
Model-based Compilation
of Legacy C Programs

Stephan Lenga

Bachelorarbeit
2016

Institut für Informatik
Arbeitsgruppe Echtzeitsysteme und Eingebettete Systeme

Prof. Dr. Reinhard von Hanxleden
Department of Computer Science

Kiel University

Advised by
Dipl.-Inf. Steven Smyth

Eidesstattliche Erklärung

Hiermit erkläre ich an Eides statt, dass ich die vorliegende Arbeit selbstständig verfasst und
keine anderen als die angegebenen Quellen und Hilfsmittel verwendet habe.

Kiel,

iii

Abstract

As the development rate of software for nearly every sector of the industry is reaching new
record highs, software engineers struggle to manually maintain the vast amount of legacy
code. Therefore, it is of great interest to create a system which supports the maintenance of
software and its legacy code. Even though software solutions already exist, none of them
satisfies the numerous requirements which arise in practice.

This thesis aims at extending the functionality of the model-based compilation of legacy C
programs of KIELER. It presents a way of converting non-concurrent, non-dynamic legacy C
code to Sequentially Constructive Charts (SCCharts), which were developed by von Hanxleden
et al., and focuses on the conversion and visual representation of control structures and
function calls. The first goal of this thesis is the extraction of SCCharts that visualize the
functionality of the legacy code in a more organized and intuitive fashion. These charts
provide an intermediate format which facilitates software maintenance as well as source
code modifications. The second goal is to extend the KIELER compilation process of extracted
SCCharts. In particular, a compilation procedure for SCCharts which contain function calls
is added to the KIELER software package. As a last step, the advantages of the extended
functionality are assessed. Therefore, created SCCharts models are compared to the results of
the previous prototype of the model-based compilation of KIELER. Structural changes of the
code visualization are analyzed and the legacy C code is compared directly to the generated
C code.

iv

Acronyms

ASC Acyclic Sequential Constructiveness

ASCET Advanced Simulation and Control Engineering Tool

ASCET-MD ASCET Model and Design

ASCET-SE ASCET Software Engineering

AST abstract syntax tree

CDT Eclipse C/C++ Development Tooling

DebuKViz KIELER Debug Visualization

ECU electronic control unit

HTML HyperText Markup Language

IDE integrated development environment

iur initialize-update-read

KiCo KIELER Complier

KIELER Kiel Integrated Environment for Layout Eclipse Rich Client

KIEM KIELER Execution Manager

KlassViz KIELER Class Diagram Visualization

KLighD KIELER Lightweight Diagrams

M2M model-to-model

M2T model-to-text

MDSD Model-driven software development

MoC Model of Computation

MoCs Model of Computations

PDF Portable Document Format

RCP Rich Client Platform

v

Acronyms

SCADE Safety-Critical Application Development Environment

SCChart Sequentially Constructive Chart

SCCharts Sequentially Constructive Charts

SCG Sequentially Constructive Graph

SC MoC Sequentially Constructive Model of Computation

SLIC single-pass language-driven incremental compilation

T2M text-to-model

T2M2T text-to-model-to-text

UI user interface

UML Unified Modeling Language

WTO Write-Things-Once

vi

Contents

Acronyms v

Contents vii

List of Figures ix

1 Introduction 1
1.1 Model-driven Software Development with KIELER 2
1.2 SCCharts . 3
1.3 Incremental Compilation of SCCharts . 4
1.4 Problem Statement . 5
1.5 Outline of this Thesis . 5

2 Related Work 7

3 Used technologies 11
3.1 Eclipse . 11

3.1.1 Eclipse C/C++ Development Tooling . 12
3.1.2 Xtend . 12

3.2 KIELER . 13

4 Model-based Compilation of Legacy C Programs 17
4.1 SCCharts and their Compilation in KIELER . 17

4.1.1 Sequential Constructiveness . 23
4.1.2 The Interactive Compilation of SCCharts in KIELER 24

4.2 Generating ASTs from C code . 29
4.3 Creating SCCharts from an AST . 31

4.3.1 Functions . 31
4.3.2 Variable Declarations and Assignments 31
4.3.3 Control Structures . 32
4.3.4 Function Calls . 39

4.4 Compiling the extracted SCChart . 42
4.4.1 Extracted C Code . 45

5 Implementation of the Model-based Compilation of Legacy C Programs 49
5.1 CDTProcessor . 50
5.2 Immediate Transitions Transformation . 55

vii

Contents

6 Evaluation 57
6.1 Evaluating the Code Visualization . 57
6.2 Evaluating the Code Generation . 59

7 Conclusion 63
7.1 Summary . 63
7.2 Future Work . 64

8 Appendix 67
A Generated AST . 67
B Generated C code . 68

Bibliography 71

viii

List of Figures

1.1 Overview of the KIELER . 2
1.2 Visual representation of variable declarations and assignments 3
1.3 Overview of the KiCo compilation chain and its features 4

2.1 Generated landscape of a software system . 8

3.1 Overview of an Eclipse workbench and its different views 11
3.2 Overview of the visualization of a model in KIELER 15

4.1 Overview of Core SCCharts of Extended SCCHarts features [HDM+14b] . . . 18
4.2 The WTO principle . 20
4.3 Example of strong and weak aborts . 20
4.4 Comparing the behavior of history transitions and weak abort transitions . . . 21
4.5 Reference states in SCCharts . 22
4.6 The KIELER workbench including additional annotations for the user story for

the interactive compilation . 24
4.7 The compilation tree from Extended SCCharts to C code is grouped into a

high-level phase and two different low-level phases [MSH14] 25
4.8 Overview of normalized SCCharts and SCG components [MSH14] 26
4.9 Transforming an Extended SCChart to a Core SCChart and thereafter to an SCG . 27
4.10 Division of the SCG of Figure 4.9c into basic blocks with guards. Thereafter, the

SCG is sequentialized. 28
4.11 Representing C code with the help of ASCs . 30
4.12 Visual representation of variable declarations and assignments 31
4.13 Comparison of different visualizations of C code 33
4.14 Visual representation of if-then-else control structures 34
4.15 Visual representation of a for loop . 35
4.16 Visual representation of a while loop and a do-while loop 36
4.17 Visual representation of a switch statement . 37
4.18 Visual representation of nested return statements 38
4.19 Nested visual representation of a function call 40
4.20 Visual representation of a function call with an outsourced called function state 41
4.21 Visual representation of a function call by using a referenced state 41
4.22 Single expansion of a recursive reference state 42
4.23 Concept idea for handling recursive function calls 43
4.24 Using the Immediate Transitions transformation step in order to avoid instanta-

neous loop . 44

ix

List of Figures

4.25 Generated SCG and C code from the SCChart shown in Figure 4.14 46
4.26 Excerpt from the generated C code of the SCChart shown in Figure 4.21 47

6.1 Comparing the previous and the newly developed visualization of C code. . . 58
6.2 Newly developed visualization of the C code of Listing 6.1a 59
6.3 Comparing the previous and the newly developed visualization of function calls 60
6.4 Generated C code plus manually added code from SCChart shown in Figure 6.3c.

This code calculates the sum of two integers. 62

B.1 Generated C code plus added header files and main function from SCChart

shown in Figure 4.14. 68

x

Chapter 1

Introduction

In order to keep up with the rapid growth of the software industry and the constant change
of user requirements, software development businesses need to respond quickly by adapting
their already existing products or developing new software. As a result, it is speculated
that the development of new software is outpacing the ability to maintain it. This alarming
development is even labeled by Robert C. Seacord as the Legacy Crisis [SPL03, Chapter 1.3].
To maintain and modernize software, the legacy code needs to be modified and adapted. In
the context of this thesis, legacy code is defined as a code that is maintained by someone other
than the developer or which was written a longer time ago. Therefore, this task often causes
difficulties especially when the legacy code of a complex system is not well-commented and
consequently hard to understand. Thus, software modernization is costly and time consuming
if it is done without the support of other technologies.

Model-driven software development (MDSD) is an approach which aims to support soft-
ware modernization. Initially, it was created to develop new software, but recently it is
also used for maintaining existing software systems [IM14]. MDSD makes use of graphical
models to provides a clear overview of general concepts, core functionality and structural
composition of software. The representing models are created with the help of modeling
languages. Modeling languages are visual programming languages which specialize in the
specification of the requirements, the structure or the inner control flow of software systems.
This is achieved by using a high level of abstraction. Sophisticated MDSD tools do not only
enable the user to manually create models but also provide means for extracting models from
source code [Sch06]. For an introduction of important MDSD tools, the reader is referred to
Chapter 2. The extracted models then serve as a medium to clarify and simplify complex
processes as well as an intermediate format to generate source code from. The process from
the model extraction from source code up to the generation of source code of the extracted
models will be called text-to-model-to-text (T2M2T) engineering in this thesis.

With the help of model extraction, the legacy source code of a software is visualized
by model extraction. The purpose of the created model is to support the readability and
maintainability of the supposedly insufficiently commented code. After the model has been
changed for maintenance or functionality enhancement purposes, source code can then be
generated again. Therefore, T2M2T engineering enables the user to fast prototyping and tem-
plate generation of software systems. But in order to generate source code that is semantically
equivalent to the legacy code, no information can get lost during this process. Consequently,
it does not suffice that the visualizing model only contains the main functionality or a rough
overview of a system. It needs to represent all information that is in any way important

1

1. Introduction

Kieler Semantics
SCCharts, SCL, KICo,

KIEM, KLOTS

Demonstrators
KGraph Text, Ptolemy
Browser, KLighDning

OpenKieler
DebuKViz, KlassViz,
EcoreViz, KLayJS-D3

Kieler Pragmatics
KLighD, KIVi, KSBase

Eclipse Layout Kernel
Layout infrastructure and algorithms

Figure 1.1. Overview of the KIELER1

to the functionality while still providing a clear and understandable model. Existing MDSD

tools do not provide a satisfying solution for this challenge. Many tools either specialize on
text-to-model (T2M) transformations which extract models from source code, or on model-
to-text (M2T) transformations to generate source code from models. If a T2M2T feature is
provided, it typically does not yield the desired results of generating semantically equivalent
source code. The generated source code can only be seen as a code template which needs
to be filled by the user rather than an executable source code. With the help of the results
of this thesis, KIELER aims to provide a T2M2T feature which enables the user to generate
semantically equivalent source code. As a result, the use of KIELER will lead to cost reductions
of maintenance services and development processes.

1.1 Model-driven Software Development with KIELER

The Kiel Integrated Environment for Layout Eclipse Rich Client (KIELER) is a research project
which is developed by the Real-Time and Embedded Systems Group at the Kiel University,
Germany. The primary objective is the enhancement of the model-based design of complex
systems. By arranging graphical components with the help of automatic layout algorithms,
and consequently freeing the user from redundant tasks, it improves development and
maintainability. KIELER is divided into multiple parts, which is illustrated in Figure 1.1. One
of the main tasks of the Kieler Semantics team is the definition of execution semantics for
synchronous languages, such as SCCharts. The prototype of the model-based compilation of

1https://rtsys.informatik.uni-kiel.de/confluence/display/KIELER/Overview

2

1.2. SCCharts

legacy C code [Ols16], which functions as a basis for this thesis, is also part of this work. The
Kieler Pragmatics team provides means to visualize, edit and create models. The Eclipse Layout
Kernel includes various layout algorithms and connects the graphical editors to them. The
reader is referred to Chapter 3.2 for a more detailed presentation of the project structure of
KIELER.

1.2 SCCharts

1 int f(int a, int b) {

2 if (a < b) {

3 while (a <= 0.5 * b) {

4 a = a + 1;

5 }

6 return a;

7 } else {

8 return 0;

9 }

10 }

(a) C code of a first example

f
output int return
input int a
input int b

checkCondition

WhileDo

returnZero
 return = 0

returnA
return = a

1: a < b

1: a <= 0.5 * b

 / a = a + 1

2:

2:

[-]

(b) Manually created SCChart model which represents the C code of
Figure 1.2a

Figure 1.2. Visual representation of variable declarations and assignments

Sequentially Constructive Charts (SCCharts) [HDM+14b] is a visual synchronous modeling
language which is specialized in specifying safety-critical systems. This language uses a
statechart notation [Har87] and provides determinate concurrency. The basis of SCCharts is
formed by Core SCCharts which consist of a minimal set of constructs in order to model basic
state machines. Extended SCCharts build on this foundation to provide more elaborate features
and syntactical sugar and thus enhance the expressiveness and the readability of the created
models. Extended SCCharts can be reduced to semantically equivalent Core SCCharts via model-
to-model (M2M) transformations. By this, complexity is minimized. Furthermore, the Core
SCCharts are used for compilation purposes. Figure 1.2b shows an introductory example of a
Core SCChart which was manually modeled in KIELER. It represents the C code of Listing 1.2a.
With the help of this example, basic functionalities and features of SCCharts are introduced.
This naive approach is one of many ways of modeling the functionality of the given method f.

This SCChart consists of a root state named f. Input and output variables as well as entry
actions are always noted below the name. They are called interface declarations. Entry actions
are executed when the respective state is entered. The state f has one region. Furthermore, a
state can have multiple regions. Each region can be seen as a thread which runs concurrently
to others. The region of f contains four other states namely checkCondition, returnZero, While

and returnA. checkCondition is the initial state of its region, which can be recognized by the bold
border. It is mandatory that every region has exactly one initial state. It serves as a starting
point for the control flow. Transitions, which are indicated by arrows, connect states and show

3

1. Introduction

Figure 1.3. Overview of the KiCo compilation chain and its features

the possible control flow inside the region. Transitions can have triggers and action which are
separated by a forward slash. The trigger of a transition needs to be fulfilled in order to enable
the transition and to execute its action. A transition without a specified trigger is always
enabled. In case a state has multiple outgoing transitions, priorities show the order in which
the triggers of these transitions are checked. They are illustrated by a number in front of the
trigger of the transition. The lower the number, the higher the priority. Solid-lined arrows
represent delayed transitions. They are disabled in the same tick in which the source state got
entered. Dashed arrows depict immediate transitions, which do not have this restriction. A
tick is a signal from the outer environment of the SCChart that discretizes time. A state is left
when all of its regions have reached a final state and are therefore terminated. A final state is
characterized by a double-line boarder. Further information on additional features of SCCharts

are presented in Chapter 4.1.

Starting at the initial state checkCondition, the condition of the if statement is checked. Since
the priority of the bottom transition is higher than the upper transition, it is checked whether
a is less than b. If this is not the case, the upper transition is taken. The final state returnZero is
entered, the entry action return = 0 is executed and the region of the superstate f terminates.
Provided that the condition of the if statement is satisfied, the state while is reached. Here, a is
incremented as long as a is less or equal than half of b. If this does not apply anymore, the
final state returnA is entered and the output variable return is set to the value of a.

1.3 Incremental Compilation of SCCharts

Part of KIELER is the KIELER Complier (KiCo) project which allows for a step-by-step transfor-
mation of SCCharts to C code via semantic-preserving M2M transformations. This approach
is called single-pass language-driven incremental compilation (SLIC) [MSH14]. Figure 1.3 shows
one possible compilation chain and its transformation features. This includes the feature
Immediate Transitions, which is implemented in this thesis. This transformation step and its
necessity is explained in Chapter 4.4. Multiple transformation features can be combined to
feature groups, which are represented as rectangles. A group can be expanded to show the
containing transformation features, as depicted by the group Core SCCharts in the figure above.
Transformations of features may depend on prior transformations. SLIC lets the user choose
which transformation steps are to be executed and then immediately displays intermediate
results for validation and debugging. Dependencies are resolved automatically.

4

1.4. Problem Statement

1.4 Problem Statement

The goal of this thesis is the improvement of the maintainability and the readability of legacy
C code by converting it to an SCCharts model, which expresses the same functionality as the
source code itself. This extracted model helps the user to understand and even to modify
the program. An SCChart then functions as an intermediate format to generate executable
code. In order to achieve a high scalability of information visualization, a structured graphical
representation of C code needs to be developed. Especially the modeling of control structures
and function calls present a serious challenge because the boundaries of those constructs
can easily become unclear. As an addition, the representing SCChart does not only need
to visualize the main functionality of the program, but it also needs to contain its every
single information. Only then it can generate a semantically equivalent code later on. Having
extracted a representing model from the code, the following step is an M2T transformation
which generates executable C code from the SCCharts model. This job is done by the KiCo

compilation chain that was presented in Chapter 1.3.

