or newly build systems in a way that can be tested even more
reliably.

There are two possible ways to approach this: First the targeted system is built in
LF on a conceptional level. This means that the functionality that is not required to
test the communication of the system components does not need to be implemented.
Mocked data can be used to simulate the future functionality. The other approach
could be wrapping existing components in Reactors and only orchestrating the
interaction between those wrapped components. Both strategies then can be used
to test the systems properties more reliably since LF ensures deterministic behavior,
regardless of the system being distributed or not. If the system works as required in
the orchestrated version using LF, it becomes possible to derive assumptions inherent
in the LF model and from there the requirements needed for the actual implementation
of the system without LF. Essentially this means mapping the properties observed in
the LF version to the actual implementation and thereby improving reliability and
testability.

For that goal the features LF offers, especially for distributed execution, may be ben-
eficial. Within LFs distributed execution functionality, it is possible to explicitly trade
off availability, consistency and network latency in the existing system [LBL+23b].
This offers flexibility choosing and evaluating the requirements and assumptions of
the system.

1.3 Outline

The second chapter introduces the basic functionality and use of LF along with useful
features. Furthermore, some of the theoretical concepts that LF is built on and are
advantageous to solve the problems mentioned in the problem statement are also
discussed in the second chapter. The third chapter contains the implementation of

5

1. Introduction

two system components in LF, that were developed by S&B using SCChart. For that,
those sub components, one of the iBS and one iUZ, that are separately built using
SCCharts but interact with each other in the actual system, are rebuilt in LF using
different strategies. In this isolated state, not all the functionality of the components
is modeled, but only the necessary functionality and simulated behavior. The fourth
chapter evaluates the implementation of the chapter before and LF as additional layer
of documentation. The focus lies on how the system was built in LF explicitly using
SCCharts documentation. Moreover, it is assessed how the CAL theorem in combination
with LF can be used to derive properties about a system and the communication
of distributed units to draw conclusions and formulate requirements based on that
conclusions.

6

Chapter 2

Foundations & Used Technologies

Reactive systems can be defined as systems that are responsive, , elastic and message-
driven. Responsiveness means that systems guarantee timely reactions with an em-
phasis on consistent response times to ensure a uniform quality of service. Resilience
means that systems remain operational even during failures. Thus the failure of a
component of a system does not imply the entire system fails. Achieving elasticity re-
sults in systems that are able to dynamically adjust to workload changes and therefore
eliminates central bottlenecks. In the context of LF, asynchronous message-passing
is important, because it enables loose coupling and isolation. Furthermore, location-
independent messaging provides failure management across diverse environments
while non-blocking communication reduces the wastage of resources. A more precise
definition of the meaning of reactive systems in modern software development can
be found in the "Reactive Manifesto"1.

One option to model a reactive system with the aforementioned requirements is
the Actor-Model introduced in [Hew77], which can be regarded as an evolutionary
predecessor of the model used in LF and will be discussed briefly later on. This and
other approaches for reactive systems often come with the loss of determinacy as a
trade off for the advances in the required properties [LRG+20]. This can result in a
decreased level of testability for the system, despite the fact that systematic testing is
the prevailing method used to assess the accuracy of software.

LF, as a polyglot coordination language, provides a model that allows for devel-
oping reactive systems while maintaining determinism by default. This is achieved
through the Reactor-Model with a logical notion of time, an event scheduler and a
reactive and synchronous communication. A reactor is a set of routines, called reac-
tions, and share a local state [LRG+20]. There is no need to learn a new programming
language in order to use LF, since every program produces real code in the given
target language.

The fundamental principles of LF are introduced, where the necessary mathemati-
cal formalism is presented to address the particular topics under discussion. A more
formal approach, can be found in [LRG+20] and [Loh20]. If not specified differently,
the used target language in this thesis is Python. It has a rich library support which

1https://www.reactivemanifesto.org/

7

2. Foundations & Used Technologies

will helps showcasing the integration of external code into a LF system. For the most
part of this chapter a very simplified model of a braking system in a car is used for
the code examples. The discussed scenarios and resulting design choices may not be
realistic in a real world scenario but highlights the features of LF.

LF is still under development, meaning that not all features are accessible for all
target languages yet. Furthermore, this thesis does not cover all features of LF or
provide instructions on how to install and run it on a specific machine. However,
there are numerous publications and tutorial videos available on YouTube, and the
official website offers comprehensive documentation. 2.

2.1 Actors

The Actor Model, introduced by Hewitt and Agha [Hew77], presents a high-level com-
putational framework for concurrent and distributed systems. Central to this model
are actors, which are autonomous computational entities. Key characteristics and prin-
ciples include Asynchronous Messaging, Local State, Concurrency and Parallelism,
Location Transparency and Fault Tolerance. Actors communicate exclusively through
asynchronous messages. On receipt of a message, an actor can execute actions such as
sending additional messages, creating new actors, or updating its internal state. Each
actor maintains its own private state, which cannot be directly accessed or modified
by other actors. This inherent encapsulation offers safe concurrent computations.
Every actor processes its messages concurrently, offering a natural way to express
parallel computations. The model removes low-level synchronization mechanisms,
enabling the creation of scalable systems. In a distributed system, actors can reside
on any node in the system. Their addressing is location-independent, facilitating a
easier approach for distribution of actors. The Actor Model supports structured ways
to handle failures, where actors can supervise the failure of other actors, deciding on
recovery strategies.

Imagine a braking system comprised of three components: a unit that processes
input from a rear distance sensor, a sensor that detects when the brake is applied, and
the physical brake system itself. When the brakes are activated, the system checks
for the presence of nearby vehicles that could potentially cause a collision if a full
brake is applied at the current velocity. If the distance between the vehicles indicates
a collision is imminent, the system adjusts the intensity of the deceleration to the
current parameters. In a real-world scenario, it is probably not advisable to adjust
the brakes based on such limited data. In 2.1 a message is send to Sensor and Brakes

if the brake pedal is triggered. The Sensor then reads the distance and velocity and

2www.lf-lang.org

8

2.2. Logical Time and Superdense Time

Sensor

Brake Pedal Brakes

Figure 2.1. Simplified brakeing system model

computes if it is safe to brake under predefined conditions, and forwards the result
as a message to the brakes. With this design, after the Brakes component received
a message from the brake pedals it arms the brakes and waits as specific amount
of time (a considerably small deadline) for the message from the sensor in order
to decide if it is safe to decelerate or if moderation is needed. If the deadline is
violated the brakes are initiated without moderation. This design assumes that the
sensor data for the current brake initiation arrives after the message from the brake
Pedal. The question arises: what happens if the messages’ arrival does not follow
this assumption? If the sensor data bis detected before the braking pedal data, the
Brakes component could precisely check for this using a predefined time range in
which the messages must be detected to register as a single braking signal. But if
the messages arrive at the same logical time, no ordering guarantee for the message
processing is given. Thus making this system less testable and therefore not ineligible
for production.

The arbitrary issue could potentially be resolved through an alternative design
decision. However, this may not be as simple for intricate distributed reactive systems.
LF guarantees by design a deterministic ordering of message or event processing even
if received at the same logical instance of time.

2.2 Logical Time and Superdense Time

Logical time is a conceptual framework used in distributed systems to order events
in a way that reflects their causal relationships, rather than relying on physical time
e.g. wall-clock time. Lamport’s timestamps [Lam19] serve as one of the foundational
methods for representing logical time. In distributed systems, it is crucial to establish
an order of events that preserves their causal relationships, especially when events
occur across multiple nodes without synchronized physical clocks. Logical time,
distinct from real-time, provides such an order. It is represented using counters
or sequence numbers, known as timestamps. These timestamps serve as abstract

9

2. Foundations & Used Technologies

P1 P2

Physical
Time

C(a) = 1

C(b) = 2

C(c) = 3

m

Text

a

b

c

Figure 2.2. Lamport Clock Modell

representations of the "time" an event occurs in the system. An event’s timestamp
is determined by each process within a distributed system that maintains a counter.
If an event occurs the process increments its counter in association with the event.
Additionally, when a process sends a message it also increments its counter and
sends that counter value alongside with the message. With the goal of ensuring total
order, the recipient process, upon receiving a message, sets its counter to one greater
than the maximum value between its current state and the timestamp of the received
message.

There are 2 processes P1, P2, a clock C and three events a, b, c in Figure 2.2. At
the beginning the clock for P1, written as C(P1), and for P2 are zero. When event
a occurs the clock is set to C(P1) = 1 but the clock for P2 remains unchanged. A
message is send to P2 after b occurs and the clock is set to C(P1) = 2. At the event c
of receiving the message the clock is set to C(P2) = 3, resulting in C(P1) = 2 and
C(P2) = 3.

While logical time captures order and causality in distributed systems, hybrid
systems, some systems demand a richer temporal representation: superdense time.

10

2.3. Reactors and Reactions

Superdense time is denoted as R+ ˆ N where R+ symbolizes continuous time, while
N represents a discrete event sequence [Lam19]. We call t = (a, b) P R+ ˆ N a tag,
where a is the time value and b is the microstep [LRG+20]. Moreover, superdense
time ensures a lexicographical ordering. Hence, if (t1, n1), (t2, n2) P R+ ˆ N with
(t1, n1) ă (t2, n2) then t1 ă t2 or t1 = t2 ^ n1 ă n2.

Lets consider a more realistic example of a braking system. Modern vehicles,
especially those with advanced driver-assistance systems (ADAS) features, are increas-
ingly integrating both continuous and discrete monitoring and control mechanisms.
If the driver pushes down on the brake pedal, a set of distinct actions take place.
Specifically, the pedal sensor activates, and the brake lights illuminate, among other
things. We adjust the prior example with a sensor in the front of the car, that triggers
an automatic brake if the velocity and distance indicate a collision. In a system where
the braking power is not binary but gradually, using only timestamps might lead
to unintended behavior. If the event from automatic braking system and the event
from the pedal occur at the same logical time, while they might be milliseconds apart
from each other, there is no way of determining which event occured "before" the
other one. This may result in over-braking if the inputs are naively combined or in
under-braking if one input is ignored.

2.3 Reactors and Reactions

As mentioned earlier the actor model does not guarantee an ordering in which
messages are received or processed. An LF program consists of one main top level
reactor, which serves as an entry point for the execution. A reactor can be considered
as a deterministic version of actors that consist of reactions, where reactions are
not only message handlers but rather respond to discrete events. The reaction itself
can also produce events on which other reactions in other or the same reactor are
triggered. More precisely reactors only communicate over events, while events relate
values to a tags [Loh20].

1 target Python

2

3 reactor BrakePedal {

4 output trigger

5

6 reaction(startup) {=

7 #read pedal data continously

8 =}

9 }

11

2. Foundations & Used Technologies

10

11 reactor Sensor {

12 input trigger

13 output data

14

15 reaction(trigger) -> data {=

16 # process data and send message

17

18 data.set(True)

19 //or false

20 =}

21 }

22

23 reactor Brakes {

24 input data

25 input trigger

26

27 reaction(trigger) {=

28 //react to trigger

29 =}

30

31 reaction(data) {=

32 //react to data

33 =}

34 }

35

36 main reactor {

37 bp = new BrakePedal()

38 s = new Sensor()

39 b = new Brakes()

40

41 bp.trigger -> s.trigger

42 bp.trigger -> b.trigger

43 s.data -> b.data

44 }

Listing 2.1. Simplified braking system

To address the example from Section Section 2.1, an LF program is created as seen
in Listing Listing 2.1. This system does not meet the requirements and properties
of the previously explained system. It is a conceptual framework for the system,
and further functionality will be added in this chapter. Before delving into the code

12

2.3. Reactors and Reactions

BrakesRactor

BrakePedal
trigger

Sensor
trigger data

Brakes
data

trigger

Figure 2.3. Brakes LF

BrakesRactor

BrakePedal trigger

Sensor
trigger data

Brakes

1

2data

trigger

Figure 2.4. Brakes expanded LF

lets take a look at the diagram in figure Figure 2.3. This is the result of LFs runtime
diagram generator. In order to leverage this feature either the VSCode plugin3 or
the Epoch IDE4 needs to be installed on the machine. Figure Figure 2.4 is the same
diagram but expanded through double clicking on the reactors. This allows for
probing further into the internal structure of the system components which by itself
can contain more expandable or collapsable sub components. A LF program starts
with the declaration of the target language, as it is done here with python. I can
contain several reactors, but must define a top level main reactor, as done at the
bottom of listing Listing 2.1, with the intent of generating executable programs. Any
additional reactor consists of a set of reactions that are routines initiated by an event.
Events are provided as arguments for the reaction like it is done in listing Listing 2.1
with the keyword startup in the reactor BrakePedal and with the input trigger in the
reactor sensor. Reactions can have multiple comma separated events, where only one
of those events is needed to invoke the reaction.

Events that can invoke a reaction are inputs, keywords such as startup, and logical
or physical actions. The startup keyword ensures that the reactions body is executed
at the initialization of the reactor. LF reactors exclusively communicate over dedicated
ports, inputs are ports for receiving messages. Outputs on the other hand can be used
(as an event) to invoke reactions in a connected rector. If an input value is needed for
some processing in the body of a reaction, but by itself should not trigger the reaction,

3www.lf-lang.org/docs/handbook/code-extension
4www.lf-lang.org/docs/handbook/epoch-ide

13

2. Foundations & Used Technologies

the input name is declared after the closing bracket for the reactions parameters. If
a reaction is intended to modify the state of the reactor by affecting its outputs or
modes, as will be explored in subsequent sections, it should be declared post the
reaction parameters using an arrow, as illustrated in line 15. Should more than one
output or mode be impacted, they can be specified through comma separation. To
assign a value to an output port, this is accomplished as demonstrated in line 18. In
this case a boolean is used but this is interchangeable for any type of the specified
target language. Reactions share a common state within their reactor exclusively.
The body of the reaction contains computations and operations that are intended
to be executed as a response to a specific event. In the main reactor, which can has
similarities to the main function in languages like C as an entry point for the program,
reactor instances can be created in a object oriented fashion with the keyword new.
The different ports of each reactor are connected as seen in line 41-43. Although
the reaction body does not currently provide functionality, LF addresses the issue of
actors not guaranteeing message ordering when they arrive simultaneously. First, LF
orders messages or events by their tag. If an event occurs at the reactor Brakes on the
data port at tag t1 and an event at the port trigger at tag t2, with t1 ă t2 then the
reaction triggered by the message on data is invoked first. The most distinguishable
difference can be observed in the case of t1 = t2. LF schedules the invocation of the
reaction based on the order in which they have been declared in the code. In this
case, the reaction, triggered by event on the input port trigger is invoked before the
reaction triggered by the data input port. This is also highlighted by the LF diagram
in figure Figure 2.4, where reactions are displayed as flag shaped objects that also
include the numbers one and two. This reflects the execution order discussed.

By modifying the program, adding LFs build in objects like tags as seen in the
print statements of the listings Listing 2.2 - Listing 2.4, the time mechanism can be
explored more in depths. In Listing 2.5 there is no advancement in the tag over the
whole cycle of the running system, even though the physical time is advancing. In
LF logical time is always chasing physical time [LRG+20]. The reactions behave as
expected because the reactor Brakes receives both messages at the same tag, while
maintaining the order of the reaction declaration.

With a minor tweak, the system now has a 100 milliseconds delay for the trans-
mission of the message trigger from the reactor BrakePedal towards the reactor Brakes.
This results in a different order, but as expected from LF, of invoked reactions. This
and the difference of 100 milliseconds for both reactions in Brakes can be observed in
Listing 2.6.

