
Christian-Albrechts-Universität zu Kiel

Diploma Thesis

Code Generation for
Sequential Constructiveness

Steven Patrick Smyth

July 24, 2013

Department of Computer Science
Real-Time and Embedded Systems Group

Prof. Dr. Reinhard von Hanxleden

Advised by:
Dipl.-Inf. Christian Motika

Eidesstattliche Erklärung

Hiermit erkläre ich an Eides statt, dass ich die vorliegende Arbeit selbstständig verfasst
und keine anderen als die angegebenen Hilfsmittel verwendet habe.

Kiel,

Abstract

Many programming languages in the synchronous world employ a classical Model of
Computation which allows them to implement determinism since they rule out race
conditions. However, to do so, they impose heavy restrictions on which programs are
considered valid. The newly refined Sequentially Constructive Model of Computation,
developed by von Hanxleden et al. in 2012, aims to lift some of these restrictions by
allowing sequential and concurrent dependent variable accesses to proceed as long as the
program stays statically schedulable.

The code generation approach presented in this thesis introduces a chain of key steps
for deriving code automatically out of sequentially constructive statecharts, or SCCharts.
It explains the intermediate language SCL, its graphical representation, the SCG, and
clarifies each particular step of the transformation chain. Especially the determination of
schedulability is elucidated. Additionally, pointers to optimizations are given and since
the approach is embedded in the Kiel Integrated Environment for Layout Eclipse Rich
Client (KIELER), experimental results are directly compared to concepts already present
in KIELER.

Key words synchronous languages, modelling languages, constructiveness, sequential
constructiveness, SCCharts, SCL, SCG, SyncCharts, KIELER, code generation, schedula-
bility

v

Contents

1 Introduction 1
1.1 Synchronous Languages . 1

1.1.1 Sequential Constructiveness . 2
1.1.2 SyncCharts . 3
1.1.3 SCCharts . 4

1.2 Model-driven Development with KIELER 5
1.3 Problem Statement . 6
1.4 Outline of this Document . 7

2 Related Work 9
2.1 General Code Generation Approaches . 9
2.2 SyncCharts Code Generation . 10
2.3 SCADE Code Generation . 10

3 Used Technologies 11
3.1 The Eclipse Project . 11

3.1.1 Graphical Editing Framework . 12
3.1.2 Eclipse Modeling Framework . 12
3.1.3 Graphical Modeling Framework . 15
3.1.4 Xtext . 15
3.1.5 Xtend . 16

3.2 Kiel Integrated Environment for Layout Eclipse Rich Client 17
3.2.1 KLay Layered . 18
3.2.2 KLighD . 18
3.2.3 KIEM . 19
3.2.4 Synchronous . 19

3.3 Yakindu Statechart Editor . 19
3.3.1 KIELER SyncCharts Editor based on Yakindu 20

4 Sequentially Constructive Code Generation 21
4.1 Language Concepts Introduction . 22

4.1.1 SCCharts . 22
4.1.2 Sequential Constructiveness . 26
4.1.3 The Sequentially Constructive Language 27
4.1.4 The Sequentially Constructive Graph 33
4.1.5 SCL Metamodel Extensions . 37
4.1.6 Sequential Sequentially Constructive Language 39

vii

Contents

4.1.7 Normalized Core SCCharts . 39
4.2 Sequential Constructiveness Transformations 41

4.2.1 Extended SCCharts Expansion . 42
4.2.2 Core SCChart to SCL Transformation 43
4.2.3 SCL Code Optimization . 46
4.2.4 SCG Synthesis . 49
4.2.5 Dependency Analysis . 51
4.2.6 Basic Block Analysis . 53
4.2.7 Sequential SCL Transformation . 60
4.2.8 SCL to S Transformation . 61

5 Sequential Constructiveness Code Generation Implementation 63
5.1 The Sequentially Constructive Language 63

5.1.1 SCL Grammar in Xtext . 63
5.2 Dynamic Language Extensions . 69

5.2.1 The SCL Dependency Extension . 70
5.2.2 The SCL Basic Block extension . 74

5.3 Synthesis of the Sequentially Constructive Graph 79
5.3.1 Statement Sequence Figures Creation 79
5.3.2 Figure Creation . 81
5.3.3 Basic Block Modifier Visual Post-processing 82

5.4 Sequentially Constructive Transformations 82
5.4.1 Core SCCharts to SCL Transformation 82
5.4.2 SCL Optimizations . 88
5.4.3 The Sequential Tick Function . 91

6 Experimental Results 97
6.1 Scaling Approach Evaluation . 99
6.2 Common Example Evaluation . 102
6.3 Guard Evaluation . 104

7 Conclusion 107
7.1 Summary . 107
7.2 Future work . 107

Acknowledgements 111

Bibliography 113

viii

List of Figures

1.1 Embedded Reactive System [MvHH13] . 1
1.2 Synchrony Hypothesis (G. Luettgen, 2001) 2
1.3 ABRO, the “Hello World” of SyncCharts 3
1.4 ABO, the “Hello World” of SCCharts . 5
1.5 KIELER Project Structure (KIELER Documentation) 6

3.1 Eclipse Workbench with Editors and Views [Mot09] 12
3.2 Simplified Ecore Metamodel Subset [Mot09] 13
3.3 EMF Tree Editor [Har13] . 14
3.4 EMF Graphical Editor [Har13] . 14
3.5 Schematic Overview of the KIEM Interface [MFvH10] 19

4.1 Transformation chain including origin and underlying metamodel 21
4.2 Basic valid SCCharts Example . 22
4.3 ABO, the “Hello World” of SCCharts, in detail 23
4.4 Syntactical Elements of SCCharts [vHMA`13b] 24
4.5 The WTO Principle – Connectors . 25

(a) Re-evalutation of A without WTO 25
(b) Single evalutation of A with Write-Things-Once (WTO) 25

4.6 Simple Transition Example . 29
4.7 Illustrated SText Expressions . 30
4.8 The SCL Metamodel . 32
4.9 SCL Metamodel Illustration . 33
4.10 The SCG Figures [vHMA`13b] . 34
4.11 SCG Dependency Visualization . 34

(a) write–write . 34
(b) abs. write–rel. write . 34
(c) abs. write–read . 34
(d) rel. write–read . 34

4.12 Pause visualization . 35
4.13 Annotated pause visualization . 35
4.14 ABO with full visualization . 36
4.15 Normalized Core SCCharts Connector Elements 40
4.16 Normalized Core SCCharts Connector Types in the SCG 41
4.17 Example of Transforming Extended SCCharts to Core SCCharts 42

(a) Extended SCChart IO . 42
(b) Intermediate IO . 42

ix

List of Figures

(c) Core SCCharts IO . 42
4.18 State Transformation Pattern . 44
4.19 T4f Transition Translation Example . 48

(a) T4f SCChart . 48
(b) Naive Translation . 48
(c) DTO Translation . 48
(d) WTOTO Translation . 48

4.20 The Sequentially Constructive Graph (SCG) of ABO 50
4.21 Least Common Ancestor Fork Example 52
4.22 Basic Block Conditional Example . 56

(a) SCChart . 56
(b) SCG . 56

4.23 Basic Block Pause Example . 56
(a) SCChart . 56
(b) SCG . 56

4.24 Basic Block Join Example . 57
(a) SCChart . 57
(b) SCG . 57

4.25 Basic Block Data Dependency Example 58
(a) SCChart . 58
(b) SCG . 58

4.26 Basic Block Conflict Example . 59
(a) SCChart . 59
(b) SCG . 59

4.27 SCG of Seq SCL ABO . 60

6.1 Test Set-up – Transformations . 98
6.2 State Comparison – Execution Time . 99
6.3 State Comparison – Executable Size . 100
6.4 Hierarchy Layer Comparison – Execution Time 101
6.5 Execution Time Comparison at Hierarchy Test with Depth Four 101
6.6 Hierarchy Layer Comparison – Executable Size 102
6.7 Common Examples . 103

(a) Simple Example . 103
(b) SimpleConcurrency Example . 103

6.8 Common Example Comparison – Execution Time 103
6.9 Common Example Comparison – Executable Size 104
6.10 Guard Evaluation . 104

7.1 Rejected Program Example . 108

x

Listings

3.1 Xtext Grammar Example . 16
3.2 Xtend Example (Xtend Documentation) 16
3.3 Generated Java Example Code (Xtend Documentation) 16
4.1 Basic valid sequential Assignment . 22
4.2 Implicit else branch in Sequentially Constructive Language (SCL) 29
4.3 Simple Transition in SCL . 29
4.4 SCL example – Pause . 35
4.5 SCL example – Annotation . 35
4.6 Complete SCL ABO . 37
4.7 Tick Function Example – Pause . 39
4.8 Unoptimized ABO SCL . 45
4.9 Goto Optimization Example in ABO before Optimization 46
4.10 Goto Optimization Example in ABO after Optimization 46
4.11 Label Optimization Example in ABO before Optimization 46
4.12 Label Optimization Example in ABO after Optimization 46
4.13 Self-loop Optimization Example in ABO before Optimization 47
4.14 Self-loop Optimization Example in ABO after Optimization 47
4.15 Optimized SCL of ABO . 49
4.16 ABO in Sequential SCL . 60
4.17 ABO in S . 62
5.1 SCL Grammar – Program root . 64
5.2 SyncText Grammar – Variable Definition 64
5.3 SCL Grammar – Statements . 65
5.4 SCL Grammar - Instructions . 66
5.5 SCL Grammar – Instructions (cont.) . 67
5.6 SCL Grammar – Statement Sequence . 68
5.7 SCL Grammar – Annotation . 68
5.8 Xtext configuration – Parser Fragment . 69
5.9 SCL – Request serializer . 69
5.10 SCL Dependency Extension – References Search 70
5.11 SCL Dependency Extension – Statements Search 71
5.12 SCL Dependency Extension – Concurrent Dependencies Search 72
5.13 SCL Dependency Extension – Relative Writer Determination 72
5.14 SCL Dependency Extension – Dependencies Categorization 73
5.15 SCL Basic Block Extension – Basic Block Statements Retrieval 75
5.16 SCL Basic Block Extension – Basic Block Head Statement decider 76
5.17 SCL Basic Block Extension – getPredecessors in Pseudo Code 78

xi

Listings

5.18 SCG Synthesis – Statement Sequence in Pseudo Code 80
5.19 SCG Synthesis – Assignment Figure Creation 81
5.20 SCG Synthesis – Basic Block Modifier . 82
5.21 SCL Transformation – Statechart Context 83
5.22 SCL Transformation – Region Context . 84
5.23 SCL Transformation – State Context . 85
5.24 SCL Transformation – Transitions Context in Pseudo Code 87
5.25 SCL Transformation – Single Transition Context 88
5.26 SCL Optimization – Self-loop . 88
5.27 SCL Self-loop Example . 89
5.28 Optimized Self-loop Examp. 89
5.29 SCL Optimization – Goto . 89
5.30 SCL Optimization – Label . 90
5.31 SCL Duplicate Transition . 91
5.32 Optimized Dup. Transition . 91
5.33 Sequential SCL – Main Loop . 93
5.34 Sequential SCL – Basic Block Transformation 94
5.35 Sequential SCL – Basic Block Transformation (cont.) 95
6.1 Tick Function in SCL . 97
6.2 Tick Function in S . 97

xii

Abbreviations

ANDEXP Logical AND Expression

ASSEXP Assignment expression

ASC Acyclic Sequentially Constructive

API Application Programming Interface

BB Basic Block

BBP Basic Block Predecessor

BBS Basic Block Successor

DSL Domain Specific Language

DTO Duplicate Transition Optimization

EMF Eclipse Modeling Framework

EPL Eclipse Public License

FSM Finite State Machine

GEF Graphical Editing Framework

GMF Graphical Modeling Framework

GUI Graphical User Interface

ID Identifier

IDE Integrated Development Environment

KIELER Kiel Integrated Environment for Layout Eclipse Rich Client

KIEM KIELER Execution Manager

KIML KIELER Infrastructure for Meta Layout

KIVi KIELER View Management

KLay KIELER Layouters

KLighD KIELER Lightweight Diagrams

xiii

Listings

KSbasE KIELER Structure-based Editing

KWebS KIELER Web Service

MDE Model-Driven Engineering

MDSD Model-Driven Software Development

MoC Model of Computation

MVC Model-View-Controller

MTM Model-to-Model

NCSC Normalized Core SCCharts

NOTEXP Negate Expression

OAW Open Architecture Ware

OREXP Logical OR Expression

PAREXP Parenthesized Expression

RCP Rich Client Platform

REFEXP Element Reference Expression

RELEXP Logical Relation Expression

S Synchronous

SC Synchronous C

SC MoC Sequentially Constructive Model of Computation

SCADE Safety Critical Application Development Environment

SCG Sequentially Constructive Graph

SCL Sequentially Constructive Language

SCT Yakindu Statechart Tools

SJ Synchronous Java

SWT Standard Widget Toolkit

UI User Interface

WTO Write-Things-Once

xiv

Listings

WTOTO WTO Transition Optimization

XMI XML Metadata Interchange

XML Extensible Markup Language

YSE Yakindu Statechart Editor

xv

Chapter 1

Introduction

In general, designing and programming reactive and embedded systems is a difficult task.
They impose stringent requirements and are often deployed in critical environments, e. g.,
in the automotive or aerospace industry. In the worst case the failure of such a critical
system may result in the loss of lives.

Traditional programming languages are generally insufficient to model those critical
systems due to their unpredictability. Therefore, synchronous languages which are strictly
deterministic emerged.

1.1 Synchronous Languages

Synchronous languages are designed to ensure deterministic behaviour [BCE`03]. Espe-
cially the handling of concurrent control flows with interleaving dependencies is generally
a challenging task. Different from the traditional programming paradigm of common
languages such as Java and C. Concurrent threads in synchronous languages do not
introduce race conditions, which are problematic with regard to ensuring determinism
[Lee06]. Due to their predictability synchronous languages are particularly suited to
model reactive and embedded systems. Especially, safety critical systems benefit from
the synchronous approach. Figure 1.1 depicts the schematic of an embedded, reactive
system encapsulated in a surrounding system.

An Instant / Tick (zero duration)

Read Input
Compute
Reaction Write Output

Reactive System

Environment

Input Event Output Event

Figure 1.1. Embedded Reactive System [MvHH13]

1

1. Introduction

In principle reactive systems interact constantly with their environment. They receive
inputs from the surrounding environment, compute their outputs and feed the results
back to the environment. In the classical synchronous Model of Computation (MoC) time
is separated into discrete ticks and the computations the reactive system performs are
considered to take no time. The discrete ticks, also known as macro ticks, consist of finite
many single calculations, or micro ticks. This MoC is exemplified by languages such as
Esterel, Lustre and SyncCharts [BCE`03] and is illustrated in Figure 1.2.

Figure 1.2. Synchrony Hypothesis (G. Luettgen, 2001)

The Synchrony Hypothesis

A system works in perfect synchrony if all reactions of the system are executed in zero
time. Hence, outputs are generated at the same time when the inputs are read.

1.1.1 Sequential Constructiveness

Even though synchronous languages introduce the benefit of determinism to the repertoire
of the programmer, they come with heavy restrictions on which programs are considered
valid, or constructive. To ensure deterministic behaviour classical synchronous languages
strictly forbid multiple different variable assignments in the same macro tick. Although
it is possible to emit a signal more than once and combine the values with a predefined
combination function, it is not permissible to emit the same signal more than once with
different distinct values.

The Sequentially Constructive Model of Computation (SC MoC) introduced in “Se-
quentially Constructive Concurrency - A conservative extension to the synchronious
model of computation” [vHMA`13b] by von Hanxleden et al. in 2012 extends the classical
synchronous MoC by lifting some of these restrictions. The SC MoC allows variables to
be read and written multiple times in the same tick instance as long as the program

2

1.1. Synchronous Languages

stays sequentially schedulable. As a result common familiar programming paradigms are
available again without sacrificing determinism [vHMA`13b].

1.1.2 SyncCharts

In 1996 Charles André introduced the Statecharts formalism, proposed by David Harel in
1987 [Har87], to the synchronous world [And96]. SyncCharts can be seen as graphical
representation of the synchronous textual language Esterel which is used to describe
reactive systems [BC84].

Figure 1.3. ABRO, the “Hello World” of SyncCharts

SyncCharts Elements

Figure 1.3 shows the ABRO program, the common “Hello World’ of Esterel, and depicts
the most typical SyncCharts elements.

Signals: Signals are the main communication mechanism in SyncCharts. A signal can
either be present or absent, but not both at the same instance. As shown in Figure
1.3 signals are defined in the interface section of a composite state. The most top
level state, the main state, holds the interface to the environment. Here, signals might
be defined as input or output signals. Input signals are information coming from the

3

1. Introduction

environment whereas output signals represent the final computations of the system
which are given back to the environment. Signals may be defined with a certain
type (boolean, integer, etc.) or as pure in which case they do not hold any additional
information.

States: SyncCharts are built out of states. If a state is illustrated with a thick border,
it is marked as initial state. An initial state becomes active if his parent region is
entered. Final states are depicted with a double border. The containing region will
terminate, if such a state is reached. A state itself can be a composite state, also
called macro state, containing one or more regions which themselves can contain a
group of states again.

Regions: A region is a collection of states. Since several regions can be active at the same
time, they introduce parallelism to SyncCharts. They must include a state marked as
initial.

Transitions: Transitions are used to travel from one state to another. They can be
either weak in which case the actions of containing regions are executed before the
transition takes place or may be strong. Strong transitions, denoted with a red dot,
pre-empt macro states and proceed at once. As a third transition type a normal
termination serves as join for concurrent regions. The normal termination is executed
if all preceding regions are in a final state.

The Signal Coherence Law

Within one tick a signal can either be present or absent but not both at the same time.
A signal S is absent by default and only present in a tick, if and only if S is emitted in
any active transition in this tick.

1.1.3 SCCharts

The synchronous language SyncCharts exemplifies the classical synchronous MoC. There-
fore, it can be understood as a graphical representation of Esterel. Similar to the extension
of the classical synchronous MoC by the SC MoC, the statechart dialect SCCharts extends
SyncCharts and employs the SC MoC. An SCChart is considered constructive if it is
syntactically correct and sequentially schedulable. Since the SC MoC is a conservative
extension, the class of SCCharts includes the class of SyncCharts.

SCCharts come in two variations. Core SCCharts are composed of a minimal set
of elements which are necessary to express all features of the SC MoC such as simple
states, transitions and hierarchy. However, Extended SCCharts add common features
and syntactical sugar to their core relatives to simplify the creation of complex mod-
els. Every Extended SCChart can be translated to a semantically equivalent Core
SCChart [vHMA`13b].

4

1.2. Model-driven Development with KIELER

Figure 1.4. ABO, the “Hello World” of SCCharts

Figure 1.4 shows the ABO example, the “hello world” of the sequentially synchronous
world. It is a Core SCCharts and demonstrates the common hierarchical layout with
states, transitions including triggers and effects. The dashed edge resembles an immediate
transition and the green triangle symbolizes a normal termination, a join of concurrent
threads. Detailed information on each SCChart element is provided in Section 4.1.1.

1.2 Model-driven Development with KIELER

The Kiel Integrated Environment for Layout Eclipse Rich Client (KIELER)1 is a research
project developed at the Real-Time and Embedded Systems Group at the Christian-
Albrechts-University in Kiel, Germany. The main focus of the project is to develop new
concepts and methods for designing and editing different types of diagrams. Essentially,
the KIELER framework is a set of open source Eclipse plug-ins which integrate with
common Eclipse modelling projects, such as the Eclipse Modeling Framework (EMF). It
consists of over 170 plug-ins that are made available in 19 features and can safely be
considered as a large Eclipse-based project [Gre12].

As illustrated in Figure 1.5 KIELER is separated in distinct areas. The semantics
area focuses on simulation of and code generation for graphical and textual modelling

1http://www.informatik.uni-kiel.de/kieler

5

1. Introduction

Figure 1.5. KIELER Project Structure (KIELER Documentation)

languages with emphasis on synchronous languages. Pragmatics provides new and simple
ways to edit and visualize graphical representations. The layout section provides features
for the automatic layout mechanisms. As a fourth segment the Demonstrators part
gathers editors used to explore and demonstrate the technologies developed in the three
main areas mentioned before.

The approach presented in this thesis is embedded in the KIELER project and thus,
benefits from all existing tools in the framework. Although it is primarily located in
the semantics area since the main aspect of this thesis deals with code generation,
the pragmatics and layout areas also grant advantages with respect to information
visualization.

1.3 Problem Statement

Although synchronous languages simplify the modelling of concurrent behaviour, writing
such a program manually becomes increasingly difficult as the complexity of a given issue
rises. Dealing with concurrency pitfalls can easily lead to frustration and unpleasant
bug searching sessions while the real modelling problem remains untouched. Graphical
editors aim to ease the effort necessary to create such programs even more, but the
created diagrams have to be translated to code. Automatically generated code often is
unoptimized or hard to read which makes analysing and debugging difficult. Even though
synchronous code can be executed and validated in simulators specifically designed for a
synchronous environment, real-time and embedded systems often comprise components
which only support traditional programming and languages such as C.

6

1.4. Outline of this Document

1.4 Outline of this Document

The solution presented in this thesis will describe in detail how to automatically generate
code originating from SCCharts. The translation is made in several key steps.

Prior to starting with the explanation of the concept, indicated in Section 1.3,
Chapter 2 discusses general code generation concepts with emphasis on the synchronous
world. Additionally, it explains the code generation in SyncCharts. SyncCharts are used
as main comparison languages to the approach presented in this thesis. The chapter closes
with a second example, SCADE which is also a graphical modelling and code generation
tool used in the industry.

Chapter 3 introduces the technologies used throughout the implementation of the
approach. As this approach is embedded in the KIELER project and KIELER itself is an
Eclipse project, it gives an overview of the Eclipse project with emphasis on the modelling
frameworks such as EMF, Graphical Modeling Framework (GMF) and Graphical Editing
Framework (GEF). Additionally, the chapter introduces the modelling languages Xtend2

and Xtext3. Furthermore, it describes the KIELER tools used in the approach to layout and
visualize the Sequentially Constructive Language (SCL) such as KIELER Layouters (KLay),
KIELER Lightweight Diagrams (KLighD) and KIELER Execution Manager (KIEM). The
chapter closes with the illustration of the Yakindu framework, a modular framework used
for editing statecharts recently implemented in KIELER.

Chapter 4 presents the chain of key steps of the code generation approach as indicated
in Section 1.3. The chapter is separated into two parts. In the first part all mandatory
language concepts are presented. At the beginning SCCharts and the general concept of
sequentially constructiveness are explained. Then, the SCL and its graphical representation
the Sequentially Constructive Graph (SCG) are illustrated in detail. Additionally, the
restrictions of Sequential SCL are exemplified. Subsequent to the illustration of the
language concepts the second part of the chapter exemplifies the transformations necessary
to proceed from one key step to another. It describes the transformation from SCCharts
to SCL and the synthesis of the corresponding SCG. The chapter presents how the SCG can
be used to evaluate the generated SCL programs and how to identify potential problems
during the code generation. Eventually the sequential tick function can be engineered.
To generate such a tick function and resolve potentially concurrent conflicts, the control
flow of the SCL program has to be analysed. The second half of the transformation
part illustrates how this program examination is done. As this tick function is also an
SCL program, all previously acquired methods can be be used to analyse this generated
program. The chapter closes with the transformation to the Synchronous (S) program
which is necessary for the simulations and evaluations in KIELER and ideas to go further
from here.

Chapter 5 describes the key implementations of the concepts presented in Chapter 4.
The chapter begins with the modelling of the SCL metamodel. It continues with the

2http://www.eclipse.org/xtend/
3http://www.eclipse.org/xtext/

7

1. Introduction

implementations of SCL extensions which enhance the developed model. Furthermore
it explains the realization of the SCG synthesis. The chapter concludes with the imple-
mentation of the Model-to-Model (MTM) transformations used to translate the models
according to the compile chain of the approach.

Chapter 6 comprises the evaluation of the concept presented in Chapter 4. Therefore, it
describes the simulation set-up and compares the results of the approach with SyncCharts,
introduced in Section 1.1.2. The evaluation mainly focuses on the execution times and
summarizes results of different test runs with distinguished test settings.

The last chapter, Chapter 7, recapitulates the approach presented in this thesis and
gives an outlook on potential future work.

8

Chapter 2

Related Work

Statecharts are particularly well suited for the modelling of reactive systems. However,
generating efficient code automatically is a difficult task. Firstly, this chapter explains
general code generation concepts and their usefulness with respect to the synchronous
world.

Secondly, an already established code generation approach “SyncCharts to Syn-
chronous C (SC)” is explained. Since SyncCharts are included in the KIELER framework,
they are used to compare the presented approach. Besides the comparison of language
concepts, it is also used in the experimental results to evaluate the outcome of the code
generation implementation presented in this thesis.

Furthermore, the popular Safety Critical Application Development Environment
(SCADE) is presented as another example for a Model-Driven Software Development
(MDSD) environment. It is particularly designed for safety-critical applications and
well-established in the industry.

2.1 General Code Generation Approaches

In principle, three code generation concepts for statecharts exist.
Ali and Tanaka [AT00] describe the transformation from states into classes at the

example of Java. The approach can be categorized as pattern translation since each type
of state is transformed into code according to an defined pattern.

The second concept, presented by Wasowski [Was03], translates statecharts elements
into hierarchical trees. These trees are used to calculate the control flow.

The arguably most simple way to translate a statechart is the translation into a
Finite State Machine (FSM). Wasowski describes in “Flattening statecharts without
explosions” [Was04] how hierarchical regions of stateschart are eliminated efficiently. The
disadvantage of this approach lies in the exponential growth of the FSM.

However, in “Synthese von SC-Code aus SyncCharts” [Ame10] Amende already
pointed out that general code generation approaches are not sufficient for SyncCharts due
to the nature of their semantic differences. As stated in Section 1.1.3, since SyncCharts
are included in the class of SCCharts, this is also true for SCCharts.

The approach presented in this thesis orientates on the approach described by Amende
which can be categorized as simulation based appoach. However, as the transformation
chain of this approach comprises several distinct key steps, each step may also incorporate
features of the other concepts such as pattern matching.

9

2. Related Work

2.2 SyncCharts Code Generation

As mentioned in Section 2.1 Amende presented a code generation approach for SyncCharts,
introduced in Section 1.1.2, in 2010. The compiler creates a dependency tree which
contains all dependencies between signals, control flow and hierarchies. If this tree
is acyclic, it can be sorted and determines the execution sequence of the generated
code. Subsequently, calculated thread priorities preserve the deterministic nature of
the SyncChart. The close relationship between SyncCharts and the target language SC
facilitates the translation. [Ame10]

This approach is similar but not identical to the approach presented in this thesis
since determinism is preserved through priorities. The code generation explained in this
thesis provides determinism through the ordering of statement amalgamations, so called
Basic Blocks (BBs). Although these blocks also require acyclic dependencies, the concepts
differ. The concept behind this approach will be elucidated in Chapter 4.

However, as explained in Section 1.1.3, SCCharts make a significantly larger of class
of statecharts acceptable without compromising determinism. Furthermore, SCCharts
use shared variables instead of signals but these can be fully emulated with variables
under sequentially constructive scheduling as will be shown in Section 4.1.2.

2.3 SCADE Code Generation

SCADE is a MDSD environment developed by Esterel Technologies1 and especially designed
for safety-critical application development. It is well-established in the industry. The
Integrated Development Environment (IDE) includes an editor for model creation, a model
verifier and a code generator.

SCADE uses a variant of SyncCharts elements for code generation to augment dia-
grams with reactive behaviour by extending boolean clocks towards clocks that express
state [CPP05] [CHP06].

Analogously to SyncCharts, the variant of SyncCharts in SCADE is restricted to
constructiveness in Berry’s sense [Ber99]. Therefore, the approach presented in this thesis
accepts a larger class of statecharts.

1http://www.esterel-technologies.com

10

Chapter 3

Used Technologies

Prior to explaining the main ideas of the approach and their implementation details, it
is necessary to present some key technologies used throughout the next chapters. Even
though some of this technologies have already been mentioned in the previous chapters
this chapter is going to introduce them in detail.

3.1 The Eclipse Project

Since the approach presented in this thesis is contained in Eclipse plug-ins and is designed
to be executed in the KIELER framework, a closer look at Eclipse with emphasis on the
modelling tools is necessary.

The Eclipse Project1 is an open source software application introduced by IBM in
2001. It is developed in Java and commonly known as the Java IDE. Even though it
may be one of the most common IDE for developing in Java, Eclipse is designed as open
component-based software system and can be used in many different ways, e.g. software
development environments in other languages such as C or as diagram modelling tool.

The generated Eclipse Rich Client Platform (RCP) consists of basic core components
and plug-ins to extend the functionality of the RCP. The core components manage main
areas such as the workbench, the help and update centers, file system and the runtime
kernel whereas the implementation of specific tasks is contained in the plug-ins.