1.5 Outline of this Thesis

This section gives the reader a brief overview of all the intermediate steps, first from the
development of the model-based compilation of legacy C code, to the implementation in
KIELER, and finally to the evaluation of the results. Chapter 2 introduces related work that also
provides means for model extraction as well as code generation. Each introduced technology
is compared to the approach of this thesis and its necessity for development is discussed.

Chapter 3 describes technologies that are used throughout the implementation of the
model-based compilation for KIELER. Hence, the KIELER project itself, which has already
been outlined in Chapter 1.1, is looked at in a more detailed way. As KIELER is an Eclipse
project, the Eclipse project2 itself and its sub-project Eclipse C/C++ Development Tooling
(CDT)3 are discussed. Furthermore, the modeling language Xtend4, which is used for M2M

transformations, is introduced.
Chapter 4 presents concepts and ideas for the model-based compilation of non-dynamic,

non-concurrent legacy C code. This chapter is split into two main parts: The first part takes a
closer look on the syntax of SCCharts as well as the language itself and introduces the feature
of referenced SCCharts. Next, the compilation of SCCharts down to C code is explored in more
detail. This is necessary to recognize different possibilities and possible challenges of the
visualization of source code.

The second part focuses on the process of visualizing C code. Therefore, this section of
the chapter explains the extraction of an abstract syntax tree (AST) from the source code.
Its information is used to create a representing model. First, the visualization of variable

2https://eclipse.org/
3https://eclipse.org/cdt/
4http://www.eclipse.org/xtend/

5

1. Introduction

declarations and assignments is explained. Then, the conversion of control structures are
discussed and the problem of representing function calls inside SCCharts and the correct
conversion from and to C code is addressed. Consequently, solutions for the representation
of recursive and non-recursive functions are developed, which are defined inside the .c-file
we want to convert. Throughout this chapter, new ideas for the graphical representation of
source code is compared to previous visualizations of the already implemented prototype.

Chapter 5 describes the essential parts of the implementation of the concepts which were
introduced in Chapter 4. The focus lies on the changes and improvements of the CDTProcessor,
which is responsible for the M2M transformations.

Once the theory and implementation has been covered, Chapter 6 evaluates the results
and compares extracted models and generated code to those of the prototype. The evaluation
focuses on the size and therefore on the number of states in a model and analyses the
generated C code.

Chapter 7 concludes this thesis. It summarizes the findings and results and gives an
outlook for future work.

6

Chapter 2

Related Work

This chapter introduces already established technologies and modeling tools which also
provide code-to-model and/or model-to-code transformations. The necessity for the develop-
ment of the model-based compilation of legacy C code in KIELER is emphasized by comparing
each presented technology to the approach of the thesis.

Visual Paradigm

Visual Paradigm1 by Visual Paradigm International is a cross-platform modeling and man-
agement tool for IT systems. Its range of application reaches from modeling of software and
databases to code generation and up to creating business process models. Therefore, this
tool makes use of modeling languages such as Unified Modeling Language (UML)2 to define
specifications, create documentations and to assess requirements of the modeled system.
Visual Paradigm supports several types of diagrams. Some of the more used types are class
diagrams, activity diagrams and state machine diagrams [RLR+13]. Another important feature
is the round-trip function for Java and C++ code. Round-trip engineering enables the user to
generate a model from the source code and generate source code from a model.

This thesis also aims at providing a method for round-trip engineering C code. Handling
C code is especially of interest when developing real-time and embedded systems. Besides,
surveys have shown that C has been one of the most used programming languages for
many years3. SCCharts as a modeling language has certain advantages over the state machine
diagrams used in Visual Paradigm. It is easier to specify and design complex systems such
as safety-critical reactive systems. The code generation of Visual Paradigm delivers a source
code that is rather a scaffold code than an executable code. With the help of the model-based
compilation, which is provided by this thesis, KIELER generates executable code that does not
need further editing of the user.

ExplorViz

ExplorViz [FWW+13] is a monitoring tool for providing live trace visualization of the com-
munication in complex software systems as well as performance analysis. It is developed by
the research group Software Engineering at the Kiel University, Germany. A software system

1https://www.visual-paradigm.com/
2http://www.uml.org/
3http://www.tiobe.com/tiobe-index/

7

2. Related Work

Figure 2.1. Generated landscape of a software system4

can be visualized as an interactive 3D city model which displays the packages of the system
as boxes. These boxes can then be opened to reveal the inside, which can be other packages
or classes. Classes are visualized by blue sticks. Their height is determined by the number of
function calls of this class. Function calls are shown as yellow lines which connect two blue
sticks. Figure 2.1 is an exemplary illustration of a generated city model of a software system.

ExplorVis is able to give the user an overview of the flow of communications, but does
not grant insight to the actual behavior of a function. A M2T code generation is not possible.
Hence, the model-based compilation of KIELER is more suitable for maintaining the legacy
code of a software system, rather than monitoring it.

Ptolomy II

Ptolomy II5 is an open-source software for developing and simulating actor-oriented models.
It is developed in the Center for Hybrid and Embedded Software Systems of the University
of California, Berkeley [BHL+02]. Actors are defined as software components. They execute
concurrently and communicate with each other through message passing via interconnected
ports. Hence, a model is composed of hierarchical interconnections of its actors. Another
particular feature is the introduction of a director. A director defines the semantics of the model
rather than the framework itself and implements its Model of Computation (MoC). Ptolomy
II provides a set of directors which support different types of models such as discrete-event
models, continuous-time models and synchronous/reactive models. Each level of hierarchy
in a model can have its own director. Therefore, multiple MoCs can be combined.

4https://www.explorviz.net/media.php
5http://ptolemy.eecs.berkeley.edu/ptolemyII/

8

Additionally, Ptolomy II enables C code generation from actor models. The .c-file is created
by connecting specific template files for the different actors. These template files consist of
code blocks. It is to be stated that there are only a limited number of actor types which
are provided with supporting helper code. Secondly, only a small set of model types are
supported. That is why there are many limitations to the code generation. The resulting C
code serves as a template which needs to be filled with information rather than an executable
code. Therefore, the code generation can be viewed as a concept demonstration.

ASCET

The Advanced Simulation and Control Engineering Tool (ASCET)6 by ETAS GmbH is a product
family for the model-based development of embedded automotive software which specialized
on code generation. This product family consists of combinable software tools. Each of them
focuses on a different set of tasks. Exemplarily, the tool ASCET Model and Design (ASCET-MD)
is used to model physical systems while the tool ASCET Software Engineering (ASCET-SE)
enables executable C code to be generated. Additionally, a number of static analysis and
tests validate models. The main application area of ASCET is the modeling of and the code
generation for safety-critical systems such as an electronic control unit (ECU) for vehicles.
As a result, the correctness and robustness of the generated code is essential. Thanks to
automatically included defensive coding checks in the generated code, run time errors are
handled. To support the claim of high quality, the code generator of ASCET is certified by
multiple norms including IEC 61508 and ISO/DIS 26262 which are norms for safety-critical
systems.

While the standard of M2T code generation sets an example for the KIELER code gener-
ation, ASCET lacks the functionality of round-trip engineering. Therefore, the model-based
compilation of legacy C code of KIELER provides a critical missing feature.

SCADE

The Safety-Critical Application Development Environment (SCADE) Suite7 product by Esterel
Technologies is an MDSD tool for developing safety-critical embedded software. It is based on
the formally defined declarative and synchronous data-flow programming language Lustre
[HCR+91] which is primarily used for critical control software of aircrafts, helicopters as well
as nuclear power plants. SCADE features a graphical and textual editor for modeling data-flow
and state machine charts. Furthermore, simulators and methods for formal verification of
models ensure the quality of the created models. The certified code generator of SCADE then
has the possibility of generating C code. Like ASCET, SCADE convinces with the quality of
code generation but lacks the round-trip engineering.

6http://www.etas.com/de/products/ascet_software_products.php
7http://www.esterel-technologies.com/products/scade-suite/

9

2. Related Work

Doxygen

Doxygen is a tool for generating software reference documentation. Therefore, the user must
modify their source code by adding Doxygen documentation commands. These commands
are then used to generate the program documentation. The documentation can either be
of textual or graphical type. Multiple output types are supported like HyperText Markup
Language (HTML), Portable Document Format (PDF) or LATEX. It is also possible to extract the
code structure from an undocumented source file in order to provide a general overview.
Doxygen supports a multitude of programming languages including C, C++, Java, PHP and
Python.

While Doxygen is used to provide an overview over a software system by using model
extraction, the approach of this thesis focuses on providing a generation of executable source
code. Furthermore, the user does not need to edit the legacy code in order to extract models
from it.

10

Chapter 3

Used technologies

Before starting to explain main ideas of this thesis, the reader is introduced to the applied key
technologies throughout the implementation and is given an overview of their main tasks
and use cases. This should provide a better understanding of the presented solutions and
their implementation. Section 3.1 introduces Eclipse, used plug-ins and the programming
language Xtend. Thereafter, Section 3.2 explains the different main areas of the KIELER project.

3.1 Eclipse

The Eclipse Project1 is an open-source software which was initially developed by IBM and
released in 2001. Though it is mostly known for its Java integrated development environment
(IDE), it also offers support for a number of other programming languages such as C, C++ and

1https://eclipse.org/

Navigate through project Edit source code Change active perspective

Overview of compile errors and warnings Overview of console outputs Maneuver through written code

Figure 3.1. Overview of an Eclipse workbench and its different views

11

3. Used technologies

Haskell. Not only can it be used for programming, but also for modeling purposes. With its
extensible plug-in system, the user has the possibility to customize the Eclipse environment
to their liking. For that, Eclipse introduced the Rich Client Platform (RCP) for general purpose
application development. It is a minimal set of plug-ins that are required to build a rich client
application. These mentioned plug-ins manage generally needed tasks including booting
Eclipse, running other plug-ins, managing the Eclipse Workbench with its views and editors
as well as taking care of the file system. Hence, new plug-ins and Eclipse-based applications
can be developed without spending resources on implementing main functionalities like the
one just stated. The mentioned Eclipse workbench is the desktop development environment
which combines multiple perspectives. A perspective defines the set and layout of views and
editors which is aimed to accomplish a specific task. Only one perspective can be active at a
time. An example of a workbench is shown in Figure 3.1.

3.1.1 Eclipse C/C++ Development Tooling

Eclipse C/C++ Development Tooling (CDT)2 is an Eclipse plug-in which serves as a fully
functional IDE for developing applications in C/C++ using the Eclipse. Not only does it
provide a fully featured editor but it also supports services such as source code navigation,
static code analysis, debugging and unit tests. The perspective of the model-based compilation
in KIELER uses such a CDT Editor for the user to input the source code.

3.1.2 Xtend

Xtend3 is a Java dialect which introduces a more compact syntax than Java and additional
convenient features such as type inference, operator overloading and lambda expressions. The
latter is commonly known from functional programming languages. All M2M transformations
in this thesis are implemented with Xtend. Listings 3.1 and 3.2 give the reader a glimpse of the
syntactical differences of Java and Xtend. This simple example presents a class Greeter which
is used to greet a list of people. The method greetABunchOfPeople calls the method sayHello for
each entry of a list of persons. The called method sayHello then prints a personalized greeting
for the respective person. When comparing the two listings, several differences stand out.
One variation to be noticed is the def to declare a method. Another innovation are extension
methods such as forEach. They enable the programmer to add new methods to existing types
without modifying them. Here, the type List<String> is extended by the method forEach which
maps the function println to each entry of the list people with the help of a lambda expression.
Additional features such as type inference, implicit returns and optional semicolons enhance
the readability and give the source code a much leaner look. The given examples were taken
from the official Xtend website3.

2https://eclipse.org/cdt/
3http://www.eclipse.org/xtend/

12

3.2. KIELER

1 package my.company;

2 import java.util.List;

3

4 public class Greeter {

5

6 public void greetABunchOfPeople(List<String> people) {

7 for (String name : people) {

8 System.out.println(sayHello(name));

9 }

10 }

11

12 public String sayHello(String personToGreet) {

13 return "Hello " + personToGreet + "!";

14 }

15 }

Listing 3.1. Java code example

1 package my.company

2 import java.util.List

3

4 class Greeter {

5

6 def greetABunchOfPeople(List<String> people) {

7 people.forEach [

8 println(sayHello)

9]

10 }

11

12 def sayHello(String personToGreet) {

13 "Hello " + personToGreet + "!"

14 }

15 }

Listing 3.2. Java example translated to Xtend

3.2 KIELER

The introduction of this thesis 1.1 already gave a rough overview of the main structure of
the Kiel Integrated Environment for Layout Eclipse Rich Client (KIELER) project4. KIELER is a
research project of the research group Real-Time and Embedded Systems at Kiel University,
Germany. It is based on the Eclipse RCP and aims to enhance the graphical model-based
design of complex systems. KIELER is an open source software and is licensed under the
Eclipse Public License5. With the help of Figure 1.1, Chapter 1.1 introduced the main areas of
KIELER. In the following, a closer look is taken on each of the different areas.

4http://www.rtsys.informatik.uni-kiel.de/en/research/kieler/
5https://eclipse.org/org/documents/epl-v10.php

13

3. Used technologies

Kieler Semantics

This thesis is associated with the area of Kieler Semantics which focuses on the execution
semantics of systems, especially synchronous systems. It provides means to compile and
simulate graphical modeling languages by using simulators based on C or Ptolemy6. Ptolemy
is a platform for modeling and simulating of concurrent, real-time or embedded systems. For
further details see Chapter 2. Simulators are integrated into KIELER by the KIELER Execution
Manager (KIEM).

KIEM7 [Mot09] is responsible for the connection between simulators as well as validation
and visualization components on the one hand and the user interface of KIELER on the other
hand. This link enables the simulation and execution of a given model. At this point it is
emphasized that KIEM does not carry out simulations itself but rather connects all necessary
components to each other.

The KIELER Complier (KiCo)8 [MSH14], which is also part of the Kieler Semantics, al-
lows for a step-by-step transformation of SCCharts to C code via semantic-preserving M2M

transformations. Your own transformations can be written in Xtend or Java. They are then
registered to KiCo by using provided extension points. After a transmission executes, the
result is returned to the compiler. It can now be passed on to other transformations or the
resulting model can be displayed to the user. This string of transformations which depends
on the prior is called a transformation chain. Providing an example, the reader is referred to
Figure 1.3 in the introduction of this thesis.

Kieler Pragmatics

Kieler Pragmatics develops solutions for supporting the daily work of a model developer.
Therefore, the topics tackled are the visualization, the editing and the creation of models.
Means are also provided to synthesize diverse views on the created models. The subproject
KIELER Lightweight Diagrams (KLighD) [SSH13] offers a lightweight representation of models.
A textual model is transformed to a lightweight diagram by a certain synthesis, which defines
how the diagram should look like. As a next step, the created model is handed over to KIELER

layout algorithms which automatically arranges the diagram components to free the user
from the redundant task of positioning the components manually. Figure 3.2 clarifies the
process of the visualization of a textual model.

Eclipse Layout Kernel

This section comprises various layout algorithms and combines them to the graphical editors.
By automatically applying the algorithms to every change the user makes, it completely
relieves from the redundant and time consuming task of firstly developing a clear and

6http://ptolemy.eecs.berkeley.edu/
7https://rtsys.informatik.uni-kiel.de/confluence/pages/viewpage.action?pageId=328095
8https://rtsys.informatik.uni-kiel.de/confluence/display/KIELER/Kieler+Compiler

14

3.2. KIELER

Figure 3.2. Overview of the visualization of a model in KIELER9

comprehensible layout and secondly positioning nodes and edges manually. Consequently,
the user gets an immediate feedback of the changes he applied to the model.

Demonstrators

Demonstrators are the set of different editors of KIELER which can be used for the modeling
input. This thesis makes use of a demonstrator, which is not part of KIELER, namely the
CDT-Editor. This editor is provided by the Eclipse plug-in Eclipse CDT which was introduced
in Chapter 3.1.1. It is used to register the C code input.

Open Kieler

The Open Kieler project is an open source project which is hosted on GitHub10. It encompasses
a selection of demonstrator projects. One of the projects which is part of Open Kieler is KIELER

Class Diagram Visualization (KlassViz)11. It provides a dynamic visualization of class diagrams
using KLighD. Another featured project is KIELER Debug Visualization (DebuKViz)12. DebuKViz

dynamically generates a graphical view of selected variables while debugging in Eclipse. At
this point, the reader is referred to the documentations of the projects for further information
as they are not relevant to this thesis.