14

2.3. Reactors and Reactions

1 reactor BrakePedal {

2 output trigger

3

4 reaction(startup) -> trigger {=

5 #read pedal data continously

6 print(f"Startup:\nlogical

time:{lf.tag().time}\

7 \nmicrostep:{lf.tag().microstep}\

8 \nphysical

time:{lf.time.physical()}")

9 trigger.set(True)

10 =}

11 }

Listing 2.2. Reactor BrakePedal

1 reactor Sensor {

2 input trigger

3 output data

4

5 reaction(trigger) -> data {=

6 # process data and send message

7 print(f"Sensor

reaction:\nlogical

time:{lf.tag().time}\

8 \nmicrostep:{lf.tag().microstep}\

9 \nphysical

time:{lf.time.physical()}")

10 data.set(True)

11 #or false

12 =}

13 }

Listing 2.3. Reactor Sensor

15

2. Foundations & Used Technologies

1 reactor Brakes {

2 input data

3 input trigger

4

5 reaction(trigger) {=

6 print(f"brakes

trigger:\nlogical

time:{lf.tag().time}\

7 \nmicrostep:{lf.tag().microstep}\

8 \nphysical

time:{lf.time.physical()}")

9 =}

10

11 reaction(data) {=

12 print(f"brakes data:\nlogical

time:{lf.tag().time}\

13 \nmicrostep:{lf.tag().microstep}\

14 \nphysical

time:{lf.time.physical()}")

15 =}

16 }

Listing 2.4. Reactor Brakes

1 Startup:

2 logical time:1694339270372973022

3 microstep:0

4 physical time:1694339270373003644

5 Sensor reaction::

6 logical time:1694339270372973022

7 microstep:0

8 physical time:1694339270373025277

9 brakes trigger:

10 logical time:1694339270372973022

11 microstep:0

12 physical time:1694339270373033636

13 brakes data:

14 logical time:1694339270372973022

15 microstep:0

16 physical time:1694339270373041174

Listing 2.5. Terminal Output

16

2.4. Timers, States, Actions, Preambles and Composition

1 Startup:

2 logical time:1694343258718668972

3 microstep:0

4 physical time:1694343258718708630

5 Sensor reaction:

6 logical time:1694343258718668972

7 microstep:0

8 physical time:1694343258718740321

9 brakes data:

10 logical time:1694343258718668972

11 microstep:0

12 physical time:1694343258718752659

13 brakes trigger:

14 logical time:1694343258818668972

15 microstep:0

16 physical time:1694343258818793562

Listing 2.6. Terminal Output after delay

2.4 Timers, States, Actions, Preambles and Composition

The running example is extended to serve more functionality while showcasing
different features of LF. Please keep in mind that the design choices are primarily
made to motivate and explain different features of LF. This is by no means a system
architecture of a safe brakeing system rather than a collection of design ideas a
developer could come across while building a similar system. Thus, the reader should
be able to transfer this ideas to actual one of its own system.

In Figure 2.5 is the LF diagram for the extended program. The program simplifies
an actual brakeing process by rather applying a "all or nothing" or in this case
"brake or don’t" approach. In reality, the intensity of the application of the brakes
has much higher status that in this design. The old reactor Signal is now renamed
to Signals since it contains itself two other reactors, SensorFront and Sensor back. The
reactors BrakePedal and Brakes now have more reaction. The system now fulfills more
requirements and adds a front sensor for automatic brakeing, which is seen more
often in actual applications.

The Sensors reactor itself has three reactions of its own and two composed reactors.
Sensors front has a timer which triggers the reaction, that probes the current distance
to the next obstacle in front of the car and sends the value to the reaction of its parent
reactor Sensors. The reaction then, computes the stopping distance with the given

17

2. Foundations & Used Technologies

BrakesRactor

BrakePedal

1 2P
trigger

Sensors

SensorFront

(0, 10 msec)

data

SensorBack
trigger data

(0, 10 msec)

1

2

3

trigger data

Brakes

1

23 P

data

trigger

Figure 2.5. More detailed version of the running example

velocity and decides if the current distance towards the next obstacle requires a full
brake and in this case sends a message to the data port of Sensors and therefore to
the data port of Brakes. The SensorBack’s port trigger is connected to the trigger port
of Sensors. This means, that if a braking signal arrives from the driver, or in this
model from the reactor BrakePedal, at Signals, it is in fact handled by the SensorBack

reactor first. There it is assessed whether a full stop is justified, taking into account
the current speed and the calculated stopping distance. The result is sent to the data
port of the Sensors reactor, hence also to the input port data of the reactor Brakes.
The Brakes reactor handles the incoming messages. If a messages is received on port
data the message could be a brake signal from SensorFront or from SensorBack. If the
SensorFront reactor sends a brake signal, a full stop is applied because otherwise a the
car is at risk of a collision with the obstacle in front of the car. This is in case of same
time stamps always the first priority. When a message from SensorBack is received,
it indicates that there is a vehicle too close to the back of the car that is at risk of a
collision at full brake. Therefore, a less intensive brake is applied. The manual brake
by the driver might be premature to avoid a collision with the obstacle in front. It
is important to note, that if the reduced brakeing would result in a risk colliding
with the obstacle in front of the car, the full brake signal would always be of higher
priority, since it is assumed that a potential rear-end collision is of lower priority than
colliding with an obstacle in front. A manual brake from the driver triggers reaction
three in Brakes. This sets up a physical action which acts in this example as a timer of
ten milliseconds. After that ten milliseconds mark, reaction two is triggered resulting
in a full brake since there is no evaluation from the SensorBack reactor available at
this moment. It is considered a higher priority that the car brakes are applied fully

18

2.4. Timers, States, Actions, Preambles and Composition

than not being applied at all. The code in Listing 2.7 - Listing 2.10 shows how the
system is build. All instances of random number generation would be exchanged for
real sensor data in a cyber physical system or with test data in system and unit tests.
The same is true for the print statements in the Brakes reactor.

1 reactor BrakePedal {

2 preamble {=

3 from threading import Thread

4 def read_sensor(self,

brakeing_signal):

5 while(True):

6 pedal = input("Press enter for

brakeing")

7

8 if pedal == "":

9 brakeing_signal.schedule(0)

10 =}

11 output trigger

12 physical action brakeing_signal

13

14 reaction(startup) ->

brakeing_signal {=

15 t = self.Thread(

16 target=self.read_sensor,

17 args=(brakeing_signal,))

18 t.start()

19 =}

20

21 reaction(brakeing_signal) ->

trigger {=

22 trigger.set(True)

23 =}

24 }

Listing 2.7. Terminal Output

1 reactor SensorBack {

2 preamble {=

3 import random

4 def get_distance(self,):

5 #meters

6 return self.random.randint(0,100)

7 =}

8 input trigger

9 output data

10

11 reaction(trigger) -> data {=

12 data.set(self.get_distance())

13 =}

14 }

15

16 reactor SensorFront {

17 preamble {=

18 import random

19 def get_distance(self,):

20 #meters

21 return self.random.randint(0,100)

22 =}

23

24 output data

25 timer t(0, 10 ms)

26

27 reaction(t) -> data {=

28 data.set(self.get_distance())

29 =}

30 }

Listing 2.8. Terminal Output

The reactor BrakePedal introduces at the beginning the preamble keyword. This
allows to define code or even load external libraries into a LF program. A function
called read_sensor is defined, so that it can be used in a thread later on inside the
logic of LF. The benefit is, that code or even the code of extensive libraries, don’t need

19

2. Foundations & Used Technologies

to be declared inside of reactions and reactors. Code that implements the the logic
of reading sensor data can be written in an external file and used inside of reactors
and reactions, hiding and abstracting away information. Thus, the pramble keyword
offers modular development and more readable code and lets the developers focus
on the orchestration of the system while using already developed functionality.

Timers, as defined in line 10 of Listing 2.8, are used to to manage and schedule
recurring tasks, a scenario frequently encountered in embedded computing systems.
These timers are initiated with a specified delay, referred to as the offset. If the offset
is set to zero, the timer triggers at the logical beginning of execution, following
which, it activates at regular intervals defined by a specified period [LMB+21]. In
LF, timers trigger events, which trigger reactions as seen in line 34 of Listing 2.8.
Here the timer is scheduled so that the velocity is read every ten milliseconds. In
safety critical systems, especially in those with low computing power, busy waiting
implementations may not be the best choice. Other known concepts such as hardware
interrupts or function callback offer a more resource friendly alternative.

Sometimes an event needs to be scheduled in a non periodic manner, different to
how it is realized with timers. In the given example after the reactor Brakes received
a signal on trigger, it should wait for a specified period of time for a signal on the
data port in order to evaluate if it is safe to brake. If for some reason, reaction one
in Brakes is not triggered in the specified amount of time, the brakes are applied
fully. But this time specific event is usually not occurring regularly in the same time
interval. For tasks like this LF introduces logical actions and physical actions. Logical
actions are scheduled synchronously inside the body of a reaction at the tag t. The
scheduled event is triggered at t1 = t + dmin + d where dmin is the minimum delay
and d the additional delay argument [LMB+21]. Additional arguments can be used at
declaration to invoke specific constrains for the specified logical action as seen in the
LF handbook5. In general ddelay is zero. The scheduling of a logical action is done with
the invocation of the build in schedule method, which expects an argument, specifying
the delay that results in t1 as the tag at which the event occurs. If d = 0, the event
does not occur at tag t = (x, n) but one micro step later at t1 = (x, n + 1) in order to
obtain determinism [LMB+21]. It is important to note that this scheduling may not
provide the responsiveness with regards to physical time, as it is often expected in
real time systems.

If the timing of an event is not determined by the reactor but by the physical
environment, physical actions provide an asynchronous scheduling mechanism. This
is the case in the running example. The sensor data resulting from the application of
the brake pedal is an external event. Physical actions are declared using the keyword

5https://www.lf-lang.org/docs/handbook/actions

20

2.4. Timers, States, Actions, Preambles and Composition

physical instead of logical as seen in line 12 of Listing 2.7. The action braking_signal is
scheduled not in the reaction itself but in an additional thread running the read_sensor

function, in order to react to a brake signal modeled as user input from the keyboard.
If there is an input from the user present the physical action schedules asynchronously
an event which then triggers reaction two in the reactor BrakePedal. At the scheduling
of a physical action there is no current logical time. Therefore, the scheduling of the
action occurs at the tag t1 = T + dmin + d, where T is a measurement of the relative
physical time of the host system. By allowing external events to influence the behavior
of the LF program, one may conclude that this affects the determinism of the system.
That is not the case if one considers the assigned tags to those events as an input of
the program itself [LMB+21].

State variables are shared among reactions but not between reactors. They provide
a shared state for different reactions on which the body of a reaction may depend
[Loh20]. In the running example the state variable driving is declared in Listing 2.9
line 11. Here it is assigned to the integer 0. In general, state variables can be declared
as any type provided by the target language. In this case it serves to check whether the
car is actually driving before initiating sensor reading or automated brakeing signals.
It can be used the same way as it is done often in development as a conditional in
order to invoke functionality based on the current state the software system. The use
of state variables in that sense is further discussed in Chapter 3.

In LF reactors can be created inside of other reactors, as it is seen in the Sensors

reactor, adding modularity and encapsulation.

21

2. Foundations & Used Technologies

1 reactor Sensors {

2 preamble {=

3 import random

4 def get_velocity(self,):

5 # meters per second

6 return self.random.randint(0,35)

7 =}

8 input trigger

9 output data

10 timer t(0, 10 ms)

11 state driving = 0

12

13 front = new SensorFront()

14 back = new SensorBack()

15

16 trigger -> back.trigger

17

18 reaction(front.data) -> data {=

19 if self.driving > 0:

20 stp_dist = (self.driving *
self.driving) / 20

21

22 if (stp_dist - front.data.value

< 0):

23 data.set(True) #brake

24 =}

25

26 reaction(back.data) -> data {=

27 if self.driving > 0:

28 stp_dist = ((self.driving *
self.driving) / 20)/2

29

30 if (stp_dist - back.data.value <

0):

31 data.set(False)

32 =}

33

34 reaction(t) {=

35 self.driving = self.get_velocity()

36 =}

37 }

Listing 2.9. Terminal Output

1 reactor Brakes {

2 input data

3 input trigger

4 physical action wait

5

6 reaction(data) {=

7 if data.value:

8 print("Full brake due to front

sensor")

9 else:

10 print("brake with half agents

intensity due to back sensor

data.")

11 =}

12

13 reaction(wait) {=

14 print("brake with agent intensity.

No data from back sensor.")

15 =}

16

17 reaction(trigger) -> wait {=

18 self.brakeing= True

19 wait.schedule(MSEC(10))

20 =}

21 }

Listing 2.10. Terminal Output

22

2.5. Modal Reactors & Deadlines

2.5 Modal Reactors & Deadlines

The requirements of complex software systems are often to operate under distinct
scenarios in different ways. In the running example, one could argue that certain
code is only executed if the car is driving and so on. Naively, this can be approached
by invoking specific code under the condition of the system being in a distinct state,
as proposed in the prior section. For large systems this can become a complex and
inconvenient task. In LF, modal reactors are introduced to reduce implementation
complexity while providing more readable code.

Modal reactors in LF extend the existing reactor model by modal coordination.
This is achieved by segmenting reactors and reactions into disjoint subsets of mutually
exclusive modes. A reactor containing modes is called a modal reactor, where only
one mode can be active at a specific logical time instant rendering other modes
inactive. The concept of modal models is not new but towards a polyglot modal
coordination layer guided by LF, it is [SHL+23].

In the running example the velocity is measured every 10 milliseconds. Even if the
messaging of the Sensors reactor depends on the value of the state variable, the front
sensor is active as long as the system is running. Considering a scenario where the
car is in a parking lot or waiting at a traffic light, it is unnecessary for the front sensor
to be active and for the speed measurement to be taken in such a short interval. The
extended system should only read sensor data if the car is actually moving and relax
the period of time for measuring the velocity if the car is not moving.

Modes can be defined within any reactor for which a unique name is required
and may contain elements local to them like state variables, timers, actions, reactions
and even reactors. Hierarchical composition is possible through the instantiation of
modal reactors although modes can not be nested directly within other modes. Mode
transitions are declared within reactions and can trigger a switch to another mode.
Transitions are categorized into reset or history transitions where reset transitions
reinitialize the mode while history transitions retain the me state of the mode from
its last activation. If a reaction triggers a mode switch, it needs to be declared as
an effect as seen in Listing 2.11 line 15 and 42, with the keyword reset or history.
Mode execution is confined to its active period, and upon mode transition, execution
in the current mode ceases and begins in the new mode one microstep later. The
concept of local time is employed in modes to govern the execution of time-related
components, with the time progression suspended in inactive modes. In a modal
reactor there needs to be an initial mode declared, that is active at the startup of
the reactor. Reactions within modes can apply the trigger reset that ensures that the
reaction is invoked every time the mode becomes an active one [SHL+23].

In Listing 2.11 and Figure 2.6 the initial mode is stop at startup. The velocity is

23

2. Foundations & Used Technologies

BrakesReactor

BrakePedal

1 2P
trigger

Sensors

stop

(0, 5 sec)

1

drive

SensorFront

(0, 10 msec)

data

SensorBack
trigger data

(0, 10 msec)

2

3

4

trigger data

t_stop t_drive

trigger data

Brakes

1

23 P

data

trigger

Figure 2.6. Sensors reactor as modal reactor

sampled every five seconds and neither sensor data nor the trigger input port has
an effect while being in that mode. As soon as the car moves and a velocity greater
than zero is detected, the reactor transitions into the drive mode. There, the already
known functionality of sensor reading and messaging is applied with the one change
that if the car stops (velocity is zero) the reactor transitions back to the stop mode.