When working with Eclipse RCPs a common look-and-feel is carried throughout different
projects. Many structures such as toolbars, editor features and resource management
can be found in these applications. This amalgamation of tools is called the Eclipse
workbench, depicted in Figure 3.1. It provides a collection of elements which cover the
basic needs of programming RCP applications. This includes editors, Views, Perspectives
and Wizards.

An editor in Eclipse is an editing component which can be used to browse and change
content of resources. The purpose of an editor can be generic and associated with multiple
resources such as text editors or it can be specific and designed for one Domain Specific
Language (DSL) only. Furthermore, views are used in many ways. The information shown
depends on its purpose, e. g., status or debugging information, property selection and
outlines.

1http://www.eclipse.org

11

3. Used Technologies

A perspective is a set of visible editors and views and their location. They have gen-
erally a specific purpose. Common perspectives are e. g., Java developing and debugging.
Only one perspective can be active at any time.

Wizards are dialogs an user can use to enter task specific information. The project
creation wizard for example enables the user to specify workspace location and name of a
new project and then creates this project automatically.

Figure 3.1. Eclipse Workbench with Editors and Views [Mot09]

3.1.1 Graphical Editing Framework

The Graphical Editing Framework (GEF)2 provides technology to create rich graphical
editors and views for the Eclipse project. It is composed of three components: Draw2d,
GEF MVC and Zest.

Draw2d is a layout and rendering tool-kit for displaying graphics on a Standard Widget
Toolkit (SWT). Graphical components in Draw2d are called figures and represented by
simple Java objects. These objects can be composed via a parent-child relationship.

GEF MVC is an interactive Model-View-Controller (MVC) for the GEF.
Zest is a visualization tool-kit based on Draw2D, which enables implementation of

graphical views for the Eclipse project.

3.1.2 Eclipse Modeling Framework

Since this model-driven approach utilizes models to handle and visualize all mandatory
data, a model framework is required. The Eclipse Modeling Framework (EMF) is the

2http://www.eclipse.org/gef

12

3.1. The Eclipse Project

commonly accepted model framework for Eclipse. EMF consists of three fundamental
pieces: the core EMF framework, EMF.Edit and EMF.Codegen.

The models used by the EMF must follow an abstract syntax. These abstract model
descriptions are called metamodels. The core EMF framework provides tools to create
metamodels and runtime support for these models, including change notification, XML
Metadata Interchange (XMI) serialization and an Application Programming Interface (API)
for manipulating EMF models. Models created with this framework are called Ecore
models. Since the core EMF framework is also an Ecore model, all provided tools are
applicable to the EMF itself.

EMF.Edit is a framework that includes generic classes for building editors for EMF
models and the EMF.Codegen facility can be used to create whole functional editors for
EMF models including a complete Graphical User Interface (GUI).

Metamodels

To define the abstract structure of a model, the EMF uses descriptions which are again
models. These EMF models are represented by a language called Ecore. Therefore,
Ecore is a EMF model for other models, or metamodel. A model which follows the rules
of a specific metamodel can be considered a metamodel instance of the corresponding
metamodel.

Metamodels consists of classes. A class is identified by its name and may contain
attributes and references. An attribute must have a name and a data type whereas a
reference is an association between classes. The dependencies of the Ecore elements are
illustrated in Figure 3.2.

Figure 3.2. Simplified Ecore Metamodel Subset [Mot09]

A metamodel can be created with the EMF tree editor or with the integrated graphical
editor. It is also possible to import a metamodel from an Extensible Markup Language
(XML) schema definition or to derive it from a Java implementation. EMF classes including
their attributes and references can be created in the tree editor. The properties of the
members can be changed in the associated property view. Figure 3.3 illustrates the editing
of a EMF model. A class transition is selected and its super types, indicated by the right

13

3. Used Technologies

Figure 3.3. EMF Tree Editor [Har13]

arrow, references and attributes are shown. The graphical editor enables the creation of
a metamodel in an intuitive way. Dependencies and relationships between all classes are
visible and editable. An example of graphical EMF editing is depicted in Figure 3.4.

Once the metamodel is completed, the EMF generator can be invoked to generate
all mandatory Java classes for this model. The created source code already includes
classes for parsing and serializing model data. In general, EMF models are saved as XMI
resource. The generated classes contain fields, setter and getter for all defined attributes
and references.

Figure 3.4. EMF Graphical Editor [Har13]

14

3.1. The Eclipse Project

3.1.3 Graphical Modeling Framework

The Graphical Modeling Framework (GMF)3 closes the gap between EMF and GEF. It
uses the GEF to display graphic elements called figures which resemble model elements
created with the EMF. Figures are basically nodes and edges or a composition of both
of them. A GMF based editor is equipped with many tools for creation of the desired
diagram. Mechanisms for editing figures, positioning, loading and saving are available
out of the box. A diagram is saved in form of a notation model to preserve the structure
of the model as well as the positions and sizes of the figures.

An editor can be developed manually by utilizing the GMF runtime which comes with
many features such as a set of reusable components for graphical editors, a command
infrastructure and an extensible framework which allows graphical editors to be extendible.
However, the GMF tooling provides an alternative way of creating a graphical GMF based
editor automatically. By defining graphical and model mapping definitions, a fully
functional graphical editor can be derived based on the GMF runtime.

3.1.4 Xtext

A powerful way to create a DSL is provided by Xtext4, a framework for development of
programming languages and DSLs. It was published by the itemis AG5 in 2006 as part of
the former code generation framework Open Architecture Ware (OAW) and is based on
the EMF.

The programmer defines a grammar of his DSL in Xtext’s textual language as depicted
in Listing 3.1. Subsequently, the framework generates the complete language infrastructure
including a corresponding metamodel, a parser, a serializer and an editor. It comes with
good defaults for all these aspects and at the same time every single aspect can be tailored
to the needs of the modeller. A grammar can be derived from other grammars and usually
consists of rules. A rule can either be an extension to former rules or a terminal rule. The
rule definition symbols, which are semantically similar to regular expressions, determine
the cardinality of data fields.

No character: exactly one
Question mark (?): none or one
Plus sign (+): at least one
Asterisk (*): arbitrary many

Furthermore, the data type assign operator defines the kind of the created field.

Simple equal (=): the field has a single data type
Add operator (+=): the field is a list of a specific type
Boolean assignment (?=): the field is a boolean flag

3http://www.eclipse.org/modeling/gmp
4http://www.eclipse.org/Xtext/
5http://www.itemis.de

15

3. Used Technologies

1 grammar de . cau . c s . k i e l e r . s c l . SCL
2 with de . cau . c s . k i e l e r . yak indu . s c c h a r t s . model . s t e x t . S y n c t e x t
3
4 import " h t tp : //www. e c l i p s e . org /emf /2002/ Ecore " as e c o r e
5
6 generate s c l " h t tp : //www. cau . de/ cs / k i e l e r / s c l / s c l "
7
8 Program :
9 ’ module ’ name = ID

10 (d e f i n i t i o n s+=V a r i a b l e D e f i n i t i o n)∗
11 ’ { ’
12 (
13 ((s t a t e m e n t s += I n s t r u c t i o n S t a t e m e n t ’ ; ’) | s t a t e m e n t s += EmptyStatement)∗
14 (s t a t e m e n t s += I n s t r u c t i o n S t a t e m e n t s t a t e m e n t s += EmptyStatement ∗)?
15)
16 ’ } ’
17 ;

Listing 3.1. Xtext Grammar Example

3.1.5 Xtend

The MTM transformation language Xtend6, which also was introduced by the itemis
AG as part of the OAW, integrates with the EMF. It is a statically-typed programming
language which translates to comprehensible Java source code. Although many aspects
of Xtend are Java-like, a lot of features and syntactical sugar with emphasis on advanced
queries on model elements have been added to the language. The Xtend Listing 3.2
translates to Listing 3.3.

1 c l a s s Hel loWor ld {
2 def s t a t i c vo id main (S t r i n g [] a r g s)
3 p r i n t l n (" H e l l o World ")
4 }
5 }

Listing 3.2. Xtend Example (Xtend Documentation)

1 // Generated Java Source Code
2 import org . e c l i p s e . x t e x t . xbase . l i b . InputOutput ;
3
4 p u b l i c c l a s s Hel loWor ld {
5 p u b l i c s t a t i c vo id main (f i n a l S t r i n g [] a r g s) {
6 InputOutput .< S t r i n g >p r i n t l n (" H e l l o World ") ;
7 }
8 }

Listing 3.3. Generated Java Example Code (Xtend Documentation)

6http://www.eclipse.org/xtend/

16

3.2. Kiel Integrated Environment for Layout Eclipse Rich Client

According to the Xtend documentation model, transformations added to existing
types which do not modify the model are called extensions. Xtend comes with many
generic extensions such as map, filter and sort. All MTM transformations and model
extensions in this thesis are implemented with Xtend.

3.2 Kiel Integrated Environment for Layout
Eclipse Rich Client

As mentioned in Section 1.2 the Kiel Integrated Environment for Layout Eclipse Rich
Client (KIELER)7 is a academic research project about enhancing graphical, model-based
design developed at the Real-Time and Embedded Systems Group at the Christian-
Albrechts-University in Kiel, Germany. It is developed as open source software licensed
under the Eclipse Public License (EPL) and attempts a tight integration with the Eclipse
modelling projects such as EMF, GMF, Xtext, etc. As depicted in Figure 1.5 the project is
separated in four areas.

Semantics

Since the approach described in this thesis addresses the field of code generation this work
is mainly situated in the semantics area. KIELER semantics also provide an infrastructure
to define execution for metamodels and different approaches to simulate models using
simulators based on C, Java or Ptolemy8. These simulations are integrated via the KIEM
and can easily be extended.

Pragmatics

The KIELER pragmatics group aims to simplify the daily work of modellers in the context
of Model-Driven Engineering (MDE). As depicted in Figure 1.5 this includes projects
such as KIELER Structure-based Editing (KSbasE), KIELER View Management (KIVi) and
KIELER Lightweight Diagrams (KLighD).

KSbasE is a structure-based editing extension that provides operations for modifying
models. Elements can be added, deleted or connected to other components with a few
mouse clicks. [Mat10] KIVi focuses on dynamic visualizations in diagrams. In principle it
receives notifications fired by certain triggers and reacts with corresponding effects, e. g.,
performing an automatic layout. Triggers can be bound to effects over a combination
mechanism enabling the programmer to customize the behaviour of specialized views for
specific models. [Mül10]

7http://www.informatik.uni-kiel.de/kieler
8http://ptolemy.eecs.berkeley.edu/

17

3. Used Technologies

Layout

The Layout section enables one of the profound ideas of KIELER, freeing the user from
time-consuming model preparation tasks such as moving nodes and re-routing edges. The
designer is instantly capable to do the change and must not focus on layout questions.

The core component of the KIELER layout service is KIELER Infrastructure for Meta
Layout (KIML). It provides the connection between graphical editors and layout algorithms.
Besides commonly known open source layout libraries such as OGDF and Graphviz,
KIELER provides its own custom layout algorithms in KLay.

Additionally many layout services are accessible over the KIELER Web Service (KWebS)
component.

Demonstrators

Demonstrators is a general term for all editors used in KIELER to demonstrate and test
ideas and results of the three main sections. The approach presented in this thesis utilizes
two of these demonstrators, the KIELER SyncCharts editor ThinKCharts and the Yakindu
Statechart Editor (YSE) editor.

3.2.1 KLay Layered

One of KIELER’s most advanced custom layout algorithm is KLay Layered. It was intro-
duced by Spönemann in 2009 in “On the automatic layout of data flow diagrams” [Spö09]
and further optimized by Schulze in 2011 in “Optimizing Automatic Layout for Data Flow
Diagrams” [Sch11]. It is primarily used for layouting data flow diagrams and supports
hierarchical node placement, ports and comes with a set of customizable properties.

3.2.2 KLighD

KIELER Lightweight Diagrams (KLighD) is part of the KIELER pragmatics area and offers
a transient representation of models without incorporation of complex editing facilities.
In this transient view approach the model is constructed interactively as the modeller
works with an arbitrary editor, e. g., based on a textual DSL. In addition to this simplified
way to visualize an arbitrary model graphically changes to the model are incorporated
and displayed instantaneously. [SSvH12a]

KLighD uses the piccolo toolkit9 for visualization and comes with powerful generic
extensions for synthesizing models into corresponding graphical representations. Once
a specific synthesis maps the model elements to figures the view is almost instantly
available.

9http://code.google.com/p/piccolo2d/

18

3.3. Yakindu Statechart Editor

3.2.3 KIEM

Responsible for simulating models in KIELER is the KIELER Execution Manager (KIEM).
It provides the main simulation infrastructure and specifies the interface for other plug-
ins. Essentially KIEM is a communication bus between independent and concurrent
components. These so called data components observe information on the communication
bus or produce own data, which can then be used again by other components or simply
displayed in a view [Mot09]. The KIEM bus schematic is illustrated in Figure 3.5.

Figure 3.5. Schematic Overview of the KIEM Interface [MFvH10]

3.2.4 Synchronous

Essentially, Synchronous (S) is the common basis of Synchronous C (SC) [TAvH11] and
Synchronous Java (SJ) [MvHH13]. Both combine the synchronous paradigm of SyncCharts,
including determinism and pre-emption, with the commonly supported languages C and
Java. S is designed as intermediate language and origin for further transformations and
simulations. Models translated to S can be simulated in KIEM instantaneously or compiled
to executable SC or SJ source code.

Since S is mainly developed to provide a common basis for statechart dialect, it com-
prises an abstract syntax similar to the syntax of statecharts in textual form. Analogously
to statecharts, the behaviour of the chart is included in states. These are permitted to
traverse to other state or change the priority of a concurrent context to allow rescheduling.
They also utilize signals equally to the signals in SyncCharts described in Section 1.1.2
as main communication mechanism and contain a signal interface for their environment.

3.3 Yakindu Statechart Editor

The Yakindu Statechart Editor (YSE) is part of the Yakindu Statechart Tools (SCT), a
collection of Eclipse-based tools designed for the development of reactive and event-driven
systems. SCT is part of the Yakindu Open Source developed by the itemis AG10. The editor
is based on the GMF and therefore simple to adapt to custom requirements. It provides

10http://www.itemis.de/

19

3. Used Technologies

two derivable metamodels for the definition of user-defined abstract syntaxes. SGraph
describes the syntax of the graphical elements whereas SText specifies the expression
language used in the statecharts. [Har13]

The root of an SGraph is typically a statechart and comprises regions. A region
contains vertices. One specialized type of a vertex is a state. States may be marked as
initial or final state. They can be a composite element and are therefore able to enclose
new regions. Generally, transitions connect states.

The implementation of the SCL presented in this approach utilizes the expression
language defined by SText. The two most important model objects utilized by the SCL are
the Element Reference Expression (REFEXP) and the Assignment expression (ASSEXP).
The first one binds an expression object to a model element definition. The latter describes
an assignment of an expression. Furthermore, the expression of an assignemnt can be
contained arbitrarily in Parenthesized Expression (PAREXP) and common operators. For
instance, a PAREXP may contain a collection of Logical AND Expression (ANDEXP) which
connects the references with a logical “and”. Also noteworthy in this context is the
NegateExpression which negates the referenced expression.

3.3.1 KIELER SyncCharts Editor based on Yakindu

For further SyncChart projects and thus also as starting point for this thesis the YSE
was adapted to support SyncCharts and SCCharts by Haribi in “A SyncCharts Editor
based on Yakindu SCT” [Har13]. Since then several enhancement to the editor have
been implemented. The derived new KIELER Yakindu implementation incorporates the
following features.

transition types: There are three different types of transitions. Weak and strong transitions
and normal terminations. A strong transition preempts the actual and all embedded
states. On the contrary a weak transition does not pre-empt the actual state, but
proceeds to its target after the execution of the current tick. Normal terminations
resemble a join of subsidiary threads.

immediate transitions: Usually, in the context of the sequential MoC a transition from
one state to another consumes time. In this case the execution of the model is paused
until the next macro tick starts. To continue the execution at once a transition can be
marked as immediate. These transitions are illustrated as dashed edge in the graphical
model. Immediate transitions may be denoted with a hash tag (#) in different editors.

expression improvements: Transition trigger may have a priority notation at the beginning
of the trigger. The evaluation of priority changes is done by KSbasE. Additionally,
unlike to the original Yakindu expressions guards do not need brackets as delimiter.
Lastly, the KIELER expression extension supports arbitrary encapsulated pre and val
function calls.

20

Chapter 4

Sequentially Constructive
Code Generation

This chapter is separated in two main sections. Section 4.1 introduces mandatory language
concepts used throughout the approach including sequential constructiveness in general,
whereas Section 4.2 describes the ideas behind the particular transformations. The code
generation concept presented in this thesis proceeds along several key steps originating
from SCCharts.

In the first step Extended SCCharts are translated into their core equivalent to build
the basis for the subsequent SCL transformation. Once the SCL program is generated
the corresponding SCG can be synthesized. After performing a dependency and a basic
block analysis to gather information about the schedulability of the program it is possible
to create a generic tick function. It is a sequential SCL program stripped of concurrent
threads and registers and is meant to be an initial point for further software or hardware

Figure 4.1. Transformation chain including origin and underlying metamodel

21

4. Sequentially Constructive Code Generation

synthesis. Lastly, the SCL tick function is translated to S to perform simulations in
KIELER and to compare the results with other approaches. Figure 4.1 illustrates the
key steps of the approach. The origin of the transformation method is listed on the left
hand side. The middle section depicts the visualization mechanism and the underlying
metamodel is shown on the right side.

4.1 Language Concepts Introduction

To understand the different transformation steps a closer look at the languages used
in the approach is necessary. The following sections will describe SCCharts, their two
variants Extended and Core SCCharts, SCL and its graphical representation SCG in detail.

4.1.1 SCCharts

SCCharts extend SyncCharts, elucidated in Section 1.1.2, and employ the SC MoC. Instead
of using signals, introduced in Section 1.1.2, as main communication mechanism SCCharts
possess typed variables, which can be read and written multiple times in one macro tick as
long as the program stays schedulable. Consequently the heavy restriction of the signal
coherence law, defined in Section 1.1.2, is partly lifted. Hence, SCCharts combine the
determinism of the synchronous MoC with sequential programming techniques known
from common languages such as C and Java.

The common programming constructs shown in Listing 4.1 and graphically illustrated
in Figure 4.2. It is forbidden according to the classical synchronous MoC, since I is set to
true, when it is false, which contradicts the signal coherence law. However, considering
the assignment being perfectly schedulable, the example is constructive in SCCharts.

1 i f not I then I = t r u e end

Listing 4.1. Basic valid sequential Assignment

Figure 4.2. Basic valid SCCharts Example

22

4.1. Language Concepts Introduction

As mentioned in the introduction of this chapter SCCharts come in two variations,
Core SCHarts and Extended SCCharts. Core SCCharts provide the mandatory elements
to form constructive statecharts with regards to the SC MoC, whereas Extended SCCharts
comprise more powerful expressions to model compact diagrams, but are semantically
equivalent to their core relatives. Both are exemplified in detail in the next two sections.
The absence of signals in SCCharts is no disadvantage since they can be fully emulated
with boolean variables and are in fact reintroduced in Extended SCCharts.

As final general SCCharts example Figure 4.3 depicts ABO, the “Hello World” of
SCCharts. Though there is a strong resemblance to SyncCharts, the output variable
O1 might be written several times in one macro tick. If A is present, B and O1 will be
emitted and set to true. Consecutively O1 will be set to true again in HandleB because B
is true. Both regions are now in their final state and will trigger the Normal Termination,
which executes immediately and sets O1 to false in the same tick instance. Just like the
NotS example this is a constructive SCChart.

Figure 4.3. ABO, the “Hello World” of SCCharts, in detail

Core SCCharts

The fundamental element set of SCCharts is called Core SCCharts. Figure 4.4 illustrates
all SCCharts elements. It is divided in two regions. The upper region presents the core
elements, whereas Extended SCCharts figures are shown in the bottom region. Core
SCCharts consist of the following elements only:
States: States in SCCharts behave analogously to the states in SyncCharts. They may

be marked as initial or final. A state holding one or more regions is called a macro
state. If a state is not a macro state, it is called simple state.

23

4. Sequentially Constructive Code Generation

Regions: Regions are identical to their counterpart in the SyncCharts language and
provide the modeler with parallelism.

Variables: As discussed in Section 4.1.1 Core SCCharts do not make use of signals.
The main instruments for communication are typed variables. Similar to the signal
declaration, variables may be declared as input or output variable and may have an
initial value. Additionally they can be defined as local, which makes them valid in
their macro state context only. A local variable is also allowed to be static, meaning
its value persists even, when its context is re-entered. In contradiction to signals they
can be read and written multiple times in any macro tick, provided they follow the
rules imposed by the SC MoC.

Transitions: Practically different transition types must not be distinguished in Core
SCCharts. The type of any transition depends on its source state. If it is a macro
state, the transitions must be a Normal Termination. They are triggered if all
concurrent regions in the preceding state are in any final state. Since simple states do
not have containing regions an outgoing transition will be a weak transition allowing
any action in this tick to be executed before proceeding.

Figure 4.4. Syntactical Elements of SCCharts [vHMA`13b]

24

4.1. Language Concepts Introduction

Extended SCCharts

The SCCharts variant enriched by more complex syntactical elements is called Extended
SCCharts. These extensions aim to simplify the work of a modeller. They enable the
user to express complex SCCharts in a compact way but do not alter the semantics of
the Core SCCharts discussed earlier. Thus, all SCCharts elements can be considered
syntactic sugar. Every Extended SCChart can be translated into a semantic equivalent
Core SCChart. They extend the core variant by the following syntactical elements:

Signals: As mentioned in Chapter 4.1.1 Extended SCCharts reintroduce the concept of
signals.

Connector: A connector is a transient state and must be exited immediately. To do
so there must always be a valid outgoing transition. The connector is introduced
to support the Write-Things-Once (WTO) principle and allows the combination of
equivalent triggers and effects. A connector is also often referred to as choice.
Figure 4.5a depicts a statechart including a state S1 with three outgoing transitions.
In each transition the signal A is tested. A semantically equivalent statechart that
inherits the WTO principle is shown in Figure 4.5b. Here, A is only evaluated once
and the three paths are connected to the choice node.

(a) Re-evalutation of A without WTO (b) Single evalutation of A with WTO

Figure 4.5. The WTO Principle – Connectors

Strong Transition: Equivalent to SyncCharts, strong transitions pre-empt their preceding
states and are executed at once, if their trigger evaluates to true. Thus, any kind of
behaviour embedded in a state is aborted at once.

25

4. Sequentially Constructive Code Generation

History Transition: A history transition returns to the state of the execution in which a
macro state was pre-empted.

Suspend: As long as a connected condition is true the execution of a state and all its
internal behaviour is suspended.

Entry Action: Entry actions are executed immediately when a state is entered. If a state
is bypassed by a hierarchical pre-emption, the entry action is skipped.

During Action: During actions are executed in every tick as long as the execution persists
in that state.

Exit Action: Exit actions take effect when their state is exited. They are executed if the
state is pre-empted and the state was active before the pre-emption.

Pre: The pre operator returns the value of a signal or variable of the preceding macro
tick.

Val: A valued signal holds a value in addition to its present state. The value is not
limited to tick boundaries and persists as long as no new value is assigned. The val
operator returns the value of a valued signal instead of its present state.

4.1.2 Sequential Constructiveness

This section recapitulates the goals of the Sequentially Constructive Model of Computation
(SC MoC) introduced by von Hanxleden et al. in “Sequentially Constructive Concurrency -
A conservative extension of the synchronous model of computation” [vHMA`13b].

The basic intention behind the SC MoC is to lift some of the restrictions of the
classical synchronous MoC but to still rule out race conditions which may induce non-
determinism. In contrary to the classical MoC it allows multiple accesses to the same
variable as long as they are not concurrent conflicting writes. Furthermore, no restriction
for sequential accesses are necessary and a write to some variable must be scheduled
before any concurrent read.

Variable accesses

Variable accesses are confluent if the order in which they are executed does not matter.
For instance, two concurrent assignments which assign the same value to a variable are
confluent because no matter in which order the assignments are executed the variable
will still hold the correct value.

Write accesses are further categorized in absolute writes and relative writes. Relative
writes have the form x “ fpx, eq where f is so that such assignments are also confluent
with each other. All non-relative writes are absolute writes. Furthermore, a read is a
variable access which does not update the state of the variable.

26

4.1. Language Concepts Introduction

To schedule different types of writes the sequential constructive approach organizes
non-confluent concurrent variable accesses under a strict “initialise-update-read” protocol.
In a tick instance, concurrent absolute writes must be executed at first as long as they
are confluent with each other. If they are not, the program is not schedulable. Secondly,
all concurrent relative writes can run, but must be scheduled after the absolute writes.
Finally, all reads may proceed.

S-admissibility

Based on the variable access protocol introduced in the previous section, the following
sequential constructive core definitions can be formulated.

1. An S-admissible run is an execution of a program which adheres to the
“initialise-update-read” protocol with exception to confluent writes.

2. A program is sequentially constructive, or S-constructive in short, if there
exists an S-admissible run and every S-admissible run generates the same
deterministic output response.

The SC MoC in ABO

To illustrate the SC MoC Figure 4.3, mentioned in Section 4.1.1, is examined again. In
ABO, only B has concurrent read/write accesses. The variable is written to in HandleA
and read from in HandleB. Hence, the s-admissibility requires HandleA to be scheduled
before HandleB. Since this is the only valid schedule for ABO, all executions will produce
the same result and thus, ABO is sequentially constructive.

S-constructiveness Determination

As already pointed out by von Hanxleden et al. in “SCCharts - Sequentially Con-
structive Statecharts for Safety-Critical Applications” [vHMA`13a] the examination
of S-constructiveness is of at least co-NP computational complexity. However, it can
be conservatively approximated by testing whether a program is acyclic sequentially
constructive schedulable, or ASC-schedulable.

3. A program is ASC-schedulable, if a static schedule exists which produces
S-admissible runs.

Conclusively, a static schedule exists, if and only if a program does not contain concurrent,
non-confluent writes and no cycles of concurrent write/read accesses.

4.1.3 The Sequentially Constructive Language

To handle and model SCCharts and their concurrent dependencies von Hanxleden et al.
introduced the Sequentially Constructive Language (SCL) [vHMA`13b]. It is a minimal-

27

4. Sequentially Constructive Code Generation

istic language adopted from C, Java and Esterel and is used to describe SCCharts in
textual form.

SCL is a concurrent imperative language with shared variable communication. Hence,
the underlying semantics are the same as for SCCharts variables can be both written and
read from by concurrent threads. These reads and writes are collectively referred to as
variable accesses [vHMA`13b].

SCL Instructions

SCL only consists out of seven different statements. Its program constructs have the
following abstract syntax of statements

s ::“ x = e | s1 ; s2 | if e then s1 else s1 | l : s | goto l |
fork s1 par s2 join | pause

where x is a variable, e an expression and l is a program label. In detail the statement s
comprises the following standard operations.

Assignments: An assignment x = ex is a write to x variable access. The expressions ex
in this SCL implementation use the underlying SText expression language of Yakindu.
An assignment expression must not have any side effects. Note that ex may also hold
references to other variables and the assignment as a whole may be a combination of
read/write accesses.

Sequences: A sequence separates two consecutive statements. They are separated by a
semicolon.

Conditionals: Similar to assignments, conditionals use SText to evaluate expressions.
However, a conditional expression consists of read accesses only.

Labels: A label marks a specific spot in a program. It is represented by an identifier and
closes with a colon.

Jumps: Jumps are initiated by the goto keyword. The target of a jump must be a
statement identified by a label.

Parallel: The fork s par s join construct introduces concurrency to SCL. It forks off two
threads and joins, when both threads are terminated.

Pause: A pause disables the actual thread until the next macro tick commences.

A well-formed SCL program is one

1. in which expressions and variable assignments are type correct,
2. that has no duplicate or missing program labels, and
3. has no goto jumps into or out of a parallel composition [vHMA`13b].

28

4.1. Language Concepts Introduction

1 O = 0 ;
2 i f I then
3 // t r u e branch
4 O = 1 ;
5 goto e x i t
6 end ;
7 // i m p l i c i t e l s e branch
8 O = 2
9 e x i t :

Listing 4.2. Implicit else branch in SCL

The implementation of SCL in this approach allows the creation of an arbitrary number
of threads in a single parallel statement. More nested threads are spawned via additional
par keywords in the parallel instruction.

Although the conditional instruction implements else cases, it has to be noticed, that
implicit else branches are often emulated by a jump out of the then branch in which the
normal control flow succeeding the conditional is posing as else branch. “Then branches”
are also denoted as true branches. This behavior is illustrated in Listing 4.2. The output
variable O is initialized with zero. If I is present, the program exits with O being one.
Otherwise, O will be two.