9https://rtsys.informatik.uni-kiel.de/confluence/pages/viewpage.action?pageId=10751615
10https://github.com/OpenKieler
11https://github.com/OpenKieler/klassviz
12https://github.com/OpenKieler/debukviz

15

Chapter 4

Model-based Compilation
of Legacy C Programs

The following chapter introduces the ideas and concepts of the newly developed model-based
compilation of non-dynamic, non-concurrent legacy C programs. In order to be able to
clarify the possibilities and challenges of the visualization of C code, the following topics
are presented: Initially, the syntax of SCCharts is depicted and the features of this visual
language, which are of importance to this thesis, are explained in Section 4.1. Thereafter,
the basic concept of Sequential Constructiveness is presented and the compilation steps of
SCCharts to C code are described. The subsequent Section 4.2 gives an in-depth examination
of the extraction of a representing SCCharts model from C code. Possible visualizations of
control structures and function calls are discussed and compared to the generated models
of the already implemented prototype of Smyth and Olsson in Section 4.3. Finally, the code
generation via the KiCo compilation chain is explained in Section 4.4.

4.1 SCCharts and their Compilation in KIELER

Section 1.2 already introduced the syntax and several features of the SCCharts language.
Furthermore, Figure 4.1 provides an overview of additional features for Core SCCharts and
Extended SCCharts. Core SCCharts provide the basis of this language with a minimal set of
modeling constructs. Extended SCCharts enhance the expressiveness by adding additional
features. Firstly, the available features of Core SCCharts are presented. Thereafter, a closer look
is taken at the additions of Extended SCCharts. The top region of Figure 4.1 presents core
components while the bottom region shows extended elements. The following part focuses
on the features relevant for this thesis and explains them in detail. Core SCCharts may contain
the following elements only:

States: As described by Charles André [And03], states define a condition or a status that
may persist for a significant period of time. If this condition is met, the state is considered
active. A state may be marked as initial or final and it may contain regions and interface
declarations. The purpose of initial and final states is explained in the next item “Regions”
of this itemization. Thereafter, the usage of interface declarations is clarified. A state is
called a superstate if it encloses at least one region. Otherwise, it is labeled as a simple state.
In Core SCCharts, states with inner behavior must not be marked as final. Additionally, it is
prohibited for final states to have outgoing transitions. Furthermore, a state with no label

17

4. Model-based Compilation of Legacy C Programs

Figure 4.1. Overview of Core SCCharts of Extended SCCHarts features [HDM+14b]

is called an anonymous state. An SCChart consists of a set of states which are also called root
states. These root states contain the functionality of the model.

Regions: Regions provide the user with the possibility of concurrency. Each region represents
a thread which runs concurrently to others. A region must contain exactly one initial
state and may contain multiple final states. When a state becomes active, all of its regions
become active as well. Thus, the control flow starts at the initial state of each region. A
region is considered to be terminated when a final state is reached. In case all regions of a
superstate terminated, the superstate itself terminates as well.

Interface Declarations: Variables represent the main instrument for communication inside the
SCChart. They are declared by the interface declaration of a state. Variables can be inputs from
the outer environment of the SCChart, or outputs written to the environment. Furthermore,
inputoutput variables combine the functionality of both other types. From this point on,
when referring to inputs and outputs, this also includes inputoutputs. The environment
initializes input variables at the beginning of a tick and reads output variables at the end
of a tick. To clarify, a tick is concept that discretizes time [And03]. Unlike inputs and

18

4.1. SCCharts and their Compilation in KIELER

inputoutputs, outputs are not initialized at the beginning of each tick. However, they are
persistent across the boundary of two ticks. It is also possible to declare local variables
which are neither input nor output. Local variables are restricted to the boundaries of its
respective state and can only be used by its inner behavior. As an example, consider the
state M2 of the SCChart shown in Figure 4.1. The local variable local is only known inside
the state M2 itself. Local variables are per default uninitialized. Therefore, the initial value
is undefined. Once initialized, its value is persistent from one tick to another.

Transitions: Transitions connect two states with each other. They always have one source state
and one destination state. A transition whose source and destination are the same is called
a self transition. The optional transition label describes the priority p of the transition, a
boolean expression called trigger t and an action a. Each element of the transition label is
optional. The syntax of the label is described as “[p:] [t] [/ a]”. A transition is activated
when its source state is active and its trigger expression is satisfied. Thereupon, the
transition gets taken, any action is executed and the destination state is entered. If a state
has multiple outgoing transitions, their trigger conditions are checked in the order of
their priorities. The lowest priority number is evaluated first. Core SCCharts differentiate
between immediate and delayed transitions. Immediate transitions are represented by
dashed arrows. They can become active in the same tick the source state is entered. An
immediate outgoing transition without a trigger is called a default transition. Its source
state is referred to as being transient. A transient state is always left in the same tick it is
entered. Solid arrows indicate delayed transitions. Unlike immediate transitions, they are
disabled in the same tick the source state is entered. Furthermore, Core SCCharts feature
termination transitions in order to provide a possibility of preemption. Its visualization is a
dashed arrow with a green triangle. In Core SCCharts, termination transitions may have a
priority and an action but no trigger. It activates when the source superstate terminates.

Extended SCCharts provide the modeler with a more elaborate variant of the SCCharts language.
By adding more complex features and syntactical sugar, Extended SCCharts enhance the
expressiveness of the created model while simplifying the work of the user. Every Extended
SCChart can be reduced to a semantically equivalent Core SCChart by M2M transformation.
The following list contains all complementary features that are relevant to this thesis. For
a complete introduction of all Extended SCCharts features and their transformation to Core
SCCharts elements, the reader is referred to [HDM+13].

Connectors: A connector is a transient state and must therefore be left during the same tick it
is entered. This construct can be used to enhance the readability of a model by linking
multiple transitions to a single compound transition. Additionally, the usage of connectors
promotes the Write-Things-Once (WTO) principle which encourages the programmer to
reduce the repetition of information. Figure 4.2 contrasts the neglection and the usage
of WTO. Figure 4.2a presents an SCChart with three input boolean variables x, y and z.
Furthermore, its initial state _S1 has three outgoing transitions. Each of these transitions

19

4. Model-based Compilation of Legacy C Programs

tests the input x. Figure 4.2b depicts a semantically equivalent SCChart which follows the
WTO principle. The usage of a connector state divides the trigger checks into two parts.
First, the input x is checked. Thereafter, the second condition check leads to the desired
final state.

noWTO
input bool x, y, z

_S1 A

B

C

1: x && y

2: x && z

3: x

[-]

(a) Multiple evaluation of x without
WTO

WTO
input bool x, y, z

_S1

A

B

C

x

1: y

2: z

3:

[-]

(b) Single evaluation of x due to WTO

Figure 4.2. The WTO principle

Aborts
input bool I1, I2, S
int O

A

_S1
 O = 0

_S2
O = 1

S
[-]

B1: I1

2: I2

[-]

Figure 4.3. Example of strong and weak aborts

Complex Final States: Core SCCharts do not allow final superstates. If a final state activates, the
corresponding thread of this region terminates. However, Extended SCCharts do provide
this feature of complex final states. Therefore, superstates can be marked as final when
using Extended SCCharts.

Entry Actions: An entry action of a state is executed immediately after the state is entered
but before its inner body is able to react. If a state has multiple associated entry actions,
they are performed in sequential order. A common use case of entry actions are the
initialization of local variables.

20

4.1. SCCharts and their Compilation in KIELER

Exit Actions: An exit action of a state is performed when leaving the previously active state
due to either termination or aborts. Its exit action is executed after the inner behavior of
the state had the possibility to react. Moreover, exit actions act before actions of outgoing
transitions as well as immediate strong abort transitions. Like entry actions, multiple exit
actions of a state are performed in sequential order.

HistoryTransition
input bool S1toS2, S2toS3, R, H

A

_S1 _S2 _S3
S1toS2 S2toS3[-]

doSthThenContinue

doSthThenReset
1: H

*

2: R
[-]

Figure 4.4. Comparing the behavior of history transitions and weak abort transitions

Aborts: Additionally to the already presented termination transition, the SCCharts language
features two different transition types of aborts. Strong aborts are visualized by an arrow
with a red circle connected to the source superstate. The trigger of a strong abort termina-
tion get tested before both the source state and its inner body have the possibility to react.
Weak aborts gets tested after the body of the reaction of the state to be aborted. This type
is represented by a plain arrow. The different behaviors of weak and strong aborts are
illustrated in Figure 4.3. As a first example, assume that the input variables I1 and S are
true in the same tick. Since the trigger of the strong abort transition is true, the transition
becomes active and enters the final state B. The content of the aborted state A does not get
executed. Hence, the variable O does not get set to 1. As a second example, let the inputs
I2 and S be true in the same tick. Therefore, the weak abort transition gets taken after the
body of state A executed. Consequently, the value of the variable O equals 1 at the end of
the tick.

History Transitions: Usually, the initial state of a region is entered when its parent superstate
becomes active. However, a history transition allows to re-enter a superstate at the last
state it was left previously. If a superstate becomes active for the first time, it is entered
through the initial state, as usual. A history transition is indicated by an arrow with a
black circle next to its arrow head. Inside the circle is an H. The behavior of a history
transition is exemplified by Figure 4.4. As a first example, state _S2 of superstate A is active.
As a next step, all input variables but H are of value false. Thus, the state A is left and the
state doSthThenContinue is reached via the bottom outgoing transition. After this state is
left again in the next tick, the history transition permits to reenter the superstate A and
to continue at state _S2 with its execution. As a second example, assume that the input
variable R changes its value to true while all other inputs are of value false. Consequently,
state A is left again and the upper transition is taken in order to reach state doSthThenReset.

21

4. Model-based Compilation of Legacy C Programs

A
input int a
output int b

_A1 @ B(a, &b)

B
input int x
output int y

_B1 _B2
[-]

[-]

_A2

[-]

B
input int x
output int y

_B1

_B2

[-]

Figure 4.5. Reference states in SCCharts

As a next step, state A is reentered at the initial state _S1 via a delayed transition. The
previous active state _S2 of superstate A is discarded. Even though history transitions are a
convenient feature, they should be used with care as they greatly increase the overall state
space of the created model. It does not suffice anymore to only remember the sub-states
of active superstates. Additionally, the sub-states of inactive superstates need to be kept
track of.

Reference States: Reference states, which are distinguished by their golden frame, enable the
modeler to refer to other states of SCCharts which are contained inside the same project. In
addition to the usual attributes and behaviors of a regular state, a reference state maps
the input and the output variables of the referenced state to other specified variables.
Furthermore, it is also possible to refer to reference states. For clarification, consider
Figure 4.5. This example shows an SCChart with two root states A and B. The state A

encloses a reference state _A1 which refers to the state B. The reference state automatically
contains all of the inner behavior of the referred state without further manual modeling.
At this point, the reader may notice the different label structure of reference states. _A1 is
the name of the reference state. After an @-symbol, the name of the referenced state is
located. The parentheses enclose the parameter variables to which the input and the output
variables of the referred state are mapped to. An ampersand (&) in front of a parameter
marks an output variable. In the given example, the variable a of state A is mapped to the
input variable x of state B. Likewise, the variable b is mapped to the output variable y.
The concept of reference states is very similar to function calls. Variables can be passed
to other states. These states can use these inputs for internal computations. When the
referred state terminates, it can return a value to the reference state which can be used for
further computations.

22

4.1. SCCharts and their Compilation in KIELER

4.1.1 Sequential Constructiveness

SCCharts is a visual language which specializes in specifying safety-critical systems. Hence,
ensuring a determinate execution of concurrent threads is essential. Therefore, any occurrences
of race conditions must be ruled out in order to prevent non-determinate behavior. Other
synchronous languages like Esterel already provided means to ensure determinacy but
they come with heavy restrictions. Specifically, multiple assignments of shared variables
during the same tick are forbidden in Esterel’s synchronous Model of Computations (MoCs).
An MoC defines a set of allowable operations which are used in computation and their
respective costs. In order to lift this limitation, the Sequentially Constructive Model of
Computation (SC MoC) is introduced [HMA+13]. It enforces the initialize-update-read (iur)
protocol which orders concurrent variable accesses. Moreover, it refines the write-before-read
access protocol of previous synchronous languages. Prior the explanation of this protocol,
several terms must be defined. The following definitions are taken from the paper “SCCharts:
Sequentially Constructive Statecharts for Safety-Critical Applications” by von Hanxleden et
al. [HDM+14b].

Combination function: A function f : Xˆ X Ñ X which satisfies the relation f (f (x, y1), y2) =

f (f (x, y2), y1) for all x, y1, y2 P X is called a combination function.

Confluent variable access: A variable access of multiple concurrent threads is called confluent if
the order in which the threads are executed is of no importance. As an example, consider
two concurrent threads that assign the same value to the same variable. Naturally, the
scheduling order does not matter and the variable always holds the correct value after
both threads executed.

Absolute write access: An absolute write defines an initialization x = e of a variable x and an
expression e.

Relative write access: A relative write access defines an update assignment x = f (x, e) for x of
type f , where f is a combination function, x a shared variable and e an expression which
does not reference x.

Read access: A read is a variable access that does not update the value of the variable.

For each variable, the iur protocol orders the non-confluent concurrent variable accesses which
occur during the same tick. Firstly, all concurrent absolute writes are to be executed. They
have to be confluent to each other. Otherwise, the program is not executable. Secondly, all
concurrent relative write accesses must be scheduled after the initializations. In a final step, all
read accesses can be scheduled after updates are done. A program is sequentially constructive
if there exists an execution path of program while complying with the iur protocol with
exception to confluent writes. Additionally, every execution of this control path must generate
the same deterministic output. Since the examination of this problem is of co-NP complexity

23

4. Model-based Compilation of Legacy C Programs

2. Select transformations of compilation chain

3. Inspect extracted SCCharts

Extracted SCChart from C code
with no further transformations

Transformed SCChart up to the
last selected compilation step

Last selected compilation step

4. Adjust layout options

1. Edit the C code to
be transformed

Figure 4.6. The KIELER workbench including additional annotations for the user story for the interactive
compilation

[HDM+13], the approximation Acyclic Sequential Constructiveness (ASC) is introduced. A
program is ASC schedulable if there exists an instantaneous acyclic control flow path through
the execution of the program. Furthermore, it is differentiated between iur acyclic and data-
flow acyclic programs. An iur acyclic program does not allow instantaneous cycles when all of
its iur edges involve run-time concurrent accesses. Data-flow acyclic programs do not allow
any non-confluent accesses.

4.1.2 The Interactive Compilation of SCCharts in KIELER

This section presents another innovative component of KIELER – the single-pass language-
driven incremental compilation (SLIC) [MSH14]. SLIC enables the user to effectively validate and
debug models by inspecting intermediate compilation results. These intermediate results
are provided by a step-by-step compilation. Since the improvement of the validation and
debug process is of utmost importance, this feature greatly enhances the quality of the
created product. This especially applies for the development of safety-critical systems. The
incremental model-based compilation is realized by a compilation chain consisting of a set of
M2M transformation features. A feature may depend on prior features. If a transformation is
selected by the user in the compilation chain, the compilation result of this transformation,

24

4.1. SCCharts and their Compilation in KIELER

CompilationTree

High-Level Compilation Phase

Extended SCCharts Core SCCharts Normalized SCCharts SCGraph
Expand Normalize Map[-]

Data-Flow Low-Level Compilation

SCG Sequentialized SCG C Code
Add_Guards Serialize[-]

Priority-Based Low-Level Compilation

SCG C Code
Compute_Prios && Serialize[-]

1: 2:

[-]

Figure 4.7. The compilation tree from Extended SCCharts to C code is grouped into a high-level phase
and two different low-level phases [MSH14]

including all other transformations on which the selected feature depends, is displayed.
Dependencies are resolved automatically.

Figure 4.6 illustrates the user story of the interactive model-based compilation of C code to
SCCharts of KIELER. It presents one possible workbench layout for the model-based compilation
in KIELER. The user interface (UI) of this tool is divided into four main views. After entering
the C code in the editor in the top left corner, the user may select desired transformation
steps by clicking on the feature groups of the KiCo compilation chain in the bottom view. All
contained transformation steps inside the selected feature groups are executed, as well as all
prior features. Alternatively, individual transformation steps can be selected by expanding
the respective feature group. In this given example, the feature group Core SCCharts is
selected. Thereafter, the middle view of the interface lets the user compare the intermediate
compilation results on the right to the original extracted SCChart on the left. The created
models are automatically arranged by integrated layout algorithms. The user can customize
the layout of the graphical components by selecting provided layout options on the right hand
side of the UI. Additional options for changing the appearances of SCCharts are located there
as well.