Furthermore LF includes the concept of deadlines. The reader might think that
bounds like deadlines can be used in or running example as a guarding mechanism
that triggers functionality if a deadline is violated. For example, if the car detects
a potential collision with an obstacle, it might warn the driver first instead of au-
tonomously applying the brakes. If the driver does not react within the constrains of
the deadline, the brakes are applied. A deadlines D in LF is a bound on the maximum
latency between sensing and actuation, meaning that the reaction to an input with
tag t is required to be invoked before the physical time t + D on the host system
is exceeded. This makes the concept of deadlines lazy, since the deadline violation
is only detected if the reaction is invoked at its appropriate logical time. Before a
reaction with a deadline is invoked the LF runtime checks if the local physical time T
is smaller than t + D. If that is true, the reaction is handled as usual but if not the
body of the deadline will be invoked [Loh20].

This makes deadlines in LF not suitable for the proposed example since the
detection of the violation might appear to late. Therefore, deadlines in LF serve two

24

2.5. Modal Reactors & Deadlines

purposes: As as a fault handler to implement behavior, such as returning into a safe
mode of operation, if a deadline is violated, and secondly as information for the
scheduler of LF to prioritize reactions and its downstream reactions with a smaller
deadline interval [LMB+21]. It is important to note, that the application of deadlines
in LF admits nondeterminism, since the execution of the reaction or deadline body
depends on factors outside of the system semantics of LF[Loh20].

This section does not provide an explicit example of the syntax of deadlines since
the concept is used in Chapter 4 and further complication of the running example
seems unnecessary.

1 reactor Sensors {

2 preamble {=

3 import random

4 def get_velocity(self,):

5 # meters per second

6 return self.random.randint(0,35)

7 =}

8

9 input trigger

10 output data

11 state driving = 0

12

13 initial mode stop {

14 timer t_stop(0, 5 sec)

15 reaction(t_stop) -> reset(drive) {=

16 self.driving = self.get_velocity()

17 if self.driving > 0:

18 stop.set()

19 =}

20 }

21

22 mode drive {

23 front = new SensorFront()

24 back = new SensorBack()

25

26 trigger -> back.trigger

27 timer t_drive(0, 10 ms)

28 reaction(front.data) -> data {=

29 stp_dist = (self.driving * self.driving) / 20

30

31 if (stp_dist - front.data.value < 0):

25

2. Foundations & Used Technologies

32 data.set(True) #brake

33 =}

34

35 reaction(back.data) -> data {=

36 stp_dist = ((self.driving * self.driving) / 20)/2

37

38 if (stp_dist - back.data.value < 0):

39 data.set(False)

40 =}

41

42 reaction(t_drive) -> reset(stop) {=

43 self.driving = self.get_velocity()

44 if self.driving == 0:

45 stop.set()

46 =}

47 }

48 }

Listing 2.11. Modal reactor Sensors

2.6 Distributed Execution

So far all examples may occur as distributed components due to the different reactors
involved, while in fact they run, if executed, on a single CPU. But in this thesis LF was
not only advertised as a tool for building concurrent systems, but also for building
distributed systems that assure determinism. The running example is still used in this
section but without providing specific source code or diagrams since the syntactical
changes required to achieve distribution are minimal. Chapter 4 provides source code
for distributed reactors and an example of a more realistic distributed system in LF
can be found in [LMS+20].

In order to discuss how distributed execution works in LF the running example is
simplified from the last implementation in Section 2.5. The system still consists of
three reactors. The first reactor integrates a physical input from the press of the brake
pedal. The second reactor uses sensor data from the rear of the car to determine if it
is safe to brake and the third reactor enforces the brakes to apply if appropriate. If
the pedal is pressed a message is send to the sensor reactor and to the Brakes reactor.
Although, some changes are made. As the sensor reactor receives a message it checks
if it is safe to break but only sends a message to the brake reactor if it is not. If the
Brakes reactor receives a message at the lower communication path from the brake

26

2.6. Distributed Execution

pedal reactor it should wait for a specific amount of time for a message from the
sensor reactor before it engages in a full brake. If it receives a message from the
sensor reactor it applies a smoother brake in order to avoid a rear collision. If it does
not receive a message from the sensor reactor within a specified time frame a full
brake is applied.

In the model running on a single machine, this was achieved by using physical
actions and ordering of reactions in the Brakes reactor. In the distributed version the
Brakes reactor has two reactions. The first reacts to the input of the sensors and the
second to the input of the brake pedal reactor. This ensures that if both messages
are received simultaneously with respect to the logical time of the system, that the
smoother brake is applied before the other one. But in a car those components would
usually not run on the same machine and rather be different distributed components.
In LF, if a top level reactor is declared with the keyword federated instead of main,
the runtime generates a separate executable for each reactor instantiated inside of the
top level reactor. The coordination of the federate can be centralized or decentralized,
which needs to be declared at the beginning of the top level LF file right after the
declaration of the target language [LMS+20].

New challenges arise if the running example is executed as a federate. If the pedal
is pressed at the physical time T a physical action triggers the downstream reactions.
The reactions are invoked at the same tag t for which T = t. Thus, the reactions at
the Brakes reactor see their input logically simultaneous at tag t. The ordering of
the reactions would guarantee that the reaction triggered by the message from the
reactor sensors is invoked before the reaction triggered by the message from the
reactor Brakes. Even if the messages are received logically at the same time, this does
not mean that they are received at the same physical time in a distributed system.
Aspects such as Latency, execution time or clock synchronization errors may interfere
with the system. For example, the brake reactor might receive the message from the
brake pedal reactor before the message of the sensor reactor over a network due to
latency issues making it error prone and resulting in a fully applied brake even if it
was not safe to brake. The message from the sensors reactor is received later with
regards to physical time while having the still the same tag as the message from the
brake pedal reactor.

Conserving logical time for maintaining an order in which those messages are
received is not enough because in the physical world there is no "before" or "after"
for two or more geographically distinct events. There is only an order of those events
relative to the observer [LMS+20]. The problem exists further even if the brake reactor
is chosen as the observer, because we have seen it could receive the messages out of
order.

To address this and assure determinism it is important that the tags are preserved

27

2. Foundations & Used Technologies

across the network. Messages need to transmit their tags along with the messages
and it must be avoided that a federate advances its logical time before it has seen
all messages with the current tag. For this LF implements as already mentioned two
different kinds of distributed execution, centralized and decentralized. In centralized
execution, LF uses a another component, the Run Time Infrastructure (RTI). Each
federate communicates with the RTI to share the earliest logical time at which it may
send a message and to consult if it is safe advance its logical time. However, while
this approach offers a straight way to address the problem of messages being received
in the wrong order, it becomes a bottleneck with regards to performance, since every
message needs to pass through the RTI. Additionally, it creates a single point of failure
for the system and might slow down the systems advance of logical time making it
less responsive [LMS+20].

Decentralized execution uses a technique called Programming Temporally Inte-
grated Distributed Embedded Systems (PTIDES) [LMS+20]. This technique extends
the discrete-event model for distributed real-time embedded systems, ensuring de-
terministic behavior through a well-defined order of event processing. It utilizes
timestamps to establish a logical order of event processing, enabling determinism and
repeatability in system behavior, while employing dependency analysis to ascertain
safe processing sequences, allowing for effective handling of event dependencies
in a distributed setting. Moreover, it incorporates synchronized physical clocks to
align the logical timelines across distributed components, thereby facilitating correct
order of event processing and addressing network latency issues. It also provides a
framework that navigates the challenges of network latencies, clock synchronization
errors, and distributed coordination, rendering a predictable and analyzable system
behavior essential for real-time embedded system applications [ZLL07].

How this works can be explained referring to the running example. Let’s say, the
brake pedal is applied at the physical time T = t where t is the assigned tag. We
now quantify execution time (Xi), latency (L) and the clock synchronization error
(E) by making assumptions about their bounds. These vary from system to system.
Lets say, that the upper communication path, or rather the execution time of the
reaction in the sensors reactor is X1 and the one of the lower path is X0. Hence, the
messages of the sensors and brake pedals reactors are sent through the network at the
latest of the physical time T + X1 and T + X0. If the latency of the network is L than
the Brakes reactor receives the message from the brake pedal reactor no later than
T + X0 + L and the message from the the sensor reactor no later than T + X1 + 2L
(because of the two network connections). Assuming E is the bound for the clock
synchronization error is E, then the messages arrive no later than T + X0 + L + E
and T + X1 + 2L + E at the brake reactor. With that it can be determined that an
input with tag t is safe to process if the physical clock of the brake reactor reaches

28

2.6. Distributed Execution

STP = t + max{T + X0 + L + E, T + X1 + 2L + E}. Now the reactor can engage in a
full brake if no message was received from the sensors reactor within that time and
a fault handler can be applied if a only a message was received from the sensors
reactor withing the given time range.

29

Chapter 3

Concepts & Implementation

In this chapter the the systems of S&B are discussed even further. The diagram at
Figure 3.1 shows a simplified version of how some of their products work together.
For this chapter the focus lies on the iBP but even in more detail on the iUZ and iBS-Z.
The the reason for the multiplicity of some components as well as components that
have not been discussed so far, displayed in that diagram are not explained in this
chapter but briefly elaborated in Chapter 4. Those distributed systems offer a variety
of services as mentioned in the introduction. A user can make a time range based
request from the iBP and if the request is valid the iBS-Z returns recorded log events for
the system from a database for that time range.The request is processed by two sub
components: HistoryStateMachine which is part of the iBS-Z and SimuHistoryStateMachine

which is part of the iUZ. Both sub components are modeled with SCChart as displayed
in Figure 3.2 and Figure 3.3. They work concurrently but communicate with each
other. The user interface of the iBP is not part of the consideration in this thesis, but
is rudimentary implemented in LF for the purpose of creating a working system.
Some path labels at the SCChart diagrams contain elements like ia16520. Those are
telegrams that are sent between HistoryStateMachine and SimuHistoryStateMachine and
contain state specific information. Lets discuss how a user request is processed in
both components. The description follows the process along the transitions and states
as depicted in the SCChart diagrams. Some functionality is note elaborated if it is not
important for the rest of this thesis or is obvious from the diagrams. At default, both
components are in the Idle state. If a user makes a request from the iBP, it is send
to HistoryStateMachine. The request message is then forwarded to the SimuHistoryS-

tateMachine via a ia16520 telegram and the system transitions into the top level state
ValidateRequest and right after into the Start state. There, HistoryStateMachine waits for a
response from SimuHistoryStateMachine. If the telegram reaches the SimuHistoryStateMa-

chine it transitions from into the top level state Processing Request and afterwards into
the composed Start state. From there, the component checks if the requested date
time range is valid. An invalid range would be one where the start point is larger
than the end point. If invalid, the SimuHistoryStateMachine sends a ia16020 telegram
to the HistoryStateMachine containing information about of the abort transitions into
the Abort state, followed by the Done state and eventually ends in the Idle state again.

31

3. Concepts & Implementation

Figure 3.1. Overview of different systems at S&B

If that happens and the HistoryStateMachine receives the ia16020 telegram if follows
a similar transitional path into AbortRequest, then the Done state and eventually the
Idle state. In case of a valid time range SimuHistoryStateMachine, transitions into the
CheckMessageCount state, where the amount of log data of the given time range is
sampled and checked for a valid size. The size can be zero entries resulting for
SimuHistoryStateMachine and HistoryStateMachine in a similar abort transition path as
before. If the amount is higher than a specified cap value, SimuHistoryStateMachine

sends a ia16020 telegram to HistoryStateMachine, that contains the information of the
requested amount of log data being larger than the allowed maximum. Additionally,
SimuHistoryStateMachine stats an internal timer. When HistoryStateMachine gets notified
of that, it sends a message, resulting in a popup for the user at the iBP. The user is

32

asked if he actually wants to see that amount of log data. Both components follow a
similar abort path as before, sending and receiving a ia16020 telegram and eventually
transitioning it the Idle, if the user does not respond within the bounds of the timer
of SimuHistoryStateMachine. If the user response is negative, HistoryStateMachine gets
notified of that, sends a ia16530 telegram to SimuHistoryStateMachine and transitions
eventually into the Idle state. When SimuHistoryStateMachine aborts the process due to
the content of the telegram, it stops the timer and transitions eventually back into
the Idle state. In the case of a positive response from the user, HistoryStateMachine
still sends a ia16530 telegram to SimuHistoryStateMachine but with different content
and transitions into the AwaitiuzReply waiting for a response from SimuHistoryStateMa-

chine. SimuHistoryStateMachine responds to the telegram with yet another ia16020

telegram informing HistoryStateMachine, which transitions into the DisplayRequest state.
SimuHistoryStateMachine itself transitions into the SendDokuMessages state. From there,
it sends the log date in chunks via a ia16030 telegram if necessary and transitions
afterwards through the Done state back into the Idle state. The HistoryStateMachine

component checks the response for consistency and displays it for the user in the
iBP if no error occurs, and transitions eventually into the Idle state. Even in case of
an consistency error, the final state will be Idle, but without displaying any log data
to the user. One path of each component have not been discussed yet. If SimuHisto-

ryStateMachine is in the CheckMessageCount state with a allowed amount of log data
being requested, both components behave as before if the requested data is send
from SimuHistoryStateMachine and displayed at SimuHistoryStateMachine. Each path
leads to the idle state for both components eventually making them accessible for
another request from a user. Both diagrams also depict that if they are in their related
date processing state, ValidateRequest for HistoryStateMachine and ProcessingReques for
SimuHistoryStateMachine, can transition back into the Idle state with now regard of
the current composed state they are. This can happen if the client aborts the request
during the processing phase or if the system of the client restarts.

33

3. Concepts & Implementation

Figure 3.2. History state machine with SCChart

34

Figure 3.3. Simu state machine SCChart

35

3. Concepts & Implementation

3.1 Conceptional considerations

The goal is to rebuild both components in LF on a mostly conceptual but functional
level. This means that some components or behaviors are not exactly replicated.
For example, the "empty" states, such as abort or Done in SimuHistoryStateMachine

are ignored since there is no functionality, important for the work of this thesis
in those states. They exist due to the requirement specifications of the clients of
S&B. Furthermore the states Start and CheckMessages in SimuHistoryStateMachine, are
merged together since there is no need in the LF implementation to separate the
validity checks into different states. Additionally, a data base is mocked and therefore
log responses are not sent in chunks which renders consistency checks unnecessary.

The aim is not to simply rebuild the components in LF but rather building them
explicitly from the SCChart notation, maintaining the sequential state driven behavior.
For that three different approaches are used. All approaches may not be sensible in
an usual exercise of building systems in LF. The idea is to subscribe as strictly as
possible to a specific pattern of mapping the state driven behavior to a LF program.
Please keep in mind that some design choices are the result of that strict pattern
choices or the lack of experience of the author.

At the first implementation all state like behavior is realized using only state
variables. This might appear naturally to some readers if the behavior of a system
in specific states is controlled without the use of more sophisticated tools, than the
chosen programming language has to offer on a basic level. To achieve a more modular
sense of the states, the second approach uses a mixture of composed reactors and
state variables. The composed reactors represent the states in each of the components.
This makes it necessary to add new components that are not required in the actual
system. Lastly, the third approach uses modes and composed modal reactors only
without state variables. Figure 3.4 shows the system as a whole. The implementation
of the top level main reactor does not change throughout all three design choices.
The only difference is in the internal implementation and behavior of the Simu and
History component. How the Gui component is implemented is not important. It only
serves as simplified part of the user interface in the iBP. Both reactors have input
and output ports, that represent the exact same telegram types as in the original
system (e.g.ia16020). The request port and cancel port simulate the behavior of an
user making a request or canceling as seen in Figure 3.2 on the transitional paths
between Idle and ValidateRequest. Additionally the popup and data ports represent the
HistoryStateMachine opening a popup for the user in case the request was to large and
sending data to the user for display in case of a valid request. In the original system
if the timeout bound is violated, SimuHistoryStateMachine notifies HistoryStateMachine

which results in both components returning into the Idle state. HistoryStateMachine

36

3.1. Conceptional considerations

HistoryStateMachine

Simuia16520

ia16530 ia16020
ia16030
timeout

Historycancel
request

ia16020
ia16030

user_reaction

ia16520
ia16530

data
popup

Guidata
popup
timeout request

cancel
user_reaction

0

0

Figure 3.4. Top level reactor of HistoryStateMachine.lf

cancels the popup request at the iBP. This is slightly different in this implementation,
because SimuHistoryStateMachine sends a message on the timeout port directly to the Gui.
Everything else stays the same. At last, the user_reaction port is only used to transmit
the message of a positive or negative reaction from the user at the popup. Some ports
may seem , but they exist with the purpose do distinguish the different messages
between the components more clearly especially with regards to the evaluation of
the diagrams by developers. At two connections, there is a zero-shaped interruption.
Those are realized with the keyword after This is called a logical time delay that
causes a produced output to be delayed for a specified (logical) time before appearing
as an input at the connected reactor [Loh20]. In this case, the time delay is zero (in the
system one microstep later), ensuring that there are no cyclic dependencies between
reactions.