As will be further described in the implementation in Chapter 5, this approach uses
Xtext to build the SCL. Hence, a fully equipped editor including syntax highlighting and
comments is available to model SCL. Figure 4.6 shows a simple transition example and
Listing 4.3 depicts the corresponding SCL in the editor generated by Xtext.

Figure 4.6. Simple Transition Example

1 module s i m p l e
2 i n pu t s i g n a l I ;
3 output s i g n a l O;
4 {
5 __A:
6 pause ;
7 i f ! I then
8 goto __A
9 end ;

10 O = t r u e ;
11 __B:
12 pause ;
13 goto __B
14 }

Listing 4.3. Simple Transition in SCL

29

4. Sequentially Constructive Code Generation

SCL Expressions

As already mentioned in the previous section SCL utilizes the expressions provided by the
SCT, in particular SText. Even though SText comes with a powerful set of expression
elements only a relatively small subset is needed to cover all aspects of SCL. Section 4.1.3
pointed out that expressions are used in assignments and conditionals. In SText these
are built out of REFEXP and ASSEXP. Figure 4.7 and the following summary describe the
SText expression elements used by the SCL.

Element reference expression: As the name suggests an REFEXP holds a reference to an
element of a model. In the case of SCL this is usually a variable declaration. Thus, a
REFEXP describes a single variable of the corresponding model in a given expression.

Assignment expression: An ASSEXP expresses an assignment to an element reference. It
holds an operator type that specifies the kind of the assignment (equal, greater, etc.),
an expression for the right hand side of the equation and the reference to the element
in question.

LogicalRelationExpression: To test an equation for correctness a condition may use the
Logical Relation Expression (RELEXP) to compare the left-hand side with the right-
hand side. A relational operator defines the type of the comparison. However, in the
boolean case an REFEXP is sufficient to check the reference for true.

Logical AND expression: A ANDEXP combines two expressions via a logical and operator
usually depicted by a double ampersand (&&). In the context of this thesis the “and”
concatenation of expressions will further be exemplified with the ^ operator.

Figure 4.7. Illustrated SText Expressions

30

4.1. Language Concepts Introduction

Logical OR expression: Similar to the ANDEXP a Logical OR Expression (OREXP) binds
two expressions with a logical or. As usual in common the or operator is symbolized
with double pipes (||). Conformable to the ANDEXP, “or” unions are depicted with _.

Negate expression: The Negate Expression (NOTEXP), an exclamation mark (!) in textual
form, negates a given expression.

Parenthesized expression: To form complex expressions and determine the order of their
evaluation an expression can be encapsulated in a PAREXP. The usual mathematical
rules for parenthesis apply.

SCL Annotations

So far this section describes elements mandatory for SCL to represent the semantics of
SCCharts. However, since SCL is meant to be an intermediate language the modeller may
wish to include additional information for further transformations or visualization of the
model.

To enrich the model with additional information for further processing the presented
SCL implementation includes a lightweight annotation mechanism. Statements may
contain an arbitrary number of annotations. While these do not alter the semantics of a
given SCL program, they can be used to carry transformation and layouting information.
An annotation is related to the statement it precedes.

An SCL annotation is initiated by an @ symbol followed by a mandatory keyword and
a optional list of parameters.

annotation ::“ @keywordr: parameterr, parameters˚s

The SCL Metamodel

All prerequisites being in place the SCL metamodel can be engineered. In general, a
metamodel constitutes the elements of a model language and their relationships within a
model. Hence, it is an abstract syntax of a language and is desired to be minimal with
respect to redundancy. The SCL metamodel is depicted in Figure 4.8.

Program: Every SCL program is contained in a program and must have a name. It consists
of a variable definition and a statement sequence

Variable Definition: Although the variable definition is not depicted in the figure, since
it is inherited from SText, it is mandatory for SCL and elucidated here. A variable
definition declares variables and their purpose. They have a type and may be marked
as input or output variable to interact with the environment. Additionally variables
may be initialized with a specific value of their type. The type is also inherited from
SText, however, extension points for user-defined types exist.

31

4. Sequentially Constructive Code Generation

Program
name.:.EString

Statement

EmptyStatement
label.:.EString

InstructionStatementInstruction

Annotation
name.:.EString
parameter.:.EString

Assignment

Conditional

Goto
targetLabel.:.EString

StatementSequence

Thread Parallel Pause

StatementScope

annotations0..*

instruction

0..1

elseStatements

0..*

statements

0..*

threads

0..*

Figure 4.8. The SCL Metamodel

Statement Sequence: A list of statements is summarized in a statement sequence. According
to the SCL sequence operator, they are separated by a semicolon. To simplify editing
SCL, the last statement of a statement sequence may also finish with a semicolon.
Semantically this implies a no operation as last instruction of a sequence.

Statements: There are two kinds of statements, Instruction and empty statements. The
first type comprises all SCL instructions whereas the latter is introduced to hold
labels because an SCL program is able to contain labels without instruction reference.
Both are combined in the statement super class. As depicted in the previous section
statements may also contain an arbitrary number of annotations.

Instruction: An instruction is an instance of one of the SCL instructions assignment,
conditional, goto, pause, parallel or introduces a scope for internal variables, a statement
scope. The conditional instruction contains a new statement sequence for the true
branch and the parallel instruction comprises threads for the different concurrent
control flows.

Thread: A thread is a statement sequence and models the execution order of a single
control flow in the context of concurrent execution.

Statement Scope: It is possible to encapsulate sequences of statements in statement scopes
to introduce new local variables or structure the control flow further.

32

4.1. Language Concepts Introduction

Figure 4.9 depicts the automatically generated SCL code of ABO, Figure 4.3, and
illustrates the discussed metamodel elements of the SCL.

Figure 4.9. SCL Metamodel Illustration

4.1.4 The Sequentially Constructive Graph

The Sequentially Constructive Graph (SCG) is the graphical representation of the SCL. It
is a labeled graph G “ pS,Eq, where

Ź the nodes S correspond to the statements of the SCL program and

Ź the edges E reflect the sequential execution control flow.

SCG Elements

Since SCG can be seen as graphical SCL representation all SCL statements must have a
representative in the SCG. Figure 4.10 illustrates these elements.

Program: The program starts by the outer most entry node and terminates if the outer
most exit node is reached

Assignments: Rectangular cornered figures represent SCL assignments.

33

4. Sequentially Constructive Code Generation

Figure 4.10. The SCG Figures [vHMA`13b]

Conditionals: Conditionals are depicted by a diamond figure. The true branch is indicated
by the true keyword. Usually it is connected at the right side of the diamond but as
shown in Figure 4.10 it can be annotated to switch the sides.

Parallel: The parallel statement is depicted by its corresponding fork and join nodes.
The forked off threads also comprises entry and exit nodes.

Pause: A pause statement is divided in its surface and its depth. By default depth
nodes are positioned at the top of the containing hierarchy to illustrate the tick start.
However, for reasons of compactness they may be drawn inline.

Dependencies Visualization in the SCG

As elucidated in Section 4.1.2 there are several types of accesses and therefore equally
many ways to illustrate a dependency are necessary. Figures 4.11a and 4.11b depict
write-write dependencies. The left figure shows a dependency between two absolute writes.
These are drawn red. The right one illustrates a dependency, a blue edge in the SCG,
between an absolute and a relative write.

Even though there is no disparity in the handling of absolute or relative write-read
dependencies, they are exemplified in a slightly different color to illustrate the write
access. Figures 4.11c and 4.11d show the two kinds of write-read dependencies.

(a) write–write (b) abs. write–rel. write

(c) abs. write–read (d) rel. write–read

Figure 4.11. SCG Dependency Visualization

34

4.1. Language Concepts Introduction

SCG Visualization Options

SCG comes with five global visualization options. Beside the possibility to draw the graph
without further graphical information, it can be drawn with dependency edges and basic
box illustration. Additionally, an option to switch off the display of hierarchy is available.

Furthermore it is possible to influence the arrangement of SCG elements by local
annotations. Usually depth nodes of pause instructions are placed in the top layer of a
diagram to illustrate the tick start. In some rare cases this is undesirable and can be
suppressed by an inline annotation. Similarly true branches of conditionals are usually
drawn on the right side of the diamond shape. A branch annotation may change the
side of the branch. If desired, a layer annotation at a fork statement places entry and
exit nodes in the outermost layers. The node placement strategy can be changed by a
placement annotation at the beginning of the program code.

An example of a possible layout annotation case is depicted in Figure 4.12. It shows
a simple SCL program comprising a pause and a subsequent assignment. As mentioned
in Section 4.1.4 the depth of the pause is placed at the top of the diagram to exemplify
the tick start. However, the modeler may annotate the pause to layout the model as
illustrated in Figure 4.13, if desired.

1 module Main
2 output boolean O;
3 {
4 pause ;
5 O = t r u e ;
6 }

Listing 4.4. SCL example – Pause Figure 4.12. Pause visualization

1 module Main
2 output boolean O;
3 {
4 @ i n l i n e
5 pause ;
6 O = t r u e ;
7 }

Listing 4.5. SCL example – Annotation Figure 4.13. Annotated pause visualization

35

4. Sequentially Constructive Code Generation

The complete ABO

As final example for the SCL and a corresponding SCG ABO, as depicted in Figure 4.3, was
transformed to SCL and displayed with full visualization settings including dependency
edges and BBs.

Figure 4.14. ABO with full visualization

In addition to Figure 4.3, Figure 4.14 illustrates the data dependency of B, denoted
by the green dashed edge originating at the assignment in the right region. It also depicts
the BBs as purple boxes encapsulating the SCG nodes. The concept of BBs is described in
detail in the second part of this chapter.

The corresponding SCL code is shown in Listing 4.6. The fork introduces the first
thread, lines 8-16, and the second thread, lines 18 to 24, is initiated by the par keyword.
As elucidated in Section 4.1.4, each SCL statements relates to a figure in the SCG. The
assignments correspond to the rectangles and the if instruction creates a diamond. Notice
that the branch annotation in line 20 induces the control flow of the true branch to be
drawn on the left side.

36

4.1. Language Concepts Introduction

1 module ABO
2 i n pu t boolean A;
3 i n pu t boolean B;
4 output boolean O1 = f a l s e ;
5 output boolean O2 = f a l s e ;
6 {
7 f o r k
8 __WaitAB_HandleA_WaitA :
9 i f A then

10 B = t r u e ;
11 O1 = t r u e ;
12 goto __WaitAB_HandleA_DoneA ;
13 end ;
14 pause ;
15 goto __WaitAB_HandleA_WaitA ;
16 __WaitAB_HandleA_DoneA :
17 par
18 __WaitAB_HandleB_WaitB :
19 pause ;
20 @branch : l e f t
21 i f ! B then
22 goto __WaitAB_HandleB_WaitB ;
23 end ;
24 O1 = t r u e ;
25 j o i n ;
26 O1 = f a l s e ;
27 O2 = t r u e ;
28 }

Listing 4.6. Complete SCL ABO

4.1.5 SCL Metamodel Extensions

The SCL metamodel provides the infrastructure to model and handle the mandatory data
of an SCL program. However, to simplify the usage of SCL models, several Xtend model
querying and transformation extensions have been implemented.

The SCL Factory Extension: The SCL Factory Extension subsumes all needed model
factories. This includes factories for the SGraph, SText, SyncGraph, SyncText and
SCL. Since this extension is the base of the other extensions it also contains methods
for debugging.

The SCL Create Extension: The create extension aims to ease the work necessary to
create new model constructs. It provides simple methods for SCL element creation as
well as generating more complex components such as assignments which are built out
of SCChart transition effects and need references to variable declarations.

The SCL Naming Extension: To simplify the identification of model elements the SCL
Naming Extension provides functions to set unique Identifiers (IDs) and generate
names for regions and states. The names are generated recursively throughout the
hierarchy and are separated by an underscore. If a region or state does not have a
name, the hash code of the model element is used instead.

37

4. Sequentially Constructive Code Generation

The SCL Ordering Extension: The methods provided by the ordering extensions can be
used to customize Xtend’s sort extension. For instance, compareSCLStateOrder sorts
states according to their type.

The SCL Statement Extension: The statement extension comprises convenient methods
to avoid excessive instance checking and type casting. Although Xtend provides
simplified constructs to handle these, they can be exhaustive over time. Methods such
as getInstruction, hasAnnotation and isEmptyStatement are supported.

The SCL Statement Sequence Extension: To help the programmer to travel through the
instructions of an SCL program the statement sequence extension provides methods
to retrieve the actual program, thread or statement sequence. It also grants access
to sequence compare functions and finds least common ancestors. Additionally,
several next and previous methods allow travelling through the statements of a model
respecting hierarchy and goto jumps.

The SCL Goto Extension: Since a goto targets a label and not an instruction directly, the
goto extension does simplify the effort to find corresponding statements. It provides
methods to find instruction statements targeted by a goto and also retrieves all
incoming jumps of a statement. For instance, a target instruction of a goto jump can
easily be determined by using goto.getTargetStatement?.getInstructionStatement. The
question mark operator is provided by Xtend and checks if the given object is valid
to avoid null pointer exceptions.

The SCL Expression Extension: The expression extension aids in the creation of new and
the transformation of present expressions. It contains methods such as createAssign-
mentExpression, createAndExpression and negate. If the negate method is executed on
an already negated expression, it removes the negation. Otherwise, a new negation is
created and parenthesized if necessary.

The SCL Dependency Extension: This extension package assists in the detection and
characterization of dependencies. It examines SCL assignments and conditionals and
provides checks for absolute and relative writes, confluent tests and returns lists of
concurrent dependencies and their kind.

The SCL Basic Block Extension: The Basic Block extension divides the SCL program
in distinct blocks of statements. Essentially, they illustrate the connection between
groups of instructions. A BB can be active or inactive in any tick. Its activity state
depends on certain guards, activation dependencies to other BBs or the initial GO
signal. Hence, every basic block may have successor dependencies which pose as
guards to other blocks. Additionally, data dependencies of instruction inside a BB may
impose ordering constraints to the program in concurrent threads. If these constraints
are cyclic and cannot be resolved, the program is rejected.

38

4.1. Language Concepts Introduction

4.1.6 Sequential Sequentially Constructive Language

Sequential SCL is a subset of SCL omitting the pause and the parallel instructions. Every
statically schedulable SCL program can be translated into a concurrency-free, sequential
SCL program. A sequential SCL program is meant to serve as a generic function which is
called in every tick. This tick function comprises a netlist-like structure and evaluates the
statically calculated guards to determine the control flow in every macro tick. Due to the
omitting of the pause instruction, guards of blocks that depend on activation states of the
previous tick must be saved in additional guard variables. These are suffixed with _pre.

Since the calculation of these guards is elucidated in detail in Section 4.2 the sequential
SCL program shown in Listing 4.7 is meant as simple example to understand the previous
paragraph. It depicts the transformed pause SCG, illustrated in Figure 4.12, and shows the
guard calculation in the assignments. The time consumption of the register is semantically
embedded in the g0_pre guard.

1 module t i c k f u n c t i o n
2 output boolean O;
3 boolean GO;
4 boolean g0 ;
5 boolean g0_pre ;
6 boolean g1 ;
7 {
8 g0 = GO;
9 g1 = g0_pre ;

10 i f g1 then
11 O = t r u e ;
12 end ;
13 g0_pre = g0 ;
14 }

Listing 4.7. Tick Function Example – Pause

Once the sequential SCL is created its generic tick function can be used to further
generate code for hardware or software synthesis.

4.1.7 Normalized Core SCCharts

While working on this topic a new dialect of SCCharts evolved. Although it is not used in
the implementation of the approach presented in this thesis, it is discussed in this section
for the sake of completeness. The newly developed Normalized Core SCCharts (NCSC)
are a variant of Core SCCharts and aim to omit the intermediate SCL translation step.
Besides parallelism, they only permit three different kinds of state connectivity, depicted
in Figure 4.15, but do not differ from Core SCCharts semantically. Every connectivity
type corresponds with an element of the SCG. Hence, only a MTM transformation is
needed to display a corresponding SCG. Each Core SCChart can be expressed by this
normalized variant and therefore, Extended SCCharts are covered as well. Connectors

39

4. Sequentially Constructive Code Generation

Figure 4.15. Normalized Core SCCharts Connector Elements

ease the use of transient states and facilitate the WTO principle. The different types are
described as follows.

State: A state has a single outgoing transition which consumes time. The transition is
seen as continuous line outgoing from state State in Figure 4.15. As before, time
consumption in the SCG is illustrated by a dotted edge between the surface and depth
node.

Conditional Connector: A conditional connector stands for a triggered transition and is
depicted as conditional node in the SCG. The SCL equivalent is the if statement. If
no trigger evaluate to true, the control immediately returns to the calling state. Thus,
the state Conditional in Figure 4.15 is transient.

Assignment Connector: The assignment connector executes transition effects. It is also a
strictly transient state and represents an SCL/SCG assignment.

As usual, parallelism is still modeled by concurrent regions.

The connector types may be translated directly to corresponding SCG elements without
intermediate steps, depicted in Figure 4.16. As a state consumes time, it is represented
by a pause in the SCG without intermediate step. The conditional connector comprising
the trigger trig is related to the conditional diamond figure including the trig expression.
Subsequently, any assignment connector is translated to an SCG assignment node. It is
depicted by the eff = true expression in the figure. Any parallelism in the NCSC would
result in concurrent compartments in the SCG visualization.

This direct transformation can be done transiently, thus making changes to an
Extended SCChart visible at once in control flow form. Furthermore, it is possible to
express all syntactical sugar of Extended SCCharts with these four essential elements of
Core SCCharts.

40

4.2. Sequential Constructiveness Transformations

This direct transformation can be done transiently, thus making changes to an Extended
SCChart visible at once in control flow form. Furthermore, it is possible to express all
syntactical sugar of Extended SCCharts with these 4 essential elements of Core SCCharts.

Figure 4.16. Normalized Core SCCharts Connector Types in the SCG

4.2 Sequential Constructiveness Transformations

As described in the introduction of this chapter a stack of transformations must be
processed to obtain the desired sequential tick function. Starting from Extended SCCharts
the corresponding Core SCCharts are generated to transform the syntactical sugar,
described in Section 4.1.1, to its semantically equivalent core variant. Secondly, Core
SCCharts are translated to SCL code and their related SCGs are synthesized to gain a
model and a visualization of the control flow as depicted in Section 4.1.3 and Section
4.1.4. Subsequently, SCL is analysed with respect to schedulability and finally converted
to sequential SCL discussed in Section 4.1.6. Therefore, the generated sequential tick
function will no longer comprise concurrent threads or registers. The next sections will
exemplify each step of the transformation chain.

41

4. Sequentially Constructive Code Generation

IO
input signal I;
output signal O;

main region

A B

I / O

(a) Extended SCChart IO

IO
input boolean I;
immediate during : / I = false;
output boolean O;
immediate during : / O = false;

main region

A B

I / O = true || O

(b) Intermediate IO

IO
input boolean I;
output boolean O;

main region

A B

signal I reset

S1 S2

signal O reset

S1 S2

/ I = false

/ O = false

I / O = true || O

(c) Core SCCharts IO

Figure 4.17. Example of Transforming Extended SCCharts to Core SCCharts

4.2.1 Extended SCCharts Expansion

As already mentioned in Section 4.1.1, Extended SCCharts enrich the syntax of Core
SCCharts by more complex elements to allow the modeler to build equally sophisticated
models with respect to Core SCCharts in a more compact way.

In principle each added syntactical extension can be translated to a core variant with
one or more MTM transformations. The Extended SCChart is searched for occurrences of
the element in question and then transformed to a more expanded chart. However, this
must not be a core variant directly. In most cases the final Core SCChart is reached over
a series of consecutive transformations.

As example for an Extended SCCharts expansion chart IO, Figure 4.17a, shall be
transformed to a core equivalent. It is not a Core SCChart since it comprises signals
which belong to the Extended SCCharts supplement. In a first step IO is transformed to
an intermediate variant depicted in Figure 4.17b. Signals can be emulated with boolean
variable, input boolean I and output boolean O in the figure. However, the present status
of a signal is reset in each macro tick. This is modelled by the immediate during actions.
Therefore, this SCChart is still an extended variant since during actions belong to the
repertoire of Extended SCCharts.

Hence, the intermediate SCChart IO must be transformed further. In a second step,

42

4.2. Sequential Constructiveness Transformations

its during actions are resolved to concurrent regions. This transformation step is depicted
in Figure 4.17c. Since this SCChart only comprises core elements, it is valid Core SCChart
and thus, the signal transformation is completed.

Since it is not the main focus of this thesis, interested readers are referred to “SCCharts
- Sequentially Constructive Statecharts for Safety-Critical Applications” [vHMA`13a] for
more detailed information about Extended SCCharts Expansion.

4.2.2 Core SCChart to SCL Transformation

One of the challenges of this code generation approach is the efficient transformation of
SCCharts models to SCL code. The created code must be correct and is desired to be as
compact as possible. Therefore, the transformation of Core SCCharts to SCL proceeds in
two stages. Firstly, SCCharts are translated according to a relatively straight-forward
pattern. Secondly, the generated SCL code is optimized where possible.

Straightforward SCL Transformation

As mentioned in Section 3.3 every SCChart is stored in an SGraph Statechart. The
statechart comprises the main state which may contain one or more regions. The
transformation is implemented in Xtend and travels recursively through all regions and
states.

In the region transformation all containing states are ordered according to their type.
Initial states are placed at the beginning of the state list and final states come last.
Eventually, every state instance invokes the transformation method for states. Lastly,
applicable optimizations are called.

The transformation pattern for states is illustrated in Figure 4.18. It is similar to the
approach presented by Amende [Ame10] discussed in Section 2.1, since each SCCharts
element strictly corresponds to distinctive code patterns.

At first a state gets a name respecting hierarchy and is identified by a label. If it
is a final state, only its label is mandatory in the SCL code and the translation finishes
immediately. If it is not a final but a composite state, a parallel statement is created and
the transformation for regions is called again. Eventually any existing normal termination
is translated. If it is not a composite and not a final state, all outgoing transitions of the
state must be processed.

In the transition translation all outgoing transitions are checked for their immediate
flag. If a transition is immediate, it has to be processed before any normal transition
and according to their priority. Additionally any transition without trigger is marked.
This kind of transition is also called default transition since it activates if no other trigger
evaluates to true. After all immediate transitions are processed a pause statement is
included and subsequently the transformation handles all outgoing transitions. This
also includes all immediate processed before since the priorities may be different in
connection with non-immediate transitions. Similar to the first transition transformation

43

4. Sequentially Constructive Code Generation

Figure 4.18. State Transformation Pattern

it is checked whether or not a default transition is present. The second translation of
outgoing transitions can be skipped when no non-immediate transitions are present.

Transitions are translated in a manner straightforwardly. Every trigger corresponds to
a conditional statement and every effect complies to an assignment in the SCL code. The
code of a transition assignment is executed in the statement sequence of the corresponding
conditional. If the trigger is omitted, the assignment belongs to a default transition and
is executed in a tick instance if no trigger evaluates to true. Subsequently the transition
to another state is translated to a goto jump. Therefore, if the transition only comprises
of a trigger and no effect, the goto statement is the only statement of the corresponding
conditional.

Eventually, if no default transition was found, a self-loop, a goto jump to the state
itself, is created. If all transitions of the state are immediate and a default transition
exists, the state is a transient state and does not consume any time. Therefore, no pause
statement is needed in the SCL code.

ABO in SCL

Listing 4.8 exemplifies the SCL code generation of ABO, Figure 4.3. The main state ABO
comprises the states WaitAB and GotAB. These are indicated by the labels __WaitAB and
__GotAB in the SCL code. The state WaitAB consists out of two regions, HandleA and
HandeB. Since they are modelling concurrency a parallel statement with two concurrent

44

4.2. Sequential Constructiveness Transformations

threads is generated. It is depicted by the fork-par-join construct in the listing.
HandleA includes the states WaitA and DoneA which are connected via a immediate

transition. The trigger of the transition listens for the input A. As effect B and O1 are set
to true. In the SCL code WaitA is initiated by the recursively created label __WaitAB_-
HandleA_WaitA. The following if A then instruction models the outgoing immediate
transition and includes the effects in its statement sequence. The transition traversal is
done by the goto jump to DoneA. Subsequently, the pause statement is included. Since
there are no further outgoing transitions, the implicit self-loop to WaitA is created. As
last statement the label of the final state DoneA marks the end of this thread.

In HandleB, as the transition from WaitB to DoneB is not immediate, the if B then
construct is placed after the pause statement. Similar to WaitB a self-loop is introduced at
the end of WaitB. The thread is finished, if label __WaitAB_HandleB_WaitB is reached.
Eventually both regions reach their final state. Since the normal termination has no
trigger, its effects are translated directly. As last instruction the goto jump to __GotAB
is executed.

1 module ABO
2 i n pu t output boolean A;
3 i n pu t output boolean B;
4 output boolean O1 = f a l s e ;
5 output boolean O2 = f a l s e ;
6 {
7 __WaitAB :
8 f o r k
9 __WaitAB_HandleA_WaitA :

10 i f A then
11 B = t r u e ;
12 O1 = t r u e ;
13 goto __WaitAB_HandleA_DoneA ;
14 end ;
15 pause ;
16 goto __WaitAB_HandleA_WaitA ;
17 __WaitAB_HandleA_DoneA :
18 par
19 __WaitAB_HandleB_WaitB :
20 pause ;
21 i f B then
22 O1 = t r u e ;
23 goto __WaitAB_HandleB_DoneB ;
24 end ;
25 goto __WaitAB_HandleB_WaitB ;
26 __WaitAB_HandleB_DoneB :
27 j o i n ;
28 O1 = f a l s e ;
29 O2 = t r u e ;
30 goto __GotAB ;
31 __GotAB :
32 }

Listing 4.8. Unoptimized ABO SCL

45

4. Sequentially Constructive Code Generation

4.2.3 SCL Code Optimization

So far the SCL generation is relatively naive. Several optimizations are in place to improve
the overview and compactness of a SCL program without altering its semantics.

Goto Optimization: The first optimization searches for goto instructions with jumps to
labels that directly follow that goto. These instructions are superfluous since the
sequential control flow will already proceed in that direction.
Listing 4.9 depicts the last five lines of the unoptimized ABO. The goto instruction in
line 30 precedes its target label __GotAB promptly. Thus, it can be eliminated since
the control flow will proceed to line 31 anyhow as illustrated in Listing 4.10.

28 O1 = f a l s e ;
29 O2 = t r u e ;
30 goto __GotAB ;
31 __GotAB :
32 }

Listing 4.9. Goto Optimization Example
in ABO before Optimization

28 O1 = f a l s e ;
29 O2 = t r u e ;
30
31 __GotAB :
32 }

Listing 4.10. Goto Optimization Example
in ABO after Optimization

Label Optimization: Secondly, every not referenced label can be deleted, because there
are no jumps to it and is therefore redundant.
Now that the superfluous goto in line 30 was removed, shown in Listing 4.11, the last
label __GotAB is not referenced any more and can also be deleted as illustrated in
Listing 4.12.

28 O1 = f a l s e ;
29 O2 = t r u e ;
30
31 __GotAB :
32 }

Listing 4.11. Label Optimization Example
in ABO before Optimization

28 O1 = f a l s e ;
29 O2 = t r u e ;
30
31
32 }

Listing 4.12. Label Optimization Example
in ABO after Optimization

Self-loop Optimization: If a state has only one outgoing non-default transition, the
expression of the trigger may be negated to invert the self-loop and effect code. Thus,
the effect will be executed, when the control flow proceeds to the next state and no
goto and label are mandatory to execute this transition.
This is exemplified in Listing 4.13 and Listing 4.14 in the code pattern of the state
WaitB. Since it has only one outgoing transition, the expression can be negated to
exploit the natural control flow of the program. Therefore, the second goto instruction
in line 25 also precedes its target label and thus, both can be eliminated also.

46

4.2. Sequential Constructiveness Transformations

28 i f B then
29 O1 = t r u e ;
30 goto __WaitAB_HandleB_DoneB ;
31 end ;
32 goto __WaitAB_HandleB_WaitB ;
33 __WaitAB_HandleB_DoneB :

Listing 4.13. Self-loop Optimization Ex-
ample in ABO before Optimization

28 i f !B then
29 goto __WaitAB_HandleB_WaitB ;
30 end ;
31 O1 = t r u e ;
32 goto __WaitAB_HandleB_DoneB ;
33 __WaitAB_HandleB_DoneB :

Listing 4.14. Self-loop Optimization Ex-
ample in ABO after Optimization

State Ordering Optimization: As mentioned in Section 4.2.2 all states in a region are
ordered according to their initial or final type. The order of the remaining states
directly influences the creation of goto jumps because the goto optimization will
remove unnecessary goto instructions of subsequent states. This optimization sorts
states according to their transitions in order to further facilitate the goto and label
optimization.