After a general understanding of the usage of the incremental compilation feature has
been given, it is necessary to take a closer look at the KiCo compilation chain itself. The
transformation process from SCChart models to source code is split into two main parts,
namely the high-level compilation phase and the low-level compilation phase. This segmentation
is illustrated by Figure 4.7. The high-level compilation phase functions as a preprocessor for
converting SCCharts into an intermediate format called the Sequentially Constructive Graph
(SCG). This compilation phase is broken down into three main segments. Firstly, all Extended
SCCharts features are expanded, resulting in a semantically equivalent Core SCCharts model.
Secondly, the complexity of the transitions is reduced by normalizing the Core SCChart. The
upper row of Figure 4.8 summarizes all permitted components of a normalized Core SCCharts.
Other constructs than the ones presented are not allowed. A region may contain a thread

25

4. Model-based Compilation of Legacy C Programs

Figure 4.8. Overview of normalized SCCharts and SCG components [MSH14]

which consists of an initial state, a final state and connected states in between. Additionally,
superstates with multiple parallel regions, including an associated termination transition, are
allowed. A conditional if statement may be modeled as a state with two outgoing immediate
transitions. The higher priority transition checks whether the condition c of the if statement is
true. The lower priority transition represents the else-statement. Moreover, an assignment of
an expression e to a variable x is handled by an immediate transition with no trigger. At last,
a pause ensures the delay of following actions until the next tick.

As a last step, the resulting model is mapped into an SCG. The SCG represents the
control-flow of an SCChart and allows for elaborate analyses such as data dependencies of
shared variables between two threads. Figure 4.8 presents the mapping of each normalized
component to the appropriate SCG component. An initial state of a thread is represented
by an entry node while its final state is converted to an exit node. A fork node splits the
control flow into parallel running threads, one for each region of a superstate. When all
threads have terminated, they are joined together by a join node. Furthermore, an SCG

denotes a conditional statement as a diamond-shaped node with its condition c inside. A
variable assignment is depicted as a rectangle. Finally, a pause is illustrated as a dashed
line connecting a surface node and a depth node inside an SCG. The following Figure 4.9
exemplifies the process of transforming an Extended SCChart to an SCG. As a first step, the
Extended SCChart of Figure 4.9a is expanded and subsequently normalized into a Core SCChart,
shown in Figure 4.9b. Thereafter, the resulting model is mapped to an appropriate SCG of
Figure 4.9c.

The low-level compilation phase uses the SCG as the basis of the code generation process. For
this phase, the KIELER project introduced two alternative approaches, the data-flow compilation
approach and the priority-based compilation approach. The data-flow compilation approach
is currently implemented and used in KIELER and is therefore also being used in this thesis.

26

4.1. SCCharts and their Compilation in KIELER

main
int a
output int return
 a = 1

if

 a = 3

1: a < 22:

[-]

 return = 1

[-]

(a) Original Extended SCChart

main
int a
output int return

_Depth

_C

2: 1: a < 2

 / a = 3

[-]

_Init _C
 / a = 1 / return = 1

[-]

(b) Normalized Core SCChart

entry
main_int exit

a < 2

a = 3
return = 1

a = 1

true

(c) Extracted SCG

Figure 4.9. Transforming an Extended SCChart to a Core SCChart and thereafter to an SCG

This approach requires the SCG to be data-flow acyclic. The goal of the data-flow approach
is to generate a netlist, a description of the connectivity of an electronic circuit, where all
components are always active. This netlist can then be simulated in software or hardware.
For that, guards are introduced in order to regulate the control flow. Additionally, nodes are
grouped together into basic blocks. A basic block may only be entered if the boolean value
of its guard is true. The following Figure 4.10 continues the previous example of Figure 4.9.
The SCG from Figure 4.9c is divided into three basic blocks. The first basic block represents
the initialization of the variable a. The second basic block compounds the body of the if
statement while the third and last basic block aggregates the end of the program. Each basic
block has its own guard g0, g1 and g2. As a next step, appropriate expressions are assigned to
each of the guards. This assignment is shown in Figure 4.10b. The guard g0 of the first basic
block depends on the _GO start signal which marks the beginning of a program. The second
guard g1 is satisfied if g0 and _cg0 is true. The variable _cg0 denotes the condition a < 2 of the
if statement. Consequently, the second basic block activates when the first basic block was
entered and the conditional statement is true. The final basic block is either entered if g0 is
true but the condition of the if statement is not true or it is entered if g1 is true.

In the final step of the M2M transformations, the scheduler orders the previously created
guards in order to create a sequentialized SCG, which is shown by Figure 4.10c. Finally,
the sequentialized program is ready for deployment and can be translated into various

27

4. Model-based Compilation of Legacy C Programs

programming languages such as C. For a more detailed presentation of each step of the
data-flow compilation approach, the reader is referred to [SMH15].

entry
main_int

a = 1

a < 2
true

g0

a = 3
g1

return = 1

exit

g2

(a) SCG divided into basic blocks, each
with separate guards

g0 = _GO

g1 = g0 && _cg0

g2 = g0 && !_cg0 || g1

_cg0 = a < 2

entry
main_int

exit

a = 1

a = 3

return = 1

(b) Define guards of basic blocks

entry
main_int

g0 = _GO

_cg0 = a < 2

g1 = g0 && _cg0

g2 = g0 && !_cg0 || g1

exit

g0

a = 1

g1

a = 3

g2

return = 1

true

true

true

(c) Sequentialized SCG

Figure 4.10. Division of the SCG of Figure 4.9c into basic blocks with guards. Thereafter, the SCG is
sequentialized.

28

4.2. Generating ASTs from C code

The priority-based compilation approach specializes in generating software and lifts the
restriction on the SCG to be data-flow acyclic. The reaction time of the software produced
with the help of the data-flow approach is proportional to the size of the SCChart. In contrast,
the reaction time of the priority-based approach only depends on the components which are
active within a single tick. Consequently, this approach scales better with the increasing size
of the models. However, the priority-based approach rejects some programs that the data-flow
approach accepts [HDM+14b]. Since the priority-based approach is not part of this thesis, the
reader is referred to [HDM+14b] for a more in-depth examination.

4.2 Generating ASTs from C code

Up to this point, all the necessary features were introduced which serve as the basis for
this and the following sections. In summary, important SCCharts components were presented
and illustrated such as different state and transition types. The sequential constructiveness
was explained in order to understand the limitations of the low-level data-flow compilation
approach which was discussed thereafter.

This section focuses on the T2M transformation of extracting an SCChart from C code. The
approach of this thesis makes use of the Eclipse C/C++ Development Tooling (CDT) which
was already presented in Section 3.1.1. First, the user enters the to be transformed C code into
the provided CDT-Editor which is integrated into the workbench of the KIELER SCCharts tool.
Then, the source code is parsed and an abstract syntax tree (AST) is created. This AST serves
as the basis for the model extraction process. Each node of the AST represents a construct
occurring in the source code. As an example, the listing in Figure 4.11a presents the C code
corresponding to the previous SCChart shown in Figure 4.9a. With the help of the CDT plug-in,
an appropriate AST is generated from this source code. In order to clarify the concept of
ASTs, Figure 4.11b presents a graphical representation of the generated AST. The entire textual
description of the AST can be found in the appendix, Figure A.1.

The AST is composed of different node types. First, the FunctionDefinition defines the main

function which comprises a CompoundStatement. A CompoundStatement represents a code
block surrounded by curly brackets { }, in this case the body of main. At this point, the AST

branches out into three sub-trees. The DeclarationStatement node initiates the declaration of
the integer variable a. The IfStatement node parents a BinaryExpression node and another
CompoundStatement node. The BinaryExpression forms the condition of the if statement,
together with an IdExpression and an integer node. An IdExpression references an already
defined variable. Next, the CompoundStatement defines the body of the if statement. Inside,
an ExpressionStatement updates the value of the variable a. The final branch of the upper
CompoundStatement is a ReturnStatement. Here, the integer value 1 is returned. This example
shows only an excerpt from all AST node types. For a complete overview consider the CDT

API1. As mentioned before, the AST serves as the basis of the model creation. Its structure

1http://help.eclipse.org/neon/index.jsp?topic=%2Forg.eclipse.cdt.doc.isv%2Freference%2Fapi%2Foverview-
summary.html

29

4. Model-based Compilation of Legacy C Programs

and the provided information is used to identify the necessary model components and their
positioning within the model. Therefore, the different nodes of the AST are converted one
after another by traversing the syntax tree in depth-first order. Each node represents a model
component that needs to be created. After every node has been visited, the T2M transformation
process is complete. Thereafter, the resulting SCChart is a semantically equivalent visual
representation of the original source code.

1 int main() {

2 int a = 1;

3 if (a < 2) {

4 a = 3;

5 }

6 return 1;

7 }

(a) C code example

(b) Visualization of the generated AST from the C code of Listing 4.11a

Figure 4.11. Representing C code with the help of ASCs

30

4.3. Creating SCCharts from an AST

4.3 Creating SCCharts from an AST

After a model can be generated from an AST of a C program, the next objective to be addressed
is to determine the way of visualizing source code. This section suggests ways of visualizing
functions, variable declarations and assignments, as well as control structures and function
calls, since these components form the basis of most of the C programs.

4.3.1 Functions

Each function defined inside the to be converted C code is represented by a root state of the
extracted SCChart. The root state of a function f contains a control flow region. Inside this region,
a mandatory anonymous initial state and at least one final state is located. Outgoing from this
initial state, the model is created. The arguments of a function are declared as input variables.
Additionally, non-void functions declare an output variable return of appropriate type.

4.3.2 Variable Declarations and Assignments

Variable declarations are defined in the declaration interface of the appropriate root state. It
is also possible to declare local variables inside nested superstates of the root state. Hence,
the local declaration is assigned to the declaration interface of the parent superstate. The
declaration of local variables is considered in more detail in the next subsection.

A variable initialization is either handled by an entry action of the root state or an entry
action of a separate state. Note that the entry action label entry is not displayed for entry
actions. This aims to enhance the clearness and readability of the model. Variables that are
initialized at the very beginning of the program, more precisely immediately after the initial

1 int main() {

2 int a;

3 int b = 4;

4 b = 7;

5 a = b ´ 1;

6 if(a == 3) {

7 a = a + 1;

8 }

9 int c = 2;

10 int d = a;

11 return d;

12 }

(a) C code example for variable declara-
tions and assignments

main
int a
int b
int c
int d
output int return
 b = 4
 b = 7
 a = b - 1
 c = 2

if

 a = a + 1
1: a == 3

2: [-]
d = a
return = d

[-]

(b) Representing model of variable declarations and as-
signments

Figure 4.12. Visual representation of variable declarations and assignments

31

4. Model-based Compilation of Legacy C Programs

state of the region, are handled by introducing entry actions in the declaration interface of
the root state. Thereby, this procedure reduces the number of overall states of the SCChart.
Comparing the listing in Figure 4.12a to Figure 4.12b, the declarations and initializations of
line 2 to line 5 are modeled as entry actions of the root state. Since multiple entry actions are
performed in sequential order, the variable b is first initialized with the value of 4 and is then
updated to 7. Therefore, the entry action a = b - 1 assigns the correct value of 6 to the variable
a. If an initialization occurs after a state other than the initial state, an additional state is
created and an appropriate entry action is assigned to its declaration interface. An exception
to this proceeding is a non-initial variable declaration with an immediate non-dependent
initialization, all in one statement. Therefore, the code of line 9 int c = 2 can be transformed
to an entry action of the root state. Since the declaration of line 10 int d = a depends on the
value of a, it cannot be declared as an entry action of the root state since the initial value of
the variable a could change during the execution of the program. Here, this is the case when
a gets incremented inside the if statement.

4.3.3 Control Structures

As an introductory example, Figure 4.13b presents an SCChart visualizing the C code of
the listing in Figure 4.13a. This SCChart was extracted by the prototype of the model-based
compilation of legacy C code by Smyth and Olsson [Ols16]. The SCChart below of Figure 4.13c
shows the result of the overhauled model extraction process of this thesis. This comparison
intents to emphasize the importance of developing a clear and structured visualization of
control structures. The representation of the prototype does not yet support the reading
flow of the model as intended and obscures the functionality of the converted source code.
Furthermore, the reader can get a first impression of the structural changes of the visualization
of SCCharts. When taking a closer look at the former visualization of Figure 4.13b, the control
flow of the program is clear when new variables are initialized. Furthermore, the beginning
of the first if statement can be identified easily. However, when reaching the node labeled
line: 9, the reader of the model needs to take a closer look in order to follow each step further
of the program. Since the boundaries of control structures are not clear on first sight, the
visualization of the prototype makes it difficult to understand the purpose or functionality of
the converted C code. Especially multiple nested control structures can obscure the structure
of the SCChart. In order to clarify the bounds of control structures, each of them is embedded
into its own state. This way, the extracted model becomes better organized. Thereafter, one
can clearly identify what the states and transitions are associated with. The inner behavior
of control structures, that is of no importance to the reader of the model, can be hidden by
pressing the [-] symbol in the upper left corner of the region of the respective state. This can
be of further benefit in order to understand the essence of the depicted function or program.
On closer inspection, the reader may notice that control structure states share a similar layout.
Every control structure has an initial state, at least one final node and additional states which
represent the body of the control structure. The transitions leaving the initial state check
whether the condition of the control structure is met.

32

4.3. Creating SCCharts from an AST

1 int main(int a) {

2 int b = 10;

3 int c = 6;

4 if (a > 4) {

5 a = a ´ 1;

6 } else {

7 a = c + 3;

8 }

9 while (a <= b) {

10 a = a + 1;

11 if (a == c) {

12 a = b * 2;

13 }

14 }

15 for (int i = 0; i < b; i = i + 1) {

16 a = i * 2;

17 }

18 return a;

19 }

(a) Introductory C code example of control structures

test.c

main
output int return
input int a
int b
int c
int i

_S1
line: 2
b = "10"

line: 3
 c = 6

T

F

line: 5
 a = a - 1

line: 7
 a = c + 3

line: 9

line: 9line: 10
a = a + 1

T11
line: 12

 a = b * 2

F11

line: 15
i = 0

line: 16
a = i * 2

line: 15
i = i + 1 line: 18

 return = a

1: a > 4

2:

1: a <= b1: a == c

2:

2:

1: i < b

2:

[-] _main

[-]

(b) Extracted SCChart model of the old prototype

main
input int a
int b
int c
output int return
b = 10

 c = 6

if

 a = a - 1 a = c + 3

1: a > 42:

[-]

while

 a = a + 1

if

a = b * 2

1: a == c2:

[-]

1: a <= b

2:

[-]

for
int i
 i = 0

 a = i * 2
 i = i + 1

1: i < b2:

[-]

return = a

[-]

(c) Extracted SCChart model with the new visual representation of control structures

Figure 4.13. Comparison of different visualizations of C code 33

4. Model-based Compilation of Legacy C Programs

The condition is represented by the trigger of the respective transition. If the condition is
met, the transition is taken and the body of the control structure is executed. If the condition is
not satisfied, the final state of the superstate is reached in order to leave the control structure.
A termination transition ensures that the following states are only reached after the state of
the control structure terminates. Therefore, a correct sequence of events is assured. The exact
structure of each different control structure type is presented in the following paragraphs.

The if-then(-else) Statement

The first control structure to look at is the if-then(-else) statement. Figure 4.14b visualizes the
C code of Listing 4.14a which consists of two condition checks a < b and a > b. Immediately
after entering the initial state of the first if state, the condition a < b is checked. If the condition
is satisfied, a is set to b. The next line to be executed is return a. Consequently, the state of this
variable assignment is final and the control structure is left via a termination transition.

1 int main(int a, int b) {

2 if (a < b) {

3 a = b;

4 } else if (a > b) {

5 a = b * 2;

6 } else {

7 a = a + b;

8 }

9 return a;

10 }

(a) C code example of nested if statements

main
input int a
input int b
output int return

if

a = b

if

 a = b * 2

 a = a + b

1: a > b

2: [-]

1: a < b

2:

[-]

 return = a

[-]

(b) Extracted SCChart model

Figure 4.14. Visual representation of if-then-else control structures

34

4.3. Creating SCCharts from an AST

If the first condition is not met, the else state becomes active. Since the else state consists
of an additional if statement, namely if (a > b), a second if state is nested inside the first. Here,
the proceeding is repeated. After the inner if state terminates, the outer if state terminates as
well. Finally, a is returned and the main state has finished its execution.