1 target Python {

2 keepalive: true,

3 files: ["../external/telegrams.py", "../external/db.py", "../external/gui.py"]

4 }

5

6 import Simu from "Simu.lf"

7 import History from "History.lf"

8 import Gui from "Gui.lf"

9

10 main reactor HistoryStateMachine {

11 simu = new Simu()

12 hist = new History()

13 gui = new Gui()

14

15 hist.ia16520 -> simu.ia16520 after 0

37

3. Concepts & Implementation

16 hist.ia16530 -> simu.ia16530 after 0

17

18 simu.ia16020 -> hist.ia16020

19 simu.ia16030 -> hist.ia16030

20

21 gui.user_reaction -> hist.user_reaction

22 gui.request -> hist.request

23 gui.cancel -> hist.cancel

24

25 hist.data -> gui.data

26 hist.popup -> gui.popup

27 simu.timeout -> gui.timeout

28 }

Listing 3.1. Source code top level reactor

Since the three different implementations are discussed, there is no step-by-step
description of the code unless it is important or not self-explanatory from the code or
diagram itself. The diagrams serve primarily as a reference to the behavior of the im-
plementations. The second implementation is discussed on a conceptual level because
the amount of source code would not add sufficient understanding. Furthermore,
all different implementations contain imported functionality from telegrams.py and
db.py. Those provide a simplified version of the given telegrams and their contained
information, and basic operations for the mocked data base which will not be further
discussed for obvious reasons.

3.2 Implementation: State Variables

In Figure 3.5, the History reactor has a dedicated reaction for every input port and
the possible states the reactor can be in: Idle, Start, AwaitUserReaction, AwaitIuzReply
and DisplayRequest. There is only one state in which HistoryStateMachine can receive a
request message, resulting in a reaction that only checks (even if absolutely necessary
in this case) if the current state is correct, sends the appropriate telegram and changes
the state variable to Start, as seen in Listing 3.2. The ia16020 telegram can be processed
by HistoryStateMachine in multiple states. This is displayed in Listing 3.3. For example,
if the reactor is in state Start and receives a negative response from Simu, the reaction
changes the state to Idle. On the other hand, if the reactor is in state AwaitUserReaction

and receives a positive response, it changes its state to AwaitIuzReply. This is similar
for the rest of the reactor.

38

3.2. Implementation: State Variables

HistoryStateMachine

Simu

1
2

3
4

L

Pia16520

ia16530 ia16020

ia16030

timeout

History

1

2

3

4

5cancel

request

ia16020

ia16030

user_reaction

ia16520

ia16530

data

popup

Gui

1

2 3

4 5P

P L

data

popup

timeout request

cancel

user_reaction

0

0

Figure 3.5. Expanded top level reactor of state variable approach

1 reactor History {

2 preamble {=

3 import telegrams

4 tele = telegrams.Telegrams()

5 states = ["Idle","Start",

6 "AwaitUserReaction","AwaitIuzReply",

7 "DisplayRequest"]

8 =}

9

10 input cancel

11 input request

12 input ia16020

13 input ia16030

14 input user_reaction

15 output ia16520

16 output ia16530

17 output data

18 output popup

19 state st = "Idle"

20

21 reaction(request) -> ia16520 {=

22 if self.st == self.states[0]:

23 ia16520.set(request.value)

24 self.st = self.states[1]

25 =}

Listing 3.2. Source code states History 1/4

1 reaction(ia16020) -> popup {=

2 if self.st == self.states[1]:

3 if ia16020.value ==

self.tele.ia16020[1]:

#ia16020_CB_NEGATIVE

4 self.st = self.states[0]

5 elif ia16020.value ==

self.tele.ia16020[2]:

#ia16020_CB_POSITIVE_NO_TEXT

6 self.st = self.states[0]

7 elif ia16020.value ==

self.tele.ia16020[3]:

#ia16020_CB_INFO_TEXT

8 self.st = self.states[2]

9 popup.set(True)

10 elif ia16020.value ==

self.tele.ia16020[4]:

#ia16020_CB_POSITIVE_WITH_TEXT

11 self.st = self.states[4]

12 else:

13 pass

14 elif self.st == self.states[3]:

15 if ia16020.value ==

self.tele.ia16020[4]:

#ia16020_CB_POSITIVE_WITH_TEXT

16 self.st = self.states[4]

17

18 elif self.st == self.states[2]:

19 self.st = self.states[0]

20 =}

Listing 3.3. Source code states History 2/4

39

3. Concepts & Implementation

1 reaction(user_reaction) -> ia16530

{=

2 if self.st == self.states[2]:

3 if user_reaction.value ==

self.tele.user_reaction[3]:

USER_REACTION_POSITIVE

4 ia16530.set(

5 self.tele.user_reaction[3])

6 self.st = self.states[3]

7 elif user_reaction.value ==

self.tele.user_reaction[4]:

#USER_REACTION_NEGATIVE

8 ia16530.set(

9 self.tele.user_reaction[4])

10 self.st = self.states[0]

11 else:

12 pass

13 elif self.st == self.states[4]:

14 if user_reaction.value ==

self.tele.user_reaction[0]:

#ok

15 self.st = self.states[0]

16 =}

Listing 3.4. Source code states History 3/4

1 reaction(ia16030) -> data {=

2 if self.st == self.states[4]:

3 data.set(ia16030.value)

4 self.st = self.states[0]

5 =}

6

7 reaction(cancel) -> ia16530 {=

8 ia16530.set(self.tele.user_reaction[1])

9 self.st = self.states[0]

10 =}

11 }

Listing 3.5. Source code states History 4/4

In the reactor Simu on the other hand, there are four reactions but only two inputs.
Reaction two and three simply react in a comparable fashion to the inputs depending
on the current state as in History. The connection between input port ia1650 and
reaction for exists not because the telegram is the trigger. If the reaction is triggered
by the logical action it uses the current value of the telegram, without reacting
explicitly to it. The check for a valid time range and appropriate size of the request,
that required two different states in SimuHistoryStateMachine, is now handled by
reaction three entirely. For a valid request, it schedules the logical action send_docu_-

messages at the next microstep. This triggers the fourth reaction, resulting in sending
the requested data to the reactor History. A logical action is necessary, because the
transition in SimuHistoryStateMachine depends on the outcome of the validity checks
an not an a specific event. Reaction two reacts to the user response of the popup and
can therefore schedule the same logical action, which is consistent with the behavior
of SimuHistoryStateMachine if it receives a positive user response while being in the

40

3.2. Implementation: State Variables

AwaitUserReply state, transitioning into the SendDocuMessages state.

There is still the question on how the timeout is handled if the requested data
is too large. If the evaluation in reaction three results in a required response from a
user, it sets up the physical action time_out. A physical action is appropriate in this
case because the response of the user is required in physical time. Moreover, a logical
action might never trigger a response as long as the system waits for the user, since the
logical time is not advancing at all during that period. After the specified time, time_-

out triggers reaction one, resulting in reactions in all downstream connections, and
eventually a transition for both reactors back to the Idle state. Consider the physical
action scheduled at tag t and the delay D. The delay is in this implementation simply
the time in which we what the user to respond. Reaction one is then triggered at
T = t + D. If the user responds in time, reaction one is still triggered at T but has no
real effect because the response caused reaction two to change the state that results
in no behavior responding to the timeout. Considering a user request that finished
with displaying the requested date, but required confirmation because the amount
of data was too large. The time out was scheduled for T = t + D. If the user makes
yet another request, requiring a response to the popup another action is scheduled
for T˚ = t˚ + D, where t ă t˚ and t˚ ă T because the prior action has not triggered
reaction one yet. In that scenario, because there is no differentiation between both
actions and reaction one is triggered before the associated timeout is supposed to
have an effect as shown in Figure 3.6. This leads to unintended and in more safety
critical scenarios to dangerous behavior.

To address this issue, the reactor Simu contains a state variable timeout_counter

which is initialized at zero. If the physical action is scheduled the counter is increased
by one. As reaction one is triggered, the counter is increased by one, with no regards
of the rest of the reaction. The reaction body that is required to be invoked in the
case of an valid time out, checks first if the timeout counter is not greater than one.
In the example where two actions are scheduled, the counter would have the value
two when the first action triggers the reaction. Except for the decrease of the value
nothing would happen the first time. If the user does not respond in time, reaction
one is triggered again, meeting the condition of timeout_counter ď 1, which leads to
the desired behavior of the system.

41

3. Concepts & Implementation

t t* T T*

D

D

Time

Figure 3.6. Scheduled actions on a timeline

1 reactor Simu {

2 preamble {=

3 import telegrams

4 import db

5 tele = telegrams.Telegrams()

6 states =

["Idle","AwaitUserReaction",

"SendDocuMessages"]

7 =}

8 input ia16520

9 input ia16530

10 output ia16020

11 output ia16030

12 output timeout

13 state st = "Idle"

14 state timeout_counter = 0

15

16 logical action send_docu_messages

17 physical action time_out

Listing 3.6. Source code states Simu 1/4

1 reaction(time_out) -> ia16020,

timeout {=

2 if self.st == self.states[1] and

(self.timeout_counter <= 1):

3 ia16020.set(self.tele.ia16020[6])

#ia16020_CB_TIMEOUT

4 timeout.set(True)

5 self.st = self.states[0]

6 self.timeout_counter -= 1

7 =}

8

9 reaction(ia16530) -> ia16020,

send_docu_messages {=

10 if ia16530.value ==

self.tele.user_reaction[4]:

#USER_REACTION_NEGATIVE

11 self.st = self.states[0]

12

13 elif ia16530.value ==

self.tele.user_reaction[3]:

#USER_REACTION_POSITIVE

14 ia16020.set(self.tele.ia16020[4])

#ia16020_CB_POSITIVE_WITH_TEXT

15 self.st = self.states[2]

16

17 send_docu_messages.schedule(0)

18 =}

Listing 3.7. Source code states Simu 2/4

42

3.2. Implementation: State Variables

1 reaction(ia16520) -> ia16020,

time_out, send_docu_messages {=

2 if self.st == self.states[0]:

3

4 timerange = ia16520.value[0] <

ia16520.value[1]

5 mc = True

6 #check time range

7 if not timerange:

8 ia16020.set(self.tele.ia16020[1])

#ia16020_CB_NEGATIVE

9 self.st = self.states[0]

10 mc = False

11

12 if mc:

13 #check message count

14 st,end = ia16520.value[0],

ia16520.value[1]

15 leng =

self.db.retrieve_logs(st,

end, size=True)

16 if leng < 1:

17 ia16020.set(

18 self.tele.ia16020[2])

#ia16020_CB_POSITIVE_NO_TEXT

19 self.st = self.states[0]

20 elif leng > 20:

21 ia16020.set(

22 self.tele.ia16020[3])

#ia16020_CB_INFO_TEXT

23 self.st = self.states[1]

24 time_out.schedule(SEC(10))

25 self.timeout_counter += 1

26 else:

27 ia16020.set(

28 self.tele.ia16020[4])

#ia16020_CB_POSITIVE_WITH_TEXT

29 self.st = self.states[2]

30 send_docu_messages.schedule(0)

31 =}

Listing 3.8. Source code states Simu 3/4

1 reaction(send_docu_messages)

ia16520 -> ia16030 {=

2 if self.st == self.states[2]:

3 st,end = ia16520.value[0],

ia16520.value[1]

4 data =self.db.retrieve_logs(st,

end)

5 ia16030.set(data)

6 self.st = self.states[0]

7 =}

8 }

Listing 3.9. Source code states Simu 4/4

43

3. Concepts & Implementation

3.3 Implementation. Reactors & State Variables

In this implementation the states from SimuHistoryStateMachine and HistoryState Ma-

chine are depicted as separate composed reactors. There are multiple considerations
that need to be addressed to work within the same top level architecture as the
implementation before. The challenge is to relay incoming messages at the ports of
the top level reactor to the appropriate composed reactor. More precisely, relaying
the incoming message depending on the current state of the top level reactor to the
composed reactor that depicts that state. An approach for a system like that is shown
in Figure 3.7 and Figure 3.8. This solution contains an additional reactor dispatcher_in,
in each the History and the Simu component. The current state of the reactor is realized
inside the dispatcher_in component, since state variables are not shared with other
reactors. Considering the relay function works as expected, the dispatcher_in reactor
needs to be informed from the other reactors if it should change its state and what
that state is. This requires a number of additional input ports at the dispatcher_in

reactor and a reaction (reaction one at History) that exist only for the purpose of
changing the state. Summarized, the purpose of dispatcher_in in both top level reactors
is purely to change the state and relay the inputs. The same could be achieved by
one dedicated reaction at the top level reactor relaying messages and changing the
state. A challenge is not only the vast amount of trigger arguments for that reaction
but also the fact that it can only react to one input at tag t that may result, if not
handled with caution, in unintended behavior or the system not advancing correctly
with respect to its logical time.

The handling of input messages at the other composed reactors is similar to the
state-only implementation, but without an additional check for the current state,
since this has been handled downstream.In both reactors there is an extra reaction
collecting multiple outputs before forwarding them to the output port of the top level
reactor. For History this is necessary since both, the Start and AwaitUserReaction reactor
can send messages to the popup port. Since this can happen simultaneously, meaning
both reactors write at the popup port at the same tag t leading to non-deterministic
behavior, it needs a reaction to administrate that. Otherwise the LF would through an
error at compilation/code-genration. For the same reason the Simu reactor handles
incoming messages, that are intended for the output port ia16020. The aforementioned
challenge with the physical action as a timer is solved in the exact same way as it is
done in the state-only implementation.

44

3.4. Implementation: Modes

History

Idle
request ia16520

Start
ia16020 popup

nextstate_start

AwaitUserReaction

1

2

ia16020

user_reaction
ia16530

popup

nextstate_aur

AwaitIuzReply
ia16020 nextstate_air

DisplayRequest
ia16030 data

nextstate_dp

dispatcher_in

1

2

3

4

5
cancel

request

ia16020

ia16030

user_reaction

nextstate_start

nextstate_aur

nextstate_air

nextstate_dp

request_idle

ia16020_start

ia16020_aur

ia16020_air
ia16030_dp

user_reaction_aur

0

0

cancel

request

ia16020

ia16030

user_reaction

ia16520

ia16530

data

popup

Figure 3.7. Expanded History reactor of reactor approach

Simu

Idle
ia16520 timerange

nextstate_idle

Start
timerange ia16020

nextstate_start

AwaitUserReaction
ia16530 ia16020

send_docu_messages
nextstate_aur

SendDocuMessages
send_docu_messages

ia16520

ia16030

nextstate_sdm

dispatcher_in

1

2

3

4

P

ia16520

ia16530

nextstate_idle

nextstate_start

nextstate_aur

nextstate_sdm

ia16520_idle

ia16530_aur

ia16020_timeout

timeout0

0

0
ia16520

ia16530

ia16020

ia16030

timeout

Figure 3.8. Expanded Simu reactor of reactor approach

3.4 Implementation: Modes

The last implementation does not use any state variables at all. The state driven
behavior is mostly realized with the use of modal rectors and some minor additions.
This is the only implementation that actually realizes the composition of the states
ValidateRequest and ProcessingRequest from the SCCharts implementation. In Chapter 2

45

3. Concepts & Implementation

was established that modes can not be directly composed with other modes. For that
reason, the reactor History and the reactor Simu contain each another composed reactor
that then contains the composed states or in this case modes as it can be observed
in Figure 3.9 and Figure 3.10. Transitions between modes are realized inside the
reactions, depending on the current mode and the content of the received telegrams.