Duplicate Transition Optimization (DTO): Due to the blending of priorities of immediate
and non-immediate transitions, all immediate transitions must be processed twice.
Firstly, they must be checked before the pause instruction and then again in conjunc-
tion with the normal transitions afterwards. Therefore, two if instructions are created
for every immediate transition. Depending on the transition priorities used in the
statechart it may occur that a transition is checked twice consecutively in one tick
instance because the goto at the end of the state loops back to the beginning of the
state and checks the transitions again. This optimization removes all unnecessary if
instructions in the depth of a state if the transitions will be evaluated again in the
surface and are in the right order.

WTO Transition Optimization (WTOTO): With regard to their priority even with the DTO
enabled, an immediate transition may introduce two if instructions in the SCL code.
To facilitate the WTO principle this optimization only creates one if instruction per
transition but must introduce a local variable to do so. This boolean variable marks
the depth of a state and is added to the triggers of the non-immediate transitions. It
is initialized with false and set to true after to the pause instruction. Thus, subsequent
transition checks include non-immediate transitions.

Depending on which transition optimization is chosen the Figure 4.19a translates
to an SCL program with an SCG corresponding to one illustrated in Figures 4.19b to
4.19d. The final states have been combined to one exit node to display the SCG in a more
compact way.

Figure 4.19b depicts an unoptimized translation with duplicated conditionals T2
and T4. In Figure 4.19c one T4 conditional is eliminated by the DTO. The second
conditional is not removed because the priorities forbid it. In the last example, Figure
4.19d, the WTOTO introduces a new variable dep to handle the depth of the state. Thus,

47

4. Sequentially Constructive Code Generation

all duplicated transitions can be removed. dep is initialized with false and set to true
after the depth of the state is reached.

(a) T4f SCChart (b) Naive Translation

(c) DTO Translation (d) WTOTO Translation

Figure 4.19. T4f Transition Translation Example

48

4.2. Sequential Constructiveness Transformations

Listing 4.15 depicts the optimized SCL of ABO. The self-loop optimization improved
the WaitB code generation and all superfluous goto instructions and labels are removed.

1 module ABO
2 i n pu t output boolean A;
3 i n pu t output boolean B;
4 output boolean O1 = f a l s e ;
5 output boolean O2 = f a l s e ;
6 {
7 f o r k
8 __WaitAB_HandleA_WaitA :
9 i f A then

10 B = t r u e ;
11 O1 = t r u e ;
12 goto __WaitAB_HandleA_DoneA ;
13 end ;
14 pause ;
15 goto __WaitAB_HandleA_WaitA ;
16 __WaitAB_HandleA_DoneA :
17 par
18 __WaitAB_HandleB_WaitB :
19 pause ;
20 i f !B then
21 goto __WaitAB_HandleB_WaitB ;
22 end ;
23 O1 = t r u e ;
24 j o i n ;
25 O1 = f a l s e ;
26 O2 = t r u e ;
27 }

Listing 4.15. Optimized SCL of ABO

4.2.4 SCG Synthesis

The control flow of an SCL program can be visualized graphically. Due to the fact that
the SCL metamodel already represents the sequential execution flows of the correspond-
ing program, the visualization can be created transiently on the SCL without further
transformations. This is useful to get an overview of the general control flow and detect
scheduling problems due to concurrent variable accesses discussed in Section 4.1.2.

The code analyses, presented in the succeeding Section 4.2.5 and Section 4.2.6, will use
the possibilities provided by the SCG visualization to hint at potential problems during
the code generation.

The SCG is displayed via KLighD and triggered over a KIVi combination. Whenever
the SCL model changes the synthesis is invoked automatically and the corresponding SCG
is shown. This behavior can be toggled in the KIVi control menu.

The creation of graph figures is unsophisticated. For every SCL instruction an analogous
synthesis method exists. It creates the SCG figure and returns edge connection points for
subsequent figures. To connect the edges ports are used. Eventually, KLay is invoked to
layout the generated graph. Unlike to most figure methods the synthesis for the parallel

49

4. Sequentially Constructive Code Generation

and pause instructions create two figures. In the case of parallel a figure for fork and
join each are generated. Similarly a surface and a depth node are composed for pause.
A detailed description follows in Chapter 5. Figure 4.20 illustrates the final version of
ABO in its SCG control flow form. Each program starts with an entry and closes with an
exit node. The fork-par-join instruction results in the creation of a fork node, two thread
regions, denoted as gray compartments and a corresponding join node. In the figure
the left thread depicts HandleB and the right one represents HandleA. Each thread also
comprises an entry and an exit point. As signal A is tested for presence immediately, the
control flow proceeds to the conditional diamond at once. Depending on its evaluation
the path to the pause or the assignments preceding the exit node is taken. In HandleB, the
status of B is checked after the pause as illustrated by the control flow edges. Eventually,
both threads terminate and the control flows of the concurrent regions merge in the join.
Finally, the two O assignments are executed and the program terminates.

Figure 4.20. The SCG of ABO

50

4.2. Sequential Constructiveness Transformations

4.2.5 Dependency Analysis

To gather information about the schedulability of an SCL program concurrent dependencies
must be evaluated. As discussed in Section 4.1.2 programs are not schedulable, if they
comprise any conflicting variable accesses. Therefore, potentially problematic accesses
must be found and categorized with respect to their access type.

This section defines the term of concurrency with regard to SCL programs and describes
the domain in which variable accesses are treated as concurrent.

Concurrency

The set of threads of an SCG G with nodes N is denoted T . Every thread t P T is
associated with unique entry and exit nodes t.entry, t.exit P N . Every n P N belongs
to a thread threadpnq, defined as the immediately enclosing thread t P T such that
there is a control flow path to n that originates in t.entry. Let forkptq be the fork node
that immediately precedes t.entry. Every thread that is not the root thread has an
immediate parent thread pptq, defined as threadpforkptqq. A set of ancestors threads p˚ptq
is recursively defined as a set of t, pptq, pppptqq, ..., program root.

Ź Two threads t1, t2 P T are concurrent, if and only if there exists t11 P p˚pt1q,
t12 P p

˚pt2q, with t11 ‰ t12, which share a common fork node forkpt11q =
forkpt12q. This fork node is referred to as the least common ancestor fork,
lcaf pt1, t2q [vHMA`13b].

Detecting Concurrent Dependencies

As pointed out in Section 4.1.5 most of the work necessary to find and categorize concurrent
dependencies is done by the SCL dependency extension. It examines the SCL model and
comprises methods for variable access detection and categorization of any given access.
Technical details about the dependency analysis are discussed further in Chapter 5.

However, it is important to understand that according to the definition of concurrency
two accesses in different threads are only concurrent, if and only if they share a least
common ancestor fork. Only if they are concurrent, they must be tested for potential
conflicting accesses. Otherwise, two writes to the same variable in two different threads
in the same tick instance will be detected as conflict even though one thread is executed
subsequent to the other and thus, constitutes no conflict at all.

Figure 4.21 illustrates least common ancestor forks and the dependencies between
multiple nested concurrent threads. The first fork creates two threads. The thread shown
on the left tl consecutively forks two threads two times tl1 , tl2 and the one on the right
tr assigns an integer to x only. tl1 concurrently assigns two values to y and tl2 assigns
integers to x and y.

As depicted by the first red dependency edge, the two y assignments in tl1 impose a
concurrent write access. Nevertheless, the y assignment in tl2 is not concurrent to the y

51

4. Sequentially Constructive Code Generation

assignments in tl1 since they do not share a least common ancestor fork node. However,
since tr is not nested inside of tl, tr shares a least common ancestor node with tl2 and
thus comprises a write dependency to a statement of tl2 .

Figure 4.21. Least Common Ancestor Fork Example

52

4.2. Sequential Constructiveness Transformations

4.2.6 Basic Block Analysis

A Basic Block (BB) is an amalgamation of SCL statements. It comprises a list of
instructions in any SCL control flow that can be executed as a single block without
rescheduling. Conservatively, it is possible to build BBs out of single statements. However,
as it is desirable to connect as many instructions as possible in a single BB before a
reschedule may be necessary, the following rules apply.

Ź A BB begins with the statement at the beginning of a thread or if the
SCG representation of that statement has two or more incoming edges. An
incoming edge may be a control flow or a dependency edge.

Ź A BB ends with a statement that forks the SCG control flow and hence, has
two or more outgoing control flow edges. The last instruction of a thread
may also be the closure of a BB.

Ź BBs are split at pause statements.
Ź SCG fork node close a BB, whereas join nodes start a new one.
Ź Any statement of a given program can only be included in one BB at any

time.

Splitting up SCL Constructs

To avoid unnecessary consistency constraints and data dependencies no extra metamodels
for the SCG or BBs were introduced. All evaluations are done transiently on the SCL
model via Xtend extensions. Hence, a BB is identified by any of its statements. In general,
the first one is used. However, as specified in the previous section, a block is separated by
pause and parallel instructions, even though they are comprised out of a single statement
in SCL. This would violate the rule that a statement can only be present in one BB at
any time since it would be the last instruction of the preceding BB and the first one in
its successor. To avoid excessive surface and depth handling, the Basic Block extension
transiently splits every pause in a PauseSurface and a PauseDepth object and analogously
every parallel in a ParallelFork and a ParallelJoin. Hence, in the context of BBs the abstract
syntax of the SCL statements is extended by these instruction splits and a statement
uniquely defines a BB again.

Basic Block Definition

In every tick instance a BB may be active or inactive. The activity state of a BB derives
from its dependencies to previous BBs and is called the guard of the BB. The guard of
the first block in an SCL program depends on the GO start signal of the environment
usually emitted at the initialization or reset of the program. Outgoing control flows of
a BB may pose as guard expressions, or activators, for succeeding BBs. Thus, a guard
may be an “or” conjunction of preceding activators and evaluates to true as long as one
incoming activator is also true.

53

4. Sequentially Constructive Code Generation

Let S be the set of states of a program P . Let B Ď 2S be the set of all BBs.
P.headpbq is true if b is the first BB of P . Each s P S is contained in exactly
one b P B, i. e., it is

@b1, b2 P B : b1 “ b2 or b1 X b2 “ ∅

and
@s P S : Db P B s.t. s P b

For b P B define b.last P b as last statement of b. If b.last is a conditional
statement, succcondpb, b

1q “ {btrue, bfalse} and defines whether b1 is in the true
or the else branch of b. lcsexprpb, b1q returns the expression of b.last, denoted
exppslastq, if succcondpb, b

1q “ btrue and exppslastq, if succcondpb, b
1q “ bfalse.

If b.last is not a conditional instruction, lcsexprpb, b1q returns true.

A BB b1 P B is a Basic Block Predecessor (BBP) of another BB b2 P B, with
b1 ‰ b2, if any statement s1 P b1 has an outgoing control flow edge to any
statement s2 P b2. Due to the enforced rules s2 will be the first statement in
b2.

Fore some b P B, let guardpbq be the corresponding guard and predpbq Ď B

be the set of BBs immediately preceding b.

gexppbq :“ {g1 ^ lcsexppb1, bq|b1 P predpbq, g1 “ guardpb1q}

If b starts with a depth statement and b1 is the corresponding surface statement,
gexppbq :“ prepg1q where g1 “ guardpb1q.

Thus, the logical “or” combination of all guard expressions combined with the
GO signal, if b is the first BB in the program, determines the activity state of
a BB b, denoted activepbq.

activepbq :“ p
∨
i

gi P gexppbqq _ pGO ^ P.headpbqq

Generally speaking, a BB is active, if and only if at least one of its guard expressions
is active in the same tick instance. Additionally, a BB may pose as predecessor and hence,
comprises a set of successor blocks. A succeeding BB is called Basic Block Successor (BBS).
For convenient readability all BBs are enumerated beginning at the start of a given SCL
program and pause surface guards from previous ticks are prefixed with pre_.

The Join Synchronizer

The activation criterion for the join of concurrent threads is a little more complex since
it is only permitted to proceed if all preceding threads are terminated and at least
one of them exited in the actual tick instance. The construction of the synchronizer
is done similar to the synchronizer circuit described in the “The Esterel v5 Language
Primer, Version v5” [Ber00]. Here, each thread status is signaled by an empty flag which

54

4.2. Sequential Constructiveness Transformations

describes whether or not a thread is not active. All empty flags are combined in a
conjunction together with a combination of exit codes taht signal whether at least one
thread terminated in this tick instance. The empty flag is combined with the go signal of
the preceding circuit to detect active instantaneous threads.

Let T 1 Ď T be the set of all concurrent threads of an common fork-join
construct. For every thread Ti P T

1, Bi Ď B holds all BBs of that thread. Let
further βi Ď Bi be the set of BBs that indicate a state currently selected for
resumption, i. e., an internal pause register. A thread is denoted as empty, if
none of its blocks nor the predecessor of the fork, denoted by predpTi.forkq,
is active in this tick instance. The empty state of Ti is defined as

emptypTiq :“ p
∨
j

{activepbjq|bj P βi}

Let γi Ď Bi be the set of BBs that reach the exit node ti.exit of Ti immediately.
The activation criteria activejoinpbq, b P B for a BB b, whose first statement
s.head is a ParallelJoin, depends on the empty states of all preceding concurrent
threads Ti and also holds the condition that at least one of the threads exited
in the actual tick instance. Thus, activejoinpbq is defined as

activejoinpbq :“ p
∧
i

{emptypTiq _ p
∨
j

{activepb1jq|b1j P γi}q}q ^

p
∨
i

{
∨
j

{activepb1jq|b1j P γi}}q

Basic Block Examples

The next two figures exemplify the visualization of BBs in an SCG. Figure 4.22b shows a
BB split at a conditional instruction. It is the first instruction in the program and hence
is marked as g0. Depending on the evaluation of the expression of the conditional the
control forks off and O is set to true or false. Both blocks see g0 as a BBP and depict it
as such on the left upper side. Analogously, g1 and g2 are possible successor blocks to g0
and are listed at the bottom right side of g0.

In the second example, Figure 4.23b, the first BB is broken off at the join of two
control flows. After O1 is set to false in g0 the control flow merges with the loop of g1
and g2. These two blocks are separated, because of the pause split mentioned in earlier
in Section 4.2.6. Since g2 depends on the state of g1 in the tick before, the predecessor is
prefixed with pre_ and the corresponding successor is prefixed with suc_. As g1 and g2
compose an infinite loop, the exit node is never reached.

Figure 4.24b shows a simple concurrent SCG. A parallel forks off two threads with
an assignment to an output variable each. Both assignments contained in the BBs g2
and g3 depend on the block g0 guarding the fork node. Consequently, they are active
immediately, when the fork node activates. As defined in the previous section, the join,
guarded by g1, is only permitted to proceed if all threads are terminated and at least

55

4. Sequentially Constructive Code Generation

(a) SCChart (b) SCG

Figure 4.22. Basic Block Conditional Example

(a) SCChart (b) SCG

Figure 4.23. Basic Block Pause Example

one is exited in this tick. As this is a special case, the activators for this BB are depicted
with an e instead of a g. In the context of concurrent joins, the first BB of a thread
identifies the thread and is listed in the guard illustration on the upper left side. As
earlier discussed a more complex synchronizer is created at a concurrent join. Hence, the
guard predecessors are listed for convenient reasons only.

56

4.2. Sequential Constructiveness Transformations

(a) SCChart (b) SCG

Figure 4.24. Basic Block Join Example

Basic Block Data Dependencies

Besides guards depending on each other a BB may hold concurrent data dependencies. If
a variable access va1 inside a BB b1 with guard g1 depends on an access va2 in another
BB b2 with guard g2, b1 inherits the dependency from its variable access va1. A data
dependency does not alter the activity state of a BB. However, it imposes an ordering
constraint and determines the sequence of guard evaluations since g2 must be evaluated
before g1. If data dependencies are cyclic, the program is not ASC-schedulable.

Figure 4.25b exemplifies an SCL program with two concurrent threads tl and tr.
They are created by the fork instruction and comprise interleaving data dependencies.
Theoretically both threads may proceed immediately after the control flow reaches the
fork node. However, following the rules imposed by the SC MoC, absolute writes are
scheduled before relative ones. Thus, tl must execute his first assignment O1 = false
before tr may proceed. In fact, the program is compelled to reschedule at this time since

57

4. Sequentially Constructive Code Generation

(a) SCChart

(b) SCG

Figure 4.25. Basic Block Data Dependency Example

58

4.2. Sequential Constructiveness Transformations

tl must wait for tr to execute its assignments. Only after tr finishes the absolute write of
O2, tl may proceed with its second assignment. Both relative dependencies are illustrated
by the blue directed edges in Figure 4.25b. Even though the data dependencies of the
program do not modify the activation state of the guards and both threads may proceed
simultaneously, a strict scheduling order between the two threads is imposed.

As shown in Figure 4.25b, data dependencies are depicted slightly brighter on the left
side of a BB subsequent to the BBP list.

Unschedulable Basic Blocks

If dependencies are cyclic, the BB guards cannot be calculated. Hence, the program is
not ASC-schedulable as defined in Section 4.1.2. To aid in the detection of unschedulable
blocks, the SCG marks all BBs containing potential conflicts bright red.

(a) SCChart (b) SCG

Figure 4.26. Basic Block Conflict Example

Figure 4.26b depicts the visualization of potential conflict. Although guard g0 may
activate due to the GO signal, the control flow cannot proceed, due to the interleaving
dependencies. Hence, all subsequent guards contain conflicts, since they cannot be
calculated.

59

4. Sequentially Constructive Code Generation

4.2.7 Sequential SCL Transformation

If an SCL program is ASC-schedulable, a generic tick function can be generated. As
discussed in Section 4.1.6 an SCL program in its sequential form is stripped of any
concurrency and registers. Then, the tick function is executed in each tick instance and
calculates the control flow of the corresponding SCL program depending on the actual
state.

1 module abo_t i ck
2 boolean A, B, O1 , O2 , GO;
3 boolean g0 , g3 , e4 , e8 , g4 , g5 , g6 ;
4 boolean g7 , g8 , g9 , g10 , g11 ;
5 boolean g6_pre , g8_pre ;
6 {
7 i f GO then
8 g6_pre = f a l s e ;
9 g8_pre = f a l s e ;

10 end ;
11 g0 = GO;
12 i f g0 then
13 O1 = f a l s e ;
14 O2 = f a l s e ;
15 end ;
16 g7 = g6_pre ;
17 g9 = g8_pre ;
18 g4 = g0 | | g7 ;
19 g5 = g4 && A;
20 i f g5 then
21 B = t r u e ;
22 O1 = t r u e ;
23 end ;
24 g6 = g4 && ! A;
25 g10 = g9 ;
26 g11 = g10 && B;
27 i f g11 then
28 O1 = t r u e ;
29 end ;
30 g8 = g0 | | (g10 && ! B) ;
31 e4 = ! (g6) ;
32 e8 = ! (g8) ;
33 g3 = (g5 | | e4) && (g11 | | e8)
34 && (g5 | | g11) ;
35 i f g3 then
36 O1 = f a l s e ;
37 O2 = t r u e ;
38 end ;
39 g6_pre = g6 ;
40 g8_pre = g8 ;
41 }

Listing 4.16. ABO in Sequential SCL Figure 4.27. SCG of Seq SCL ABO

60

4.2. Sequential Constructiveness Transformations

Therefore, every guard of all basic blocks of an SCL program is evaluated with respect
to any imposed dependency constraint. If a basic block contains any assignments, the
transformation subsequently creates a conditional statement with the guard as expression
and the assignments as statement sequence. Lastly, all _pre guards are set.

For instance, the sequential SCL program for ABO is shown in Listing 4.16. Its
corresponding SCG is depicted in Figure 4.27. As being a valid SCL program, all definitions
are done in the first section before the main statement sequence. It comprises the original
variables of ABO, since they represent the interface to the environment and also new
boolean definitions for each guard and the GO signal.

In the statement sequence each guard is calculated with respect to any BB constraint
detected in the preceding analyses. Meaning, a guard is allowed to be processed if and
only if all of the guards it depends on are already calculated. An example of this rule is
guard g4 in line 12. It depends on g0, which is calculated in line 5 and guard g7, line 10.
Thus, g4 must be evaluated after line 10.

The conditionals encapsulate any original variable assignments and are guarded by
the guard of their BB. Line 14 comprises the conditional which includes the emission of B
and O1. It is guarded by g5 and g5 depends on g4 and A. This represents the transition
outgoing from state WaitA in ABO, if A is present. To validate this, as depicted in the
SCChart of ABO, B and O1 are in fact emitted once A is present in this state.

Lines 24 - 27 illustrate the generated synchronizer. The empty flags are denoted with
an e as described in Section 4.2.6. They are only true if the corresponding guard of their
threads are inactive. Finally, g3, the guard guarding the join, is comprised testing for any
thread to be empty or just terminated.

4.2.8 SCL to S Transformation

Since the generic tick function is meant to be an initial point for further software or
hardware synthesis, one possible way to generate binary code is the translation to SC.
Furthermore, as this approach is embedded in the KIELER framework, the resulting
executable code can be simulated directly in KIEM since it already comprises a simulator
for SC. Moreover, the results of the simulation are comparable to semantically identical
SyncCharts, due to the fact that they can also be translated to SC and simulated in KIEM.

Chapter 6, Experimental Results, discusses test setups for different simulations of
the two statechart types in KIEM. It summarizes the results of these simulations and
subsequently draws conclusions of this comparison.

To simulate the generic tick function in the KIELER environment, the sequential SCL
is translated into S. Therefore all guards are transformed to valued S signals of the type
boolean and two states are created. The first one, named _go represents the starting
state, emits the GO signal and transits to the tick state _tickStart. This state comprises
the actual generic tick function and loops in every macro step. Each guard assignment
translates into an emit and every conditional corresponds to an if-construct.

The S program of ABO is depicted in Listing 4.17. As mentioned before, it contains

61

4. Sequentially Constructive Code Generation

two states, the initialization state _go and the state for the tick function _tickStart. Since
the signals are emitted in each tick instance, the activation state of the guard is carried
in the value of that state. A value of a valued signal is queried by a question mark (?).

As shown in the listing, the translation of the guard calculation is done straightfor-
wardly and results in relatively big emit constructs. The pause instruction in line 41
marks the end of the tick function before it is restarted again by the trans, line 42, due to
the traversal to the _tickStart state.

1 synchronous program abo_t i ck (1)
2
3 // s i g n a l s s k i p p e d
4
5 s t a t e (_go) {
6 emit (GO (t r u e)) ;
7 t r a n s (_ t i c k S t a r t) ;
8 }
9

10 s t a t e (_ t i c k S t a r t) {
11 i f (?GO = t r u e) {
12 emit (g6_pre (f a l s e)) ;
13 emit (g8_pre (f a l s e)) ;
14 } ;
15 emit (g0 (?GO)) ;
16 i f (?g0 = t r u e) {
17 emit (O1(f a l s e)) ;
18 emit (O2(f a l s e)) ;
19 } ;
20 emit (g7 (? g6_pre)) ;
21 emit (g9 (? g8_pre)) ;
22 emit (g4 (? g0 or ?g7)) ;
23 emit (g5 (? g4 and ?A)) ;
24 i f (?g5 = t r u e) {
25 emit (B(t r u e)) ;
26 emit (O1(t r u e)) ;
27 } ;
28 emit (g6 (? g4 and not ?A)) ;
29 emit (g10 (? g9)) ;
30 emit (g11 (? g10 and ?B)) ;
31 i f (? g11 = t r u e) {
32 emit (O1(t r u e)) ;
33 } ;
34 emit (g8 (? g0 or ? g10 and not ?B)) ;
35 emit (e4 (not (? g6))) ;
36 emit (e8 (not (? g8))) ;
37 emit (g3 ((?g5 or ? e4) and (? g11 or ? e8) and (?g5 or ? g11))) ;
38 i f (?g3 = t r u e) {
39 emit (O1(f a l s e)) ;
40 emit (O2(t r u e)) ;
41 } ;
42 emit (g6_pre (? g6)) ;
43 emit (g8_pre (? g8)) ;
44 pause () ;
45 t r a n s (_ t i c k S t a r t) ;
46 }

Listing 4.17. ABO in S

62

Chapter 5

Sequential Constructiveness
Code Generation Implementation

Chapter 4 explained the overall approach behind the SCL code generation presented in
this thesis. This chapter will describe the mandatory implementations for this approach.
It is structured in four parts. Section 5.1 explains how the SCL and its corresponding
metamodel, both discussed in Section 4.1.3, were created. Additionally, the section
will describe technical details about dynamic extensions of the metamodel discussed in
Section 4.1.5. Subsequently, the third part of this chapter, Section 5.3, will illustrate
how an SCG is synthesized out of an SCL model and how the information gathered by
the SCL extensions is displayed graphically. Finally, the chapter closes with the core
transformations discussed in Section 4.2.

5.1 The Sequentially Constructive Language

With SCCharts described in detail by Duderstadt [Dud12] in 2012 and S, mentioned in
Section 3.2.4, still being in development by Motika at the time of writing, this thesis
mainly covers the SCL and its graphical representation, the SCG. As already mentioned
in Section 4.1.3, the language itself provides all mandatory infrastructure to handle and
store model related data. The engineering of the SCL is described in Section 5.1.1.

Nevertheless, to aid in implementations a number of extensions which are discussed
in Section 5.2 have been added to the SCL metamodel.

5.1.1 SCL Grammar in Xtext

As discussed in Section 4.1.3 SCL is a DSL particularly designed for the representation
and analysis of SCCharts. Its abstract syntax is established by the SCL metamodel.
The metamodel is defined by a grammar within the Xtext framework and subsequently
Xtext automatically derives the SCL metamodel. As described in Section 3.1.4 the Xtext
framework also generates a parser, a serializer and a corresponding full-featured editor
once a specialized grammar is defined. This section exemplifies the different grammar
rules of the SCL definition.

Since the approach utilizes the expressions and types, elucidated in Section 4.1.3,
included in the KIELER extension of Yakindu, introduced in Section 3.3, the SCL grammar
is derived from the KIELER Yakindu implementation SyncText. The SCL grammar

63

5. Sequential Constructiveness Code Generation Implementation

definition is located in the SCL.xtext resource stored de.cau.cs.kieler.scl plugin and starts
with the rule shown in Listing 5.1.

1 grammar de . cau . c s . k i e l e r . s c l . SCL
2 with de . cau . c s . k i e l e r . yak indu . s c c h a r t s . model . s t e x t . S y n c t e x t
3
4 // i m p o r t s [. . .]
5
6 Program :
7 ’ module ’ name = ID
8 (d e f i n i t i o n s+=V a r i a b l e D e f i n i t i o n)∗
9 ’ { ’

10 (
11 ((s t a t e m e n t s += I n s t r u c t i o n S t a t e m e n t ’ ; ’) | s t a t e m e n t s += EmptyStatement)∗
12 (s t a t e m e n t s += I n s t r u c t i o n S t a t e m e n t s t a t e m e n t s += EmptyStatement ∗)?
13)
14 ’ } ’
15 ;

Listing 5.1. SCL Grammar – Program root

Section 4.1.3 discusses the metamodel elements needed to model a valid SCL program.
Since each SCL program starts with a program root element, the first rule in the grammar
is the program rule and marks the entry point of the model. As depicted in lines 5 to
14 in Listing 5.1 a program starts with the keyword module followed by the name of the
program. Optionally, a list of global variable definitions may be added. Subsequently,
the source code of the program is encapsulated in curly brackets and is stored in the
statements member. Since instructions are linked with the sequence operator, while
labels are not, statements that comprise an instruction are separated by a semicolon. To
model the sequence operator correctly the last instruction is not obliged to finish with a
semicolon. However, for reasons of convenience sequence operators followed by no further
instruction are implicitly filled with a no operation instruction and allow the modeler to
close programs with semicolons.

The VariableDefinition is derived from SyncText, depicted in Listing 5.2. A variable
may be prefixed with input, output or static. As usual in the real-time context, input
variables get information from and output variables feed data back to the environment.
Local variables marked as static are only initialized once, when their scope is entered and
persist in consecutive calls. Furthermore, every variable has a type. It is derived from the

46 V a r i a b l e D e f i n i t i o n :
47 (i n p u t?= ’ i n p u t ’)? (output?= ’ output ’)? (s t a t i c ?= ’ s t a t i c ’)?
48 t ype =[t y p e s : : Type |FQN] name=ID
49 (’= ’ i n i t i a l V a l u e=E x p r e s s i o n)? ’ ; ’
50 ;

Listing 5.2. SyncText Grammar – Variable Definition

64

5.1. The Sequentially Constructive Language

Yakindu framework and even though this thesis focuses around boolean and integer types,
Yakindu allows other primitive types such as floats and strings and provides extension
points for custom types. Eventually, the name of the variable must be specified with an
optional initial value.