The for Statement

Next, the model creation of a for loop is introduced and presented by Figure 4.15. Additionally
to the similar layout of every control structure, a local counter variable i is declared and is
set to its initial value when entering the for state. Note that the declaration is not added
to the declaration interface of the root state, but to the parent state of the loop. Therefore,
the local variable i is only known inside the loop state. If the loop condition is satisfied,
the body of the loop is executed. Having completed these measures, the counter variable
i is incremented before returning to the initial state again. When the condition is not met
anymore, the transition to the final state is taken and the loop state terminates. Afterwards,
the rest of the program is executed.

1 int main(int a, int b) {

2

3 for (int i = 1; i <= a; i = i + 1) {

4 b = b + b;

5 }

6 return b;

7 }

(a) C code example of a for loop

main
input int a
input int b
int xx
output int return

for
int i
 i = 1

 b = b + b
 i = i + 1

1: i <= a

2: [-] return = b

[-]

(b) Extracted SCChart model

Figure 4.15. Visual representation of a for loop

35

4. Model-based Compilation of Legacy C Programs

The (do-)while Statement

The while statement as well as the do-while statement behave similarly to the for loop.
The main difference is the absence of a typical counter variable which is declared and
initialized as an entry action of the loop. Consequently, we do not require a mandatory
increment or decrement when returning to the initial state. Figure 4.16 shows an example of
a representation of a while, as well as a do-while loop.

1 int main(int a, int b) {

2 while (a < b) {

3 a = a * 2;

4 b = b ´ 1;

5 }

6 do {

7 a = a + b;

8 } while (a < 42);

9 return 0;

10 }

(a) C code example of a while and a do-while loop

main
input int a
input int b
output int return

while

 a = a * 2
 b = b - 1

1: a < b

2: [-]
doWhile

a = a + b

1: a < 42 2: [-]
 return = 0

[-]

(b) Extracted SCChart model

Figure 4.16. Visual representation of a while loop and a do-while loop

The switch Statement

The already implemented prototype of the model extraction in KIELER offers a possibility
to convert switch-case statements to SCCharts and the other way around [Ols16, pp.31-32].
However, every case of the code to be converted requires a break line. The implementation of
this thesis allows a fall-through from one case to another. A fall-through occurs when a break
statement is missing at the end of a case. The control flow falls through onto the next case
without checking its condition. This behavior is exemplified by Listing 4.17a. If the variable a

equals 1 then b is set to 0. Due to a missing break statement, the second case is executed right
after the first case. Therefore, the variable b gets overwritten with the value of a. At the end

36

4.3. Creating SCCharts from an AST

of case 2, a break statement prevents further fall-through and causes the switch statement
to be left. The program ends with the return of the value of b. This fall-through can also be
seen in Figure 4.16b. For each case, a transition with the corresponding condition leaves the
initial state. After entering the switch state, each case transition is checked in order of the
C code with the help of appropriate transition priorities. The transition leaving the initial
state without a condition represents the default case. The fall-through is visualized by the
unconditioned transition connecting the body of the first case to the body of the second case.
Consequently, the second case is executed right after the first case. After a case is executed
and no fall-through happens or in case of a default case, the last state of the case is connected
to a connector state. The final state is reached via this connector state in order to leave the
switch state.

1 int main(int a) {

2 int b;

3 switch(a) {

4 case 1:

5 b = 0;

6 case 2:

7 b = a;

8 break;

9 case 3:

10 b = 1

11 break;

12 default:

13 b = 5;

14 }

15 return b;

16 }

(a) C code example of a switch statement

main
input int a
int b
output int return

switch

 b = 0
b = a

 b = 1

 b = 5

1: ''a == 1''

2: ''a == 2''

3: ''a == 3''

4:

[-]

 return = b

[-]

(b) Extracted SCChart model

Figure 4.17. Visual representation of a switch statement

37

4. Model-based Compilation of Legacy C Programs

1 int main (int a) {

2 if (a < 0) {

3 return 0;

4 } else {

5 a = a * 2;

6 }

7 a = a + 1;

8 return a;

9 }

(a) C code example of a nested return statement

main
input int a
output int return

if

 return = 0

a = a * 2

1: a < 0

2: [-]
 a = a + 1
 return = a

[-]

(b) Extracted SCChart model with an incorrect handling of nested return
statements

main
input int a
output int return
int nestedReturn
 nestedReturn = 0

if

return = 0
nestedReturn = 1

a = a * 2

1: a < 0

2: [-]

 a = a + 1
 return = a

1: nestedReturn

2:

[-]

(c) Extracted SCChart model that preserves the semantics of the program

Figure 4.18. Visual representation of nested return statements

38

4.3. Creating SCCharts from an AST

Nested Return Statements

Since this approach of visualizing C code introduces possible multiple hierarchy levels when
dealing with control structures, nested return statements inside these control structures need
to be handled. For example, consider Figure 4.18b. If a is less than 0, the program should
return 0 before terminating. Hence, no other statement should be executed. Therefore, a
single final state, which sets the output variable return to 0, is not enough. This way, only the
if state is left, a is incremented by one. Thereafter, the final state is reached and the return

variable is overwritten with the value of a. Figure 4.18c presents a way of visualizing the
code that preserves the semantics of the program. In case of a nested return statement, a
integer variable nestedReturn is declared and is set to 0 when entering main. Inside the state
of the nested return statement, an additional entry action sets the variable nestedReturn to 1.
In order to terminate not only the control structure state but also the entire main root state,
an alternative exit transition is added. After leaving the state in which the nested return
statement is located, this alternative exit transition can only be taken if the nested return
statement was reached before. Otherwise, the lower-priority transition is taken in order to
continue the execution of the program.

4.3.4 Function Calls

The process of developing a representation of function calls went through multiple iterations.
Initially, the prototype of the model-based compilation of legacy C programs handled function
calls by using host code. There was no visual information about the behavior of called
functions. Therefore, the user did not get sufficient information to fully understand the effect
or use of a called function.

Figure 4.19 visualizes the first solution approach. The idea was to nest the called function
inside a separate state within the state of the caller. When the state of called function add is
entered, the passed arguments a and b are copied to local variables x and y. These variables
are used for internal computations. Additionally, the original values of a and b do not get
lost for further calculations inside the main state. After the sum of the two integer values
is assigned to the local return variable ret_add, an exit action copies this returned value to
the variable sum. This approach solves the problem of the missing visual information of
the behavior of called functions. However, the suggested approach leads to problems when
multiple calls of the same function occur. A separate state would be created for each function
call. Moreover, all of these states would contain the same information which would lead to
an inflated SCChart. As a result, the generated C code from the SCChart would also contain
redundant code blocks. Consequently, this approach is not viable.

A second approach outsources the state of the called function into its own state located
outside of the caller state. Figure 4.20 shows an SCChart that represents the code of Listing 4.19a
as well. The first difference to be noticed is that the main state is not the root state anymore,
but it is nested inside a newly introduced root state. The reasoning behind this change is the
necessity for global variables that are known to both the main state and the add state. This

39

4. Model-based Compilation of Legacy C Programs

1 int main(int a, int b) {

2 int sum;

3 sum = add(a,b);

4 return sum;

5 }

6

7 int add(int x, int y) {

8 return x + y;

9 }

(a) C code example

main
input int a
input int b
int sum
output int ret_main

add
int x
int y
int ret_add

/ x = a
/ y = b
/ sum = ret_add

ret_add = x + y
[-]

 ret_main = sum

[-]

(b) Extracted SCChart model

Figure 4.19. Nested visual representation of a function call

includes all variables that are used for a function call. These variable definitions are contained
inside the declaration interface of the new root state. Furthermore, a variable executeFuncCall

is declared which signals the beginning of the function call. When the function call occurs, the
action of the transition leading to the state funcCall sets executeFuncCall to 1. This activates a
weak abort transition in order to enter the add state. It is of great importance that the outgoing
transition of funcCall is delayed. Hence, the transition cannot become active in the same tick
in which the state funcCall is entered. This ensures that the weak abort transition to the state
add gets taken. After the called state terminates, the result is written to the global variable
sum and a history transition returns the control flow to the state funcCall. Additionally, the
variable executeFuncCall is set to 0 to prevent further unwanted function calls. Finally, the final
state is entered and the output variable is set.

This approach reduces the inflation of the SCChart in the case of multiple function calls
while still preserving the visual information of the behavior of the called function. Every
function call still has its own state inside the caller’s state though without any inner behavior.
Furthermore, the generated C code does not contain duplicate code blocks. However, history
transitions greatly increase the overall state space of the model since all sub-states of every
inactive state need to be remembered. Therefore, the history transition should be avoided
if possible to provide a light-weight SCChart model. It is especially essential when modeling
systems with limited memory capacity such as embedded systems.

The final approach is presented in Figure 4.21 and makes use of reference states. The state
of the function add is added as a second root state to the SCChart. The reference state Call maps
the passed arguments a and b to the input variables x and y of the called state. Additionally,
the variable sum is mapped to the output return of state add. This solution provides the visual
representation of the inner behavior of the called functions, as well as keeps the inflation
of the SCChart to a minimum. Even though one function call still has one separate state, its

40

4.3. Creating SCCharts from an AST

addAB
input int a
input int b
int sum
int executeFuncCall = 0
output int ret_main

main

funcCall ret_main = sum
 / executeFuncCall = 1[-]

add
int x
int y
int ret_add

/ x = a
/ y = b

exit / sum = ret_add

ret_add = x + y
[-]

executeFuncCall == 1

* / executeFuncCall = 0

[-]

Figure 4.20. Visual representation of a function call with an outsourced called function state

main
input int a
input int b
int sum
output int return

Call @ add(a, b, &sum)

add
input int x
input int y
output int return

return = x + y
[-]

[-]

return = sum

[-]

add
input int x
input int y
output int return

return = x + y

[-]

Figure 4.21. Visual representation of a function call by using a referenced state

inner behavior can be hidden without losing any information. The additional root state of
the function still provides the necessary details. When the SCChart is transformed into C code,
the referenced function state is expanded only once, even when it is called multiple times.
Consequently, the generated C code defines functions only once as desired and the creation
of duplicate source code is prevented.

The main problem with this approach is the inability to handle recursive function calls.
As an example, consider Figure 4.22a. The SCChart contains a function f that recursively
calls itself again. The final state is never reached since each reference state contains another
reference state. However, after the M2M transformation step Expansion of the KiCo compilation
chain, only one function call remains and the infinite loop of recursive calls is discarded. The
resulting SCChart is displayed in Figure 4.22b. The reason for this is the single expansion of a
reference state. Consequently, the single expansion feature, which optimizes the generated
source code greatly while not dealing with recursive functions, prevents the transformation

41

4. Model-based Compilation of Legacy C Programs

f
output int return

Call @ f()

f
output int return

Call @ f()

f
output int return

Call @ f()

[+]
return = 0

[-]

[-]

return = 0

[-]

[-]

return = 0

[-]

(a) SCChart of a function f which calls itself recursively.

f
output int return
ref f_int _call0

Call

_init

_do

 / _call0()

[-]

 return = 0

[-]

(b) Corresponding
Expanded SCChart

Figure 4.22. Single expansion of a recursive reference state

of recursive functions to work as intended. This challenge of adjusting the transformation
for recursive function calls remains future work. Additionally, the concept of using a weak
abort as the outgoing transition of the reference state only supports called root states that
do not contain any delayed transitions. Using an outgoing termination transition solves this
issue. However, the usage of a termination transition leads to another critical problem when
expanding the reference state. In this scenario, the outgoing transition of the state Call of
Figure 4.22b is a termination transition. Consequently, the state Call is never left since no final
state is created. Future work should solve this problem and provide a support of function
calls with delayed transitions.

Figure 4.23 shows a first idea of how to handle recursive function calls. By falling back
onto the usage of history transitions, a recursive call can be modeled like a while loop. In this
given example, the accumulator technique is used in order to store the result of one recursive
iteration. However, the usage of history transitions is impracticable, this way of transforming
is not implemented and should only serve as an impulse for further development.

4.4 Compiling the extracted SCChart

After the model mapping of C code has been determined, the extracted SCChart is ready for
further compilations by the KiCo compilation chain. Earlier, it was already stated that this
thesis uses the data-flow low-level compilation approach. Since this approach does not allow

42

4.4. Compiling the extracted SCChart

1 int main(int n) {

2 int f;

3 f = fac(n, 1);

4 return f;

5 }

6

7 int fac(int x, int acc) {

8 int result = acc;

9 if (x == 0) {

10 return result;

11 } else {

12 result = fac(x ´ 1, x * acc);

13 return result;

14 }

15 }

(a) C code example of a program which calculates the n-th factorial

calcFac
input int n
int f
int executeFuncCall = 0
output int ret_main

main

funcCall ret_main = f
 / executeFuncCall = 1[-]

nthFac
int x
int acc
int ret_add
int result

/ x = n
/ acc = 1
/ result = acc

exit / f = ret_add

 result = result * x
 x = x - 1

 ret_add = result
2:

1: x == 0

[-]

executeFuncCall == 1

* / executeFuncCall = 0

[-]

(b) Manually created representing SCChart model

Figure 4.23. Concept idea for handling recursive function calls

for instantaneous loops, the created SCChart needs to be checked for and freed from them
before continuing.

Loops occur when the control flow of the program jumps from one code line to another
previous line. Instantaneous loops are loops where one entire pass happens in an instant.
Consequently, multiple passes through a loop happen instantaneously as well. This implies
that an infinite amount of iterations of a loop can happen during one tick. This nature of an
instant, non-time-consuming reaction is realized by an immediate transition inside an SCChart.
Consequently, a loop is instantaneous if it only consists of immediate transitions.

As a next step, it is clarified when loops occur in the control flow of the program and
therefore occur in the extracted SCChart. One possible source of loops are control structures
such as for or while. The control flow always jumps back to the point where the exit condition
of the loop is checked. In the SCChart this point is defined as the initial state of a loop.

43

4. Model-based Compilation of Legacy C Programs

main
input int a
input int b
int xx
output int return

for
int i
 i = 1

 b = b + b
 i = i + 1

1: i <= a

2: [-] return = b

[-]

(a) The extracted SCChart model still contains an instantaneous
loop

main
input int a
input int b
output int return

Init

for
int i
entry / i = 1

cond b = b + b
 i = i + 1

End

1: i <= a

2: [-]
 return = b

[-] _main

 Immediate Transitions
 Extended SCCharts

[+]

 Code Generation

[+]
 Core SCCharts

[+]

 SCGraph

[+]

 Expansion

[+]

 C

(b) The instantaneous loop has been resolved by the Immediate Transitions transformation

Figure 4.24. Using the Immediate Transitions transformation step in order to avoid instantaneous loop

By delaying the incoming transitions which is taken when the condition for the next
iteration is checked, it is guaranteed that each pass of a loop contains at least one delayed
transition. In case of a do-while loop, the outgoing transitions of the initial state is delayed.
This suffices in order to ensure non-instantaneousness. As a result, instantaneous loops are
avoided for each of the control structures presented earlier. As already mentioned, when
using the data-flow compilation approach for the code generation, the SCChart models need to
be checked for and freed from instantaneous loops. This is realized by subjoining an addi-

44

4.4. Compiling the extracted SCChart

tional compilation step to the beginning of the KiCo compilation chain. This transformation
delays marked immediate transitions and therefore, resolves instantaneous loops. Figure
4.24 provides an example which shows the effect of the newly developed transformation
step Immediate Transitions. After its activation, the instantaneous loop inside the for loop is
resolved.

Even though delaying transitions is necessary, it changes the semantics of the SCChart

and therefore the semantics of the generated C code. Hence, the data-flow approach is not
optimal when looking at the immediate execution of a program. However, it is possible to
optimize the execution time of loops at the expense of required storage space. Techniques
like Loop Unrolling reduce the number of iterations by replicating the body of the loop a
number of times. A loop with n iterations can be completely unrolled by copying the body
n-times. Naturally, the number of iterations must be know prior to its utilization. As an
alternative, a priority-based low-level compilation approach is currently being implemented
by the Real-Time and Embedded Systems Research Group into KIELER. This approach does
not need the additional Immediate Transition transformation since it allows instantaneous
loops. Since the Immediate Transitions transformation is a separate link in the compilation
chain, it can be easily removed when it is not needed anymore.