In order for any composed mode to be active, its top level mode needs to be
active as well. This meas that any nested mode is suspended if the top level mode is
suspended as well [SHL+23]. As a consequence of that, there is no need to take care
of the suspension of the individual composed modes. For example, in History any
mode inside the Validator reactor is suspended as soon as ValidateRequest transitions
back into the Idle mode.

On a conceptual level it is straight forward how both reactors work with respect
to their SCChart counterparts, yet a few changes have been made for appropriate
functionality. History contains inside of the mode ValedateRequest a reaction with the
number label two. This reaction only initiates the transition from ValidateRequest to
the Idle mode whenever it receives a message at the done port, since the transition
can not be triggered from a nested mode such as AwaitUserReaction. This is the only
additional port in comparison to the state-only implementation. A almost identical
approach is used in Simu, where reaction three and four both handle the transition
from ProcessingRequest to the Idle mode.

Another component of History is the composed Cancel reactor. This reactor takes a
cancel message directly from the user interface as it was done at HistoryStateMachine if
the user cancels the request or the user application is restarted during the processing
of the message. The other input port only handles a message form Validator, if the
internal mode is AwaitUserReaction and the user responds either positive or negative
to the popup request. A reaction inside the Cancel reactor invokes different code
depending on the user reaction. In case of a positive response it simply relays the
ia16530 telegram to the ia16530 output port of History, containing the information
of a positive response for the Simu reactor. In case of a negative response, it relays
the ia16530 telegram the same way but also triggers reaction two of History through
the done output port, in order to transition the whole reactor into the Idle mode.
To achieve the same functionality the reactor Cancel is not necessary and can be
supplemented by a dedicated reaction inside the Validator reactor.

If History receives a request message, while being in the Idle mode, reaction one
triggers the transition to ValidateRequest and forwards the content of the request

message to the ia16520 output port. This is similar to the behavior of the original
system as well as the unexplained functionality of the History reactor.

Consider the Simu reactor receiving a ia16520 telegram while being in the Idle state.
Reaction one only changes the current mode to ProcessingRequest. But in SimuHistoryS-

46

3.4. Implementation: Modes

History

Idle

1request ia16520

ValidateRequest

Validator

Start

1ia16020 done

popup

AwaitUserReaction

2

3

user_reaction ia16530

doneia16020

AwaitIuzReply

4ia16020

DisplayRequest

5

6

ia16030 data

doneuser_reaction

ia16020 ia16020

user_reaction

ia16020

ia16020

ia16030

user_reaction

ia16530

done

data

popup

Cancelcancel
msg

ia16530
done

2

ia16020

ia16030

user_reaction

data

popup

cancel

ia16530

request done, done

cancel

request

ia16020

ia16030

user_reaction

ia16520

ia16530

data

popup

Figure 3.9. Expanded History reactor of mode approach

tateMachine the Start state and the CheckMessageCount have no event that triggers the
processing of the request. For that reason both states are merged into the Processing

mode of Simu. Reaction two is triggered every time after a transition into the Process-

ingRequest using the keyword reset as reaction argument, forwarding the content of
telegram ia16520 to the reactor RequestProcessor in order to start the validity checks
for the request. In SimuHistoryStateMachine, there is also no event that triggers the
process of sending the requested data date to HistoryStateMachine but the transition
itself. With the use of the keyword reset as argument for reaction five, that behavior
is realized in this LF implementation.

In that same fashion, every time the mode AwaitUserReaction is entered, reaction
two schedules a physical action, that results in a timeout if the user does not respond
in time, as seen in the original system and the other two implementations. The

47

3. Concepts & Implementation

challenge in both prior implementations was to ensure that an older action does not
result in a premature abort of the whole process. This was done, by initializing a state
variable that displayed the current amount of active timeout actions. Using modal
reactors this is no longer necessary. If the user responds in time, the downstream
reactions result in a transition into the Idle mode eventually, discarding the state of
ProcessingRequest including the states of all nested modes and therefore discarding the
scheduled physical action. In fact, the state of the mode AwaitUserReaction is discarded
as soon as it is suspended for example by the transition to SendDocuMessages.

Simu

Idle

1ia16520

ProcessingRequest

RequestProcessor

Processing

1ia16520 ia16020

done

AwaitUserReaction

2 3

4

P done

ia16020

timeout

ia16530

SendDocuMessages

5

ia16520

ia16030

done

ia16520 ia16520

ia16530

ia16520

ia16530

ia16020

ia16030

done

timeout

2

3

4

ia16530

ia16020

ia16030

timeout

ia16520

ia16520 ia16530 done

ia16520

ia16530

ia16020

ia16030

timeout

Figure 3.10. Expanded Simu reactor of mode approach

48

Chapter 4

Evaluation

This chapter evaluates the three different implementations from the authors perspec-
tive, with regards the translational process from SCChart notation into a LF system with
special focus on complexity, noted patterns and validity. Developers from S&B and a
researcher from Kiel University completed a survey after working with and browsing
through the LF generated diagrams of all three different implementations. The results
of that survey with regards to the utility of those diagrams as an additional layer
of documentation are subject to the evaluation of the second section. Lastly, a brief
introduction to the CAL Theorem, its implications for the use of LF, and the possible
applications at systems of S&B are discussed.

4.1 Evaluating the Implementation

To develop a system in LF from the SCChart notation, the state-only design was the
most straightforward to implement of all three. In both reactors there needed to be at
least one reaction dedicated to an input port. To keep track of the state the reactor is
currently in, one state variable needed to be initiated (one per reactor). From there a
reaction triggered my a specific input port only needed to evaluate the current state in
order to invoke the appropriate part of the reaction’s body. In the Simu reactor, there
were two additional reactions to the two required for both input ports. The reaction
invoking an abort of the system if the user did not responded in time is negligible,
because it has no relation to the state behavior. On the other hand a reaction was
necessary to invoke the body of the reaction after the transition to SendDocuMessages

with the use of a logical action. The same approach is required if the "empty" states are
meant to be rebuild as well. Apart from the reactor abstraction and the connections
between them, this was similar to common approaches if building systems with state
behavior using only the essentials of a given programming language. Depending on
the programming language one may not necessarily use a standard variable to keep
track of the state of the system. For example the use of enums or objects in object
oriented programming languages is a sufficient choice in many cases. Since reactors
do not share state variables among each other, a satisfactory level of encapsulation

49

4. Evaluation

of a reactor was achieved, that might be more convenient in other systems, than the
one that was build for this thesis. Connecting ports was also straightforward, which
simplified the process of connecting the reactors and building an concurrent system
with two stand alone components. Since the implementation was the least complex
one, it was intuitive to reason about bugs and errors.

Unfortunately, the generated diagram obfuscated most of the state driven be-
havior of the system since only the reactions with their respective triggers were
visible. Reasoning about the system without inspecting the underlying source code
is challenging since state variables are not displayed in the generated diagrams.
Moreover, the source code itself is less intuitive, because it relies on many nested
conditional statements. While this still manageable for this system it will become
more challenging to reason about for more complex systems. Since there was no
automated approach for discarding the logical action, this was the most challenging
part that resulted in several bugs during then implementation.

The second approach was the least intuitive one of all three design choices. For
each depicted state, one reactor was created. To manage the change of the states and
relaying the messages to the appropriate reactor another component is required, that
was in this case another reactor. Ensuring that the state is changed all composed
reactors required a distinct connection to the dispatcher. For fulfill LF’s language
constrains a separate reaction was implemented in each top level reactor, to ensure
that only one connection writes to a single output port at tag t. The reactions
complexity inside the composed reactors was slightly less complex than for the
state-only approach. The amount of additional connections, reactors and components
led to a complex and convoluted system. During development the system did often
not work as expected due to cyclic dependencies which were challenging to reason
about. In the attempt to resolve those dependencies, delays sometimes resulted in the
system not advancing the internal logical time and therefore not working as expected.
The generated diagram offers more information of the underlying system but the
amount connections add to am ambiguous diagram.

Using modal reactors was predominantly consistent with the SCChart notation and
and the most intuitive design choice. For each state that a separate mode was created.
To nest modes within modes, the only requirement was to create an additional reactor
within a mode for each layer of convolution (in this case one). Transitioning between
modes was straight forward and reproducible. Invoking functionality after entering
a mode, was clear-cut due to the use of the keyword reset as reaction argument.
This can also be used for the "empty" states if desired. Discarding states after mode
changes, added a layer of security especially in the case of triggering the timeout
through a physical actions. That code is only invoked if the respective mode is active,
made it coherent to reason about the system during development and debugging.

50

4.2. Opinions from Developers

The additional reactor Cancel is not required and can therefore not be considered as a
pattern for building a system in LF from SCChart notation. Of all three implementations,
the mode design offered the most information of the underlying system from the
generated diagrams. Except for the actual behavior of the functionality it provided
a similar layout to the SCChart diagrams. Although, the source code was the second
largest of all three implementations due to reactions, reacting to the same input ports
for different modes, the code itself was coherent and modular without adding a
significant amount of convolution.

4.2 Opinions from Developers

The conducted survey is not meant to offer any statistically significant results. The
analysis of the diagrams was done with the intend to offer qualitative insights
from people familiar with SCChart and the rebuild system from S&B. All consulted
developers had no experience with LF with the exception of the person consulted
from Kiel university.

When the interviewees were asked which of the three diagrams they prefer with
respect to the information they provide in relation the the SCChart notation, the answer
was always the mode design. It offers the most similarities to the familiar state based
representation and depicted coherently which messages are important at what state.
The state-only approach was the least preferred, because it obfuscated almost all
internal functionality even if the representation was clear-cut. On the other hand
the composed reactor implementation provided more information about the internal
behavior but was convoluted and ambiguous. The vast amount of additional connec-
tions appeared clunky. After establishing the preferred design the questions aimed
at a more in depth analysis. In the introduction it was mentioned that the challenge
with the SCChart notation is, that it hardly provides insights about the interaction
of both components. All interviewees considered the top level outline with the rep-
resented connections, a improvement to the contemporary documentation. Overall,
the transitions between modes are coherent and the data flow comprehensible but
the internal logic is sometimes ambiguous. One developer noted that it would be
advantageous to have direct paths from the connections of a mode to its top level
reactor. For example that the ia16020 connection from the mode ProcessingRequest

has a direct visual connection to the ia16020 output port of Simu. Another note is
that it would help in terms of documentation, if the reactions could be named as
well to provide more information than just the order they are invoked at simulta-
neously occurring messages. Moreover, it would be advantageous to wrap existing
SCChart into LF reactors, rendering the translation into modal reactors unnecessary,

51

4. Evaluation

while providing an improved understanding of the connections between separate but
concurrently working components. The last job for the interviewees was to assess if
the preferred diagram type, or under what circumstances a LF diagram, would be an
improvement as an additional layer of documentation. Even if modal reactors pro-
vided a similar layout as SCChart and the interactions between different components
were more comprehensible, it does not add sufficient benefits when considering the
additional effort for rebuilding the system with LF. However, if existing SCChart could
be wrapped inside LF reactors, the developers would likely consider it a significant
improvement due to the streamlined integration and enhanced comprehensibility of
system interactions under this configuration.

4.3 The CAL Theorem

In this section another example derived from a system developed at S&B, introduced
in Chapter 3 and sketched in Figure 3.1, is used to briefly showcase how the CAL the-
orem in combination with LF can be used to build reliable distributed systems based
on assumptions about the network conditions. It’s crucial to note that the depicted
functionality and challenges associated with S&B’s system are highly simplified for
illustrative purposes, and do not reflect any actual product or security standards
upheld by S&B. In reality, the systems developed by SB adhere to the highest stan-
dards of security, showcasing the company’s strong commitment to ensuring robust
safety and reliability. The simplification here is solely for pedagogical clarity and
should not be interpreted as a reflection on the rigorous professionalism and stringent
security protocols maintained by S&B. The mathematical formalism in this section
is reduced to the necessary minimum, but the interested reader can find a precise
exposition at [LBL+21] and [LBL+23a]. In [LBL+23a] the CAL theorem is derivated by
providing a series of precise definitions within the notion of traces, that are depicted
as a number of sequential processes where every process is an unbounded sequence
of tagged events. The precision and formalism is obfuscated in this thesis, since only
a conceptual understanding with minimal mathematical formalism is required in the
practical section.

The CAP theorem by Brewer states, that in a distributed system either availabil-
ity (A) or consistency must be sacrificed in the presence of network partitioning.
Broadly speaking, network partitioning means, that the connection between nodes is
interrupted. Consistency is an agreement between nodes about a shared state and
availability means that the node is able to respond to (user) input [Bre12] [Bre00].

The CAL theorem quantifies availability, consistency and apparent latency (L),
thereby providing a systematic approach to understanding and analyzing the trade-

52

4.3. The CAL Theorem

offs among these essential aspects in a distributed system. The theorem manifests as
a linear system of equations within a max-plus algebra, where the structure of the
equations depict the communication topology of the application. This allows compact
modeling of heterogeneous networks where latencies between pairs of nodes may
vary considerably [LBL+23a].

To the introduced notion of logical time and tags (t = (a, b)) is now extended. Let’s
say T is the totally ordered set of tags and T the set of all possible measurements of
physical time. T : T Ñ T is a monotonically nondecreasing function that provides
a mapping for any tag to a physical timestamp in LF with T(t = (a, b)) = a. For
a shared variable x in a distributed system, let’s distinguish between write and
read events in a number of sequential processes. In order to define Inconsistency
consider for each write event on process j with tag tj the related accept event on
process i with tag ti. An accept event is simply the event in a process that notes the
change on x by a write event in another process. Given that, Inconsistency is defined
as Cij = max(T(ti ´ T(tj)). Bounded inconsistency is called eventual consistency
whereas Cij = 0 means strong consistency [LBL+23a]. In simple terms inconsistency
measures the time it takes for processes to agree over the state of a shared variable by
maximizing over all write events on process j.

On the other hand, for each read event on process i with the tag ti and Ti as
the physical time of processing this event, let the Unavailability at the process i be
Ai = max(Ti ´ T(ti)). With this maximization, unavailability is the measure of time
taken between the time of a request and the response by the system [LBL+23a].

The processing offset Oi is defined in [LBL+23a] as the time required to process
an write event. In practical terms unavailability concerns the delay from when a user
request is made until the system begins processing that request. In contrast to that
the processing request reflects the delay form when an external input triggers a write
event until the system actually processes the write event. Apparent latency (Lij) is
defined as the maximum difference between the time a write event is processed in
one node (process j) and the time the corresponding accept event is processed in
another node (process i). It’s termed as "apparent" because the actual latency could
be affected by the synchronization differences between the local clocks of process i
and process j. In fact, Lij is the sum of Xij (execution time overhead - the time taken
on node j to prepare and send the message to node i), Lij (Network latency - the time
taken for the message to travel across the network from node j to node i), Eij (clock
synchronization error - the error due to imperfect synchronization between the clocks
of node i and node j) and finally Oj (processing offset - the time delay in processing
the write event on node j). From that and with a given trace, the CAL theorem states

53

4. Evaluation

that the unavailability at process i is

Ai = max
(

Oi, max
jPN

(
Lij ´ Cij

))
in the worst case [LBL+23a]. With that relationship it is now possible to trade of
availability against consistency (or vice versa) in an actual system with assumptions
about the apparent latency.