The SCL definition in Section 4.1.3 states that programs and nested hierarchies are
comprised out of statement lists. Statements are either an InstructionStatement containing
a specific SCL instruction or an EmptyStatement comprising a label. The two types have
been separated mainly because an arbitrary number of labels may follow consecutively
without any instruction, induced through several final states included in a thread. These
are translated to labels only as described in Section 4.2.2. Both statement types together
form the statement rule and may contain an arbitrary number of annotations, which are
explained in the next section.

Listing 5.3 shows the rules that define statements in the SCL metamodel. Lines 21
to 24 depict the EmptyStatement including its annotations and the label, whereas the
InstructionStatement is defined in lines 26 to 29. The statement combination of both is
shown at the beginning of the listing.

17 Statement :
18 EmptyStatement | I n s t r u c t i o n S t a t e m e n t
19 ;
20
21 EmptyStatement :
22 (a n n o t a t i o n s += Annotat ion)∗
23 (l a b e l = ID ’ : ’)
24 ;
25
26 I n s t r u c t i o n S t a t e m e n t :
27 (a n n o t a t i o n s += Annotat ion)∗
28 i n s t r u c t i o n = (Ass ignment | C o n d i t i o n a l | Goto | P a r a l l e l |
29 Pause | StatementScope)
30 ;

Listing 5.3. SCL Grammar – Statements

Section 4.1.3 also introduces all SCL necessary to represent SCCharts in textual form.
Since it is desired to model SCL with exactly these instructions, they must be defined
in the grammar. Each SCL instruction defined in Section 4.1.3 is represented by one
grammar rule in the SCL grammar. Listing 5.4 shows the first part of the instruction
rules.

Since the SCL program treats all SCL instructions as some kind of instruction, all
instruction rules together comprise the instruction rule. The amalgamation of instructions
is shown in lines 31 to 33. It refers to the particular instruction rules and separates the
instruction with disjunctions.

Assignment: To model an assignment defined as x “ e with e being any expression, SCL
makes use of the expression language provided by the Yakindu framework. Since the

65

5. Sequential Constructiveness Code Generation Implementation

31 I n s t r u c t i o n :
32 Ass ignment | C o n d i t i o n a l | Goto | P a r a l l e l | Pause | StatementScope
33 ;
34
35 Ass ignment :
36 as s i gnment = E x p r e s s i o n
37 ;
38
39 Goto :
40 ’ goto ’ t a r g e t L a b e l = ID
41 ;
42
43 Pause :
44 ’ pause ’ { Pause }
45 ;
46
47 StatementScope :
48 { StatementScope }
49 ’ { ’
50 (d e f i n i t i o n s+=V a r i a b l e D e f i n i t i o n)∗
51 (
52 ((s t a t e m e n t s += I n s t r u c t i o n S t a t e m e n t ’ ; ’) | s t a t e m e n t s += EmptyStatement)∗
53 (s t a t e m e n t s += I n s t r u c t i o n S t a t e m e n t s t a t e m e n t s += EmptyStatement ∗)?
54)
55 ’ } ’
56 ;

Listing 5.4. SCL Grammar - Instructions

grammar is derived from SText, Expression in the assignment rule, lines 35 to 37, is
immediately available.

Goto: An SCL goto instruction is defined as a jump to a specific label identified by an ID.
Since the ID shall be editable freely in the text editor, the restricted character set of
the Xtext framework ID can be used instead of an object reference.

In the grammar the goto rule, lines 39 - 41, begins with the goto keyword and is
followed by the ID which identifies the target label.

Pause: The SCL pause instruction simply marks a tick boundary and it does not hold
any further information. It only comprises the pause keyword in the grammar.

Statement Scope: A statement scope introduces a new scope layer to allow the definition
of local variables and to structure the SCL code. The syntax of variables definitions
differs slightly from the syntax of global variables as it is encapsulated within the
curly brackets to indicate the scope. Therefore, these two kinds of variable definitions
must be separated in different rules. Besides the difference in the syntax for reasons of
readability, the definition of variables is analogous to the one defined in the program
rule.

The second part of the grammar comprising the definitions for the SCL grammar is

66

5.1. The Sequentially Constructive Language

depicted in Listing 5.5. It shows the rules for the conditional and parallel instructions
and threads as discussed in Section 4.1.3.

Conditional: SCL conditionals are defined as if e then s1 else s2 end. Therefore, they must
be able to test an expression and comprise two distinct statement lists, one for the
true case and the other for the else branch.
In the grammar, a conditional is introduced by the if keyword and followed by an
SText expression similar to the assignment rule. The control flow proceeds in the
“then branch” if the expression evaluates to true. Otherwise, the “else branch” is taken
if present. In the grammar the statement list is built analogously to the program
statement list. The “else branch” is optional and denoted elseStatements.

Thread: Since SCL allows an arbitrary number of concurrent threads, an object which
holds a single thread is necessary. Hence, a thread comprises a list of statements
without any further syntactical elements. This permits other rules, in particular the
succeeding parallel rule, to include them without restriction.
In the grammar it is defined like any other statement list.

58 C o n d i t i o n a l :
59 ’ i f ’ e x p r e s s i o n = E x p r e s s i o n ’ then ’
60 (
61 ((s t a t e m e n t s += I n s t r u c t i o n S t a t e m e n t ’ ; ’) | s t a t e m e n t s += EmptyStatement)∗
62 (s t a t e m e n t s += I n s t r u c t i o n S t a t e m e n t s t a t e m e n t s += EmptyStatement ∗)?
63)
64 (’ e l s e ’
65 (
66 ((e l s e S t a t e m e n t s += I n s t r u c t i o n S t a t e m e n t ’ ; ’) |
67 e l s e S t a t e m e n t s += EmptyStatement)∗
68 (e l s e S t a t e m e n t s += I n s t r u c t i o n S t a t e m e n t e l s e S t a t e m e n t s += EmptyStatement ∗)?
69)
70)?
71 ’ end ’
72 ;
73
74 Thread :
75 { Thread }
76 (
77 ((s t a t e m e n t s += I n s t r u c t i o n S t a t e m e n t ’ ; ’) | s t a t e m e n t s += EmptyStatement)∗
78 (s t a t e m e n t s += I n s t r u c t i o n S t a t e m e n t s t a t e m e n t s += EmptyStatement ∗)?
79)
80 ;
81
82 P a r a l l e l :
83 ’ f o r k ’
84 (t h r e a d s += Thread
85 (’ par ’
86 t h r e a d s += Thread)∗)
87 ’ j o i n ’
88 ;

Listing 5.5. SCL Grammar – Instructions (cont.)

67

5. Sequential Constructiveness Code Generation Implementation

Parallel: Parallel instructions fork off the control flow and allow an arbitrary number of
threads to proceed. To model this the preceding thread rule is utilized.
A parallel instruction starts with the fork keyword and is followed by at least one
thread. Multiple threads are separated by par and are stored in the thread member of
the object. Eventually, the instruction is closed by the join keyword.

Finally, to consolidate all statement lists in one object a rule for a Statement Sequence
is created. Even though their generated syntax may differ slightly, all objects including
a statement sequence are derived from the statement sequence class and hence, can be
treated the same in the context of statement lists.

90 StatementSequence :
91 Thread | Program | C o n d i t i o n a l | StatementScope
92 ;

Listing 5.6. SCL Grammar – Statement Sequence

Annotation Grammar and Highlighting

Statements are allowed to carry an arbitrary number of annotations. They are described
in Section 4.1.3 and an example of an annotation with syntax highlighting is depicted in
Figure 4.9.

In the grammar, annotations are defined by the Annotation rule. An annotation is
introduced by an @ symbol and followed by a mandatory keyword and an optional list
of parameters. The annotation mechanism used in this implementation is very light-
weight and at time of writing only used to carry specific layout information for the SCG
visualization that deviates from the default settings.

To add highlighting for additional elements a highlight configuration and calculation
class is added to the User Interface (UI) plug-in. The two classes must be bound in the
initialization of the UI plug-in. The calculation class searches for elements to highlight
and consults the configuration for information how to highlight a specific element.

SCL uses the custom highlighting to point out annotations. The calculation uses the
automatically generated SCLSwitch to search for model elements. If an annotation is
found, it is formatted with the configured TextStyle. Annotations in the SCL are printed
bold, italic and in a dark green.

91 Annotat ion :
92 ’@ ’ name = ID
93 (’ : ’ pa ramete r += ID (’ , ’ pa ramete r += ID)∗) ?
94 ;

Listing 5.7. SCL Grammar – Annotation

68

5.2. Dynamic Language Extensions

Technical Details

Once all rules are defined Xtext may be invoked to create the SCL metamodel, the parser
and serializer elements and an SCL text editor with default settings for highlighting and
auto-completion. While the language elements are stored in de.cau.cs.kieler.scl all UI
components are saved to de.cau.cs.kieler.scl.ui.

To enable backtracking, the Xtext generation configuration file has to be edited. Here,
find the fragment entry of the parser generator and set the option backtrack to true as
depicted in Listing 5.8.

1 f ragment = p a r s e r . a n t l r . X t ex tAnt l rGene ra to rF ragment {
2 o p t i o n s = {
3 b a c k t r a c k = t r u e
4 }
5 }

Listing 5.8. Xtext configuration – Parser Fragment

Projects using the SCL can easily make use of all the generated tools. For instance,
the serializer in the the SCG implementation is requested by the two lines depicted in
Listing 5.9.

1 p r i v a t e s t a t i c v a l I n j e c t o r i = SCLStandaloneSetup : : doSetup () ;
2 p r i v a t e s t a t i c v a l I S e r i a l i z e r s e r i a l i z e r = i . g e t I n s t a n c e (t ypeo f (I S e r i a l i z e r)) ;

Listing 5.9. SCL – Request serializer

5.2 Dynamic Language Extensions

The SCL metamodel defined in Section 4.1.3 and construction via Xtext in Section
5.1 represents the abstract syntax of the SCL. However, to work more efficiently with
the infrastructure provided through the metamodel, Section 4.1.5 defines a number of
extensions. These can be implemented via Xtend as described in Section 3.1.5.

This section describes the two most important extensions of the SCL since they are
mandatory to execute the dependency analysis, Section 4.2.5, and the Basic Block analysis,
Section 4.2.6. The first part elucidates the SCL dependency extension. It describes the
methods required to find variable accesses in concurrent threads and categorizes the
accesses with respect to their conflict potential as discussed in Section 4.1.2. Threads
are considered concurrent, if and only if they share a common ancestor fork, defined in
Section 4.2.5.

Secondly, the section focuses on the SCL Basic Block extension. It explains how BBs
are composed according to the rules imposed by Section 4.2.6. Additionally, methods

69

5. Sequential Constructiveness Code Generation Implementation

for finding BBPs are presented. Subsequently, the section provides information about
optimization of the BB extension with respect to efficiency.

The interested reader will find the implementation of the other extensions in the
KIELER semantics repository in the de.cau.cs.kieler.scl.extensions package.

5.2.1 The SCL Dependency Extension

As mentioned in the introduction of this section, the Dependency Extension is responsible
for finding and categorizing dependencies in an SCL model according to the rules imposed
by Section 4.1.2. To fulfil this task all expressions included in the model of the program
have to be examined. Since the SCL metamodel provides all mandatory information, the
examination is executed directly on the model in question.

This section depicts the methods necessary to accomplish the dependency analysis.
Firstly, it describes how expression references to variable definitions of a model, introduced
in Section 4.1.3, are found. Secondly, the query of all statements which comprise these
references is shown. As mentioned in Section 4.2.5 accesses are only potentially conflicting
if they occur in a concurrent context. The determination of concurrent references is
explained in the third part. Finally, all found conflicting variable accesses are categorized
according to their severity consistent to the sequential rules imposed in Section 4.1.2.

Dependency References

Firstly, the getDependencyReferences method, depicted in Listing 5.10, returns all REFEXP,
introduced in Section 4.1.3, found in an expression. As defined in the SCL metamodel,
expressions occur in assignments and conditionals. The method is used to retrieve all
references to variables used in their expressions.

At the beginning of the function an empty list of REFEXP is instantiated. Then, if
the expression itself is already an REFEXP, it is added to the list, since eAllContents only
retrieves comprising elements and not the element itself. Subsequently, all containing
objects are filtered and all REFEXP are appended to the list. Finally, the list is returned.
The method is overloaded to retrieve the references of an instruction directly.

1 def L i s t <E l e m e n t R e f e r e n c e E x p r e s s i o n > getDependencyRe f e r ence s (E x p r e s s i o n exp r) {
2 v a l e r e x L i s t = new A r r a y L i s t <E l e m e n t R e f e r e n c e E x p r e s s i o n >
3 i f (exp r i n s t a n c e o f E l e m e n t R e f e r e n c e E x p r e s s i o n) {
4 e r e x L i s t . add ((exp r as E l e m e n t R e f e r e n c e E x p r e s s i o n))
5 }
6 exp r . e A l l C o n t e n t s . t o I t e r a b l e . f i l t e r (t ypeo f (E l e m e n t R e f e r e n c e E x p r e s s i o n)) .
7 f o rEach (e | e r e x L i s t . add (e))
8 e r e x L i s t
9 }

Listing 5.10. SCL Dependency Extension – References Search

70

5.2. Dynamic Language Extensions

11 def L i s t <Statement> getDependencyStatements (StatementSequence sequence ,
12 E l e m e n t R e f e r e n c e E x p r e s s i o n r e f e r e n c e E x p r e s s i o n) {
13 v a l s t a t e m e n t L i s t = c rea t eNewSta t ementL i s t ()
14 f o r (i n s t r u c t i o n : sequence . e A l l C o n t e n t s . f i l t e r (t ypeo f (I n s t r u c t i o n)) . t o L i s t) {
15 i f ((i n s t r u c t i o n i n s t a n c e o f Ass ignment) | |
16 (i n s t r u c t i o n i n s t a n c e o f C o n d i t i o n a l)) {
17 v a l r e f e r e n c e s = i n s t r u c t i o n . dependencyRe f e r ence s
18 f o r (r e f e r e n c e : r e f e r e n c e s) {
19 i f (r e f e r e n c e . r e f e r e n c e . e q u a l s (r e f e r e n c e E x p r e s s i o n . r e f e r e n c e))
20 i f (! s t a t e m e n t L i s t . c o n t a i n s (i n s t r u c t i o n)) {
21 s t a t e m e n t L i s t . add ((i n s t r u c t i o n . e C o n t a i n e r as Statement)) ;
22 }
23 }
24 }
25 }
26 s t a t e m e n t L i s t
27 }

Listing 5.11. SCL Dependency Extension – Statements Search

Dependency Statements Retrieval

Secondly, as stated in the introduction of this section, any statement that contains the
queried references must be found. Therefore, the method getDependencyStatements, listed
in Listing 5.11, returns a list of all statements which have a dependency to a given
REFEXP. It searches for assignments and conditionals in a given statement sequence and
fetches all element references in theses instructions. If an REFEXP is equal to the given
REFEXP provided by the caller and if the reference is not already included in the return
list, it is added to the list of statements. Finally, the statement list is returned.

Concurrent Dependency Query

With getDependencyStatements defined, a list of all statements which include references
to a variable definition can be returned. As stated in Section 4.2.5 only concurrent
conflicting variable accesses are problematic. Therefore, the Dependency Extensions need
to find all conflicting statements in a concurrent context. This can be done by utilizing a
least common ancestor search as also defined in Section 4.2.5.

Consequently, the getConcurrentDependencies method retrieves a list of statements
which comprise a dependency to a corresponding concurrent statement. Listing 5.12
shows its structure. If the statement is an empty statement, no dependency exists and
the empty list is returned. Otherwise, a list of dependencies containing all dependencies
for the given statement in the affiliated SCL program is created. For every dependency
the method checks whether or not the two instructions share a common ancestor fork
node and are not in the same thread. If this requirement is true, a concurrent dependency
is found and added to the statement list which is returned at the end of the function.

71

5. Sequential Constructiveness Code Generation Implementation

29 def L i s t <Statement> g e t C on c u r r en t De pe n d en c i e s (Statement s ta tement) {
30 v a l s t a t e m e n t L i s t = new A r r a y L i s t <Statement>
31 i f (s ta tement . i sEmptyStatement) {
32 r e t u r n s t a t e m e n t L i s t ;
33 }
34 v a l d e p e n d e n c y L i s t = sta tement . d e p e n d e n c y I n s t r u c t i o n s (s ta tement . getProgram)
35 f o r (t a r g e t S t a t e m e n t : d e p e n d e n c y L i s t) {
36 i f (! s ta tement . i s InSameThreadAs (t a r g e t S t a t e m e n t) &&
37 i n s t r u c t i o n . getLeastCommonAncestor (t a r g e t S t a t e m e n t . g e t I n s t r u c t i o n) != n u l l
38) {
39 s t a t e m e n t L i s t . add (t a r g e t S t a t e m e n t)
40 }
41 }
42 s t a t e m e n t L i s t
43 }

Listing 5.12. SCL Dependency Extension – Concurrent Dependencies Search

Dependencies Categorization

As discussed in Section 4.1.2 variable accesses are distinguished as reads and writes.
Furthermore, a write can be an absolute or relative write. To categorize any found
dependencies a set of helper methods examine the dependent expressions nested in the
instructions.

As an example the function for the relative writer determination isRelativeWriter is
illustrated in Listing 5.13. If a given instruction is not an assignment, the instruction
is not a writer. Otherwise, the operator of the assignment is checked. If it is an assign
operator, the reference of the variable that is written to must be found on the right hand
side of the equation. Conservatively, the method evaluates to true if the expression on
the right hand side is of relative nature. Since the implementation in this thesis focuses
on boolean and integer types, checks for the logical expressions in the boolean case and
for addition and multiplication in the integer case are sufficient. If the operator is already
a relative assignment, the reference of the variable on the right side of the equation is
optional.

47 def boo lean i s R e l a t i v e W r i t e r (I n s t r u c t i o n i n s t r u c t i o n) {
48 i f (! (i n s t r u c t i o n i n s t a n c e o f Ass ignment)) r e t u r n f a l s e
49 v a l as s i gnment = (i n s t r u c t i o n as Ass ignment) . a s s i gnment as A s s i g n m e n t E x p r e s s i o n
50 v a l r e f e r e n c e = ass i gnment . va rRe f
51 i f (a s s i gnment . o p e r a t o r != Ass ignmentOperato r : : ASSIGN) r e t u r n t r u e ;
52 i f (a s s i gnment . e x p r e s s i o n . e A l l C o n t e n t s . t o I t e r a b l e . f i l t e r (
53 t ypeo f (E l e m e n t R e f e r e n c e E x p r e s s i o n)) . f i l t e r (e | e . e q u a l s (r e f e r e n c e)) . s i z e >0) {
54 i f (a s s i gnment . i s C o n f l u e n t) r e t u r n t r u e
55 }
56 r e t u r n f a l s e
57 }

Listing 5.13. SCL Dependency Extension – Relative Writer Determination

72

5.2. Dynamic Language Extensions

As stated in Section 4.1.2 a write access is absolute, if it is not relative. This is
determined by the isAbsoluteWriter method. In addition, the function isConfluentWriter
tests if two writers are confluent to one another. Two write accesses are confluent if both
write to the same variable and assign the same value.

Dependency Type Determination

Finally, if a concurrent dependency is found, its type must be categorized according
to the different types introduced in Section 4.1.2. Therefore, with all variable access
determination methods present to identify concurrent accesses, the getDependencyType
function determines the kind of a given access. The method tests relationships in the
direction of a dependency edge. The first instruction is the source of the dependency and
the second its target. Therefore, if it is called in the opposite direction of a dependency
edge, the type will not be recognized and the dependency must be checked again with
the correct instruction order.

If the source and the target instructions are absolute writers and both instructions
are not confluent to each other, the dependency is a write-write conflict. Otherwise, if
the source is an absolute write access and the target is a relative write access, while both
are setting the same variable, the dependency is denoted as write-increment. If it is not
a write-write relationship, but the second instruction reads the variable, a write-read
dependency is found. If the source was a relative writer, the write-read dependency is
called increment read.

The type unknown usually hints at an error in the extension since a dependency was
found in the preceding analysis, but its type is not recognized. This may be the case if the
method is called in the opposite dependency direction or if an expression was examined
which is not yet supported. The first case is resolved by calling the method again with
reversed parameters.

60 def getDependencyType (I n s t r u c t i o n s o u r c e I n s t r , I n s t r u c t i o n t a r g e t I n s t r) {
61 i f (s o u r c e I n s t r . i s A b s o l u t e W r i t e r && t a r g e t I n s t r . i s A b s o l u t e W r i t e r &&
62 s o u r c e I n s t r . g e t W r i t e R e f e r e n c e == t a r g e t I n s t r . g e t W r i t e R e f e r e n c e &&
63 ! i s C o n f l u e n t A b s o l u t e W r i t e r (s o u r c e I n s t r , t a r g e t I n s t r))
64 r e t u r n DependencyType : : WRITEWRITE
65 i f (s o u r c e I n s t r . i s A b s o l u t e W r i t e r && t a r g e t I n s t r . i s R e l a t i v e W r i t e r &&
66 s o u r c e I n s t r . g e t W r i t e R e f e r e n c e == t a r g e t I n s t r . g e t W r i t e R e f e r e n c e)
67 r e t u r n DependencyType : : WRITEINCREMENT
68 i f (s o u r c e I n s t r . i s A b s o l u t e W r i t e r &&
69 t a r g e t I n s t r . i s R e a d e r (s o u r c e I n s t r . g e t W r i t e R e f e r e n c e))
70 r e t u r n DependencyType : : WRITEREAD
71 i f (s o u r c e I n s t r . i s R e l a t i v e W r i t e r &&
72 t a r g e t I n s t r . i s R e a d e r (s o u r c e I n s t r . g e t W r i t e R e f e r e n c e))
73 r e t u r n DependencyType : : READINCREMENT
74 r e t u r n DependencyType : :UNKNOWN
75 }

Listing 5.14. SCL Dependency Extension – Dependencies Categorization

73

5. Sequential Constructiveness Code Generation Implementation

5.2.2 The SCL Basic Block extension

The second mandatory schedulability analysis is the BB analysis explained in Section
4.2.6. It structures SCL statements in related blocks with respect to their control flow
and possible context switches.

This section elucidates the creation of these blocks and how to find predecessors in
the control flow, since they are necessary for the guard calculation defined in Section
4.2.6. Additionally, the Basic Block class is introduced, which aids in the handling of BB
constructs and improves the efficiency of the analysis.

Basic Block Assemblage

The main method for finding BBs is getBasicBlockStatements. It searches all statements
which belong to a BB and returns them in a list. As defined in Section 4.2.6 a statement
can only be present in a single BB exclusively. Thus, the block in question is identified by
any one of its statements. Furthermore, to find all BBs in an SCL program, the function
getAllBasicBlocks just needs to iterate through all statements and to call getBasicBlock-
Statements for each. The resulting list of BBs includes exactly all BBs of the program,
since duplicated blocks are ignored.

Lets take a closer look at Listing 5.15 which illustrates getBasicBlockStatements in
pseudo code. It expects any statement of the desired BB. Any mandatory instruction
split, as described in Section 4.2.6, preceding the invocation of getBasicBlockStatements
may indicate the position of the control flow with the isDepth flag. If the statement is a
goto, it is seen as related to its predecessor. GetPreviousStatementHierarchical retrieves the
predecessor of a statement respecting hierarchies. Subsequently, getBasicBlockStatements
is called recursively with the previous statement. Otherwise, a new list of statements
basicBlock for the BB is instantiated.

The list that comprises the statement in question is stored to statementList and the
index of the statement in that list is saved in sIndex. Then, if the statement is not already
the head of the BB all preceding statements must be added to the statement list until
the head is found. Also, if the statement is a surface of a pause or a fork of a parallel,
there may be additional preceding statements. The counter variable prevIndex runs from
sIndex down to zero and searches for the head of the BB. It is sufficient to check the
actual statement sequence only since hierarchical inferior sequences always introduce a
new BB. Each statement is added to the list of statements until the actual head is found.
Afterwards the provided statement is also added to the BB. If this statement is already
the tail of a BB, the method is finished at this point unless it is executed in a depth
context. In this case it may include statements of the surface of the succeeding control
flow which are then added to the block. This case is flagged by breakAtHead.

Analogously to the preceding statements succIndex counts the succeeding statements,
denoted succStatement in each iteration. If it is eligible to pose as new BB but is not a
pause or a parallel while iterating in a depth indicated by breakAtHead, the loop is broken

74

5.2. Dynamic Language Extensions

1 def L i s t <Statement> g e t B a s i c B l o c k S t a t e m e n t s (Statement statement , boolean i sDepth) {
2 i f s ta tement . i s G o t o do
3 // Crea te b a s i c b l o c k l i s t f o r c o r r e s p o n d i n g s ta tement
4 p r e v i o u s S t a t e m e n t = sta tement . g e t P r e v i o u s S t a t e m e n t H i e r a r c h i c a l
5 r e t u r n g e t B a s i c V l o c k S t a t e m e n t s (p r ev i ou sS ta t ement , i sDepth)
6 od
7 b a s i c B l o c k = crea t eNewSta t ementL i s t
8 s t a t e m e n t L i s t = sta tement . ge tParentSta tementSequence . s t a t e m e n t s
9 s I n d e x = statementSequence . s t a t e m e n t s . i ndexOf (s ta tement)

10 // Add p r e v i o u s s t a t e m e n t s a l s o to the b l o c k l i s t
11 i f not s ta tement . i s B a s i c B l o c k F i r s t | |
12 (s ta tement . i s P a u s e && not i sDepth && s I n d e x > 0) | |
13 (s ta tement . i s P a r a l l e l && not i sDepth && s I n d e x > 0) do
14 p r e v I n d e x = s I n d e x ´ 1
15 w h i l e p r e v I n d e x >= 0 do
16 prevSta tement = s t a t e m e n t L i s t . ge t (p r e v I n d e x)
17 i f not prevSta tement . i sEmpty && not prevSta tement . i s G o t o do
18 b a s i c B l o c k . i n s e r t (0 , p revStatement)
19 i f not prevSta tement . i s B a s i c B l o c k H e a d do
20 break
21 od e l s e do
22 p r e v I n d e x = p r e v I n d e x ´1
23 od
24 od
25 od
26 // Add the s ta tement to the b a s i c b l o c k
27 b a s i c B l o c k . add (s ta tement)
28 breakAtHead = f a l s e
29 i f s ta tement . i s B a s i c B l o c k T a i l do
30 i f not i sDepth do r e t u r n b a s i c B l o c k
31 // S u r f a c e s o f i n s t r u c t i o n s p l i t s may be i n c l u d e d i n t h i s b l o c k
32 breakAtHead = t r u e
33 od
34 // Add s u c c e e d i n g s t a t e m e n t s to the l i s t o f t h i s b l o c k
35 s u c c I n d e x = s I n d e x + 1
36 w h i l e s u c c I n d e x < s t a t e m e n t L i s t . s i z e do
37 succStatement = s t a t e m e n t L i s t . ge t (s u c c I n d e x)
38 i f breakAtHead && succStatement . i s B a s i c B l o c k H e a d &&
39 not succStatement . i s P a u s e && not succStatement . i s P a r a l l e l do
40 break
41 od e l s e do
42 i f not succStatement . i sEmpty && not succStatement do
43 b a s i c B l o c k . add (succStatement)
44 i f not succStatement . i s B a s i c B l o c k T a i l do
45 s u c c I n d e x = s u c c I n d e x + 1
46 od e l s e do
47 break
48 od
49 od
50 od
51 r e t u r n b a s i c B l o c k
52 }

Listing 5.15. SCL Basic Block Extension – Basic Block Statements Retrieval

75

5. Sequential Constructiveness Code Generation Implementation

and the method returns. Otherwise, as long as no tail is found, add the statements to
the list of the BB and return subsequently.

Basic Block Decider

As depicted in getBasicBlockStatements, Listing 5.15, it is mandatory to decide if a
statement may serve as initial or final point of a BB. The two elementary functions for
detecting these crucial points are isBasicBlockHead and isBasicBlockTail. The first one
decides whether or not a statement is the head of a BB whereas the second determines
the possibility of a statement to serve as a tail.

IsBasicBlockHead, shown in Listing 5.16, is structured straightforwardly according to
the rules imposed by Section 4.2.6. If the statement is empty or a goto instruction, it can
not be the start of a BB. The statement sequence comprising the statement in question is
queried and stored in statementSequence. Additionally, the previous statement respecting
hierarchies is saved to prevStatement. Then, each following line decides whether the
statement may pose as BB head.

If the statement is a parallel, a pause itself or the first statement in the sequence, the
statement is the head of a basic block according to Section 4.2.6. Furthermore, if its
predecessor is a conditional or a goto, the statement is also the head of a BB since the
control flow forks off before the statement. Moreover, if the statement is an assignment or
conditional that comprises additional incoming data dependencies or if goto jumps target
the statement, it also initiates a BB since it has more than one incoming control flow
or data dependency edge. As already mentioned an analogous method isBasicBlockTail
exists to determine the tail of a BB.