4.4.1 Extracted C Code

After the high-level and low-level compilations are completed, the resulting C code can be
examined by the user. Listing 4.25b shows an excerpt of the C code which was generated from
the SCChart shown in Figure 4.14. Its generated SCG is presented in Figure 4.25a. The complete
generated source code can be found in the appendix in Figure B.1a and Figure B.1b. For each
root state of the SCChart, a struct TickData, a function tick, reset and tickLogic is generated. The
generated data type TickData contains all necessary guard variables, input as well as output
variables for its execution. The reset function sets the _GO variable to 1 to signal the beginning
of the program. Additionally all pre-variables, which store the value of an associated variable
from the previous tick, are initialized with 0. Next, the tick function simulates one tick and
calls tickLogic. Afterwards, _GO is reset to 0 and the pre-variables are updated after the tick.
The function TickLogic contains the execution logic of the program. When taking a closer look
at the generated C code in Listing 4.25b, one can see the declarations of the guards from line
2 to line 6, line 10, line 14 and 18. The if statements in line 7, 11, 15 and 19 control the access
to the respective basic blocks.

Function calls are realized by calling the tick function of the called SCChart. Listing 4.26
shows an excerpt from the generated C code of the SCChart shown in Figure 4.21. In addition
to the guard variables and input and output variables, the data type TickData of the main

function also contains a TickData1 variable _call0. TickData1 resembles the generated struct for
the root state of the function add. The function call occurs in line 22 to line 25. Firstly, the
passed arguments a and b of the function call are copied to the variables x and y of the called
function add. Afterwards, the tick1 function of the callee is executed in order to compute the
result of the expression a + b. Finally, the result is copied to the specified return variable sum

45

4. Model-based Compilation of Legacy C Programs

entry
main_int

a < b

true

g0
_GO

a = b

g1
g0 && _cg0

return = a exit

g2
g5 || g4 || g1

a > b

true

g3
g0 && !_cg0

a = b * 2

g4
g3 && _cg3

a = a + b

g5
g3 && !_cg3

(a) The generated SCG of the SCChart shown in Figure 4.14

1 void tickLogic(TickData *data) {

2 data´>g0 = data´>_GO;

3 data´>_cg0 = data´>a < data´>b;

4 data´>g3 = data´>g0 && !data´>_cg0;

5 data´>_cg3 = data´>a > data´>b;

6 data´>g4 = data´>g3 && data´>_cg3;

7 if (data´>g4) {

8 data´>a = data´>b * 2;

9 }

10 data´>g1 = data´>g0 && data´>_cg0;

11 if (data´>g1) {

12 data´>a = data´>b;

13 }

14 data´>g5 = data´>g3 && !data´>_cg3;

15 if (data´>g5) {

16 data´>a = data´>a + data´>b;

17 }

18 data´>g2 = data´>g1 || data´>g5 || data´>g4;

19 if (data´>g2) {

20 data´>ret = data´>a;

21 }

22 }

(b) Excerpt from the function tickLogic of the generated C code of the SCChart shown in Figure 4.14

Figure 4.25. Generated SCG and C code from the SCChart shown in Figure 4.14

of the main function. In case of multiple function calls, the appropriate tick function is called
again.

46

4.4. Compiling the extracted SCChart

1 typedef struct {

2 char g0;

3 char _GO;

4 char g3;

5 char g4;

6 char pg3;

7 char g1;

8 TickData1 _call0;

9 char _cg1;

10 char g2;

11 char ret;

12 char sum;

13 char a;

14 char b;

15 } TickData;

16

17 void tickLogic(TickData *data) {

18 data´>g0 = data´>_GO;

19 data´>g4 = data´>pg3;

20 data´>g1 = data´>g0 || data´>g4;

21 if (data´>g1) {

22 data´>_call0.x = data´>a;

23 data´>_call0.y = data´>b;

24 tick1(&data´>_call0);

25 data´>sum = data´>_call0.ret;

26 }

27 data´>_cg1 = 1;

28 data´>g2 = data´>g1 && data´>_cg1;

29 if (data´>g2) {

30 data´>return = data´>sum;

31 }

32 }

Figure 4.26. Excerpt from the generated C code of the SCChart shown in Figure 4.21

47

Chapter 5

Implementation of the Model-based
Compilation of Legacy C Programs

Based on the concepts introduced in Chapter 4, this chapter presents the implementation
of the model-based compilation of legacy C programs of this thesis in the KIELER project.
After an overview of the project structure is given to the reader, the two main parts of the
implementation are discussed. Firstly, the CDTProcessor and its M2M transformations are
presented in Section 5.1. Thereafter, the Immediate Transitions Transformation described in
Section 5.2. The implementation is located in the project folder de.cau.cs.kieler.c.sccharts.
The project is divided into five sub-packages:

de.cau.cs.kieler.c.sccharts: This package contains the centerpiece of the model-based com-
pilation, namely the file CDTProcessor.xtend. It defines the M2M transformations for the
code visualization and creates the extracted SCChart model from the C code. The next
Section 5.1 will explain its components in detail.

de.cau.cs.kieler.c.sccharts.controller: This package contains the CDTUpdateController which
was implemented by Lars Olsson. It is already used for the prototype of the model-based
compilation of KIELER. This class realizes a listener for the CDT-Editor which is used to
receive the user’s C code. After the user input is saved, a CEditor instance is created and
is passed to the transformation step in order to generate an AST. Afterwards, this AST is
used to construct the representing SCChart.

de.cau.cs.kieler.c.sccharts.handler: This package contains the CFileTransformHandler. Like
the CDTUpdateController, this Java file was also part of the model-based compilation
prototype. As the name already suggests, its task is to handle the transformation of the
input C code. After the model is extracted from the source code, this handler manages the
resource allocation and the data storage.

de.cau.cs.kieler.c.sccharts.synthesis: This package contains the HideEntryKeywordHook. This
synthesis, which was implemented by Alexander Schulz-Rosengarten, is used to hide the
label of an entry action.

de.cau.cs.kieler.c.sccharts.transformation: This package contains the CbasedSCChartFeature
and the ImmTransTransformation files. Together, they implement the newly developed
transformation step Immediate Transitions which is added to the KiCo compilation chain.
This M2M transformation step checks every transition of the created SCChart and delays

49

5. Implementation of the Model-based Compilation of Legacy C Programs

marked transitions in order to avoid instantaneous loops. The implementation is presented
in detail in Section 5.2.

5.1 CDTProcessor

The CDTProcessor is the core element of the implementation of the model-based compilation.
It comprises the creation of an SCChart from a generated AST. Additionally, it defines the way
of visualizing code structures and of conjoining them. This sections presents key features of
the CDTProcessor and their functionality.

As an introductory example, consider the code excerpt shown in Listing 5.1. After the AST

of the input source code has been generated, each child of type CASTFunctionDefinition is
passed to the transformFunction (line 6). This function is responsible for the model creation of
functions. The state it returns represents this transformed function and is added to the list
of root states of the SCChart (line 8). To enable the referencing of functions for function calls
later on, each transformed function is stored temporarily in a list called functions, together
with its associated VOSet list (line 7). VOSet contains valued objects like parameters and return
variables.

1 // For each function definition add a new rootState to the rootSCChart.

2 ast.children.forEach [func |

3 VOSet.clear

4 if (func instanceof CASTFunctionDefinition) {

5 val rootFunctionDefinition = func as CASTFunctionDefinition

6 val model = rootFunctionDefinition.transformFunction

7 functions.add(new Pair(model, VOSet.clone))

8 rootSCChart.rootStates += model

9 }

10]

Listing 5.1. Code excerpt from the transform function of the CDTProcessor

The method transformFunction creates a new state for a given function definition and extracts
the return type as well as the parameter declarations. Thereafter, the compound body of the
function is transformed with the help of the function transformCompound. A compound consists
of multiple sub-trees of the extracted AST. Each node of these sub-trees represents a separate
statement. Hence, the function transformCompound calls transformStatement. Each statement
is transformed one after another until no unhandled statements are left. Listing 5.2 shows
an excerpt from the described function which presents a selected number of implemented
transformation functions. The type of the passed argument statement is checked and the
appropriate transform function is called. The previously created state of the SCChart model
is passed to the transform functions in order to continue the creation process from the
correct position. Each statement type needs a separate transform function. Note that not
every possible statement type has been supported yet. For instance, the conversion of goto

50

5.1. CDTProcessor

statements and pointer statements have not been implemented so far. This remains future
work. For a complete list of statement types, the reader is referred to the CDT API1.

1 def State transformStatement(IASTStatement statement, State parent) {

2

3 var actualState = parent;

4 if (statement instanceof CASTIfStatement) {

5 actualState = statement.transformIf(actualState)

6 checkForNestedReturn(actualState)

7 }

8 else if (statement instanceof CASTReturnStatement) {

9 actualState = statement.transformReturn(actualState)

10 }

11 else if (statement instanceof CASTWhileStatement) {

12 actualState = statement.transformWhile(actualState)

13 checkForNestedReturn(actualState)

14 }

15 else if (statement instanceof CASTForStatement) {

16 actualState = statement.transformFor(actualState)

17 checkForNestedReturn(actualState)

18 }

19

20 . . .

21

22 actualState

23 }

Listing 5.2. Code excerpt from the transformStatement function of the CDTProcessor

The next step focuses on the transformation functions of control structures. Since all of
these functions share a similar structure, it suffices to review only one of the implementations
at this point. Listing 5.3 and Listing 5.4 present the transformWhile function. As mentioned
before, each control structure is nested inside its own superstate. Therefore, a whileState is
created and added to the parent region (lines 7-10). Furthermore, a whileStateRegion is added
to the whileState (lines 13-16). This region contains the inner body of the while loop. Thereafter,
the function createConnectingTransition is called in order to connect the newly created whileState

with the previously created state. Additionally, this function also determines the necessary
transition type and checks for eventually needed transition triggers and actions. If the given
state is a superstate, a connecting termination transition is needed. In case the while loop is
nested inside a control structure and is located right after the condition check of its condState,
the appropriate trigger condition must be added to the connection transition.

Next, the inner behavior of the loop is created. The entry point of the while construct
is the condState (lines 22-26). Starting from here, the condition of the loop is checked. If
the condition holds true, the body of the loop is executed. Thereafter, the control flow
returns to the condState in order to recheck the condition. The body is represented as a

1http://help.eclipse.org/neon/index.jsp?topic=%2Forg.eclipse.cdt.doc.isv%2Freference%2Fapi%2Foverview-
summary.html

51

5. Implementation of the Model-based Compilation of Legacy C Programs

CASTCompoundStatement. Hence, the function transformCompound is called (line 30). The
condState is passed as an argument to serve as a point of resumption for the model creation
process. The last created state of the function call is stored inside the value bodyState. Since
the AST is traversed in depth-first order, the bodyState is the last state of the body of the loop.
After the body is executed, the condition needs to be checked again for the second iteration of
the loop. Therefore, a backTransition is created between the bodyState and the condState (lines
32-40). In order to avoid instantaneous loops for the code generation process, the backTransition

is marked as “notImmediate” (line 34). Later on, this tag is used by the Immediate Transitions
M2M transformation step of the KiCo compilation chain to identify to be delayed transitions.
This transformation is detailed in Section 5.2. Line 35 checks for the eventuality of the body
state being a superstate. If this is true, the backTransition must be of type TERMINATION.

Finally, the final state of the loop falseState (lines 43-47) and its connection transition
falseTrans from the condState (lines 50-54) are created. The falseTrans transition activates in
case the condition of the while loop is not satisfied anymore. Consequently, the final state
falseState is entered and the loop state whileState terminates.

1 def State transformWhile(CASTWhileStatement statement, State state) {

2 val f = statement

3 // condition

4 val exp = f.condition

5 val kExp = exp.createKExpression

6 // While loop state.

7 val whileState = scc.createState => [s |

8 s.id = "_S" + trC + WHILEID

9 s.label = WHILELABEL

10 state.parentRegion.states += s

11]

12 // Region of whileState. It contains all states of while loop.

13 val whileStateRegion = scc.createControlflowRegion => [region |

14 region.id = whileState.id + REGIONLABEL

15 region.label = ""

16 whileState.regions += region

17]

18 // Create transition which connects the parent state "state" to the whileState.

19 createConnectingTransition(state, whileState, statement)

20 // The condState serves as starting point to the loop.

21 val condState = scc.createState => [s |

22 s.id = trC.toString + CONDID

23 s.label = ""

24 s.initial = true

25 whileStateRegion.states += s

26]

27 // continue to transform body of while loop

28 val body = f.body as CASTCompoundStatement

29 val bodyState = body.transformCompound(condState, condState)

30 . . .

Listing 5.3. Code of the transformWhile function of the CDTProcessor

52

5.1. CDTProcessor

1 . . .

2 // transition returns to condition´check

3 val backTransition = scc.createTransition => [

4 targetState = condState

5 annotations.add(createStringAnnotation(NOTIMMEDIATELABEL,""))

6 if (bodyState.hasInnerStatesOrControlflowRegions) {

7 type = TransitionType::TERMINATION

8 } else {

9 immediate = true

10 }

11 bodyState.outgoingTransitions += it

12]

13 // final state of loop. It is reached when loop condition is not met anymore

14 val falseState = scc.createState => [s |

15 s.id = trC + ENDID

16 s.label = ""

17 s.final = true

18 whileStateRegion.states += s

19]

20 // transition to falseState

21 val falseTrans = scc.createTransition => [

22 targetState = falseState

23 immediate = true

24 condState.outgoingTransitions += it

25]

26 whileState

27 }

Listing 5.4. Continuing Listing 5.3

After every statement node of the extracted AST has been handled and a representing
SCChart has been created, the function transform, shown in Listing 5.1, continues its execution.
Listing 5.5 continues where Listing 5.1 left off. The final step of the CDTProcessor is the
creation of references for function calls. If a function call expression is found during the
traversing of the AST, a pair containing the referencing state and the corresponding expression
is added to the list functionCallRefs. First, the valued objects of the caller are stored in the
emptied VOSet (lines 10-11). The entries of the VOSet are used later on to create the parameters
for the argument list of the callee. After the referenced state is found in a list of root states
(lines 13-15), the reference is created by setting the attribute referencedScope of the referencing
state to the referenced state (line 17). As a result, the referencing state is transformed into a
reference state. Next, the arguments of the function call must be added to the parameter list of
the reference state (lines 21-27). The function createKExpression creates a parameter expression
with the help of the VOSet of the function (line 26). Furthermore, the variable to which the
return value of the function call is written to, is fetched and stored in the variable assignedVar

(line 34). If the called function is of type void, the called method getAssignedVariableForReturnVal

returns null and the following code block is not executed. The creation of the reference of the
return variable (lines 36-39) proceeds as the previous creation of references of the parameters.

53

5. Implementation of the Model-based Compilation of Legacy C Programs

The only difference is the setting of a callByRederence flag to true in line 37. This flag identifies
a return variable reference. Thereafter, the creation of the SCChart concludes.

1 // Create reference of function call.

2 if (!functionCallRefs.empty) {

3 functionCallRefs.forEach [entry |

4 /* Look up the to be referenced function inside CASTFunctionCallExpression (key)

5 * and connect it to the referencing state (value). */

6 val funcCallExp = entry.key

7 val referencingState = entry.value

8 val rootState = referencingState.getRootState

9

10 VOSet.clear

11 VOSet += functions.filter[key == rootState].head.value

12

13 val funcID = funcCallExp.functionNameExpression.children.head.toString

14 // Search the list functions for the to be referenced function state

15 val State referencedState = lookForFunctions(funcID)

16 if (referencedState != null) {

17 referencingState.referencedScope = referencedState

18 }

19

20 // Handle arguments of function call.

21 val argumentList = getFunctionCallArguments(funcCallExp)

22 if(!argumentList.empty){

23 // Create a parameter for each given argument.

24 for (arg : argumentList) {

25 kex.createParameter => [p |

26 p.expression = arg.createKExpression

27 referencingState.parameters.add(p)

28]

29 }

30 }

31

32 /* If necessary, add reference to the variable which is assigned to the retun

33 * value of the function call */

34 val CASTIdExpression assignedVar = getAssignedVariableForReturnVal(funcCallExp)

35 if (assignedVar != null) {

36 kex.createParameter => [p |

37 p.callByReference = true

38 p.expression = assignedVar.createKExpression

39 referencingState.parameters.add(p)

40]

41 }

42]

43 }

Listing 5.5. Continuing the Code excerpt from Listing 5.1 of the transform function of the CDTProcessor

54

5.2. Immediate Transitions Transformation

5.2 Immediate Transitions Transformation

This final section of this chapter presents a code excerpt from the implementation of the new
addition to the KiCo compilation chain, the Immediate Transitions M2M transformation step. Its
task is to delay every marked immediate transition in order to avoid instantaneous loops.
This step is necessary due to the limitations of the data-flow low-level compilation phase. For
more information see Section 4.1.2.