Figure 3.1 depicts a system where an operator can control connected components
from the iBP. One component is the ZSB2000, that is a complex and multifunctional
interlocking component on railway track sections. Due to safety critical requirements
the communication between the iBP and interlocking systems is relayed through a
number of redundancy components to assure consistency over shared states. For
simplicity reasons, the running example is represented by two components, a user
interface for the operator (similar to the iBP) and a interlocking component with a
signal box for a dedicated track section. Both components are connected directly and
do not include any checks for validity.

Consider a train track that is divided into different train sections. Each section
has its own interlocking component with an integrated signal box. Sensors in the
interlocking component detect if a track section is either free, blocked by a train or
faulty for an unknown reason and the signal box has a control light that can be green
or red, similar to a traffic light. The simplified version of the iBP for this example is
called Operating Station (OS). The screen of the OS displays the current state of the
connected interlocking component (free, blocked, faulty) and the state of the signal
box (green or red). A state change appears if the sensor detects a free track section,
a train on the track section or an error, which is then broadcasted to all connected
OSs. Provided with that information the operator can initiate a change at the signal
box (switching between green and red). A switch to green can only be realized if
the track section is free. This is obvious because any other behavior could lead to
trains colliding on the track section. An error does not provide information if a train
is on the track section or not. It simply states that the interlocking component is
not able to determine if the track is blocked or free. On changing the state to either
blocked or error the signal box switches automatically to the red light, to indicate to
any approaching train that the next section can not be entered. A green light indicates
that the next section can be entered. Switching the signal box’ light to red, does not
have any contains related to the state of the interlocking component. The operator
must always be able to initiate a change of the signal box towards red. This is because
unlike switching to green, the worst case would be a train waiting on the track.

Imagine a track section where construction is being undertaken. This could change
the state to error, but we assume that the sensor detecting a train on the tracks still

54

4.3. The CAL Theorem

works. It is not uncommon in those situations that the construction work is interrupted
several times a day for a passing train to not discontinue the entire train service. Since
the operator would be informed about that, they must be able to change the light
of the signal box to green as long as the state of the signal box is only error and not
blocked. This would require something resembling a super-user-request. A system
representing the described example build in LF is displayed in Figure 4.1.

The IBP reactor contains three physical actions that can trigger reaction one, two
and five. In a real system those physical actions are asynchronous inputs from the user
at the OS initiating changes in the state of the interlocking components. Both reactors
contain the local state variable section, which depicts the state of the interlocking
component and the local state variable signal, that represents the state of the signal
box. Reaction five send a message over the signal port to the component TrackSection in
order to change the state of the signal variable to green (change the light of the signal
box). If the state of TrackSection is free, it changes the state of signal and broadcasts
both state variables to all connected OSs (in this example only one). If the intended
change was red, TrackSection changes the state signal to red with no regards to the
current state of section and broadcasts the updated state variables. Reaction four
of IBP changes the local state variables to the values received from the TrackSection

components. In TrackSection, reactions three, four and five change the local state
of signal and section with regards to the dedicated sensor data and transmits the
changed state values to the IBP component. For example, physical action block triggers
a reaction that changes section to block and signal to red. The operator can initiate a
super user query, which resulting in the invocation of the downstream reaction one
of TrackSection which sends a message containing the current state of section over the
su_answer port to the IBP reactor. This changes the state variable su_mode of IBP to
change to True if, and only if the message value was error. From there the operator
can trigger reaction two, that results downstream in TrackSection in a change of signal
to green even if the state of section in TrackSection is not free. This represents the
aforementioned behavior, where the operator can initiate a switch to green, even if
the track section is actually not free.

To integrate the results from the CAL theorem, only the transmission direction
from TrackSection towards IBP is considered to trade off availability for consistency.
Consider the connection between the output port publish and the input port su_answer
to suffer from network latency. This means that the state of both variables is different
at TrackSection from the state at IBP. In practice, an operator could see a different state
of the track section and initiating a change of the signal box’ state considering this
false information. With a regular connection in LF this could not happen, because
if the state change in TrackSection happens "before" the initiation by the operator,
the system would recognize that ttrackSection ď tIBP. We therefor would have strong

55

4. Evaluation

consistency resulting in the operator not being able to send the request before there
is an agreement over the state in both systems. With network latency this may result
in unavailability, meaning the operator can not interact with the signal box until
consistency is achieved. Since the operator should be able to always request a change
to red this behavior is not desired. Furthermore, even if the state of section is not free
in TrackSection but the operator sees an outdated state, resulting in an attempt to
change the signal box to green, this would not cause any problems since that case
is handled as seen in line 14-22 of Listing 4.4. The CAL theorem can be used to
relay consistency by a specified amount allowing to account for network latency and
enabling the operator to be able to intact with the system even if the states are not
consistent at the time. For this example the apparent latency is simplified to only
depend on network latency: Lij = Lij. It is also assumed that the processing offset is
Oij = 0 resulting in Ai = max

(
0, maxjPN

(
Lij ´ Cij

))
where C = 500ms to allow for a

assumed network latency of 500 ms. In LF this is achieved by using the after keyword
applying a logical delay to the connection (line 34 in Listing 4.4). What this means
that a logical delay between the initiation of the change of section in TrackSection and
the recording of that update in IBP, allows for availability at the OS even if the system
is not consistent. It is important to note, that the availability is bounded by 500 ms.
How a violation of that assumption can be addressed is discussed in [LBL+23a]. Even
with the logical delay, this design assures eventual consistency. The super user request
on the other hand requires strong consistency. An operator should only be able to
change the signal box’ light to green, if the value of section is the same across all
nodes. In this design, this is achieved on default since the involved reactions logically
depend on each other making it impossible for the operator to change the state of
signal before the system is consistent with regards to the state variable of section. Note
that with high latency, this results in unavailability for the operator.

In this section the CAL theorem was used in combination with LF to showcase how
to trade off availability against consistency in a rather simple example. The findings
of [LBL+23a] and [LAB+23] offer a much more detailed approach, where more precise
considerations of apparent latency are applied. Moreover, they show how the decision
between centralized and decentralized execution in LF can be leveraged for more
flexibility considering availability and consistency. They provide insights on how to
handle situations where the assumptions made about the network conditions fail,
which was not discussed in this chapter.

56

4.3. The CAL Theorem

Interlocking

IBP

1

2

3

4

5

P

P

P
publish

su_answer

signal

su_query

su_request

TrackSection

1

2

3

4

5

6

P

P

P

signal_ibp

su_query

su_request

publish

su_answer

500 ms

Figure 4.1. Diagram of interlocking and OS component in LF

1 reactor IBP {

2 preamble {=

3 track_states = ["free", "error",

"blocked"]

4 signal_states = ["red","green"]

5 =}

6

7 input publish

8 input su_answer

9 output signal

10 output su_query

11 output su_request

12 state section

13 state signal

14 state su_mode = False

15 physical action user_input

16 physical action su_qu

17 physical action su_re

18

19 reaction(su_qu) -> su_query {=

20 su_query.set()

21 =}

22

23 reaction(su_re) -> su_request {=

24 if self.su_mode:

25 su_request.set(True)

26 else:

27 su_request.set(False)

28

29 self.su_mode = False

30 =}

Listing 4.1. Source code of interlocking
and OS component in LF 1/4

1 reaction(su_answer) {=

2 if su_answer.value == "error":

3 self.su_mode = True

4 =}

5

6 reaction(publish) {=

7 self.section = publish.value[0]

8 self.signal = publish.value[1]

9 =}

10

11 reaction(user_input) -> signal {=

12 if user_input.value:# True mean

set the signal to green

13 if self.section == "free":

14 signal.set(True)

15 else:

16 pass

17 else:

18 signal.set(False)

19 =}

20 }

Listing 4.2. Source code of interlocking
and OS component in LF 2/4

57

4. Evaluation

1 reactor TrackSection {

2 preamble {=

3 track_states = ["free", "error",

"blocked"]

4 signal_states = ["red","green"]

5 =}

6 input signal_ibp

7 input su_query

8 input su_request

9 output publish

10 output su_answer

11 state section

12 state signal

13 physical action block

14 physical action error

15 physical action free

16

17 reaction(su_request) -> publish {=

18 if su_request.value:

19 self.signal =

self.signal_states[1]

20 publish.set([self.section,

self.signal])

21 else:

22 publish.set([self.section,

self.signal])

23 =}

24

25 reaction(su_query) -> su_answer {=

26 su_answer.set(self.section)

27 =}

28

29 reaction(block) -> publish {=

30 self.section = self.track_states[2]

31 self.signal = self.signal_states[0]

32 publish.set([self.section,

self.signal])

33 =}

Listing 4.3. Source code of interlocking
and OS component in LF 3/4

1 reaction(error) -> publish {=

2 self.section = self.track_states[1]

3 self.signal = self.signal_states[0]

4 publish.set([self.section,

self.signal])

5 =}

6

7 reaction(free) -> publish {=

8 self.section = self.track_states[0]

9 self.signal = self.signal_states[0]

10 publish.set([self.section,

self.signal])

11 =}

12

13 reaction(signal_ibp) -> publish {=

14 if signal_ibp.value:

15 if self.section == "free":

16 self.signal =

self.signal_states[1]

17 publish.set([self.section,

self.signal])

18 else:

19 publish.set([self.section,

self.signal])

20 else:

21 self.signal =

self.signal_states[0]

22 publish.set([self.section,

self.signal])

23 =}

24 }

25

26 federated reactor Interlocking {

27 ibp = new IBP()

28 ts = new TrackSection()

29

30 ibp.su_request -> ts.su_request

31 ibp.signal -> ts.signal_ibp

32 ibp.su_query -> ts.su_query

33

34 ts.publish -> ibp.publish after 500

ms

35 ts.su_answer -> ibp.su_answer

36 }

Listing 4.4. Source code of interlocking
and OS component in LF 4/4

58

Chapter 5

Conclusion & Further Work

This thesis shows how LF can be used to build working systems from existing ones
that were originally modeled with SCCharts. The implementation using composed
reactors did not offerer a desirable design choice due to its convoluted and ambiguous
pattern. On the other hand both, the state-only and modal reactor approach follow
recognizable patterns, which lead to the question if those patterns are consistent
enough to derive ways in witch the translational process adapted in this thesis can be
automated.

In the first approach at least one state variable, to depict every state of the SCChart
is required. Behavior depending on the current state would be addressed using
conditional logic in the reactions if needed. Even addressing the transition to and
between "empty" states is possible by using logical actions. While this worked at
one instance of this program, there is no guarantee, that it does not cause undesired
behavior in more complex systems. If some functionality depends on other events or
needs to run concurrently, the system could behave unexpectedly because the logical
time is not advancing in a fashion that represents the functionality of the original
system. Contained states (e.g. Start in ValidateRequest) could be approached by yet
another state variable. But this is not straight forward in consideration of automating
the translational process, because more complexity may imply specific behavior that
does not follow a strict pattern.

While using the modal reactor approach, which offers advantages over the state-
variable design, such as discarding or suspending local states, the challenges towards
automation are similar. Even if states in SCCharts are not the same as modes in LF
one mode per SCChart state is required. Integrating "empty" states and triggering
behavior purely by entering another state is fairly elegant in this design by using the
keyword reset as reaction argument. Composed states can be addressed by creating a
composed reactor for every nested level. To trigger transitions of the top level mode
from a nested one requires an extra reaction at the top level and and extra port at
every nested mode. This was feasible for systems at that level of complexity but can
become a very challenging task for every extra level of composition. Even if this
design offered the most consistent patterns for the translational process, it remains
unclear from this work if those patterns hold for more complex systems. Over all, all

59

5. Conclusion & Further Work

approaches submit insights of the feasibility, of automation of the internal behavior.
Since components like the discussed ones are communicating over a network, it is not
obvious from the SCChart notation on how to connect them in an automated sense.

This relates to the question if the generated LF diagrams are considered an
advantageous additional layer of documentation by developers at S&B. The mode
design was consistently described as the most intuitive and coherent choice, with
regards to displaying information of the internal logic if single components and the
communication between them. Yet, rebuilding existing SCChart systems in LF for the
exclusive purpose of additional documentation that of offers a better understanding
on how distributed components interact with each other, is an infeasible task for
S&B. This conclusion does not reflect on the value LF provides for the development of
deterministic, time sensitive and reactive systems at any point. Indeed, the substantial
and significant benefits of LF for that purpose have been showcased by a vast number
of research contributions, from which a proportion has been used and cited for this
thesis.

Since rebuilding SCChart systems in LF may not be the most considerable approach,
future work may address the aspect of integrating SCCharts in LF. How the diagram
representation is integrated, exceeds the authors expertise and is left open for profes-
sionals in that domain. For a functional integration any further work could explore
on how the event driven behavior of SCChart can be connected to the event driven
nature of LF. Furthermore, the examined SCChart systems revealed that events, such
as transitions, invoked methods that triggered events in the connected component.
Exploring on how those connections can be combined using import and output ports
in LF appears auspicious.

When it comes to the diagrams containing modes, one developer noted that it
would advance the comprehension of the system, if output ports of contained modes
would visually connect in a direct way to the top level ports. If this idea is desirable,
especially if many outgoing connections link to one port, is left to be decided by the
LF community. Naming reactions and displaying that in the generated diagrams is
worth exploring, because it would offer more insights about the internal logic and
the functional purpose of reactions if named sensibly. Integrating that functionality
both into the syntax and diagrams appears feasible from the authors perspective.

Section 4.3 briefly demonstrated how LF can be used to build even more secure
and testable distributed systems, while adjusting the requirements for availability
and consistency based on specific business decisions. Even though, the example was
domain specific to RS, one could easily conclude that the insights can be adopted by
other applications. Because of that, and the substantial scientific contributions made
explicitly for distributed systems by the LF community, future work may consider
additional features in LF based on the consequences of the CAL theorem.