1 def boo lean i s B a s i c B l o c k H e a d (Statement s ta tement) {
2 i f (s ta tement . i sEmpty) r e t u r n f a l s e
3 i f (s ta tement . i s G o t o) r e t u r n f a l s e
4
5 v a l s ta tementSequence = sta tement . ge tParentSta tementSequence
6 v a l prevSta tement = sta tement . p r e v i o u s S t a t e m e n t H i e r a r c h i c a l
7 i f (s ta tement . i s P a r a l l e l) r e t u r n t r u e
8 i f (s ta tement . i s P a u s e) r e t u r n t r u e
9 i f (s ta tementSequence . s t a t e m e n t s . i ndexOf (s ta tement) == 0) r e t u r n t r u e

10 i f (p revStatement . i s C o n d i t i o n a l) r e t u r n t r u e
11 i f (p revStatement . i s G o t o) r e t u r n t r u e
12 i f ((s ta tement . i s A s s i g n m e n t | | s ta t ement . i s C o n d i t i o n a l) &&
13 s ta tement . g e t I n s t r u c t i o n . ha sConcu r r en tTa rge tDependenc i e s) r e t u r n t r u e ;
14 i f (s ta tement . ge t IncomingGotos . s i z e >0) r e t u r n t r u e
15 r e t u r n f a l s e
16 }

Listing 5.16. SCL Basic Block Extension – Basic Block Head Statement decider

76

5.2. Dynamic Language Extensions

Performance Enhancement with the BasicBlock class

To simplify the handling of statement lists, instruction splits and caching the contents of
BBs, the class BasicBlock composes all mentioned functionalities. It comprises a list of
statements which represents the BB. Since the split of a pause results in two new objects
PauseSurface and PauseDepth which contain references to the original pause instruction,
they are included in the statement list without restriction. The extensions dereference
the objects automatically when required. The same extension applies to the parallel
statement.

As massive transient transformations consume comparatively more calculation time,
the BasicBlock class encapsulates members for caching. Since they would transiently be
recalculated at every call, the name of the block, its index and predecessors, successors
and data dependencies are stored and must not be re-evaluated once they are cached.

The BasicBlock class also comprises member methods to compare blocks and to
manipulate the statement list.

Basic Block Predecessors Determination

The guard calculation of BBs, defined in Section 4.2.6 and utilized by the Sequential SCL
transformation in Section 4.2.7, needs information about the BBPs of each BB. To find
the predecessors of a BB the method getPredecessors, shown in Listing 5.17 in pseudo
code, returns a list of all BB which pose as predecessors of the BB in question.

At the beginning the list of predecessors is instantiated. If the block is a join of a
parallel construct, all starting blocks of the corresponding threads pose as marker for the
predecessors. Obviously, they are not the real preceding BBs and serve rather as visual
information in the BB visualization since the transformation creates a more complex
synchronizer. As no further blocks can be predecessors of the join, the method returns.

Secondly, if basicBlock starts with the depth of a pause, its only preceding block is
the one containing the corresponding surface.

Otherwise, if it is neither a join nor a depth, the block may have multiple predecessors.
To check for these, prevStatement holds the previous statement of the head of the block
respecting hierarchy and prevImmediateStatement points to the immediate statement in
the statement sequence regardless of any hierarchy. Hence, the head of the block being
the first statement in a conditional branch will not have an immediate predecessor since
the branch initiates a new statement sequence. In this case prevStatement will be a
conditional and prevImmediateStatement will be empty. Furthermore, the actual BB is
in fact the first block in a true branch of a conditional instruction. Thus, the preceding
block comprising the parent conditional serves as predecessor.

If it is not a conditional, the preceding block may either be another BB in the same
statement sequence, providing prevStatement is not empty or the fork node of a concurrent
context. The fork node is eligible to pose as predecessor when the BB in question is
the first block in any thread the fork node initiates. This is indicated by prevStatement

77

5. Sequential Constructiveness Code Generation Implementation

1 def L i s t <Bas i cB lock > g e t P r e d e c e s s o r s (Bas i cB lock b a s i c B l o c k) {
2 p r e d e c e s s o r s = c r e a t e N e w B a s i c B l o c k L i s t
3 i f b a s i c B l o c k . s t a t e m e n t s . head . i s P a r a l l e l J o i n do
4 // Add p a r a l l e l t h r e a d s as p r e d e c e s s o r s
5 f o r each t h r e a d i n b a s i c B l o c k . s t a t e m e n t s . head . a s P a r a l l e l . t h r e a d s do
6 p r e d e c e s s o r s . add (t h r e a d . s t a t e m e n t s . head . g e t B a s i c B l o c k)
7 od
8 r e t u r n p r e d e c e s s o r s
9 od

10 i f b a s i c B l o c k . getHead . i sPauseDepth do
11 // Add s u r f a c e o f the pause as p r e d e c e s s o r
12 p r e d e c e s s o r s . add (b a s i c B l o c k . getHead . g e t B a s i c B l o c k B y S u r f a c e)
13 r e t u r n p r e d e c e s s o r s
14 od
15 prevSta tement = b a s i c B l o c k . getHead . g e t P r e v i o u s S t a t e m e n t H i e r a r c h i c a l
16 prev Immed ia teStatement = b a s i c B l o c k . getHead . g e t P r e v i o u s S t a t e m e n t
17 i f prevSta tement . i s C o n d i t i o n a l && prev Immed ia teStatement . empty do
18 // C o n d i t i o n a l
19 p r e d e c e s s o r s . add (prevSta tement . g e t B a s i c B l o c k)
20 od e l s e do
21 i f not prevSta tement . empty && not prevSta tement . i s G o t o do
22 // Preced i ng b a s i c b l o c k
23 p r e d e c e s s o r s . add (prevSta tement . g e t B a s i c B l o c k)
24 od e l s e do
25 i f prevSta tement . empty && b a s i c B l o c k . getHead . e C o n t a i n e r i n s t a n c e o f Thread
26 do
27 // Fork b l o c k
28 p r e d e c e s s o r s . add (
29 b a s i c B l o c k . getHead . ge tFo rkEConta i ne r . g e t B a s i c B l o c k)
30 od
31 od
32 od
33 i f prev Immed ia teStatement . i s C o n d i t i o n a l do
34 // immediate C o n d i t i o n a l
35 t rueBranchB lock =
36 prev Immed ia teStatement . a s C o n d i t i o n a l . s t a t e m e n t s . l a s t . ge tBas i cB lockByBranch
37 i f not t rueBranchB lock . empty do
38 p r e d e c e s s o r s . add (t rueBranchB lock)
39 e l s e B r a n c h B l o c k =
40 prev Immed ia teStatement . a s C o n d i t i o n a l . e l s e S t a t e m e n t s . l a s t .
41 getBas i cB lockByBranch
42 i f not e l s e B r a n c h B l o c k . empty do
43 p r e d e c e s s o r s . add (e l s e B r a n c h B l o c k)
44 od
45 i f not b a s i c B l o c k . getHead . i sPauseDepth do
46 f o r each goto i n b a s i c B l o c k . getHead . ge t IncomingGotos do
47 p r e d e c e s s o r . add (goto . g e t B a s i c B l o c k)
48 od
49 od
50 r e t u r n p r e d e c e s s o r s
51 }

Listing 5.17. SCL Basic Block Extension – getPredecessors in Pseudo Code

being empty and the head of the BB being contained in an SCL thread. If one of the
preconditions is met, the required statement is queried and the corresponding BB is added
to the list of predecessors.

78

5.3. Synthesis of the Sequentially Constructive Graph

Alternatively, if prevImmediateStatement is the conditional, the BB persists in the
statement sequence which also includes the conditional. Thus, the control flow of the
branches of the conditional may merge at this point. The last block of the true branch
of the conditional is stored if trueBranchBlock and the last block of the else branch in
elseBranchBlock. If a control flow of a branch does not merge due to including goto
jumps, the corresponding block will be empty. Each not emtpy closing BB is added to
the predecessors list.

Subsequently, if the block is not a pause depth, all goto jumps targeting the head of
the block are added to the list of predecessors since they represent a merge of control
flows. The method then exits and returns the list.

5.3 Synthesis of the Sequentially Constructive Graph

This section explains the basis of the SCG visualization explained in Section 4.1.4. It
describes the traversal through statement sequences in the first part and depicts how
corresponding figures are created. The section closes with the explanation of the im-
plementation of the BB post-processing subsequent to the layouting of the SCG control
flow.

The visualization of the SCG is triggered by KIVi, introduced in Section 3.2, when the
SCL model is updated. As stated in Section 4.2.4 the SCG is generated transiently and
not stored persistently. Every time the synthesis method is invoked, it creates figures
for each instruction, draws dependency edges and calls a Basic Block modifier to insert
BB information subsequently. Since it is not possible to discuss the source code of the
synthesis in its completeness, this section focuses on the main loop, one exemplary figure
function and the BB post-processing.

5.3.1 Statement Sequence Figures Creation

To visualize the SCG as discussed in Section 4.1.4 the synthesis traverses recursively
through the SCL model defined by its metamodel, Section 4.1.3. Since all statements of
an SCL program and including hierarchies are contained in a statement sequence, the
main loop of the figures creation must process these lists. It examines the instructions
in the list and decides which figures have to be created. Subsequently, the figures are
connected with edges to represent the control flow of the SCL program.

The main loop of the SCG synthesis is contained in the createSequenceFigures method,
depicted in Listing 5.18 in pseudo code. As indicated, an SCL program comprises a
statement sequence, therefore, the method for creating the corresponding figures is called
first once the synthesis has been invoked. However, since other instructions may comprise
statement sequences themselves, it may be called several times recursively.

The method expects the statement sequence in question, a root node which represents
the top level of the graph and if present an entry node, an exit node and an outgoing
port for hierarchy and control flow forks. If an entry node is present, it functions as a

79

5. Sequential Constructiveness Code Generation Implementation

1 def c r e a t e S e q u e n c e F i g u r e s (StatementSequence sequence , KNode rootNode ,
2 KNode entryNode , KNode ex i tNode , KPort o u t g o i n g P o r t) {
3 p r e c e d i n g I n s t r u c t i o n s . Node = entryNode
4 p r e c e d i n g I n s t r u c t i o n s . o u t g o i n g P o r t = o u t g o i n g P o r t
5 f o r each s ta tement i n sequence . f i l t e r (I n s t r u c t i o n S t a t e m e n t) do
6 sw i tch (s ta tement . i n s t r u c t i o n) do
7 Ass ignment : r e t u r n I n s t r u c t i o n s = c r e a t e A s s i g n m e n t F i g u r e (rootNode)
8 P a r a l l e l : r e t u r n I n s t r u c t i o n s = c r e a t e P a r a l l e l F i g u r e (rootNode)
9 Pause : r e t u r n I n s t r u c t i o n s = c r e a t e P a u s e F i g u r e (rootNode)

10 C o n d i t i o n a l : r e t u r n I n s t r u c t i o n s = c r e a t e C o n d i t i o n a l F i g u r e (rootNode)
11 Goto : s t o r e p r e c e d i n g I n s t r u c t i o n s i n GotoMap
12 od
13 i f (s ta tement . i n s t r u c t i o n != Goto) do
14 // draw edges to f i g u r e s
15 f o r each p r e c e d i n g I n s t r u c t i o n i n p r e c e d i n g I n s t r u c t i o n s do
16 drawEdge from p r e c e d i n g I n s t r u c t i o n to s ta tement . i n s t r u c t i o n . f i g u r e
17 od
18 od
19 p r e c e d i n g I n s t r u c t i o n s = r e t u r n I n s t r u c t i o n s
20 od
21 i f (ex i tNode . e x i s t s && ! p r e c e d i n g I n s t r u c t i o n s . i sEmpty) do
22 // draw edges to e x i t nodes
23 f o r each p r e c e d i n g I n s t r u c t i o n i n p r e c e d i n g I n s t r u c t i o n s do
24 drawEdge from p r e c e d i n g I n s t r u c t i o n s to ex i tNode
25 od
26 p r e c e d i n g I n s t r u c t i o n s . c l e a r
27 od
28 r e t u r n p r e c e d i n g I n s t r u c t i o n s
29 }

Listing 5.18. SCG Synthesis – Statement Sequence in Pseudo Code

preceding instruction node for the first statement. For every statement in the sequence
the type of the comprising instruction is tested and its corresponding figure is created.
Since an instruction may fork off more than one control flow, a list of final instructions
is returned. Once a figure is created, the graphical element is mapped to the affiliated
instruction and hence is accessible via its statement. If the instruction is a goto, the
control flow position is stored in a goto map since gotos result in redirections of the
control flow and the target figure may not be present yet. The goto map is processed
after the statement sequence of the SCL program has been evaluated and all instruction
figures are present. If it is not a goto, an edge is drawn from every preceding instruction
to the newly created figure. Subsequently, the returned instructions from the processed
statement are stored as predecessors for the next instruction. Eventually, the statement
sequence finishes its iterations. If an exit node is present and there are still remaining
instructions in the preceding list, the control flow edges are merged in the exit node. The
function returns the remaining instructions in the list for other calling methods. For
instance, the conditional instruction calls the createSequenceFigures method to build its
branches. Since a conditional has no exit node, the last instructions are returned when
the conditional figure is created. Hence, the caller of the conditional has knowledge of
not yet merged control flows and may combine them.

80

5.3. Synthesis of the Sequentially Constructive Graph

5.3.2 Figure Creation

createSequenceFigures, as described in Section 5.3.1, decides which figure elements must
be created to represent an SCL program. Consecutively, the corresponding figures must
be drawn. Since the creation of a graph figure is mainly of technical nature, only one of
these methods is depicted here as an example. The interested reader may find additional
information about KLighD in “Transient View Generation in Eclipse” [SSvH12b] presented
by Schneider et al. Listing 5.19 illustrated the generation of the assignment figure.

A figure method expects the instruction in question and the parent node which will
contain the new figure. The createAssignmentFigure method uses the serializer requested
by the synthesis as depicted in Section 5.1.1 to serialize the expression included in the
assignment. Secondly, a new graph node element kNode is instantiated. In the case
of an assignment it is a rectangular node with default size and thickness. To enhance
readability and because the node may be included in a thread hierarchy, which has a gray
background, the background of the assignment figure is colored white instead of being
transparent. The addNSFixedPorts method adds a north and a south port as connection
points for edges to the figure. Since all incoming edges are connected to the north port
and all outgoing edges have the south port as source, multiple edges are visually merged
automatically by the layouter. The putToLookUpWith method binds the graphical object
to a model element in the corresponding editor. This enables the modeller to select
figures and find their corresponding representations in the textual model due to their
highlighting. Subsequently, the serialized text is added to the figure and the kNode
is added to the given parent. The kNode is stored in the instruction mapping before
returning. As described in the previous section, the instruction is also returned to the
caller of the method for further edge processing.

1 def c r e a t e A s s i g n m e n t F i g u r e (Ass ignment ass ignment , KNode parentNode) {
2 v a l nodeText = s e r i a l i z e r . s e r i a l i z e (a s s i gnment)
3 v a l kNode = ass i gnment . c r e a t e R e c t a n g u l a r e N o d e (DEFAULT_WIDTH, DEFAULT_HEIGHT)
4 . putToLookUpWith (as s i gnment) ;
5 kNode . KRender ing . add (f a c t o r y . c rea teKL ineWidth . o f (DEFAULT_BORDERWIDTH)) ;
6 kNode . KRender ing . background = " wh i t e " . c o l o r
7 kNode . addNSFixedPorts
8 kNode . KRender ing . add (f a c t o r y . c reateKText . o f (nodeText) .
9 putToLookUpWith (as s i gnment)) ;

10 parentNode . c h i l d r e n . add (kNode)
11
12 (a s s i gnment as I n s t r u c t i o n) . addToMapping (kNode , kNode)
13 v a l r e t u r n L i s t = new A r r a y L i s t <I n s t r u c t i o n >
14 r e t u r n L i s t . add (as s i gnment as I n s t r u c t i o n) ;
15 r e t u r n r e t u r n L i s t
16 }

Listing 5.19. SCG Synthesis – Assignment Figure Creation

81

5. Sequential Constructiveness Code Generation Implementation

1 kExitNode . data += r e n d e r i n g F a c t o r y . c r ea teKRoundedBendsPo ly l i ne () => [
2 i t . i n v i s i b l e = t r u e
3 i t . i n v i s i b l e . m o d i f i e r I d = " de . cau . c s . k i e l e r . s c l . k l i g h d . scg . B a s i c B l o c k M o d i f i e r "
4] ;
5 v a l bbDataHolder = new Bas i cB lockDataHo lde r ()
6 bbDataHolder . SCLProgram = program
7 bbDataHolder . NodeData = I n s t r u c t i o n M a p p i n g . c l o n e
8 bbDataHolder . Bas i cB lockData . a d d A l l (program . s t a t e m e n t s . head . g e t A l l B a s i c B l o c k s)
9 kExitNode . data += bbDataHolder

Listing 5.20. SCG Synthesis – Basic Block Modifier

5.3.3 Basic Block Modifier Visual Post-processing

Even though this thesis does not illustrate in detail how the visualization of the BBs is
implemented since this only comprises the drawing of rectangles and descriptions, this
section depicts the invocation of these drawing methods.

Unfortunately, at the time of writing, KLay layered does not fully support hierarchical
layouting and also the framework does not provide extension points for general graph
post-processing. Nevertheless, a hook for style processing, called modifier, exists. The
SCG synthesis exploits this hook to add BB information for visualization to the diagram
after the layouting completed.

Since any style modifier is invoked automatically subsequent to the layout algorithm,
the synthesis creates a new graphical element, a polyline in this case, in the last node of
the graph, the exit node. The polyline is marked as invisible. As modifier the SCG method
responsible for the BB visualization is inserted. Additionally, a new data structure is
instantiated to hold the mandatory data. The data holder class stores the SCL program,
the instruction to figure mapping and all BBs. Lastly, the structure is added to the data
field of the exit node where the modifier is able to find it. When the layout algorithm is
finished, KLighD calls the modifier which is then provided with sufficient information to
draw all BBs.

5.4 Sequentially Constructive Transformations

As illustrated in Section 4.2.2 the transformation of core SCCharts to SCL is made in
two steps. Firstly the statechart is translated in an unoptimized form of SCL and then
optimized afterwards. The following two sections will describe these transformations in
detail.

5.4.1 Core SCCharts to SCL Transformation

The main transformation is structured alongside syntactical elements and follows a
top-down approach. It starts on the top-most level, the statechart, and recursively
traverses through the hierarchy to translate all encapsulated regions and states. Every

82

5.4. Sequentially Constructive Transformations

transformation method is called in its designated context and creates a list of new SCL
statements for the corresponding statechart element as defined Section 4.1.3. Afterwards,
the caller method is responsible for merging generated lists to syntactically correct
statement sequences in the SCL model.

The following sub sections explains the methods responsible for the creation of the
statement lists of each context: statechart, region, state and transition. To avoid code
duplication the transition context is split into two contexts. The first more general context
handles the transformation of all outgoing transitions, whereas the single transition context
is responsible for the code generation of a single transition.

Statechart context

Since Yakindu statecharts always begin with a region, the main state of an SCChart
is located in the first region of the statechart in the KIELER extension. As the editor
validation automatically checks the model for validity, the transformation method expects
a consistent chart. Therefore, there must always be one top level region containing exactly
one state which is the main state.

Listing 5.21 depicts the transformation method transformCoreToSCL for transforming
core SCCharts to SCL. It requires the statechart in question and an enum set of the type
SCLOptimizations, which comprises all SCL optimizations discussed in Section 4.2.3. At
first, the function creates a new SCL program instance with the aid of the SCL factory.
Secondly, since it assumes a valid statechart, the main state is retrieved and the name
of the program is set to the name of the outermost state. Since SCCharts is a KIELER
extension to the YSE, it must be cast to a SyncState. Also, a valid statechart comprises
a section for global variable definitions. A global SCL variable is introduced for every
declaration found in the state. The definition is generated directly out of the declaration

1 def Program transformCoreToSCL (S t a t e c h a r t s t a t e c h a r t ,
2 EnumSet<SCLOpt imizat ion> o p t i m i z a t i o n s) {
3 v a l ta rge tProgram = S c l F a c t o r y : : eINSTANCE . c reateProgram () ;
4 v a l mainState = s t a t e c h a r t . r e g i o n s . ge t (0) . v e r t i c e s . ge t (0) as SyncState
5 ta rge tProgram . setName (mainState . name)
6
7 // Add a l l d e c l a r a t i o n s o f the main s t a t e to the d e c l a r a t i o n o f the program .
8 f o r (d e c l a r a t i o n : ma inState . s c o p e s . ge t (0) . d e c l a r a t i o n s) {
9 ta rge tProgram . d e f i n i t i o n s . add (c r e a t e V a r i a b l e D e f i n i t i o n (d e c l a r a t i o n)) ;

10 }
11 // Crea te a l i s t o f s t a t e m e n t s f o r the main s t a t e
12 // (and a l l i n c l u d i n g r e g i o n s and s t a t e s)
13 // and add them to the program .
14 var s t a t e m e n t s = trans formCoreStateToSCL (mainState , o p t i m i z a t i o n F l a g s)
15 ta rge tProgram . s t a t e m e n t s . a d d A l l (s t a t e m e n t s)
16
17 ta rge tProgram
18 }

Listing 5.21. SCL Transformation – Statechart Context

83

5. Sequential Constructiveness Code Generation Implementation

in the statechart via the SCL create extension. Finally, the transformation method for
states can be invoked with the main state as a parameter. The generated sequence
of statements is added to the program before returning to the caller and ultimately
represents the complete SCL translation.

Region Context

To translate a region the transformation method transformCoreRegionToSCL, shown in
Listing 5.22, needs the actual region object and the optimization flags as parameters and
returns a list of statements, which embody the SCL code of the corresponding region.
At first the create extension generates a new empty list of statements. Afterwards, all
SyncStates are copied and sorted by state type accordingly to ensure that initial states
are processed first and final states come last. Subsequently, the state transformation is
invoked for every comprising state. To facilitate optimizations the list of statements for
each state is stored in a temporary array statesStatements. Afterwards, if the stateposition
optimization is chosen, the statement lists are realigned before further optimizations are
invoked. Finally, if selected, all superfluous goto instructions and labels are removed and
the generated merged list is returned.

1 def L i s t <Statement> transformCoreRegionToSCL (Region r e g i o n ,
2 EnumSet<SCLOpt imizat ion> o p t i m i z a t i o n s) {
3 var newStatements = c rea t eNewSta t ementL i s t ()
4 // L i s t o f a l l s t a t e s i n t h i s r e g i o n .
5 v a l s t a t e s = Im mut ab l eL i s t : : copyOf (r e g i o n . g e t V e r t i c e s .
6 f i l t e r (t ypeo f (SyncState))) . s o r t (e1 , e2 | compareSCLRegionStateOrder (e1 , e2))
7
8 // I n o r d e r to e x e c u t e the s t a t e p o s i t i o n o p t i m i z a t i o n
9 // a l l s t a t ement l i s t s a r e s t o r e d i n an a r r a y .

10 var s t a t e s S t a t e m e n t s = new A r r a y L i s t <A r r a y L i s t <Statement>>
11 f o r (s t a t e : s t a t e s) {
12 s t a t e s S t a t e m e n t s . add (t rans formCoreStateToSCL (s t a t e , o p t i m i z a t i o n s))
13 }
14 // I f s e l e c t e d e x e c u t e the s t a t e p o s i t i o n o p t i m i z a t i o n .
15 i f (o p t i m i z a t i o n s . c o n t a i n s (SCLOpt imizat ion : : STATEPOSITION)) {
16 s t a t e s S t a t e m e n t s = s t a t e s S t a t e m e n t s . o p t i m i z e S t a t e P o s i t i o n
17 }
18 // Add a l l s t a t e m e n t s to the new l i s t .
19 f o r (s t a t e S e t : s t a t e s S t a t e m e n t s) {
20 newStatements . a d d A l l (s t a t e S e t)
21 }
22 // Run o p t i m i z a t i o n s i f s e l e c t e d .
23 i f (o p t i m i z a t i o n s . c o n t a i n s (SCLOpt imizat ion : :GOTO))
24 newStatements = newStatements . op t im i zeGoto
25 i f (o p t i m i z a t i o n s . c o n t a i n s (SCLOpt imizat ion : : LABEL))
26 newStatements = newStatements . o p t i m i z e L a b e l
27
28 newStatements
29 }

Listing 5.22. SCL Transformation – Region Context

84

5.4. Sequentially Constructive Transformations

1 def L i s t <Statement> trans formCoreStateToSCL (SyncState s t a t e ,
2 EnumSet<SCLOpt imizat ions > o p t i m i z a t i o n s) {
3 var newStatements = c rea t eNewSta t ementL i s t ()
4 v a l s t a t e I D = s t a t e . g e t H i e r a r c h i c a l N a m e ()
5 v a l emptyStatement = createSCLEmptyStatement
6 emptyStatement . l a b e l = s t a t e I D
7 newStatements . add (emptyStatement)
8 i f (s t a t e . i s C o m p o s i t e ()) {
9 // I f t h e r e i s o n l y one r eg i on ,

10 // the code o f t h a t r e g i o n can be added w i thout f u r t h e r p r o c e s s i n g .
11 // I f t h e r e a r e more r e g i o n s , a p a r a l l e l s t a t ement has to be c r e a t e d .
12 i f (s t a t e . g e t R e g i o n s () . s i z e <2) {
13 var r e g i o n I n s t r u c t i o n s =
14 t ransformCoreRegionToSCL (s t a t e . g e t R e g i o n s () . head , o p t i m i z a t i o n s)
15 newStatements . a d d A l l (r e g i o n I n s t r u c t i o n s)
16 } e l s e {
17 var p a r a l l e l = S c l F a c t o r y : : eINSTANCE . c r e a t e P a r a l l e l () ;
18 f o r (s t a t e R e g i o n : s t a t e . g e t R e g i o n s ()) {
19 v a l r e g i o n I n s t r u c t i o n s = t ran s fo rmCoreReg ion (s t a t e R e g i on ,
20 o p t i m i z a t i o n s)
21 p a r a l l e l . ge tThreads () . add (createSCLThread (r e g i o n I n s t r u c t i o n s))
22 }
23 newStatements . add (p a r a l l e l . c r e a t e S t a t e m e n t)
24 }
25 // P r o c e s s normal t e r m i n a t i o n s
26 // and add as s i gnment s t a t e m e n t s f o r e v e r y t r a n s i t i o n t r i g g e r .
27 i f (s t a t e . g e t N o r m a l t e r m i n a t i o n s . s i z e >0) {
28 v a l t r a n s i t i o n = s t a t e . g e t N o r m a l t e r m i a n t i o n s . head
29 v a l t a r g e t S t a t e = t r a n s i t i o n . ge tTa rge t as SyncState
30 v a l e f f e c t = t r a n s i t i o n . g e t E f f e c t ()
31 i f (e f f e c t != n u l l)
32 newStatements . a d d A l l (c r ea teSCLAss ignments (e f f e c t) . c r e a t e S t a t e m e n t s)
33 var goto = createSCLGoto (t a r g e t S t a t e . g e t H i e r a r c h i c a l N a m e ())
34 newStatements . add (goto . c r e a t e S t a t e m e n t)
35 }
36 } e l s e i f (! s t a t e . i s F i n a l) {
37 // The s t a t e i s not a compos i t e o r f i n a l s t a t e .
38 // Add s t a t e m e n t s o f the t r a n s i t i o n s t r a n s f o r m a t i o n .
39 newStatements . a d d A l l (s t a t e .
40 t r a n s f o r m S t a t e T r a n s i t i o n s T o S C L (o p t i m i z a t i o n s))
41 }
42 }
43 newStatements
44 }

Listing 5.23. SCL Transformation – State Context

State context

Listing 5.23 exemplifies the transformation method for state, transformCoreStateToSCL. As
expected, it requires a SyncState and the set of selected optimizations. At the beginning
of the function a new ID for the state is generated via getHierarchicalName in the SCL
naming extension. It is comprised of the names of all superior hierarchies separated by
an underscore. If a state or region does not own a unique name, its object hash code is
used instead to make the ID exclusive. Then, an empty statement is instantiated to hold

85

5. Sequential Constructiveness Code Generation Implementation

a starting label. This label marks the beginning of the state source code and is the entry
point for goto jumps originating in other states. The ID of the state is used as a label
identifier.