ImmTransTransformation.xtend defines the functionality of this transformation step. Its
implementation of the transform function can be examined in Listing 5.6 and Listing 5.7. In
order to understand the concept of the transformation, the essential code lines are explained
step-by-step. Basically, every outgoing transition of every state inside the SCChart is checked
for an annotation “notImmediate”. Every marked transition is delayed. Therefore, every state
of each root state is added to a Todo list nextStates (line 10). While iterating over every
state inside this list, each outgoing transition is checked for the annotation “notImmediate”.
This annotation is added by the CDTProcessor while creating the SCChart model in order
to alert of possible instantaneous loops. If a marked transition is found, it is delayed (lines
18-21). Thereafter, the state is checked for possible internal states. In case of a superstate,
every state inside needs to be checked as well. Therefore, they are added to a second list
tmpList (lines 27-33). After every state inside the Todo list nextStates is checked for immediate
outgoing transitions and internal states, nextStates gets cleared. Now, the tmpList contains
every state of the already checked superstates. As a next step, the content of tmpList is copied
to the Todo list (line 41) and cleared (line 15). Hence, the state space can be seen as a tree
structure. A superstate represents a parent node while its internal states are the children
nodes. The transformation process traverses the state tree in a breadth-first order. Afterwards,
the procedure is repeated as long as there are states inside the Todo list at the end of an
iteration of the while loop (line 14). Otherwise, the transform function terminates and returns
the adjusted SCChart.

Now that the M2M transformation is defined and implemented, it needs to be assigned to a
Feature. This Feature is then used to inform KiCo of this transformation step. Therefore, Cbased-
SCChartFeature defines an ID CbasedSCChart which is given to the “Immediate Transitions”
transformation. This ID is transferred to KiCo.

1 // It is required, that a state contains only one ControlflowRegion

2 def Scope transform(Scope rootSCChart, KielerCompilerContext context) {

3 if (rootSCChart instanceof SCCharts) {

4 for (rootState : rootSCChart.rootStates) {

5 val regions = rootState.regions.filter(ControlflowRegion)

6 // List of sstates of function

7 val states = regions.head.states

8

9 . . .

Listing 5.6. Implementation of ImmTransTransformation.xtend

55

5. Implementation of the Model-based Compilation of Legacy C Programs

1 . . .

2 // Todo´list

3 for (s : states) {

4 nextStates.add(s)

5 }

6 /* Delay all transitions, that are marked by the annotation

7 * "notImmediate" of all states in this region. */

8 while (!nextStates.empty) {

9 tmpList.clear

10 for (s : nextStates) {

11 // Change all transitions of state s

12 for (t : s.outgoingTransitions) {

13 if (t.annotations.head != null) {

14 if (t.annotations.head.name.contains("notImmediate")) {

15 t.immediate = false

16 }

17 }

18 }

19 /* If state s contains additional states that need to be

20 checked for transitions, add them to Todo list. */

21 var tmpRegions = s.regions.filter(ControlflowRegion)

22 if (!tmpRegions.empty) {

23 var tmpStates = tmpRegions.head.states

24 // Save states in order to copy them to Todo list later on.

25 if (!tmpStates.empty) {

26 for (state : tmpStates) {

27 tmpList.add(state)

28 }

29 }

30 }

31 }

32 // Update Todo list.

33 nextStates.clear

34 for (s : tmpList) {

35 nextStates.add(s)

36 }

37 }

38 }

39 }

40 rootSCChart

41 }

Listing 5.7. Implementation of ImmTransTransformation.xtend

56

Chapter 6

Evaluation

This chapter evaluates the model-based compilation of legacy C programs in two steps.
Since this thesis was developed on the basis of the prototype of Smyth and Olsson [Ols16],
the results are evaluated by comparing them to the results of the prototype. Firstly, the
overhauled model extraction is compared to the old extraction of the prototype in Section 6.1.
By extracting an SCChart from the same source code with both versions of the mode-based
compilation, differences and optimizations are highlighted. The second Section 6.2 compares
the generated C code to the legacy source code. Furthermore, the limitations of the code
generation process are discussed.

6.1 Evaluating the Code Visualization

In order to evaluate the code visualization, the prototype and the implementation of this
thesis both extract an SCChart model from the same source code which is shown in Listing 6.1a.
This C code implements the calculation of the n-th Fibonacci number. The extracted model
of the prototype is shown in Figure 6.1b while the extracted model of this thesis is depicted
in Figure 6.2. When comparing both models, one can argue that the SCChart of Figure 6.2 is
more organized and the control flow through the model is easier to understand. This increase
in comprehensibility is achieved by three steps of improvement.

Firstly, the SCChart is cleaned out of unnecessary information. Superfluous information
obscure the gist of the model and overstrains the user. The goal of the model-based compilation
of legacy C programs is the provision of semantically equivalent SCCharts to the legacy
source code. Hence, the user rather works with the more maintainable model than with the
legacy code which is harder to read. Consequently, using the line number of the originally
transformed statement as the label of the state does not provide any important information to
the user. Furthermore, the additional states of the if branches T and F are dropped in order to
reduce the number of states. The true branch of an if statement can already be distinguished
from the else branch by the higher priority and the trigger of its transition.

Secondly, as many statements as possible are composited to one state. Multiple variable
initializations in a row are now represented by one state while the former visualization
required one state for each initialization. This greatly affects the number of states of models
for larger scale programs. Additionally, designated initializations are added to the declaration
interface of the parent state of the associated control region. Consequently, the number of

57

6. Evaluation

states is reduced even more. An example is the initialization of the integer variable lastno and
currentno.

Lastly, control structures are aggregated into a separate superstate. This feature enables the
identification of the boundaries of control structures at first sight. On the contrary, the nested
control structures of Figure 6.1b blend into each other and their borders are only identified
when taking a closer look. The introduction of a separate superstate however defines borders
of control structures definitively. Additionally, this visualization also makes the definition
and assignment of local variables possible such as the counter variable i of the for loop.

These three improvements provide a leaner SCChart model with fewer states and a clearer
control flow. The SCChart of the prototype contains 17 states and 16 transitions while the SCChart

of this thesis contains 11 states and 8 transitions. Therefore, the developed visualization of
latter should be able to scale better than the prototype.

1 int fibonacci(int n) {

2 int lastno = 0;

3 int currentno = 1;

4 if(n <= 1) {

5 currentno = n;

6 } else {

7 for(int i = 2; i <= n; i = i + 1) {

8 int tmp = currentno;

9 currentno = currentno + lastno;

10 lastno = tmp;

11 }

12 }

13 return currentno;

14 }

(a) C code example that calculates the n-th Fibonacci number

(b) Visualization of the C code by the previous prototype

Figure 6.1. Comparing the previous and the newly developed visualization of C code.

58

6.2. Evaluating the Code Generation

fibonacci
input int n
int lastno
int currentno
output int return
lastno = 0

 currentno = 1

if

 currentno = n

for
int i
int tmp
 i = 2

tmp = currentno
 currentno = currentno + lastno
 lastno = tmp
 i = i + 1

1: i <= n

2: [-]

1: n <= 1

2:

[-]

 return = currentno

[-]

Figure 6.2. Newly developed visualization of the C code of Listing 6.1a

The next step of the evaluation is the comparison of function call visualizations. Figure 6.3b
shows the extracted model of the old prototype, while Figure 6.3c presents the visualization
of this thesis. The former visualization offers no possibility for showing the inner behavior
of the called function. The function call is simply realized by a host-code statement sum =

’add(a,b)’. The new visualization utilizes reference states to integrate the inner behavior of the
root state add into the root state of the caller main.

6.2 Evaluating the Code Generation

This final section of the evaluation takes a closer look at two examples of SCCharts and their
generated code by the model-based compilation. The limitations of the code generation
process are discussed and the legacy code regarding the number of used variables and lines
is compared to the generated C code.

The first example is the previously shown SCChart of Figure 6.3c. Its generated source code
is presented by the listings of Figure 6.4 which calculates the sum of two integer numbers.
At first sight, it is obvious that the generated code is much longer and even harder to read
for a human user. Furthermore, the introduction of guards for basic blocks and conditions
greatly increase the number of used variables. However, means to reduce the number of used
variables and therefore the necessary memory space is currently developed by the KIELER

development team of the Real-Time and Embedded Systems Group. The enhancement of
the readability of the generated code is of no high priority, since the generated source code
is made for computers and not for humans. Providing an error-free executable code which

59

6. Evaluation

1 int main(int a, int b) {

2 int sum;

3 sum = add(a,b);

4 return sum;

5 }

6

7 int add(int x, int y) {

8 return x + y;

9 }

(a) C code example that calculates
the sum of two integers

nestedFuncCall.c

output int return
input int a
input int b
int sum

_S1
 sum = "add(a,b)"

line: 3
 return = sum

[-] _main

[-]

 sum = "add(a,b)"

main

line: 34

(b) Visualization of function calls by the previous
prototype

main
input int a
input int b
int sum
output int return

Call @ add(a, b, &sum)

add
input int x
input int y
output int return

return = x + y
[-]

[-]

return = sum

[-]

add
input int x
input int y
output int return

return = x + y

[-]

(c) Newly developed visualization of the function calls

Figure 6.3. Comparing the previous and the newly developed visualization of function calls

needs as little memory space as possible is of greater importance. This leads to the limitations
of the code extraction process that still exist. The generated C code from the SCChart is not yet
executable without manual additions. However, the code generation of function calls still is in
the early stages of development and must therefore be seen as a prototype. When considering
the generated source code of the listing of Figure 6.4a, the manual additions are marked by
the comments above. The first addition is the inclusion of required header files. The second
addition to the source code is the main function of the source code file in order to provide
an entry point for its execution. In this given example, the main reads the given arguments
of the user and stores it in the variables a and b. As a next step, the two inputs are copied
to the corresponding fields of a newly created TickData variable td. This variable belongs to
the root state main of the SCChart and contains its input variables, output variables and guard
variables. Furthermore, a TickData1 variable td1 is declared which belongs to the root state add.
In order to call the corresponding tick function tick1 in line 60 of the listing of Figure 6.4b, the

60

6.2. Evaluating the Code Generation

variable _call0 of the caller TickData needs to be linked to the TickData td1 of the callee. This
assignment is done in line 89 inside the main function. After resetting td to set the variable
_G0 in order to signal the beginning of the execution of the program, the tick function of the
root state main is called. At the end, the computed result is printed out onto the console.

At this point of the development, no variable names can be reused between different
functions. If, for example, two functions f and g both name their input variable x, the code
generation will not work as intended. Therefore, one of the input variables needs to be
renamed. Furthermore, the generated functions reset, tick and tickLogic are not properly
named when an SCChart contains more than two functions. The generated functions belonging
to the third defined function are called the same as the generated functions for the second
defined function. Therefore, the names need to be manually adjusted by the user in order to
avoid unwanted behavior.

61

6. Evaluation

1 //Manually added header files.

2 #include <stdio.h>

3

4 typedef struct {

5 char g5;

6 char _GO;

7 char ret;

8 char x;

9 char y;

10 } TickData1;

11

12 typedef struct {

13 char g0;

14 char _GO;

15 char g4;

16 char g3;

17 char pg3;

18 char g1;

19 TickData1 _call0;

20 char _cg1;

21 char g2;

22 char ret;

23 char sum;

24 char a;

25 char b;

26 } TickData;

27

28 void reset1(TickData1 *data) {

29 data´>_GO = 1;

30 }

31 void tickLogic1(TickData1 *data) {

32 data´>g5 = data´>_GO;

33 if (data´>g5) {

34 data´>ret = data´>x + data´>y;

35 }

36 }

37 void tick1(TickData1 *data) {

38 tickLogic1(data);

39

40 data´>_GO = 0;

41 }

42

43 void reset(TickData *data) {

44 data´>pg3 = 0;

45 data´>_GO = 1;

46

47 reset1(&data´>_call0);

48 }

49 . . .

(a) First part of the generated C code

50 . . .

51

52 void tickLogic(TickData *data) {

53 data´>g0 = data´>_GO;

54 data´>g4 = data´>pg3;

55 data´>g1 = data´>g0 || data´>g4;

56

57 if (data´>g1) {

58 data´>_call0.x = data´>a;

59 data´>_call0.y = data´>b;

60 tick1(&data´>_call0);

61 data´>sum = data´>_call0.ret;

62 }

63 data´>_cg1 = 1;

64 data´>g3 = data´>g1 && !data´>_cg1;

65 data´>g2 = data´>g1 && data´>_cg1;

66

67 if (data´>g2) {

68 data´>ret = data´>sum;

69 }

70 }

71

72 void tick(TickData *data) {

73 tickLogic(data);

74

75 data´>_GO = 0;

76 data´>pg3 = data´>g3;

77

78 }

79

80 // Manually added main function.

81 int main(int argc, char* argv[]) {

82 int a = atoi(argv[1]);

83 int b = atoi(argv[2]);

84 int sum;

85 TickData td;

86 TickData1 td1;

87 td.a = a;

88 td.b = b;

89 td._call0 = td1;

90

91 reset(&td);

92 tick(&td);

93 sum = td.ret;

94 printf("%d \n", sum);

95

96 return 0;

97

98 }

(b) Continuing the listing of Figure 6.1

Figure 6.4. Generated C code plus manually added code from SCChart shown in Figure 6.3c. This code
calculates the sum of two integers.

62

Chapter 7

Conclusion

This final chapter summarizes the results of this thesis. Furthermore, each development step
as well as the evaluation of the model-based compilation of legacy C programs are recapped
in Section 7.1. The thesis is concluded by presenting ideas for future work and by pointing out
possible improvements of the model-based compilation of legacy C programs in Section 7.2.

7.1 Summary

This thesis continued the work of Smyth and Olsson [Ols16] by developing new features as
well as improving existing features of the model-based compilation of legacy C programs.
The first part of this thesis gave the reader an overview of the provided features of the visual
programming language SCCharts. This overview was mandatory in order to fully understand
the possibilities and the limitations of the SCCharts language. Furthermore, it presented first
ideas of how to visualize C code.

After explaining the concept of Sequential Constructiveness, the interactive compilation
process in KIELER was discussed. This section exemplified the high-level compilation approach
as well as both low-level compilation approaches, while focusing on the data-flow approach.
Therefore, the syntax of the SCG was introduced to the reader. This step was necessary to allude
the problematic nature of instantaneous loops inside SCCharts. Next, the C code extraction
process was explained which was realized with the help of the CDT plug-in. Furthermore, the
structure of the created AST was depicted and the visualization procedure of how to create
models from ASTs was described.

The subsequent section presents the concept of this thesis on how to visualize C code.
Firstly, control structures were discussed. Thereafter, the graphical representation of function
calls was discussed. As a final step, the structure and content of the generated source code
from extracted SCCharts was explained.

The evaluation showed, that the visualization of source code improved by providing a
leaner SCChart that is supposedly easier to understand. Furthermore, the limitations of the
new prototype for C code generation including function calls, which is based on the data-flow
low-level compilation approach, were stated and evaluated.

63

7. Conclusion

7.2 Future Work

Even though this thesis addressed several problems of the already existing prototype, the
complex development of a model-based compilation of source code still provides yet unsolved
problems and challenges. Therefore, this thesis is closed by presenting several ideas for future
work.

Concurrency

One of the presumingly most important, and supposedly also one of the most challenging
future tasks is the development of compiling concurrent C code. Concurrency is part of every
real-time and safety-critical embedded system. Therefore, it is of great importance to expand
the functionality of KIELER and support the model extraction of concurrent legacy C code.

Expanding the Set of Supported Code Concepts

This thesis implemented the visualization of important code concepts such as control struc-
tures and function calls. Nevertheless, legacy C code may contain many more constructs
which need to be converted when extracting a representing SCChart. One of the more impor-
tant concepts of the programming language C are pointers. Pointers are one of the specialties
of C and provide a powerful tool to refer to memory addresses of other variables. Another
important feature are recursive function calls. Currently, only non-recursive function calls are
supported. However, recursiveness provides a powerful tool to the programmer.