60

Appendix A

Source Code: Modal Reactors
Implementation

1 target Python {

2 files: ["../external/telegrams.py", "../external/db.py", "../external/gui.py"]

3 }

4

5 import Simu from "Simu.lf"

6 import History from "History.lf"

7 import Gui from "Gui.lf"

8

9 main reactor HistoryStateMachine {

10 simu = new Simu()

11 hist = new History()

12 gui = new Gui()

13

14 hist.ia16520 -> simu.ia16520 after 0

15 hist.ia16530 -> simu.ia16530 after 0

16

17 simu.ia16020 -> hist.ia16020

18 simu.ia16030 -> hist.ia16030

19

20 gui.user_reaction -> hist.user_reaction

21 gui.request -> hist.request

22 gui.cancel -> hist.cancel

23

24 hist.data -> gui.data

25 hist.popup -> gui.popup

26 simu.timeout -> gui.timeout

27 }

Listing A.1. Source code modes HistoryStateMachine

1 target Python {

61

A. Source Code: Modal Reactors Implementation

2 files: ["../external/telegrams.py"]

3 }

4

5 import Validator from "Validator.lf"

6 import Cancel from "Validator.lf"

7

8 reactor History {

9 preamble {=

10 import telegrams

11 tele = telegrams.Telegrams()

12 =}

13 input cancel

14 input request

15 input ia16020

16 input ia16030

17 input user_reaction

18

19 output ia16520

20 output ia16530

21 output data

22 output popup

23

24 initial mode Idle {

25 reaction(request) -> ia16520, reset(ValidateRequest) {=

26 ia16520.set(request.value)

27 ValidateRequest.set()

28 =}

29 }

30

31 mode ValidateRequest {

32 validatior = new Validator()

33 relais = new Cancel()

34 ia16020 -> validatior.ia16020

35 ia16030 -> validatior.ia16030

36 user_reaction -> validatior.user_reaction

37

38 validatior.popup -> popup

39 validatior.data -> data

40

41 cancel -> relais.cancel

42 validatior.ia16530 -> relais.msg

62

43 relais.ia16530 -> ia16530

44 reaction(validatior.done, relais.done) -> reset(Idle) {=

45 Idle.set()

46 =}

47 }

48 }

Listing A.2. Source code modes History

1 target Python {

2 files: ["../external/telegrams.py"]

3 }

4

5 reactor Validator {

6 preamble {=

7 import telegrams

8 tele = telegrams.Telegrams()

9 =}

10 input ia16020

11 input ia16030

12 input user_reaction

13

14 output ia16530

15 output done

16 output data

17 output popup

18

19 initial mode Start {

20 reaction(ia16020) -> done, popup, reset(AwaitUserReaction),

reset(DisplayRequest) {=

21 if ia16020.value == self.tele.ia16020[1]: #ia16020_CB_NEGATIVE

22 done.set(True)

23 elif ia16020.value == self.tele.ia16020[2]: #ia16020_CB_POSITIVE_NO_TEXT

24 done.set(True)

25 elif ia16020.value == self.tele.ia16020[3]: #ia16020_CB_INFO_TEXT

26 AwaitUserReaction.set()

27 popup.set(True)

28 elif ia16020.value == self.tele.ia16020[4]: #ia16020_CB_POSITIVE_WITH_TEXT

29 DisplayRequest.set()

30 else:

31 pass

32 =}

63

A. Source Code: Modal Reactors Implementation

33 }

34

35 mode AwaitUserReaction {

36 reaction(user_reaction) -> ia16530, done, reset(AwaitIuzReply) {=

37 if user_reaction.value == self.tele.user_reaction[3]: # USER_REACTION_POSITIVE

38 ia16530.set(self.tele.user_reaction[3])

39 AwaitIuzReply.set()

40 elif user_reaction.value == self.tele.user_reaction[4]: #USER_REACTION_NEGATIVE

41 ia16530.set(self.tele.user_reaction[4])

42 done.set(True)

43

44 else:

45 pass

46 =}

47

48 reaction(ia16020) -> done {=

49 done.set(True)

50 =}

51 }

52

53 mode AwaitIuzReply {

54 reaction(ia16020) -> reset(DisplayRequest) {=

55 if ia16020.value == self.tele.ia16020[4]: #ia16020_CB_POSITIVE_WITH_TEXT

56 DisplayRequest.set()

57 =}

58 }

59

60 mode DisplayRequest {

61 reaction(ia16030) -> data, done {=

62 data.set(ia16030.value)

63 done.set(True)

64 =}

65

66 reaction(user_reaction) -> done {=

67 if user_reaction.value == self.tele.user_reaction[0]: #ok

68 done.set(True)

69 =}

70 }

71 }

72

73 reactor Cancel {

64

74 input cancel

75 input msg

76

77 output ia16530

78 output done

79

80 reaction(cancel) -> ia16530, done {=

81 ia16530.set(self.tele.user_reaction[1])

82 done.set(True)

83 =}

84

85 reaction(msg) -> ia16530 {=

86 ia16530.set(msg.value)

87 =}

88 }

Listing A.3. Source code modes Validator

1 target Python {

2 files: ["../external/telegrams.py"]

3 }

4

5 import RequestProcessor from "RequestProcessor.lf"

6

7 reactor Simu {

8 preamble {=

9 import telegrams

10 tele = telegrams.Telegrams()

11 =}

12 input ia16520

13 input ia16530

14 output ia16020

15 output ia16030

16 output timeout

17

18 initial mode Idle {

19 reaction(ia16520) -> reset(ProcessingRequest) {=

20 ProcessingRequest.set()

21 =}

22 }

23

24 mode ProcessingRequest {

65

A. Source Code: Modal Reactors Implementation

25 processor = new RequestProcessor()

26 ia16530 -> processor.ia16530

27 processor.ia16030 -> ia16030

28 processor.ia16020 -> ia16020

29 processor.timeout -> timeout

30 reaction(reset) ia16520 -> processor.ia16520 {=

31 processor.ia16520.set(ia16520.value)

32 =}

33

34 reaction(ia16530) -> reset(Idle) {=

35 if ia16530.value == self.tele.user_reaction[1]: #USER_REACTION_CANCEL

36 Idle.set()

37 =}

38

39 reaction(processor.done) -> reset(Idle) {=

40 Idle.set()

41 =}

42 }

43 }

Listing A.4. Source code modes Simu

1 target Python {

2 files: ["../external/telegrams.py"]

3 }

4

5 reactor RequestProcessor {

6 preamble {=

7 import telegrams

8 import db

9 tele = telegrams.Telegrams()

10 =}

11 input ia16520

12 input ia16530

13

14 output ia16020

15 output ia16030

16 output done

17 output timeout

18

19 initial mode Processing {

20 reaction(ia16520) -> reset(AwaitUserReaction), reset(SendDocuMessages), ia16020,

66

done {=

21 timerange = ia16520.value[0] < ia16520.value[1]

22 mc = True

23 #check time range

24 if not timerange:

25 ia16020.set(self.tele.ia16020[1]) #ia16020_CB_NEGATIVE

26 done.set(True)

27 mc = False

28

29 if mc:

30 #check message count

31 st,end = ia16520.value[0], ia16520.value[1]

32 leng = self.db.retrieve_logs(st, end, size=True)

33 if leng < 1:

34 ia16020.set(self.tele.ia16020[2]) #ia16020_CB_POSITIVE_NO_TEXT

35 done.set(True)

36 elif leng > 20:

37 ia16020.set(self.tele.ia16020[3]) #ia16020_CB_INFO_TEXT

38 AwaitUserReaction.set()

39 else:

40 ia16020.set(self.tele.ia16020[4]) #ia16020_CB_POSITIVE_WITH_TEXT

41 SendDocuMessages.set()

42 =}

43 }

44

45 mode AwaitUserReaction {

46 physical action time_out

47 reaction(reset) -> time_out {=

48 time_out.schedule(SEC(10))

49 =}

50

51 reaction(time_out) -> done, ia16020, timeout {=

52 ia16020.set(self.tele.ia16020[6]) #ia16020_CB_TIMEOUT

53 timeout.set(True)

54 done.set(True)

55 =}

56

57 reaction(ia16530) -> done, ia16020, reset(SendDocuMessages) {=

58 if ia16530.value == self.tele.user_reaction[4]: #USER_REACTION_NEGATIVE

59 done.set(True)

60 elif ia16530.value == self.tele.user_reaction[3]: #USER_REACTION_POSITIVE

67

A. Source Code: Modal Reactors Implementation

61 ia16020.set(self.tele.ia16020[4]) #ia16020_CB_POSITIVE_WITH_TEXT

62 SendDocuMessages.set()

63 =}

64 }

65

66 mode SendDocuMessages {

67 reaction(reset) ia16520 -> ia16030, done {=

68 st,end = ia16520.value[0], ia16520.value[1]

69 data =self.db.retrieve_logs(st, end)

70 ia16030.set(data)

71 done.set(True)

72 =}

73 }

74 }

Listing A.5. Source code modes RequestProcessor

68

Appendix B

Source Code: Reactors & State
Variables Implementation

1 target Python {

2 keepalive: true,

3 files: ["../external/telegrams.py", "../external/db.py", "../external/gui.py"]

4 }

5

6 import Simu from "Simu.lf"

7 import History from "History.lf"

8 import Gui from "Gui.lf"

9

10 main reactor HistoryStateMachine {

11 simu = new Simu()

12 hist = new History()

13 gui = new Gui()

14

15 hist.ia16520 -> simu.ia16520 after 0

16 hist.ia16530 -> simu.ia16530 after 0

17

18 simu.ia16020 -> hist.ia16020

19 simu.ia16030 -> hist.ia16030

20

21 gui.user_reaction -> hist.user_reaction

22 gui.request -> hist.request

23 gui.cancel -> hist.cancel

24

25 hist.data -> gui.data

26 hist.popup -> gui.popup after 0

27 simu.timeout -> gui.timeout

28 }

Listing B.1. Source code modes HistoryStateMachine

69

B. Source Code: Reactors & State Variables Implementation

1 target Python {

2 files: ["../external/telegrams.py"]

3 }

4

5 reactor Idle {

6 preamble {=

7 import telegrams

8 tele = telegrams.Telegrams()

9 =}

10 input request

11 output ia16520

12

13 reaction(request) -> ia16520 {=

14 ia16520.set(request.value)

15 =}

16 }

17

18 reactor Start {

19 preamble {=

20 import telegrams

21 tele = telegrams.Telegrams()

22 states = ["Idle", "Start","AwaitUserReaction","AwaitIuzReply", "DisplayRequest"]

23 =}

24 input ia16020

25 output popup

26 output nextstate_start

27

28 reaction(ia16020) -> popup, nextstate_start {=

29 if ia16020.value == self.tele.ia16020[1]: #ia16020_CB_NEGATIVE

30 nextstate_start.set(self.states[0])

31 elif ia16020.value == self.tele.ia16020[2]: #ia16020_CB_POSITIVE_NO_TEXT

32 nextstate_start.set(self.states[0])

33 elif ia16020.value == self.tele.ia16020[3]: #ia16020_CB_INFO_TEXT

34 nextstate_start.set(self.states[2])

35 popup.set(True)

36 elif ia16020.value == self.tele.ia16020[4]: #ia16020_CB_POSITIVE_WITH_TEXT

37 nextstate_start.set(self.states[4])

38 else:

39 pass

40 =}

70

41 }

42

43 reactor AwaitUserReaction {

44 preamble {=

45 import telegrams

46 tele = telegrams.Telegrams()

47 =}

48 input ia16020

49 input user_reaction

50 output ia16530

51 output popup

52 output nextstate_aur

53

54 reaction(ia16020) -> nextstate_aur {=

55 nextstate_aur.set(self.states[0])

56 =}

57

58 reaction(user_reaction) -> popup, ia16530, nextstate_aur {=

59 if user_reaction.value == self.tele.user_reaction[3]: # USER_REACTION_POSITIVE

60 ia16530.set(self.tele.user_reaction[3])

61 nextstate_aur.set(self.states[3])

62 elif user_reaction.value == self.tele.user_reaction[4]: #USER_REACTION_NEGATIVE

63 ia16530.set(self.tele.user_reaction[4])

64 nextstate_aur.set(self.states[0])

65 else:

66 pass

67 =}

68 }

69

70 reactor AwaitIuzReply {

71 preamble {=

72 import telegrams

73 tele = telegrams.Telegrams()

74 =}

75 input ia16020

76 output nextstate_air

77

78 reaction(ia16020) -> nextstate_air {=

79 nextstate_air.set(self.states[4])

80 =}

81 }

71

B. Source Code: Reactors & State Variables Implementation

82

83 reactor DisplayRequest {

84 preamble {=

85 import telegrams

86 tele = telegrams.Telegrams()

87 =}

88 input ia16030

89 output data

90 output nextstate_dp

91

92 reaction(ia16030) -> data {=

93 data.set(ia16030.value)

94 nextstate_dp.set(self.states[0])

95 =}

96 }

97

98 reactor dispatcher_in {

99 preamble {=

100 import telegrams

101 tele = telegrams.Telegrams()

102 states = ["Idle", "Start","AwaitUserReaction","AwaitIuzReply", "DisplayRequest"]

103 =}

104

105 input cancel

106 input request

107 input ia16020

108 input ia16030

109 input user_reaction

110 input nextstate_start

111 input nextstate_aur

112 input nextstate_air

113 input nextstate_dp

114

115 output request_idle

116 output ia16020_start

117 output ia16020_aur

118 output ia16020_air

119 output ia16030_dp

120 output user_reaction_aur

121

122 state st = "Idle"

72

123

124 reaction(nextstate_start, nextstate_aur, nextstate_air, nextstate_dp) {=

125 if nextstate_start.is_present:

126 self.st = nextstate_start.value

127 elif nextstate_aur.is_present:

128 self.st = nextstate_aur.value

129 elif nextstate_air.is_present:

130 self.st = nextstate_air.value

131 elif nextstate_dp.is_present:

132 self.st = nextstate_dp.value

133 =}

134

135 reaction(request) -> request_idle {=

136 if self.st == self.states[0]:

137 request_idle.set(request.value)

138 self.st = self.states[1]

139 =}

140

141 reaction(ia16020) -> ia16020_start, ia16020_aur {=

142 if self.st == self.states[1]:

143 ia16020_start.set(ia16020.value)

144 elif self.st == self.states[2]:

145 ia16020_aur.set(ia16020.value)

146 =}

147

148 reaction(user_reaction) -> user_reaction_aur {=

149 if self.st == self.states[2]:

150 user_reaction_aur.set(user_reaction.value)

151 =}

152

153 reaction(ia16030) -> ia16030_dp {=

154 if self.st == self.states[4]:

155 ia16030_dp.set(ia16030.value)

156 =}

157 }

158

159 reactor History {

160 input cancel

161 input request

162 input ia16020

163 input ia16030

73

B. Source Code: Reactors & State Variables Implementation

164 input user_reaction

165

166 output ia16520

167 output ia16530

168 output data

169 output popup

170

171 idle = new Idle()

172 start = new Start()

173 await_user_reaction = new AwaitUserReaction()

174 await_iuz_reply = new AwaitIuzReply()

175 display_request = new DisplayRequest()

176 dis_in = new dispatcher_in()

177

178 cancel -> dis_in.cancel # dis_out = new dispatcher_out()

179 request -> dis_in.request

180 ia16020 -> dis_in.ia16020

181 ia16030 -> dis_in.ia16030

182 user_reaction -> dis_in.user_reaction

183

184 dis_in.request_idle -> idle.request

185 idle.ia16520 -> ia16520

186

187 dis_in.ia16020_start -> start.ia16020 after 0

188

189 dis_in.user_reaction_aur -> await_user_reaction.user_reaction

190 dis_in.ia16020_aur -> await_user_reaction.ia16020

191 await_user_reaction.ia16530 -> ia16530

192

193 dis_in.ia16020_air -> await_iuz_reply.ia16020

194

195 dis_in.ia16030_dp -> display_request.ia16030

196 display_request.data -> data

197

198 start.nextstate_start -> dis_in.nextstate_start

199 await_user_reaction.nextstate_aur -> dis_in.nextstate_aur after 0

200 await_iuz_reply.nextstate_air -> dis_in.nextstate_air

201 display_request.nextstate_dp -> dis_in.nextstate_dp

202

203 reaction(start.popup, await_user_reaction.popup) -> popup {=

204 if start.popup.is_present:

74

205 popup.set(start.popup.value)

206 elif await_user_reaction.popup.is_present:

207 popup.set(await_user_reaction.popup.value)

208 =}

209 }

Listing B.2. Source code Reactors & State Variables History

1 target Python {

2 keepalive: true,

3 files: ["../external/telegrams.py"]

4 }

5

6 reactor Idle {

7 preamble {=

8 import telegrams

9 tele = telegrams.Telegrams()

10 states = ["Idle","Start", "AwaitUserReaction", "SendDocuMessages"]

11 =}

12 input ia16520

13 output timerange

14 output nextstate_idle

15

16 reaction(ia16520) -> timerange, nextstate_idle {=

17 nextstate_idle.set(self.states[1])

18 timerange.set(ia16520.value)

19 =}

20 }

21

22 reactor Start {

23 preamble {=

24 import telegrams

25 tele = telegrams.Telegrams()