If the state is a composite state, it may contain an arbitrary number of regions.
In the case of one region the resulting SCL code of the included compartment can be
inserted directly without further processing. However, if the state comprises more than
one region, it creates a concurrent context and an SCL parallel statement, parallel in
line 17, must be created with aid of the SCL factory. For each region the source code is
generated and added as the statement sequence of a new thread in the parallel statement.
Subsequently, the newly built concurrent construct is added to the statement list of the
state. To close the processing of composite states, any normal termination code must
be assembled. Although normal terminations do not possess a trigger they may hold an
effect including an arbitrary number of actions. If a transition includes an effect, the
createSCLAssignments will construct SCL assignments for every comprised action in the
effect. Eventually, the code for a normal termination finalizes with a goto jump to the
target state for the transition. createSCLGoto produces a new SCL goto statement and
sets the passed parameter as target label.

If the state is not a composite or final state, the transformation method for state
transitions is called. If it is a final state, only the label created at the beginning is
returned.

Transitions context

As mentioned in the introduction to this section, the handling of transitions is split in two
contexts to avoid code duplication. The Transitions Context is responsible for processing
all outgoing transitions of a state whereas the code generation for a single transition is
the task of the Single Transition Context described in the following sub section.

Since the transitions transformation transformStateTransitionsToSCL is relatively large,
it is depicted in pseudo code in Listing 5.24. As usual, it creates a new statement list and
gathers data about the different types of transitions in transitions and immediateTransitions.
To process a single transition the subsequently discussed method transformTransitionToSCL
can be called upon.

Firstly, all immediate transitions are translated to SCL. A state is transient if it does
not consume any time and therefore does not need a pause instruction in SCL. Two
conditions must be met for a state to be transient. At first, all outgoing transitions
must be immediate and secondly, at least one transition must be active in any tick. A
transition without trigger is called default transition. It is active in each tick, provided
no superior transition activates beforehand. In the listing, if only immediate transitions
are present, the method checks for a default transition. If none is found, a pause
and a goto to the state itself are created. This represents an implicit self-loop. If
selected, optimizeSelfLoop will perform the self-loop optimization discussed in Section
4.2.3. Afterwards the transformation method exits, since no non-immediate transitions

86

5.4. Sequentially Constructive Transformations

1 def L i s t <Statement> t r a n s f o r m S t a t e T r a n s i t i o n s T o S C L (SyncState s t a t e ,
2 EnumSet<SCLOpt imizat ions > o p t i m i z a t i o n s) {
3 newStatement = c rea t eNewSta t ementL i s t
4 t r a n s i t i o n s = s t a t e . o u t g o i n g T r a n s i t i o n s . f i l t e r (t y p e o f (S y n c T r a n s i t i o n))
5 i m m e d i a t e T r a n s i t i o n s =
6 Im mut ab l eL i s t : : copyOf (t r a n s i t i o n s . f i l t e r (e | e . i s I m m e d i a t e))
7 // Invoke t r a n s i t i o n t r a n s f o r m a t i o n f o r each immediate t r a n s i t i o n
8 f o r each t r a n s i t i o n i n i m m e d i a t e T r a n s i t i o n s do
9 newStatements . a d d A l l (t r a n s i t i o n . t r an s fo rmTrans i t i onToSCL)

10 od
11 i f i m m e d i a t e T r a n s i t i o n s = t r a n s i t i o n s do
12 // T r a n s i e n t s t a t e ?
13 i f ! s t a t e . h a s D e f a u l t T r a n s i t i o n do
14 // Add pause and s e l f ´loop , i f no d e f a u l t t r a n s i t i o n i s p r e s e n t
15 newStatements . add (SCLPause)
16 newStatements . add (SCLGoto (s t a t e))
17 od
18 c a l l o p t i m i z e S e l f L o o p (newStatements)
19 r e t u r n newStatements
20 od
21 // I n s e r t pause
22 newStatements . add (SCLPause)
23 // P r o c e s s a l l t r a n s i t i o n s
24 f o r each t r a n s i t i o n i n t r a n s i t i o n s do
25 newStatements . a d d A l l (t r a n s i t i o n . t r an s fo rmTrans i t i onToSCL)
26 od
27 c a l l o p t i m i z e D u p l i c a t e T r a n s i t i o n s (newStatements)
28 i f ! s t a t e . h a s D e f a u l t T r a n s i t i o n do
29 newStatements . add (SCLGoto (s t a t e))
30 od
31 r e t u r n newStatements
32 }

Listing 5.24. SCL Transformation – Transitions Context in Pseudo Code

are present.
If non-immediate transitions are present, the state consumes time and therefore, a

pause statement is mandatory. Then, all SCL code for transitions is generated. This
includes the previously processed immediate transitions, due to the fact to interleaving
priorities between the two types of transitions. Subsequently, the transition code opti-
mization, also described in Section 4.2.3, is invoked when chosen. Similar to the transient
case, if no default transition is present, a goto to the state itself is created to model the
implicit self-loop.

Single transition context

Finally, the construction of code for a single transition is relatively straightforward.
As illustrated in Listing 5.25 transformStateTransitionToSCL retrieves the target of the
transition and checks for a trigger. If a trigger is present, an SCL conditional with potential
effect code is created and added to the list of statements. Otherwise, the effect code can
be inserted directly followed by a goto since no condition is to be evaluated.

87

5. Sequential Constructiveness Code Generation Implementation

1 def L i s t <Statement> t r a n s f o r m S t a t e T r a n s i t i o n T o S C L (S y n c T r a n s i t i o n t r a n s i t i o n) {
2 var newStatements = c rea t eNewSta t ementL i s t ()
3 // Crea te the goto s ta tement the t r a n s i t i o n p o i n t s to
4 var t a r g e t G o t o = createSCLGoto (t r a n s i t i o n . t a r g e t . g e t H i e r a r c h i c a l N a m e ())
5 // T r a n s i t i o n t r i g g e r and e f f e c t
6 v a l t r a n s i t i o n A s s i g n m e n t s = createSCLAss ignment (t r a n s i t i o n . e f f e c t)
7 // I f a t r i g g e r i s p r e s e n t , add a c o n d i t i o n a l s ta tement .
8 i f (t r a n s i t i o n T r i g g e r . t r i g g e r . e x i s t s) {
9 var c o n d i t i o n a l = c r e a t e S C L C o n d i t i o n a l (t r a n s i t i o n T r i g g e r)

10 // Add the as s i gnment s t a t e m e n t s to the c o n d i t i o n a l s s ta t ement sequence .
11 i f (t r a n s i t i o n E f f e c t . e x i s t s)
12 c o n d i t i o n a l . s t a t e m e n t s . a d d A l l (t r a n s i t i o n A s s i g n m e n t s . c r e a t e S t a t e m e n t s)
13 c o n d i t i o n a l . s t a t e m e n t s . add (t a r g e t G o t o . c r e a t e S t a t e m e n t)
14 newStatements . add (c o n d i t i o n a l . c r e a t e S t a t e m e n t)
15 } e l s e {
16 // I f t h e r e i s no t r i g g e r , s i m p l y add the a s s i g n m e n t s and a goto s ta tement .
17 newStatements . a d d A l l (t r a n s i t i o n A s s i g n m e n t s . c r e a t e S t a t e m e n t s)
18 newStatements . add (t a r g e t G o t o . c r e a t e S t a t e m e n t)
19 }
20 newStatements
21 }

Listing 5.25. SCL Transformation – Single Transition Context

5.4.2 SCL Optimizations

The following sections describe the implementation of the SCL code optimizations men-
tioned in Section 4.2.3 and used in the implementation of the SCL transformations, Section
5.4.1.

Self-loops Optimization

Only states with one outgoing transition and a self-loop are eligible for this kind of
optimization. However, states with implicit self-loops are also considered since the
transformation in Section 5.4.1 constructs the loop for them. They are structured as
depicted in Listing 5.27 when entering the optimization method optimizedSelfLoop, seen

1 def L i s t <Statement> o p t i m i z e S e l f L o o p (L i s t <Statement> o r i g i n a l S t a t e m e n t s ,
2 L i s t <Statement> s t a t e S t a t e m e n t s) {
3 var newStatements = c rea t eNewSta t ementL i s t ()
4 var c o n d i t i o n a l = o r i g i n a l S t a t e m e n t s . head . g e t I n s t r u c t i o n as C o n d i t i o n a l ;
5 v a l n e w C o n d i t i o n a l = c r e a t e S C L C o n d i t i o n a l ()
6 n e w C o n d i t i o n a l . e x p r e s s i o n = c o n d i t i o n a l . e x p r e s s i o n . negate
7 n e w C o n d i t i o n a l . s t a t e m e n t s . a d d A l l (s t a t e S t a t e m e n t s)
8 newStatements . add (n e w C o n d i t i o n a l . c r e a t e S t a t e m e n t)
9 newStatements . a d d A l l (c o n d i t i o n a l . s t a t e m e n t s)

10 newStatements
11 }

Listing 5.26. SCL Optimization – Self-loop

88

5.4. Sequentially Constructive Transformations

1 _stateA :
2 i f I then
3 goto _stateB
4 end ;
5 goto s t a t eA ;
6 _stateB :

Listing 5.27. SCL Self-loop Example

1 _stateA :
2 i f ! I then
3 goto _stateA
4 end ;
5 goto s t a t eB ;
6 _stateB :

Listing 5.28. Optimized Self-loop Examp.

in Listing 5.26. Firstly, a new conditional is created and the old expression is copied and
negated. Notably, rather than returning a double negation, negate will eliminate a present
one when invoked. The new conditional is then filled with the previous statements of the
state while the instructions of the obsolete conditional serve as the new statement list
of the state itfself. Essentially, the two lists of statements swap their positions with the
expression in the conditional being negated. An example is illustrated in Listing 5.28.
The new instruction ordering facilitate the next two optimizations.

Goto Optimization

As stated in Section 4.1.3 a goto must not jump out of or into a concurrent compartment.
Therefore, the goto and label optimizations are used in a region context since all jumps
included in a region must reference labels which are also contained in that specific region.

1 def A r r a y L i s t <Statement> opt im i zeGoto (L i s t <Statement> s t a t e m e n t s) {
2 v a l newStatements = c rea t eNewSta t ementL i s t ()
3 // I t e r a t e through a l l s t a t e m e n t s
4 f o r (i n t i : 0 . . (s t a t e m e n t s . s i z e ´ 1)) {
5 // S i n c e xtend does not know a common next or c o n t i n u e i n s t r u c t i o n
6 // we a r e go ing to remember which i n s t r u c t i o n must be s k i p p e d .
7 var boolean s k i p = f a l s e
8 v a l s ta tement = s t a t e m e n t s . ge t (i)
9 // i f the s ta tement i s a goto s ta tement and has s u c c e e d i n g s t a t e m e n t s . . .

10 i f (s ta tement . h a s I n s t r u c t i o n && sta tement . i n s t r u c t i o n i n s t a n c e o f Goto &&
11 i < s t a t e m e n t s . s i z e ´ 1) {
12 // . . . s e a r c h the next s ta tement .
13 var nextStatement = s t a t e m e n t s . ge t (i + 1)
14 // I f the s u c c e e d i n g i n s t r u c t i o n s ta tement i s the t a r g e t s ta tement
15 // o f the goto jump , mark i t as ’ to be sk ipped ’ .
16 i f (nextStatement != n u l l &&
17 nextStatement . g e t L a b e l == sta tement . g e t I n s t r u c t i o n . asGoto . t a r g e t L a b e l)
18 s k i p = t r u e
19 }
20 // Add a l l s t a t e m e n t s not marked as ’ to be sk ipped ’ .
21 i f (! s k i p)
22 newStatements . add (s ta tement . copy)
23 }
24 newStatements
25 }

Listing 5.29. SCL Optimization – Goto

89

5. Sequential Constructiveness Code Generation Implementation

s OptimizeGoto, listed in Listing 5.29, removes any goto instruction which targets a
directly successive label. Such a jump is superfluous, since the control flow proceeds along
that path anyhow. The method iterates through the given list of statements and searches
for gotos. If a following statement, denoted as nextStatement, is a label the goto can be
removed. Since Xtend does not support a continue instruction, statements which must
be left out are marked by the skip variable. It is set, if a succeeding statement exists and
the label of that statements equals the target label of the goto. GetLabel returns null, if
the statement does not comprise a label.

Label Optimization

Listing 5.30 depicts the optimization for labels. Any label which is not referenced by
a goto can be eliminated. Therefore, the label optimization amplifies the gain of the
previous goto upgrade. Xtend provides functions to solve this elegantly. In a first step
optimizeLabel queries all goto instructions a given statement list comprises. Subsequently,
all statements which are neither an empty statement nor referenced by a goto are added
to a new statement list. By this, any not referenced label instruction is removed.

1 def A r r a y L i s t <Statement> o p t i m i z e L a b e l (L i s t <Statement> s t a t e m e n t s) {
2 v a l newStatements = c rea t eNewSta t ementL i s t ()
3 // Copy a l l goto s t a t e m e n t s .
4 v a l gotos =
5 Im mu tab l eL i s t : : copyOf (s t a t e m e n t s . g e t A l l C o n t e n t s . f i l t e r (t ypeo f (Goto)))
6 // And f i l t e r a l l empty l a b e l s t a t e m e n t s t h a t a r e not r e f e r e n c e d by any goto .
7 newStatements . a d d A l l (s t a t e m e n t s . f i l t e r (e |
8 ! (e i n s t a n c e o f EmptyStatement) | |
9 (go tos . e x i s t s (f | f . t a r g e t L a b e l == (e as EmptyStatement) . l a b e l)

10)))
11 newStatements
12 }

Listing 5.30. SCL Optimization – Label

State Positions Optimization

To further facilitate the goto and label optimizations optimizeStatePositions tries to re-
arrange the states of a region to build matching goto and label combinations. This upgrade
must be executed before the invocation of the two previously discussed optimizations.
OptimizeStatePositions expects a list of statements lists. Each sublist represents the code
of a single state. If a state closes with a goto instruction, it is checked whether or not
another state starts with a corresponding label. Subsequently, the state of the actual
iteration is added to the new statement list. If a matching state is found, its state source
code is added directly behind the actual state, provided it was not already processed.
Otherwise, the code of the original state is added to the new list without alteration.

90

5.4. Sequentially Constructive Transformations

1 __S :
2 i f T1 then
3 goto __Sf ;
4 end ;
5 i f T3 then
6 goto __Sf ;
7 end ;
8 pause ;
9 i f T1 then

10 goto __Sf ;
11 end ;
12 i f T2 then
13 goto __Sf ;
14 end ;
15 i f T3 then
16 goto __Sf ;
17 end ;
18 goto __S ;
19 __Sf :

Listing 5.31. SCL Duplicate Transition

1 __S :
2 i f T1 then
3 goto __Sf ;
4 end ;
5 i f T3 then
6 goto __Sf ;
7 end ;
8 pause ;
9 i f T1 then

10 goto __Sf ;
11 end ;
12 i f T2 then
13 goto __Sf ;
14 end ;
15 goto __S ;
16 __Sf :

Listing 5.32. Optimized Dup. Transition

Duplicate Transitions Optimization

The elimination of duplicated transitions is made in a straightforward manner. Subsequent
to the naive SCL source generation of a state any transition code in the depth of that
state can be removed if it is called again in the surface and is executed in the same order.

Listing 5.31 shows the generated SCL code of a state with three transitions, T1, T2
and T3 with priorities 1, 2 and 3. T1 and T3 are immediate and are hence checked
before the pause instruction. Subsequently all three transitions are tested again. The
optimization detects T3 as being the last conditional checked in both the surface and the
depths and removes it. However, it can not eliminate T1 in the depth, since even in the
depth the conditional of T1 must be evaluated before T2. Thus, T1 is tested twice in
consecutive ticks, but the code stays correct. The optimized SCL code is shown in Listing
5.32.

5.4.3 The Sequential Tick Function

As explained in Section 4.2.7 subsequent to the analyses performed on a generated SCL
program the desired generic tick function can be engineered, provided that the program
is ASC-schedulable. The tick function is generated out of the BBs and only comprises
guard calculations and assignments nested in guarded conditionals. Therefore, all pause
and parallel statements are omitted.

The transformation is done in two steps. At first it must be decided which BBs are
eligible to be processed and secondly, generate the SCL code for a particular BB when all
of its preconditions are met.

91

5. Sequential Constructiveness Code Generation Implementation

Basic Blocks Arrangement

The first part is included in the main transformation method transformSCLToSequentialSCL,
depicted in Listing 5.33. At the beginning of the routine the target program is instantiated.
All definitions of the source program are copied since they comprise the variable interface
and the initial GO signal is added. Then, all BB are queried. For each BB a variable for
its guard is created. If the BB is the surface of a pause, a corresponding _pre definition
is also added. Furthermore, if the BB is a join of a parallel statement, variables for the
synchronizer’s empty flags generated.

The iteration for the BB arrangement subsequently follows. For this, all BB are copied
into an new list basicBlockPool. The while loop iterates as long as basicBlockPool is not
empty. In each iteration the flag poolAltered signals whether or not a BB was processed
in this turn. Then, the basicBlockPool is copied again to the temporary list tempPool.
This list is used to check for eligible BB placements in this turn.

For each BB basicBlock in the temporary pool the boolean ready flags the placement
status of the actual block. While testing a block, each predecessor of that block that is
not a PauseSurface is examined. If it is still in the basicBlockPool it has not been placed
yet and at least one precondition is not met. Wherefore, the ready flag is set to false. If
the BB is a ParallelJoin, these requirements must also be tested for the blocks needed to
evaluate the empty flags of the join synchronizer. In this context, stripSurface removes
any surface dependencies in BBs contained in threads. This is necessary since a feedback
edge from a join to a corresponding fork node may be instantaneous. In this case cyclic
dependencies are broken inside the parallel statement. Again, if at least one mandatory
block still persists in the basicBlockPool, the guard can not be evaluated. Following
this, an analogous check is performed for data dependencies the block inherits from its
statements.

Similar to the calculation of the guards depending on the predecessors of a given block,
the guards of data dependencies must be evaluated beforehand. Otherwise the guard
expression can not be calculated due to missing results of required guards. Eventually, if
the ready flag is still true, all preconditions are met and the transformation method for
the BBs, transformBasicBlock, can be invoked to insert the block at the actual position in
the targetProgram. The BB is then removed from the pool and other precondition tests
will recognize this block as being processed. Therefore, it may now guard succeeding BBs.
Additionally, poolAltered is set to true.

If poolAltered is still false subsequent to a complete precondition test iteration, no
remaining BB meets its requirements. In such a case a fix point is reached and the program
is not Acyclic Sequentially Constructive (ASC)-schedulable. Therefore, a correlative
exception NotASCSchedulableException is thrown and the calculation terminates.

The placement of BBs continues as long as there are still blocks in the pool or until
no further block can be positioned. Finally, if all BBs are in place, the method creates
assignments to transfer the guard values of surfaces to the corresponding _pre guards for
the consecutive tick. Then, the newly engineered sequential SCL program is returned.

92

5.4. Sequentially Constructive Transformations

1 def Program trans formSCLToSequent ia lSCL (Program program) {
2 ta rge tProgram = SCL . c reateProgram
3 ta rge tProgram . d e f i n i t i o n s . a d d A l l (program . d e f i n i t i o n s)
4 ta rge tProgram . d e f i n t i o n s . add (c r e a t e V a r i a b l e D e f i n t i o n (’GO’))
5 // Copy d e f i n i t i o n s and c r e a t e guard v a r i a b l e s
6 b a s i c B l o c k s = program . s t a t e m e n t s . head . g e t A l l B a s i c B l o c k s
7 f o r each b a s i c B l o c k i n b a s i c B l o c k s do
8 ta rge tProgram . d e f i n t i o n s . add (c r e a t e Va r D e f (b a s i c B l o c k . guardName)
9 i f (b a s i c B l o c k . i s P a u s e S u r f a c e) do

10 ta rge tProgram . d e f i n t i o n s . add (c r e a t e Va r D e f (b a s i c B l o c k . guardName + ’ _pre ’)
11 i f (b a s i c B l o c k . i s P a r a l l e l J o i n) do
12 ta rge tProgram . d e f i n i t i o n s . a d d A l l (c r e a t e V a r D e f (b a s i c B l o c k . emptyFlags)
13 od
14 // Bas i c Block p r e c o n d i t i o n s t e s t
15 b a s i c B l o c k P o o l = b a s i c B l o c k s
16 w h i l e not b a s i c B l o c k P o o l . empty do
17 p o o l A l t e r e d = f a l s e
18 tempPool = b a s i c B l o c k P o o l . copy
19 f o r each b a s i c B l o c k i n tempPool do
20 r eady = t r u e
21 // Check p r e d e c e s s o r s
22 f o r each p r e d e c e s s o r i n b a s i c B l o c k . g e t P r e d e c e s s o r s do
23 i f not p r e d e c e s s o r . i s S u r f a c e do
24 i f b a s i c B l o c k P o o l . c o n t a i n s (p r e d e c e s s o r) do r eady = f a l s e
25 i f b a s i c B l o c k . i s P a r a l l e l J o i n do
26 j o i n G u a r d s = p r e d e c e s s o r . g e t B a s i c B l o c k s . g e t S u r f a c e s
27 i f b a s i c B l o c k P o o l . c o n t a i n s (j o i n G u a r d s) do r eady = f a l s e
28 od
29 od
30 od
31 // Check data d e p e n d e n c i e s
32 f o r each dependency i n b a s i c B l o c k . ge tDependenc i e s do
33 i f not dependency . i s S u r f a c e and b a s i c B l o c k P o o l . c o n t a i n s (dependency)
34 r eady = f a l s e
35 // P lace t r a n s f o r m e d b l o c k and remove i t from the poo l
36 i f r eady do
37 ta rge tProgram . s t a t e m e n t s . a d d a l l (t r a n s f o r m B a s i c B l o c k (b a s i c B l o c k))
38 b a s i c B l o c k P o o l . remove (b a s i c B l o c k)
39 p o o l A l t e r e d = t r u e
40 od
41 od
42 i f not p o o l A l t e r e d do
43 throw NotASCSchedu lab leExcept ion
44 od
45 // T r a n s f e r s u r f a c e v a l u e s
46 f o r each b a s i c B l o c k i n b a s i c b l o c k s do
47 i f b a s i c B l o c k . i s S u r f a c e do
48 ta rge tProgram . s t a t e m e n t s . add (
49 c r e a t e A s s i g n m e n t (b a s i c B l o c k . guardName + ’ _pre ’ , b a s i c B l o c k . guardName))
50 od
51 r e t u r n ta rge tProgram
52 }

Listing 5.33. Sequential SCL – Main Loop

93

5. Sequential Constructiveness Code Generation Implementation

Guards Generation

Section 4.2.6 defines the guard expressions necessary to evaluate the actual state of any
guard. Furthermore, Section 4.2.7 describes the generation of the sequential tick function
utilizing the guards to evaluate the control flow of the SCL program.

transformSCLToSequentialSCL calls transformBasicBlock, shown in Listing 5.35, to
generate the guard source code. The method creates the expression for the guard
and adds a conditional including any code for assignments if necessary. In the case of
ParallelJoin it also creates the join synchronizer.

The method starts again with the creation of a new statement list. Additionally, all
predecessors are queried. If the BB is in fact a join, the first if-block is executed and a
synchronizer as discussed in Section 4.2.6 is constructed. It creates two expressions. The
terminationExpression builds the condition that at least one thread must be exited in this
tick instance. The synchronizerExpression will hold the concatenated expressions of the

1 def L i s t <Statement> t r a n s f o r m B a s i c B l o c k (Program program) {
2 newStatements = c rea t eNewSta t ementL i s t
3 p r e d e c e s s o r s = b a s i c B l o c k . g e t P r e d e c e s s o r s
4 i f b a s i c B l o c k . i s P a r a l l e l J o i n do
5 // Genera te s y n c h r o n i z e r
6 s y n c h r o n i z e r E x p r e s s i o n = c r e a t e N e w E x p r e s s i o n
7 t e r m i n a t i o n E x p r e s s i o n = c r e a t e N e w E x p r e s s i o n
8 f o r each p r e d e c e s s o r i n p r e d e c e s s o r s do
9 // B u i l d empty f l a g f o r each t h r e a d

10 emptyExpre s s i on = c r e a t e N e w E x p r e s s i o n
11 s u b E x p r e s s i o n = c r e a t e N e w E x p r e s s i o n
12 guards = p r e d e c e s s o r . g e t B a s i c B l o c k s . g e t S u r f a c e s
13 emptyExpre s s i on = c r e a t e O r C o n c a t e n a t i o n (emptyExpres s ion , gua rds) . negate
14 f o r each guard i n guards do
15 i f guard . r e a ch e sE x i t N od e do
16 e x i t E x p r e s s i o n =
17 c r ea t eAndConca tena t i on (guard . guardName ,
18 guard . c o n d i t i o n a l E x p r e s s i o n)
19 t e r m i n a t i o n E x p r e s s i o n =
20 c r e a t e O r C o n c a t e n a t i o n (t e r m i n a t i o n E x p r e s s i o n , e x i t E x p r e s s i o n)
21 s u b E x p r e s s i o n = c r e a t e O r C o n c a t e n a t i o n (s u b E x p r e s s i o n , e x i t E x p r e s s i o n)
22 od
23 od
24 newStatements . add (createEmptyAss ignment (emptyExp re s s i on))
25 s u b E x p r e s s i o n = c r e a t e O r C o n c a t e n a t i o n (s u b E x p r e s s i o n , emptyExpre s s i on)
26 s y n c h r o n i z e r E x p r e s s i o n =
27 c r ea t eAndConca tena t i on (s y n c h r o n i z e r E x p r e s s i o n , s u b E x p r e s s i o n)
28 od
29 // F i n a l i z e guard f o r the s y n c h r o n i z e r
30 s y n c h r o n i z e r E x p r e s s i o n =
31 c r ea t eAndConca tena t i on (s y n c h r o n i z e r E x p r e s s i o n , t e r m i n a t i o n E x p r e s s i o n)
32 newStatements . add (c rea teGuardAss i gnment (b a s i c B l o c k . guardName ,
33 s y n c h r o n i z e r E x p r e s s i o n))
34 r e t u r n newStatements
35 od

Listing 5.34. Sequential SCL – Basic Block Transformation

94

5.4. Sequentially Constructive Transformations

36 // No p a r a l l e l b a s i c b l o c k
37 g u a r d E x p r e s s i o n = c r e a t e N e w E x p r e s s i o n
38 i f b a s i c B l o c k . i s I n i t i a l B l o c k do
39 // Add GO s i g n a l
40 g u a r d E x p r e s s i o n = c r e a t e E l e m e n t R e f e r e n c e (’GO’)
41 f o r each p r e d e c e s s o r i n p r e d e c e s s o r s do
42 // B u i l d guard
43 a c t i v a t o r = c r e a t e E l e m e n t R e f e r e n c e (p r e d e c e s s o r . guardName)
44 i f p r e d e c e s s o r . i s C o n d i t i o n a l P r e d e c e s s o r do
45 i f p r e d e c e s s o r . i s I n T r u e B r a n c h do
46 a c t i v a t o r = c rea t eAndConca tena t i on (a c t i v a t o r ,
47 p r e d e c e s s o r . c o n d i t i o n a l E x p r e s s i o n)
48 od e l s e do
49 a c t i v a t o r =
50 c r ea t eAndConca tena t i on (a c t i v a t o r ,
51 p r e d e c e s s o r . c o n d i t i o n a l E x p r e s s i o n . negate)
52 od
53 od
54 g u a r d E x p r e s s i o n = c r e a t e O r C o n c a t e n a t i o n (g u a r d E x p r e s s i o n , a c t i v a t o r)
55 newStatements . add (
56 c rea teGuardAss i gnment (b a s i c B l o c k . guardName , g u a r d E x p r e s s i o n))
57 // B u i l d c o n d i t i o n a l f o r s c l a s s i g n m e n t s
58 g u a r d C o n d i t i o n a l = c r e a t e N e w C o n d i t i o n a l
59 f o r each s ta tement i n b a s i c B l o c k . s t a t e m e n t s do
60 i f s ta tement . i s A s s i g n m e n t do
61 newStatement = sta tement . copy . t r a n s f o r m R e f e r e n c e s
62 od
63 od
64 i f not g u a r d C o n d i t i o n a l . s t a t e m e n t s . empty do
65 newStatements . add (g u a r d C o n d i t i o n a l)
66 od
67 r e t u r n newStatements
68 }

Listing 5.35. Sequential SCL – Basic Block Transformation (cont.)

preceding empty flag evaluations connected with the terminationExpression. It therefore
represents the guard of the join.

In the parallel join context predecessors holds the starting BBs in the preceding threads.
For each thread an emptyExpression is instantiated. Simultaneously one sub expression
for the synchronizerExpression, denoted subExpression, is built. All enclosed surfaces
in the threads are queried and stored in guards. Subsequently, they are added to the
emptyExpression. If the block reaches the exit node of its thread, it is concatenated with
the expression of a conditional statement if the guard depends on an environment variable,
and then added to the terminationExpression and the subExpression. Before proceeding to
the next guard, the emptyExpression is added to the SCL code and subExpression linked
to the synchronizerExpression. Subsequent to the guard iteration the expression of the
synchronizer is concatenated with the termination precondition of the threads and added
as guard to the list of statements. As the calculation of the join guard finishes here, the
method is left at this point.