Currently, only functions can be called whose SCChart does not contain any delayed
transitions and therefore finishes its execution within one tick. In order to lift this limitation,
the compilation process of the KiCo compilation chain needs to adjusted. Additionally, the
conversion of unconditional goto statements, as well as global variables would improve the
range of supported C code for the model-based compilation of legacy C code.

Further Improvement of the Code Generation

One goal of KIELER is to provide a T2M2T compilation for C code which provides automatically
generated executable source code. Until new, the generated C code must still be manually
adjusted by adding necessary header files and a main function in order to be executed. Future
work needs to include these additions automatically. Furthermore, the compilation process
must be adjusted in order to support function calls where the root state of the callee contains
delayed transitions. Additionally, bugs like the correct naming of the generated functions
have to be corrected.

Design Issues

The design of the extracted SCCharts can be further advanced by combining a variable declara-
tion and initialization into a single statement inside the declaration interface of the respective

64

7.2. Future Work

state. Furthermore, it can be assessed whether the relocation of variable declarations and
initializations out of the declaration interface of the parent state into a separate state in its
region provides a more readable model. Even though the number of states would be increased,
the declaration interface and therefore the state itself would need fewer space overall.

Benchmark Testing of Generated Code

Until now, the generated source code is only analyzed without additional help like benchmark
tools. In order to evaluate the quality of the generated source code further additional tests
have to be done. Additionally, the savings of states and transitions of SCCharts created with
the enhanced model-based compilation of this thesis compared to the SCCharts of the former
prototype can be further analyzed. This would provide for a more detailed measurement for
the actual improvements of the results of the model creation process.

65

Chapter 8

Appendix

A Generated AST

1 org.eclipse.cdt.internal.core.dom.parser.c.CASTFunctionDefinition@2b4ab7

2 org.eclipse.cdt.internal.core.dom.parser.c.CASTSimpleDeclSpecifier@58721f69

3 org.eclipse.cdt.internal.core.dom.parser.c.CASTFunctionDeclarator@5e91142c

4 main

5 org.eclipse.cdt.internal.core.dom.parser.c.CASTCompoundStatement@72a3b822

6 org.eclipse.cdt.internal.core.dom.parser.c.CASTDeclarationStatement@28872a33

7 org.eclipse.cdt.internal.core.dom.parser.c.CASTSimpleDeclaration@6046e11d

8 org.eclipse.cdt.internal.core.dom.parser.c.CASTSimpleDeclSpecifier@3620b94d

9 org.eclipse.cdt.internal.core.dom.parser.c.CASTDeclarator@59ad6503

10 a

11 org.eclipse.cdt.internal.core.dom.parser.c.CASTEqualsInitializer@48ea0ab7

12 1

13 org.eclipse.cdt.internal.core.dom.parser.c.CASTIfStatement@1f7354be

14 org.eclipse.cdt.internal.core.dom.parser.c.CASTBinaryExpression@2c2a6ccc

15 org.eclipse.cdt.internal.core.dom.parser.c.CASTIdExpression@1e9d8137

16 a

17 2

18 org.eclipse.cdt.internal.core.dom.parser.c.CASTCompoundStatement@6ba9fe1

19 org.eclipse.cdt.internal.core.dom.parser.c.CASTExpressionStatement@3e9ed2c

20 org.eclipse.cdt.internal.core.dom.parser.c.CASTBinaryExpression@7c5abd91

21 org.eclipse.cdt.internal.core.dom.parser.c.CASTIdExpression@ebc1f14

22 a

23 3

24 org.eclipse.cdt.internal.core.dom.parser.c.CASTReturnStatement@5c2bccb5

25 1

Listing A.1. AST of C code of Listing 4.11a

67

8. Appendix

B Generated C code

1 // Manually added header files.

2 #include <stdio.h>

3

4 typedef struct {

5 int _GO;

6 int g0;

7 int _cg0;

8 int a;

9 int b;

10 int g3;

11 int _cg3;

12 int g4;

13 int g1;

14 int g5;

15 int g2;

16 int ret;

17 } TickData;

18

19 void reset(TickData *data) {

20 data´>_GO = 1;

21 }

22

23 void tickLogic(TickData *data) {

24 data´>g0 = data´>_GO;

25 data´>_cg0 = data´>a < data´>b;

26 data´>g3 = data´>g0 && !data´>_cg0;

27 data´>_cg3 = data´>a > data´>b;

28 data´>g4 = data´>g3 && data´>_cg3;

29 if (data´>g4) {

30 data´>a = data´>b * 2;

31 }

32 data´>g1 = data´>g0 && data´>_cg0;

33 if (data´>g1) {

34 data´>a = data´>b;

35 }

36

37 . . .

(a) First part of the generated C code

48 . . .

49 data´>g5 = data´>g3 && !data´>_cg3;

50 if (data´>g5) {

51 data´>a = data´>a + data´>b;

52 }

53 data´>g2 = data´>g1 || data´>g5 || data´>g4;

54 if (data´>g2) {

55 data´>ret = data´>a;

56 }

57 }

58

59 void tick(TickData *data) {

60 tickLogic(data);

61

62 data´>_GO = 0;

63 }

64

65 // <´´ Manually added main function.

66 int main(int argc, char* argv[]) {

67 int f = atoi(argv[1]);

68 int g = atoi(argv[2]);

69 int x;

70 TickData td;

71 td.a = f;

72 td.b = g;

73 reset(&td);

74 tick(&td);

75 x = td.ret;

76 printf("%d \n", x);

77 return 0;

78 }

(b) Continuing listing of Figure B.1a

Figure B.1. Generated C code plus added header files and main function from SCChart shown in
Figure 4.14.

68

B. Generated C code

1 #include <stdio.h> // <´´ Manually added header files.

2

3 typedef struct {

4 char g0;

5 char _GO;

6 char lastno;

7 char currentno;

8 char _cg0;

9 char n;

10 char g3;

11 char _null_fibonacci_int_local_i;

12 char g6;

13 char g5;

14 char pg5;

15 char g4;

16 char _cg4;

17 char g7;

18 char g8;

19 char pg7;

20 char _cg8;

21 char _null_fibonacci_int_local_tmp;

22 char g1;

23 char g2;

24 char ret;

25 } TickData;

26

27 void reset(TickData *data) {

28 data´>pg5 = 0;

29 data´>pg7 = 0;

30 data´>_GO = 1;

31

32 }

33

34 void tickLogic(TickData *data) {

35 data´>g0 = data´>_GO;

36 if (data´>g0) {

37 data´>lastno = 0;

38 data´>currentno = 1;

39 }

40 data´>_cg0 = data´>n <= 1;

41 data´>g3 = data´>g0 && !data´>_cg0;

42 if (data´>g3) {

43 data´>_null_fibonacci_int_local_i = 2;

44 }

45

46 . . .

Listing B.2. Generated C code plus added main function from SCChart shown in Figure 6.1

69

8. Appendix

1 . . .

2

3 data´>g6 = data´>pg5;

4 data´>g4 = data´>g3 || data´>g6;

5 data´>_cg4 = data´>_null_fibonacci_int_local_i <= data´>n;

6 data´>g8 = data´>pg7;

7 data´>_cg8 = data´>_null_fibonacci_int_local_i <= data´>n;

8 data´>g5 = data´>g4 && data´>_cg4 || data´>g8 && data´>_cg8;

9 if (data´>g5) {

10 data´>_null_fibonacci_int_local_tmp = data´>currentno;

11 data´>currentno = data´>currentno + data´>lastno;

12 data´>lastno = data´>_null_fibonacci_int_local_tmp;

13 data´>_null_fibonacci_int_local_i = data´>_null_fibonacci_int_local_i + 1;

14 }

15 data´>g1 = data´>g0 && data´>_cg0;

16 if (data´>g1) {

17 data´>currentno = data´>n;

18 }

19 data´>g2 = data´>g1 || data´>g8 && !data´>_cg8;

20 if (data´>g2) {

21 data´>ret = data´>currentno;

22 }

23 }

24

25 void tick(TickData *data) {

26 tickLogic(data);

27

28 data´>_GO = 0;

29 data´>pg7 = data´>g7;

30 data´>pg5 = data´>g5;

31 }

32

33 int main(int argc, char* argv[]) { // <´´ Manually added main function.

34 int n = atoi(argv[1]);

35 int x;

36 TickData td;

37 td.n = n;

38 td.ret = 0;

39 reset(&td);

40 while(td.ret == 0) {

41 tick(&td);

42 }

43 x = td.ret;

44 printf("%d \n", x);

45 return 0;

46 }

Listing B.3. Continuing Listing B.2

70

Bibliography

[And03] Charles André. Semantics of SyncCharts. Tech. rep. ISRN I3S/RR–2003–24–FR.
Sophia-Antipolis, France: I3S Laboratory, Apr. 2003.

[BHL+02] Joseph Buck, Soonhoi Ha, Edward A. Lee, and David G. Messerschmitt. “Read-
ings in hardware/software co-design”. In: ed. by Giovanni De Micheli, Rolf
Ernst, and Wayne Wolf. Norwell, MA, USA: Kluwer Academic Publishers, 2002.
Chap. Ptolemy: A Framework for Simulating and Prototyping Heterogeneous
Systems, pp. 527–543. isbn: 1-55860-702-1. url: http://dl.acm.org/citation.cfm?id=
567003.567050.

[FWW+13] Florian Fittkau, Jan Waller, Christian Wulf, and Wilhelm Hasselbring. “Live
trace visualization for comprehending large software landscapes: The ExplorViz
approach”. In: Proceedings of the 1st IEEE International Working Conference on
Software Visualization (VISSOFT’13). Sept. 2013, pp. 1–4. doi: 10.1109/VISSOFT.2013.

6650536.

[Har87] David Harel. “Statecharts: A visual formalism for complex systems”. In: Science
of Computer Programming 8.3 (June 1987), pp. 231–274.

[HCR+91] Nicolas Halbwachs, Paul Caspi, Pascal Raymond, and Daniel Pilaud. “The
synchronous data-flow programming language LUSTRE”. In: Proceedings of the
IEEE 79.9 (Sept. 1991), pp. 1305–1320.

[HDM+13] Reinhard von Hanxleden, Björn Duderstadt, Christian Motika, Steven Smyth,
Michael Mendler, Joaquín Aguado, Stephen Mercer, and Owen O’Brien. SCCha-
rts: Sequentially Constructive Statecharts for safety-critical applications. Technical
Report 1311. ISSN 2192-6247. Christian-Albrechts-Universität zu Kiel, Depart-
ment of Computer Science, Dec. 2013.

[HDM+14a] Reinhard von Hanxleden, Björn Duderstadt, Christian Motika, Steven Smyth,
Michael Mendler, Joaquín Aguado, Stephen Mercer, and Owen O’Brien. “SC-
Charts: Sequentially Constructive Statecharts for safety-critical applications”.
In: Proc. ACM SIGPLAN Conference on Programming Language Design and Imple-
mentation (PLDI’14). Long version: Technical Report 1311, Christian-Albrechts-
Universität zu Kiel, Department of Computer Science, December 2013, ISSN
2192-6274. Edinburgh, UK: ACM, June 2014.

[HDM+14b] Reinhard von Hanxleden, Björn Duderstadt, Christian Motika, Steven Smyth,
Michael Mendler, Joaquín Aguado, Stephen Mercer, and Owen O’Brien. “SC-
Charts: Sequentially Constructive Statecharts for safety-critical applications”.
In: Proc. ACM SIGPLAN Conference on Programming Language Design and Imple-
mentation (PLDI’14). Edinburgh, UK: ACM, June 2014.

71

http://dl.acm.org/citation.cfm?id=567003.567050
http://dl.acm.org/citation.cfm?id=567003.567050
http://dx.doi.org/10.1109/VISSOFT.2013.6650536
http://dx.doi.org/10.1109/VISSOFT.2013.6650536

Bibliography

[HMA+13] Reinhard von Hanxleden, Michael Mendler, Joaquín Aguado, Björn Duder-
stadt, Insa Fuhrmann, Christian Motika, Stephen Mercer, Owen O’Brien, and
Partha Roop. Sequentially Constructive Concurrency—A conservative extension of
the synchronous model of computation. Technical Report 1308. ISSN 2192-6247.
Christian-Albrechts-Universität zu Kiel, Department of Computer Science, Aug.
2013.

[IM14] Javier L. Cnovas Izquierdo and Jess G. Molina. “Extracting models from source
code in software modernization”. In: Software and Systems Modeling 13.2 (Sept.
2014), pp. 713–734. issn: 1619-1374. doi: 10.1007/s10270-012-0270-z.

[Mot09] Christian Motika. “Semantics and execution of domain specific models—KlePto
and an execution framework”. http : / / rtsys . informatik . uni - kiel . de / ~biblio /

downloads/theses/cmot- dt.pdf. Diploma thesis. Kiel University, Department of
Computer Science, Dec. 2009.

[MSH14] Christian Motika, Steven Smyth, and Reinhard von Hanxleden. “Compiling
SCCharts—A case-study on interactive model-based compilation”. In: Pro-
ceedings of the 6th International Symposium on Leveraging Applications of Formal
Methods, Verification and Validation (ISoLA 2014). Vol. 8802. LNCS. Corfu, Greece,
Oct. 2014, pp. 443–462. doi: 10.1007/978-3-662-45234-9.

[Ols16] Lars Olsson. “Modellextraktion aus C-Code”. Bachelor thesis. Kiel University,
Department of Computer Science, Mar. 2016.

[RLR+13] Gianna Reggio, Maurizio Leotta, Filippo Ricca, and Diego Clerissi. “What are
the used UML diagrams? A Preliminary Survey”. In: EESSMod 2013 — 3rd
International Workshop on Experiences and Empirical Studies in Software Modeling.
Vol. 1078. CEUR Workshop Proceedings. Nov. 2013, pp. 3–12.

[Sch06] Douglas C. Schmidt. “Model-driven engineering”. In: Computer 39.2 (Feb. 2006),
pp. 25–31. issn: 0018-9162. doi: 10.1109/MC.2006.58.

[SMH15] Steven Smyth, Christian Motika, and Reinhard von Hanxleden. “A data-flow
approach for compiling the sequentially constructive language (SCL)”. In: 18.
Kolloquium Programmiersprachen und Grundlagen der Programmierung (KPS 2015).
Pörtschach, Austria, May 2015.

[SPL03] Robert C. Seacord, Daniel Plakosh, and Grace A. Lewis. Modernizing Legacy Sys-
tems: Software Technologies, Engineering Processes, and Business Practices. Boston,
Massachusetts , USA: Addison Wesley, 2003. isbn: 0321118847.

[SSH13] Christian Schneider, Miro Spönemann, and Reinhard von Hanxleden. “Just
model! – Putting automatic synthesis of node-link-diagrams into practice”.
In: Proceedings of the IEEE Symposium on Visual Languages and Human-Centric
Computing (VL/HCC’13). San Jose, CA, USA, 15–19 09 2013, pp. 75–82. doi:
10.1109/VLHCC.2013.6645246.

72

http://dx.doi.org/10.1007/s10270-012-0270-z
http://rtsys.informatik.uni-kiel.de/~biblio/downloads/theses/cmot-dt.pdf
http://rtsys.informatik.uni-kiel.de/~biblio/downloads/theses/cmot-dt.pdf
http://dx.doi.org/10.1007/978-3-662-45234-9
http://dx.doi.org/10.1109/MC.2006.58
http://dx.doi.org/10.1109/VLHCC.2013.6645246

	Acronyms
	Contents
	List of Figures
	Introduction
	Model-driven Software Development with KIELER
	SCCharts
	Incremental Compilation of SCCharts
	Problem Statement
	Outline of this Thesis

	Related Work
	Used technologies
	Eclipse
	Eclipse C/C++ Development Tooling
	Xtend

	KIELER

	Model-based Compilation of Legacy C Programs
	SCCharts and their Compilation in KIELER
	Sequential Constructiveness
	The Interactive Compilation of SCCharts in KIELER

	Generating ASTs from C code
	Creating SCCharts from an AST
	Functions
	Variable Declarations and Assignments
	Control Structures
	Function Calls

	Compiling the extracted SCChart
	Extracted C Code

	Implementation of the Model-based Compilation of Legacy C Programs
	CDTProcessor
	Immediate Transitions Transformation

	Evaluation
	Evaluating the Code Visualization
	Evaluating the Code Generation

	Conclusion
	Summary
	Future Work

	Appendix
	Generated AST
	Generated C code
	Bibliography