26 states = ["Idle","Start", "AwaitUserReaction", "SendDocuMessages"]

27 =}

28 input timerange

29 output ia16020

30 output nextstate_start

31

32 reaction(timerange) -> ia16020, nextstate_start {=

33 timerange = timerange.value[0] < timerange.value[1]

34 mc = True

75

B. Source Code: Reactors & State Variables Implementation

35 #check time range

36 if not timerange:

37 ia16020.set(self.tele.ia16020[1]) #ia16020_CB_NEGATIVE

38 nextstate_idle.set(self.states[0])

39 mc = False

40

41 if mc:

42 #check message count

43 st,end = timerange.value[0], timerange.value[1]

44 leng = self.db.retrieve_logs(st, end, size=True)

45 if leng < 1:

46 ia16020.set(self.tele.ia16020[2]) #ia16020_CB_POSITIVE_NO_TEXT

47 nextstate_start.set(self.states[0])

48 elif leng > 20:

49 ia16020.set(self.tele.ia16020[3]) #ia16020_CB_INFO_TEXT

50 nextstate_start.set(self.states[2])

51 else:

52 ia16020.set(self.tele.ia16020[4]) #ia16020_CB_POSITIVE_WITH_TEXT

53 nextstate_start.set(self.states[3])

54 =}

55 }

56

57 reactor AwaitUserReaction {

58 preamble {=

59 import telegrams

60 tele = telegrams.Telegrams()

61 =}

62 input ia16530

63 output ia16020

64 output send_docu_messages

65 output nextstate_aur

66

67 reaction(ia16530) -> ia16020, send_docu_messages {=

68 if ia16530.value == self.tele.user_reaction[4]: #USER_REACTION_NEGATIVE

69 nextstate_aur.set(self.states[0])

70

71 elif ia16530.value == self.tele.user_reaction[3]: #USER_REACTION_POSITIVE

72 ia16020.set(self.tele.ia16020[4]) #ia16020_CB_POSITIVE_WITH_TEXT

73 nextstate_aur.set(self.states[2])

74 send_docu_messages.set(True)

75 =}

76

76 }

77

78 reactor SendDocuMessages {

79 preamble {=

80 import telegrams

81 tele = telegrams.Telegrams()

82 =}

83 input send_docu_messages

84 input ia16520

85 output ia16030

86 output nextstate_sdm

87

88 reaction(send_docu_messages) ia16520 -> ia16030, nextstate_sdm {=

89 st,end = ia16520.value[0], ia16520.value[1]

90 data =self.db.retrieve_logs(st, end)

91 ia16030.set(data)

92 nextstate_sdm.set(self.states[0])

93 =}

94 }

95

96 reactor dispatcher_in {

97 preamble {=

98 import telegrams

99 tele = telegrams.Telegrams()

100 states = ["Idle","Start", "AwaitUserReaction", "SendDocuMessages"]

101 =}

102

103 input ia16520

104 input ia16530

105 input nextstate_idle

106 input nextstate_start

107 input nextstate_aur

108 input nextstate_sdm

109

110 output ia16520_idle

111 output ia16530_aur

112 output ia16020_timeout

113 output timeout

114

115 state st = "Idle"

116

77

B. Source Code: Reactors & State Variables Implementation

117 physical action time_out

118 state timeout_counter = 0

119

120 reaction(time_out) -> ia16020_timeout, timeout {=

121 if self.st == self.states[1] and (self.timeout_counter <= 1):

122 ia16020_timeout.set(self.tele.ia16020[6]) #ia16020_CB_TIMEOUT

123 timeout.set(True)

124 self.st = self.states[0]

125 self.timeout_counter -= 1

126 =}

127

128 reaction(nextstate_start, nextstate_aur, nextstate_idle, nextstate_sdm) {=

129 if nextstate_start.is_present:

130 self.st = nextstate_start.value

131 if self.st == self.states[2]:

132 print("Timeout Scheduled")

133 time_out.schedule(SEC(10))

134 self.timeout_counter += 1timerange

135 self.st = nextstate_aur.value

136 elif nextstate_idle.is_present:

137 self.st = nextstate_idle.value

138 elif nextstate_sdm.is_present:

139 self.st = nextstate_sdm.value

140 =}

141

142 reaction(ia16520) -> ia16520_idle {=

143 if self.st == self.states[0]:

144 ia16520_idle.set(ia16520.value)

145 =}

146

147 reaction(ia16530) -> ia16530_aur {=

148 if self.st == self.states[2]:

149 ia16530_aur.set(ia16520.value)

150 =}

151 }

152

153 reactor Simu {

154 preamble {=

155 import telegrams

156 import db

157 tele = telegrams.Telegrams()

78

158 states = ["Idle","Start", "AwaitUserReaction", "SendDocuMessages"]

159 =}

160 input ia16520

161 input ia16530

162 output ia16020

163 output ia16030

164 output timeout

165

166 idle = new Idle()

167 start = new Start()

168 await_user_reaction = new AwaitUserReaction()

169 send_docu_messages = new SendDocuMessages()

170 dis_in = new dispatcher_in()

171

172 ia16520 -> dis_in.ia16520

173 ia16530 -> dis_in.ia16530

174 ia16520 -> send_docu_messages.ia16520

175

176 dis_in.ia16520_idle -> idle.ia16520

177 dis_in.ia16530_aur -> await_user_reaction.ia16530

178

179 idle.timerange -> start.timerange

180 await_user_reaction.send_docu_messages -> send_docu_messages.send_docu_messages

181

182 dis_in.timeout -> timeout

183 send_docu_messages.ia16030 -> ia16030

184

185 idle.nextstate_idle -> dis_in.nextstate_idle after 0

186 start.nextstate_start -> dis_in.nextstate_start after 0

187 await_user_reaction.nextstate_aur -> dis_in.nextstate_aur

188 send_docu_messages.nextstate_sdm -> dis_in.nextstate_sdm after 0

189

190 reaction(start.ia16020, await_user_reaction.ia16020, dis_in.ia16020_timeout) ->

ia16020 {=

191 if start.ia16020.is_present:

192 ia16020.set(start.ia16020.value)

193 elif await_user_reaction.ia16020.is_present:

194 ia16020.set(await_user_reaction.ia16020.value)

195 elif dis_in.ia16020_timeout.is_present:

196 ia16020.set(dis_in.ia16020_timeout.value)

197 =}

79

B. Source Code: Reactors & State Variables Implementation

198 }

Listing B.3. Source code Reactors & State Variables Simu

80

Bibliography

[BLW+22] Soroush Bateni, Marten Lohstroh, Hou Seng Wong, Rohan Tabish,
Hokeun Kim, Shaokai Lin, Christian Menard, Cong Liu, and Edward A.
Lee. Xronos: predictable coordination for safety-critical distributed embedded
systems. 2022. arXiv: 2207.09555 [cs.DC]. url: https://doi.org/10.48550/arXiv.

2207.09555.

[Bre00] Eric A Brewer. “Towards robust distributed systems”. In: PODC. Vol. 7.
10.1145. Portland, OR. 2000, pp. 343477–343502.

[Bre12] Eric Brewer. “Cap twelve years later: how the "rules" have changed”. In:
Computer 45.2 (2012), pp. 23–29. doi: 10.1109/MC.2012.37.

[HDM+14] Reinhard von Hanxleden, Björn Duderstadt, Christian Motika, Steven
Smyth, Michael Mendler, Joaquín Aguado, Stephen Mercer, and Owen
O’Brien. “Sccharts: sequentially constructive statecharts for safety-critical
applications: hw/sw-synthesis for a conservative extension of syn-
chronous statecharts”. In: SIGPLAN Not. 49.6 (June 2014), pp. 372–383.
issn: 0362-1340. doi: 10.1145/2666356.2594310. url: https://doi.org/10.1145/

2666356.2594310.

[Hew77] Carl Hewitt. “Viewing control structures as patterns of passing mes-
sages”. In: Artificial Intelligence 8.3 (1977), pp. 323–364. issn: 0004-3702.
doi: https://doi.org/10.1016/0004-3702(77)90033-9. url: https://www.sciencedirect.com/

science/article/pii/0004370277900339.

[LAB+23] Edward A. Lee, Ravi Akella, Soroush Bateni, Shaokai Lin, Marten
Lohstroh, and Christian Menard. “Consistency vs. availability in dis-
tributed cyber-physical systems”. In: ACM Trans. Embed. Comput. Syst.
22.5s (Sept. 2023). issn: 1539-9087. doi: 10.1145/3609119. url: https://doi.org/
10.1145/3609119.

[Lam19] Leslie Lamport. “Time, clocks, and the ordering of events in a distributed
system”. In: Concurrency: The Works of Leslie Lamport. New York, NY,
USA: Association for Computing Machinery, 2019, pp. 179–196. isbn:
9781450372701. url: https://doi.org/10.1145/3335772.3335934.

[LBL+21] Edward A. Lee, Soroush Bateni, Shaokai Lin, Marten Lohstroh, and
Christian Menard. Quantifying and generalizing the cap theorem. 2021.
arXiv: 2109.07771 [cs.DC].

81

https://arxiv.org/abs/2207.09555
https://doi.org/10.48550/arXiv.2207.09555
https://doi.org/10.48550/arXiv.2207.09555
https://doi.org/10.1109/MC.2012.37
https://doi.org/10.1145/2666356.2594310
https://doi.org/10.1145/2666356.2594310
https://doi.org/10.1145/2666356.2594310
https://doi.org/https://doi.org/10.1016/0004-3702(77)90033-9
https://www.sciencedirect.com/science/article/pii/0004370277900339
https://www.sciencedirect.com/science/article/pii/0004370277900339
https://doi.org/10.1145/3609119
https://doi.org/10.1145/3609119
https://doi.org/10.1145/3609119
https://doi.org/10.1145/3335772.3335934
https://arxiv.org/abs/2109.07771

Bibliography

[LBL+23a] Edward A. Lee, Soroush Bateni, Shaokai Lin, Marten Lohstroh, and
Christian Menard. “Trading off consistency and availability in tiered
heterogeneous distributed systems”. In: Intelligent Computing 2 (2023),
p. 0013. doi: 10.34133/icomputing.0013. eprint: https://spj.science.org/doi/pdf/

10.34133/icomputing.0013. url: https://spj.science.org/doi/abs/10.34133/

icomputing.0013.

[LBL+23b] Edward A. Lee, Soroush Bateni, Shaokai Lin, Marten Lohstroh, and
Christian Menard. “Trading off consistency and availability in tiered
heterogeneous distributed systems”. In: Intelligent Computing 2 (2023),
p. 0013. doi: 10.34133/icomputing.0013. eprint: https://spj.science.org/doi/pdf/

10.34133/icomputing.0013. url: https://spj.science.org/doi/abs/10.34133/

icomputing.0013.

[LL19] Marten Lohstroh and Edward A. Lee. “Deterministic actors”. In: 2019
Forum for Specification and Design Languages (FDL). 2019, pp. 1–8. doi:
10.1109/FDL.2019.8876922.

[LMB+21] Marten Lohstroh, Christian Menard, Soroush Bateni, and Edward A.
Lee. “Toward a lingua franca for deterministic concurrent systems”. In:
ACM Trans. Embed. Comput. Syst. 20.4 (May 2021). issn: 1539-9087. doi:
10.1145/3448128. url: https://doi.org/10.1145/3448128.

[LMS+20] Marten Lohstroh, Christian Menard, Alexander Schulz-Rosengarten,
Matthew Weber, Jeronimo Castrillon, and Edward A. Lee. “A language
for deterministic coordination across multiple timelines”. In: 2020 Forum
for Specification and Design Languages (FDL). 2020, pp. 1–8. doi: 10.1109/

FDL50818.2020.9232939.

[Loh20] Marten Lohstroh. “Reactors: a deterministic model of concurrent compu-
tation for reactive systems”. PhD thesis. EECS Department, University
of California, Berkeley, Dec. 2020. url: http://www2.eecs.berkeley.edu/Pubs/
TechRpts/2020/EECS-2020-235.html.

[LRG+20] Marten Lohstroh, Íñigo Íncer Romeo, Andrés Goens, Patricia Derler,
Jeronimo Castrillon, Edward A. Lee, and Alberto Sangiovanni-Vincentelli.
“Reactors: a deterministic model for composable reactive systems”. In:
Cyber Physical Systems. Model-Based Design. Ed. by Roger Chamberlain,
Martin Edin Grimheden, and Walid Taha. Cham: Springer International
Publishing, 2020, pp. 59–85. isbn: 978-3-030-41131-2.

[MLB+23] Christian Menard et al. “High-performance deterministic concurrency
using lingua franca”. In: CoRR abs/2301.02444 (2023). doi: 10.48550/arXiv.

2301.02444. arXiv: 2301.02444. url: https://doi.org/10.48550/arXiv.2301.02444.

82

https://doi.org/10.34133/icomputing.0013
https://spj.science.org/doi/pdf/10.34133/icomputing.0013
https://spj.science.org/doi/pdf/10.34133/icomputing.0013
https://spj.science.org/doi/abs/10.34133/icomputing.0013
https://spj.science.org/doi/abs/10.34133/icomputing.0013
https://doi.org/10.34133/icomputing.0013
https://spj.science.org/doi/pdf/10.34133/icomputing.0013
https://spj.science.org/doi/pdf/10.34133/icomputing.0013
https://spj.science.org/doi/abs/10.34133/icomputing.0013
https://spj.science.org/doi/abs/10.34133/icomputing.0013
https://doi.org/10.1109/FDL.2019.8876922
https://doi.org/10.1145/3448128
https://doi.org/10.1145/3448128
https://doi.org/10.1109/FDL50818.2020.9232939
https://doi.org/10.1109/FDL50818.2020.9232939
http://www2.eecs.berkeley.edu/Pubs/TechRpts/2020/EECS-2020-235.html
http://www2.eecs.berkeley.edu/Pubs/TechRpts/2020/EECS-2020-235.html
https://doi.org/10.48550/arXiv.2301.02444
https://doi.org/10.48550/arXiv.2301.02444
https://arxiv.org/abs/2301.02444
https://doi.org/10.48550/arXiv.2301.02444

Bibliography

[SHL+23] Alexander Schulz-Rosengarten, Reinhard von Hanxleden, Marten Lohstroh,
Soroush Bateni, and Edward A. Lee. “Modal reactors”. In: CoRR abs/2301.09597
(2023). doi: 10.48550/arXiv.2301.09597. arXiv: 2301.09597. url: https://doi.org/10.

48550/arXiv.2301.09597.

[ZLL07] Yang Zhao, Jie Liu, and Edward A. Lee. “A programming model for
time-synchronized distributed real-time systems”. In: 13th IEEE Real
Time and Embedded Technology and Applications Symposium (RTAS’07). 2007,
pp. 259–268. doi: 10.1109/RTAS.2007.5.

83

https://doi.org/10.48550/arXiv.2301.09597
https://arxiv.org/abs/2301.09597
https://doi.org/10.48550/arXiv.2301.09597
https://doi.org/10.48550/arXiv.2301.09597
https://doi.org/10.1109/RTAS.2007.5

	Introduction
	Related Work
	Problem Statement
	Outline

	Foundations & Used Technologies
	Actors
	Logical Time and Superdense Time
	Reactors and Reactions
	Timers, States, Actions, Preambles and Composition
	Modal Reactors & Deadlines
	Distributed Execution

	Concepts & Implementation
	Conceptional considerations
	Implementation: State Variables
	Implementation. Reactors & State Variables
	Implementation: Modes

	Evaluation
	Evaluating the Implementation
	Opinions from Developers
	The CAL Theorem

	Conclusion & Further Work
	Source Code: Modal Reactors Implementation
	Source Code: Reactors & State Variables Implementation
	Bibliography