If the BB is not a join of concurrent threads, the evaluation of its guard is less complex.

95

5. Sequential Constructiveness Code Generation Implementation

The guard is constructed in the guardExpression. If the block is an initial BB, it depends
on the GO signal of the environment. For each predecessor an expression representing
the incoming activator is generated. It is constructed frin the REFEXP of the predecessor
block and connected to the expression of a conditional statement when present. If the BB
persists in the else branch of the conditional, the conditionalExpression is negated. Each
activator is then added to the guardExpression via createOrConcatenation. Subsequently,
the new guard is created with createGuardAssignment and added to the SCL code.

Finally, a new guardConditional has to be created to encapsulate all assignments of a
BB. The can simply be copied but the reference of the ASSEXP must be adjusted to the
variable definition of the target program. This is done in transformReferences. If at least
one assignment statement exists, the resulting conditional list will not be empty and is
therefore added to the list of statements. The method eventually returns.

96

Chapter 6

Experimental Results

To validate the results and draw conclusions the code generation approach was evaluated
in KIELER. KIELER provides a simulation environment based on the abstract language S
and already comprises S transformations for SyncCharts. To simulate generated SCL code
in KIELER a transformation to translate SCL to S was developed. Since SyncCharts can
be converted to SCCharts the simulation results of equivalent models are comparable.
However, S uses signals as communication mechanism itself and therefore might favour
communications in SyncCharts over the variable concept implemented in SCCharts.

Listing 6.1 depicts the SCL code of a simple tick function example with three guards.
The corresponding S program is shown in Listing 6.2. As illustrated the guard assignments
are translated to signal emissions again and hence might interact more efficient with the
SyncChart instead of the SCL approach.

1 module S i m p l e _ t i c k
2 output boolean O1 , O2 , O3 ;
3 boolean GO, g0 , g1 , g1_pre , g2 ;
4 {
5 g0 = GO;
6 i f g0 then
7 O1 = f a l s e ;
8 end ;
9 g2 = g1_pre ;

10 i f g2 then
11 O2 = t r u e ;
12 end ;
13 g1 = g0 | | g2 ;
14 i f g1 then
15 O3 = t r u e ;
16 end ;
17 g1_pre = g1 ;
18 }

Listing 6.1. Tick Function in SCL

1 synchronous program S i m p l e _ t i c k (1)
2
3 output s i g n a l O1 , O2 , O3 : boolean ;
4 s i g n a l GO, g0 , g1 , g1_pre , g2 : boolean ;
5
6 s t a t e (_go) {
7 emit (GO(t r u e)) ;
8 t r a n s (_ t i c k S t a r t) ;
9 }

10
11 s t a t e (_ t i c k S t a r t) {
12 emit (g0 (?GO)) ;
13 i f (?g0 = t r u e) {
14 emit (O1(f a l s e)) ;
15 } ;
16 emit (g2 (? g1_pre)) ;
17 i f (?g2 = t r u e) {
18 emit (O2(t r u e)) ;
19 } ;
20 emit (g1 (? g0 or ?g2)) ;
21 i f (?g1 = t r u e) {
22 emit (O3(t r u e)) ;
23 } ;
24 emit (g1_pre (? g1)) ;
25 pause () ;
26 t r a n s (_ t i c k S t a r t) ;
27 }

Listing 6.2. Tick Function in S

97

6. Experimental Results

Although S might be suited better to translate SyncCharts, it can be used to compare
the two approaches regarding execution time and the size of the resulting binary code since
the signal emissions are translated to C macros and expanded during the compilation.
The evaluation focuses on the differences in the execution times.

Test Set-up

Two different kinds of tests were executed to compare the results of the different approaches.
The first analysis takes randomly generated statecharts and compares the execution times
and executable sizes as state and hierarchy layer count increases. The second evaluation
tests small common examples and interprets the results for these. The last section
describes observations regarding SCL guards.

All tests were done on an Intel CoreTMi7-3770, 3.4 GHz with 16 GB RAM running a
64-bit Windows 7TM. Each simulation run comprises 100 macro steps and was sampled
five times to calculate the mean values. As input data KIELER generated .eso files filled
with random input value occurrences. .eso file are esterel trace files that can also be used
as input data in KIEM simulations. In every test the same input traces were used for
both models. Summarized, each statechart was simulated for 500 macro steps and both
approaches used the same input data for their simulations.

Figure 6.1 depicts the preparation chain for each test.

Figure 6.1. Test Set-up – Transformations

98

6.1. Scaling Approach Evaluation

6.1 Scaling Approach Evaluation

To measure the execution times in statecharts of different sizes, a series of random
SyncCharts were created and converted to SCCharts and subsequently to SCL. Finally,
both were translated to S and simulated with KIEM. The first series increases the count
of states in every run whereas the second added additional hierarchy layers.

State Count Growth Comparison

Ten statecharts with increasing state count were created for this simulation. The models
comprise an average transition count of two and no hierarchy. The interface consists of
three input and three output signals or variables.

Figure 6.2. State Comparison – Execution Time

Figure 6.2 shows the execution time compared to the count of states. Although both
types of charts pursue an increasing global trend, the growth in SCL is more constant
and higher as in SyncCharts in the mean. Furthermore, the local execution time of
SyncCharts is not only bound to the size of a chart but depends highly on its structure
and the input data. Therefore, execution times can be lower in larger charts as seen in
the figure. Actually, the random nature of the models and the input data were seen to
have a more unpredictable impact on the timing of the SyncChart simulation.

The size of the compiled source codes is depicted Figure 6.3. Its growing as the state
count increases and SCL has slightly smaller executables than SyncCharts.

Hierarchy Layer Growth Comparison

As setup for this simulation five SyncCharts of different hierarchy depth and their
corresponding SCCharts were created automatically. Every macro state comprises two

99

6. Experimental Results

Figure 6.3. State Comparison – Executable Size

parallel regions with five states each. In every test the count of hierarchy layers is
increased and each new layer also includes the starting setup, two regions and five states
each. Again, the average transition count is two, but each hierarchy layer expects its own
signal interface, therefore, the size of the interface increases as the layer count increases.
The same is true for variables in the SCChart variant.

The test at hierarchy layer 3.5 was introduced to validate the large increase in the
execution time in the SyncChart simulation. In this case only one parallel region has a
hierarchy depth of four. The second region remains at three.

Figure 6.4 illustrates the execution times of diagrams with different hierarchy depths.
Although SCL starts above SyncCharts similar to the state count comparison, the execution
time of the SCLs increases more steadily. However, the execution time of SyncCharts rises
drastically after a layer depth of three is reached.

Similar to the observations made in the state count evaluation, the timing of SyncCha-
rts highly depend on the structure of the chart and the input data whereas SCL pursues
a more linear increase. To visualize this further, Figure 6.5 exemplifies the variations in
the execution time of the hierarchy test with a depth of four in one test run.

The timing of SyncCharts fluctuates immensely depending on the state of the Sync-
Chart and its actual input data whereas SCL proceeds steadily with the same input data
given.

The differences in the executable size behave similar to the observations made in the
state count evaluation with SCL’s executables being a little smaller than the SyncCharts’
executables.

As observed till now, the quality of the results depends on the structure of the
charts and the input data used in the simulation whereas SCL being a little slower

100

6.1. Scaling Approach Evaluation

Figure 6.4. Hierarchy Layer Comparison – Execution Time

Figure 6.5. Execution Time Comparison at Hierarchy Test with Depth Four

than SyncCharts as long as in lower hierarchy depths but more robust regarding timing
fluctuations in connection with variations in the chart structure and in the input data.

101

6. Experimental Results

Figure 6.6. Hierarchy Layer Comparison – Executable Size

6.2 Common Example Evaluation

To not depend on random Statecharts only this section compares four common examples
of reasonable sizes. The first two examples, Simple and SimpleConcurrency are small
statecharts depicted in Figure 6.7. They serve as minimal test cases for the transfor-
mation without and with concurrency. The third example is ABSWO-xp, a variant of
ABRO, transformed to an core chart free of pre-emptions. It was presented in “Sequen-
tially Constructive Concurrency - A conservative extension of the synchronous model of
computation” [vHMA`13b]. The last test comprises the shared resource example, was
presented by Edwards in “Tutorial: Compiling Concurrent Languages for Sequential
Processors” [Edw03]. It illustrates a producer-consumer example in Esterel and was
translated to SyncCharts and SCL.

In the Simple case SCL acts a bit faster due to the fact that it has only to evaluate
three guards. Including the pause register only four assignments must be executed in
each tick whereas SyncCharts traverses through the structure of the statechart.

For exactly the same reason SCL performs worse in the next test, SimpleConcurrency.
Although the statechart is similarly small as Simple, the concurrent component results in
the creation of a synchronizer and doubles the assignments needed to evaluate the tick
function.

The code of the synchronizer has not such a big impact on the execution time in
the relatively larger examples since it comprises only a fraction of the guards. SCL
performs quite well in ABSWO-xp and even better in the shared resource example since

102

6.2. Common Example Evaluation

(a) Simple Example (b) SimpleConcurrency Example

Figure 6.7. Common Examples

the generated code contains less guards. Unlike ABSWO-xp which translates to 26 guards
in this implementation, the shared resource example only needs 20.

The sizes of the compiled code are almost the same with SCL being slightly smaller
which supports the observations of the evaluations in Section 6.1.

Figure 6.8. Common Example Comparison – Execution Time

103

6. Experimental Results

Figure 6.9. Common Example Comparison – Executable Size

6.3 Guard Evaluation

In all tests a direct connection between the SCL execution time and the count of guards
in the tick function can be observed. To further examine this observation Figure 6.10
illustrates the timing results of the SCL simulations in connection with their guard counts.

Figure 6.10. Guard Evaluation

104

6.3. Guard Evaluation

As depicted, the execution times of all SCL programs are relatively linear depending
on their guard count regardless of what kind of structure the original SCChart contained.
The input data had also little impact on the timings.

This is no big surprise since the evaluation of one guard translates to one variable
assignment and in the case of an output emission to a conditional. Only a synchronizer
transforms to a more complex construct and therefore needs more execution time than a
single guard.

105

Chapter 7

Conclusion

This final chapter summarizes the particular steps of the code generation approach
presented in this thesis and its evaluation. It closes with ideas for future work.

7.1 Summary

This thesis described in detail a chain of transformations necessary to compile a generic
sequential tick function originating from SCCharts. This tick function is meant to be an
initial point for further software or hardware syntheses.

At first, the mandatory language concepts of the approach are exemplified with
emphasis on sequential constructiveness. This includes the graphical modelling language
SCCharts, as well as the newly derived DSL SCL and its graphical representation SCG.
SCL was then further refined to an sequential program stripped of any pause registers and
concurrency. The part closes with an introduction of S, the abstract language implemented
in KIELER, which was used to compare the approach with SyncCharts in the evaluation.

Subsequently, the thesis elucidates each transformation step of the approach and the
analyses necessary to accomplish these. It comprises transformation from SCCharts to
SCL, the synthesis of the SCG and from SCL to its sequential variant. To fulfil this task,
it was explained how the underlying metamodels are examined and information about
data dependencies and Basic Blocks was gathered.

The evaluation showed that SCL is able to compete with the already present SyncCharts
approach while incorporating the Sequentially Constructive Model of Computation and
therefore accepting a wider class of programs.

7.2 Future work

Comparatively speaking, the SCL is in the early stages of development. Although the
concept was largely refined over the last year, this first practical presentation may only
be the beginning. A few ideas for future progress are given here.

SCG-Normalized Core SCCharts

The Normalized Core SCCharts approach, mentioned in Section 4.1.7, appears to be very
promising. An SCChart translated to a normalized SCChart can directly be visualized in
its SCG form without an intermediate SCL transformation. As explained in Section 4.1.7

107

7. Conclusion

the NCSC only contains its elemental connector types and is therefore simple to describe
although it is semantically equivalent to the other SCCharts variations. Furthermore,
if the transformation is carried out transiently, the SCG corresponding to the Extended
SCChart can be displayed instantaneously.

Data Dependency Analysis Improvements

The data dependency presented in this thesis is made relatively conservatively. If a cyclic
data dependency is detected, the program is rejected regardless of any preceding data
evaluation. For instance, the rejected program in Figure 7.1 can be scheduled since
both assignments containing a crossing dependency are exclusive due to the preceding
conditionals. In practice, the analysis to find these may be more complex as depicted in
the example since these exclusive control flows may be nested arbitrarily.

Moreover, the dependency analysis does not take registers into account. Currently
rejected programs due to dependencies in concurrent regions might be schedulable if their
dependent assignments do not happen in the same tick instance. Here too, lies potential
to further refine the determination and accept a broader range of programs.

Figure 7.1. Rejected Program Example

108

7.2. Future work

SCG Editing

At the time of writing, the SCG visualization uses KLighD to display a textual SCL program
in graph form in a view. There is no mechanism which permits direct editing of the SCG
other than the alteration of the corresponding SCL code. A graphical editor which allows
direct adding, modification or deleting of SCG nodes could be useful. This would further
facilitate the creation of a transformation from the control flow graph to a textual and
ultimately graphical model.

Code Generation Improvements

As optimizations the thesis only offers the most basic ideas. More matured code inquiries
may improve the generation of SCL. States may be better arranged to facilitate present
optimizations and similar code parts may be merged.

As the evaluation has shown, the execution time of the compiled sequential SCL
program directly depends on the count of guards in the tick function. Therefore, the
efficiency of the program may increase if guards were comprised less conservatively or
combined to greater units.

Dedicated Simulation Engine

Even though S performs quite well in its task to serve as an intermediate language to
simulate SCL and subsequently compile to Synchronous C, it is not the best fit to simulate
SCL since it is meant as signal driven abstract language with a statechart-like structure.
Own simulation and back-end code generation components would probably increase the
efficiency of SCL.

109

Acknowledgements

In conclusion I would like to express my appreciation to the following persons who have
accompanied me on my scholastic journey.

Prof. Dr. Reinhard von Hanxleden who continually committed himself without let-up to
the students of the Department of Computer Science. Please accept my sincere thanks
for not only making it possible for me to write my diploma thesis at the Chair of the
Real-Time and Embedded Systems Group but also for the trust you have put in me by
employing me as an assistant over the last two years. I have learnt a great amount and
met many amazing people during this time.

My advisor Dipl.-Inf. Christian Motika for countless hours of consideration, mutual
teaching and of course fun. Your engagement and professionalism will always be shining
examples for me. Thank you very much for the wonderful experience.

Dipl.-Inf. Christian Schneider for your help in the context with Xtend and Xtext while
working on my thesis. Thank you for putting a number of my worries to rest.

Dipl.-Inf. Christoph-Daniel Schulze for your assistance with general layout questions and
KLay layered. Thank you for your speedy support and the amusing hours by my side.

Thanks go to Dipl.-Pharm. Kirsten Petersen for cross-reading my thesis.

Thanks go to my fellow students Dipl.-Inf. Mathias Lichtner, Dipl.-Inf. Hendrik Schnepel
and Dipl.-Inf. Jan Schaumlöffel. My journey would not have been the brilliant experience
it has been without you.

Last but not least I would like to thank my family, my brother Robert S. Smyth jun., my
parents Robert S. Smyth sen. and Waltraud F. M. Smyth who made my studies possible
in the first place.

111

Bibliography

[Ame10] Torsten Amende. Synthese von SC-Code aus SyncCharts. Diploma thesis,
Christian-Albrechts-Universität zu Kiel, Department of Computer Science,
May 2010. http://rtsys.informatik.uni-kiel.de/~biblio/downloads/

theses/tam-dt.pdf.

[And96] Charles André. SyncCharts: A visual representation of reactive behaviors.
Technical Report RR 95–52, rev. RR 96–56, I3S, Sophia-Antipolis, France,
Rev. April 1996.

[AT00] Jauhar Ali and Jiro Tanaka. Converting Statecharts into Java code. In
Proceedings of the Fourth World Conference on Integrated Design and
Process Technology (IDPT ’99), Dallas, Texas, June 2000. Society for
Design and Process Science (SDPS).

[BC84] Gérard Berry and Laurent Cosserat. The ESTEREL Synchronous Pro-
gramming Language and its Mathematical Semantics. In Seminar on
Concurrency, Carnegie-Mellon University, volume 197 of LNCS, pages
389–448. Springer-Verlag, 1984.

[BCE`03] Albert Benveniste, Paul Caspi, Stephen A. Edwards, Nicolas Halbwachs,
Paul Le Guernic, and Robert de Simone. The Synchronous Languages
Twelve Years Later. In Proceedings of the IEEE, Special Issue on Embedded
Systems, volume 91, pages 64–83, January 2003.

[Ber99] Gérard Berry. The Constructive Semantics of Pure Esterel. Draft Book,
1999. ftp://ftp-sop.inria.fr/esterel/pub/papers/constructiveness3.

ps.

[Ber00] Gérard Berry. The Esterel v5 Language Primer, Version v5_91. Cen-
tre de Mathématiques Appliquées Ecole des Mines and INRIA, 06565
Sophia-Antipolis, 2000. ftp://ftp-sop.inria.fr/esterel/pub/papers/

primer.pdf.

[CHP06] Jean-Louis Colaço, Grégoire Hamon, and Marc Pouzet. Mixing Signals
and Modes in Synchronous Data-flow Systems. In ACM International
Conference on Embedded Software (EMSOFT ’06), Seoul, South Korea,
October 2006.

[CPP05] Jean-Louis Colaço, Bruno Pagano, and Marc Pouzet. A conservative exten-
sion of synchronous data-flow with State Machines. In ACM International

113

http://rtsys.informatik.uni-kiel.de/~biblio/downloads/theses/tam-dt.pdf
http://rtsys.informatik.uni-kiel.de/~biblio/downloads/theses/tam-dt.pdf
ftp://ftp-sop.inria.fr/esterel/pub/papers/constructiveness3.ps
ftp://ftp-sop.inria.fr/esterel/pub/papers/constructiveness3.ps
ftp://ftp-sop.inria.fr/esterel/pub/papers/primer.pdf
ftp://ftp-sop.inria.fr/esterel/pub/papers/primer.pdf

Bibliography

Conference on Embedded Software (EMSOFT’05), Jersey City, NJ, USA,
September 2005.

[Dud12] Björn Duderstadt. Sccharts: A sequentially constructive statecharts dialect.
Diploma thesis, Christian-Albrechts-Universität zu Kiel, Department of
Computer Science, 2012.

[Edw03] Stephen A. Edwards. Tutorial: Compiling Concurrent Languages for Se-
quential Processors, 2003. URL: http://www.cs.columbia.edu/~sedwards/
papers/edwards2003compiling.pdf.

[Gre12] Tim Grebien. Managing academic eclipse-based projects. Diploma thesis,
Christian-Albrechts-Universität zu Kiel, Department of Computer Science,
2012.

[Har87] David Harel. Statecharts: A visual formalism for complex systems. Science
of Computer Programming, 8(3):231–274, June 1987.

[Har13] Wahbi Haribi. A synccharts editor based on yakindu sct. Master thesis,
Christian-Albrechts-Universität zu Kiel, Department of Computer Science,
2013.

[Lee06] Edward A. Lee. The problem with threads. IEEE Computer, 39(5):33–42,
2006.

[Mat10] Michael Matzen. A generic framework for structure-based editing of graph-
ical models in Eclipse. Diploma thesis, Christian-Albrechts-Universität
zu Kiel, Department of Computer Science, March 2010. http://rtsys.

informatik.uni-kiel.de/~biblio/downloads/theses/mim-dt.pdf.

[MFvH10] Christian Motika, Hauke Fuhrmann, and Reinhard von Hanxleden. Seman-
tics and execution of domain specific models. In 2nd Workshop Methodische
Entwicklung von Modellierungswerkzeugen (MEMWe 2010) INFORMATIK
2010, GI-Edition – Lecture Notes in Informatics (LNI), pages 891–896,
Leipzig, Germany, September 2010. Bonner Köllen Verlag.

[Mot09] Christian Motika. Semantics and execution of domain specific models—
KlePto and an execution framework. Diploma thesis, Christian-
Albrechts-Universität zu Kiel, Department of Computer Science, Decem-
ber 2009. http://rtsys.informatik.uni-kiel.de/~biblio/downloads/

theses/cmot-dt.pdf.

[Mül10] Martin Müller. View management for graphical models. Master thesis,
Christian-Albrechts-Universität zu Kiel, Department of Computer Sci-
ence, December 2010. http://rtsys.informatik.uni-kiel.de/~biblio/

downloads/theses/mmu-mt.pdf.

114

http://www.cs.columbia.edu/~sedwards/papers/edwards2003compiling.pdf
http://www.cs.columbia.edu/~sedwards/papers/edwards2003compiling.pdf
http://rtsys.informatik.uni-kiel.de/~biblio/downloads/theses/mim-dt.pdf
http://rtsys.informatik.uni-kiel.de/~biblio/downloads/theses/mim-dt.pdf
http://rtsys.informatik.uni-kiel.de/~biblio/downloads/theses/cmot-dt.pdf
http://rtsys.informatik.uni-kiel.de/~biblio/downloads/theses/cmot-dt.pdf
http://rtsys.informatik.uni-kiel.de/~biblio/downloads/theses/mmu-mt.pdf
http://rtsys.informatik.uni-kiel.de/~biblio/downloads/theses/mmu-mt.pdf

Bibliography

[MvHH13] Christian Motika, Reinhard von Hanxleden, and Mirko Heinold. Pro-
gramming deterministice reactive systems with Synchronous Java (invited
paper). In Proceedings of the 9th Workshop on Software Technologies for
Future Embedded and Ubiquitous Systems (SEUS 2013), IEEE Proceedings,
Paderborn, Germany, June17/18 2013.

[Sch11] Christoph Daniel Schulze. Optimizing automatic layout for data flow
diagrams. Diploma thesis, Christian-Albrechts-Universität zu Kiel, Depart-
ment of Computer Science, July 2011.

[Spö09] Miro Spönemann. On the automatic layout of data flow diagrams. Diploma
thesis, Christian-Albrechts-Universität zu Kiel, Department of Computer
Science, March 2009. http://rtsys.informatik.uni-kiel.de/~biblio/

downloads/theses/msp-dt.pdf.

[SSvH12a] Christian Schneider, Miro Spönemann, and Reinhard von Hanxleden. Tran-
sient view generation in Eclipse. In Proceedings of the First Workshop on
Academics Modeling with Eclipse, Kgs. Lyngby, Denmark, July 2012.

[SSvH12b] Christian Schneider, Miro Spönemann, and Reinhard von Hanxleden. Tran-
sient view generation in Eclipse. Technical Report 1206, Christian-Albrechts-
Universität zu Kiel, Department of Computer Science, June 2012. ISSN
2192-6247.

[TAvH11] Claus Traulsen, Torsten Amende, and Reinhard von Hanxleden. Compiling
SyncCharts to Synchronous C. In Proceedings of the Design, Automation
and Test in Europe Conference (DATE’11), pages 563–566, Grenoble,
France, March 2011. IEEE.

[vHMA`13a] Reinhard von Hanxleden, Michael Mendler, Joaquin Aguado, Björn Dud-
erstadt, Insa Fuhrmann, Christian Motika, Stephen Mercer, and Owen
O’Brien. SCCharts—Sequentially constructiove statecharts for safety-
critical applications. 2013.

[vHMA`13b] Reinhard von Hanxleden, Michael Mendler, Joaquin Aguado, Björn Dud-
erstadt, Insa Fuhrmann, Christian Motika, Stephen Mercer, and Owen
O’Brien. Sequentially Constructive Concurrency—A conservative extension
of the synchronous model of computation. In Proceedings of the Design,
Automation and Test in Europe Conference (DATE’13), Grenoble, France,
March 2013. IEEE.

[Was03] Andrzej Wasowski. On efficient program synthesis from Statecharts. In
Proceedings of the 2003 ACM SIGPLAN Conference on Language, Com-
pilers, and Tools for Embedded Systems (LCTES’03), volume 38, issue 7,
June 2003. ACM SIGPLAN Notices.

115

http://rtsys.informatik.uni-kiel.de/~biblio/downloads/theses/msp-dt.pdf
http://rtsys.informatik.uni-kiel.de/~biblio/downloads/theses/msp-dt.pdf

Bibliography

[Was04] Andrzej Wasowski. Flattening statecharts without explosions. In LCTES
’04: Proceedings of the 2004 ACM SIGPLAN/SIGBED conference on
Languages, compilers, and tools for embedded systems, pages 257–266, New
York, NY, USA, 2004. ACM Press.

116

Index

ABO, 4
S, 62
SCCharts, 23
SCG, 36, 50
SCL, 44
Sequential SCL, 60

ABRO, 3

Basic Block Analysis, 53
Data Dependencies, 57
Defintion, 53
Examples, 55
Join Synchronizer, 54
Unschedulable Basic Blocks, 59

Code Generation Approaches, 9
SCADE, 10
SyncCharts, 10

Conslusion
Future work, 107
Summary, 107

Dependency Analysis, 51
Concurrency, 51

Dynamic Language Extensions, 69
Basic Block Extension, 74
Dependency Extension, 70

Eclipse
Eclipse Modeling Framework, 12
Graphical Editing Framework, 12
Graphical Modeling Framework, 15
The Eclipse Project, 11
Xtend, 16
Xtext, 15

Esterel, 2
Experimental Results, 97

Common Example Evaluation, 102

Guard Evaluation, 104
Scaling Approach Evaluation, 99
Test Set-up, 98

Implementation
Language defintions, 63
Optimizations, 88
SCG Synthesis, 79
SCL Grammar, 63
SCL Transformation, 82
Tick Function, 91

KIELER, 5, 17
Demonstrators, 18
KIEM, 19
Klay Layered, 18
KLighD, 18
Layout, 18
Pragmatics, 17
S, 19
Semantics, 17
Yakindu, 20

Metamodel, 13

Outline, 7

Problem Statement, 6

Related Work, 9

SCCharts, 4, 22
Core SCCharts, 23
Extended SCCharts, 25
Normalized Core SCCharts, 39

SCG, 33
Dependencies, 34
Figures, 33
Graph Synthesis, 49

117

Index

Options, 35
SCL, 27

Annotations, 31
Expressions, 30
Extensions, 37
Instructions, 28
Metamodel, 31
Optimizations, 46
Sequential SCL, 39

Sequential Constructiveness, 2, 26
S-admissibility, 27
S-constructiveness, 27
Variable accesses, 26

SyncCharts, 3, 4
Elements, 3
The Signal Coherence Law, 4

Synchronous Languages, 1

The Synchrony Hypothesis, 2
Transformations, 41

Core CSCCharts to SCL, 43
Extended SCCharts Expansion, 42
S, 61
Sequential SCL, 60

Used Technologies, 11

Yakindu Statechart Editor, 19

118

	Introduction
	Synchronous Languages
	Sequential Constructiveness
	SyncCharts
	SCCharts

	Model-driven Development with KIELER
	Problem Statement
	Outline of this Document

	Related Work
	General Code Generation Approaches
	SyncCharts Code Generation
	SCADE Code Generation

	Used Technologies
	The Eclipse Project
	Graphical Editing Framework
	Eclipse Modeling Framework
	Graphical Modeling Framework
	Xtext
	Xtend

	Kiel Integrated Environment for Layout Eclipse Rich Client
	KLay Layered
	KLighD
	KIEM
	Synchronous

	Yakindu Statechart Editor
	KIELER SyncCharts Editor based on Yakindu

	Sequentially Constructive Code Generation
	Language Concepts Introduction
	SCCharts
	Sequential Constructiveness
	The Sequentially Constructive Language
	The Sequentially Constructive Graph
	SCL Metamodel Extensions
	Sequential Sequentially Constructive Language
	Normalized Core SCCharts

	Sequential Constructiveness Transformations
	Extended SCCharts Expansion
	Core SCChart to SCL Transformation
	SCL Code Optimization
	SCG Synthesis
	Dependency Analysis
	Basic Block Analysis
	Sequential SCL Transformation
	SCL to S Transformation

	Sequential Constructiveness Code Generation Implementation
	The Sequentially Constructive Language
	SCL Grammar in Xtext

	Dynamic Language Extensions
	The SCL Dependency Extension
	The SCL Basic Block extension

	Synthesis of the Sequentially Constructive Graph
	Statement Sequence Figures Creation
	Figure Creation
	Basic Block Modifier Visual Post-processing

	Sequentially Constructive Transformations
	Core SCCharts to SCL Transformation
	SCL Optimizations
	The Sequential Tick Function

	Experimental Results
	Scaling Approach Evaluation
	Common Example Evaluation
	Guard Evaluation

	Conclusion
	Summary
	Future work

	Acknowledgements
	Bibliography

