
Improved
Vertical Segment Routing

for Sugiyama Layouts

Thies Weber

Bachelor Thesis
March 2019

Real-Time and Embedded Systems
Prof. Dr. Reinhard von Hanxleden
Department of Computer Science

Kiel University

Advised by
Dipl.-inf. Christoph Daniel Schulze

Selbstständigkeitserklärung

Hiermit erkläre ich, dass ich die vorliegende Arbeit selbstständig verfasst und keine anderen als die
angegebenen Quellen und Hilfsmittel verwendet habe.

Kiel,

iii

Abstract

Automatic layout algorithms represent a vital enhancement for taking care to maintain good styles
for constantly growing graph structures. For instance, the ELK Layered algorithm achieves this by
arranging all nodes in subsequent layers. This way it provides in the end a notion of direction which
the majority of edges will stick to. For routing the edges it may use the orthogonal edge routing, a
style drawing edges only with horizontal and vertical segments. The orthogonal edge routing assumes
each edge to consist of either one horizontal segment or otherwise of exactly three—one vertical and
two horizontal ones. Such a vertical segment bridges the complete gap in height, which must be
overcome for an edge to reach its target, at once. This thesis will prove that in specific cases of equal
port positions this style of routing may lead edges to partially overlap and thus to be ambiguous.
It will provide a solution consisting of two additional segments in order to enhance one of the two
overlapping edges’ flexibility for bridging the height-gap. The edge routing determines a layout’s
width whereas more segments mean more required space for edges. Hence, an important step of this
solution involves a careful consideration of alternative placements for the additional segments to not
stretch the final layout more than necessary. This holds especially for the new horizontal segment.
Also it tries to not produce additional crossings in the process. For this matter the thesis provides a
number of theoretical discussions about additional crossings and layout settings leading to them. It
turns out that additional crossings can only show up if there is a hyperedge involved in the overlap in
the first place. But still the new algorithm is able to handle those without causing additional crossings
in most cases.

v

Contents

1 Introduction 1
1.1 Orthogonal Edge Routing . 3
1.2 Related Work . 3
1.3 Outline . 4

2 Basic Knowledge 5
2.1 Description of Terms and Technologies . 5

2.1.1 General Graph Structure . 5
2.1.2 Layout . 5
2.1.3 Eclipse Layout Kernel . 7
2.1.4 KIELER and SCCharts . 8

2.2 The Sugiyama Approach . 9
2.2.1 Phase 1: Cycle Breaking . 9
2.2.2 Phase 2: Layer Assignment . 10
2.2.3 Phase 3: Crossing Minimization . 11
2.2.4 Phase 4: Node Placement . 12
2.2.5 Phase 5: Edge Routing . 12

2.3 Orthogonal Edge Router . 12
2.3.1 In General . 13
2.3.2 The Dependency Graph . 15
2.3.3 Assigning the Routing Slots . 17

3 Theory 21
3.1 The Problem . 21

3.1.1 Critical Cycles . 22
3.2 Relevance and Reproduction . 23

3.2.1 The Simple Case and Hierarchies . 24
3.2.2 A More Likely Case . 25
3.2.3 Conclusion and Relevance . 25

3.3 Tasks and Challenges . 26
3.3.1 Thresholds and edge-to-edge spacing (EES) . 28
3.3.2 Additional Segments . 29

4 Implementation 35
4.1 General Structure . 35
4.2 Splitting of Hypernodes . 36

4.2.1 Rearrangements . 37
4.3 Problem Detection . 39
4.4 Solve Overlaps . 41

4.4.1 Placing the Link Segments . 42
4.5 Adjustments to Thresholds . 43

vii

Contents

5 Evaluation 47
5.1 General Examples . 47
5.2 Hyperedges and Crossings . 48
5.3 Saving Routing Slots . 48
5.4 Minimizing the Port Distances . 49

6 Conclusion and Future Work 51
6.1 Conclusion . 51
6.2 Future Work . 51

6.2.1 Reconsider Relevance of Crossings . 51
6.2.2 Uniting Hyperedges . 52

Bibliography 55

viii

List of Figures

1.1 An example of a mind map becoming unstructured during the process of creation.
Potential new edges are highlighted as dashed lines. 1

1.2 A graph layed out with the layered algorithm, but with two different edge routings. . . 2
1.3 The problem of overlapping horizontal segments and a proposed solution. 3

2.1 General descriptions of a layout’s components. 6
2.2 Examples of bad layouts. 7
2.3 Hierarchical structure of an ElkNode. Source: [Sch] . 7
2.4 A graph with three nodes and two edges described by two different representations. . 8
2.5 An example of Sequentially Constructed Statecharts (SCCharts) with data flow between

regions R1, R2, and R3 routed by the orthogonal edge routing. 9
2.6 Comparison of a cyclic graph (left) and its linear representation (right). 10
2.7 An example layer assignment. Note that this is only meant as a conceptionally sketch.

The nodes have no order until phase 3 has finished and yet no specific placement at all. 11
2.8 Example layer sweep during a crossing minimization. The loose layer is highlighted in

yellow and the nodes to be ordered hold their average weight. 12
2.9 Two different routing strategies of a setting given by the node placement. 13
2.10 Routing an edge from n1 to n2, both with an explicitly defined port, using the orthogonal

edge routing. 14
2.11 An orthogonal layout with highlighted routing slots and routing spaces (RS). 14
2.12 The relevance of ordering multiple vertical segments. 15
2.13 Four different outcomes during comparison of vertical segments v1 and v2. 16
2.14 A graph with the corresponding dependency graph. Note that v3 and v6 are theoretical

vertical segments not relevant for the dependencies and thus left out in visualized
dependency graphs. 18

2.15 The assignment of routing slots which leads to Figure 2.14a and relies on the acyclic
dependency graph Figure 2.14c. There are two potential longest paths: (v4, v2, v1) and
(v4, v2, v5), both of size 3. Corresponding to the enumeration, the edges of lighter color
hint at the chronological order of steps. 18

2.16 Construction of a hyperedge forming the same hypernode. The hyperedge is constructed
by two regular edges sharing the same source port. Both vertical segments touch and
construct a bigger vertical segment v. 19

3.1 The Simple Case. 21
3.2 Algorithm’s steps for routing the Simple Case’s edges with hypernodes v1, v2. 22
3.3 The Cycle Case caused by three dependencies each avoiding an overlap. They form a

cycle, which is why the cycle breaking must reverse one of them. 23
3.4 Ordering of hypernodes v1, v2, v3 for the Cycle Case. 23
3.5 Creating dependency between two hypernodes suffering from overlap. 24
3.6 Things to consider when reproducing Simple Case with ports p1, p2, q1 and q2. 24
3.7 An example with fixed port positions caused by its hierarchical structure. 26

ix

List of Figures

3.8 The 4Nodes Case without explicitly defined ports. 27
3.9 Orthogonal layout with occurrences of edge-to-edge spacing (EES) and explicitly ren-

dered dummy nodes. 28
3.10 Two graphs with horizontal segments coming too close to each other. 29
3.11 Different approaches of placing additional horizontal segments highlighted as dashed

line and bounded to vertical segments v2, v2’ and v2”. 30
3.12 The Nested Case. The name derives on the fact that there is practically a Simple Case

nested in another Simple Case. 30
3.13 Try to shorten the routing space of the Nested Case with individual placement for link

segments highlighted as dashed lines. 31
3.14 Relation between split regular edges and crossings with edges e1, e2, e3, and e4. 32
3.15 Relation between hyperedges and crossings with hyperedge e1 and regular edge e2. . 33

4.1 Integrating the new functionality in the given algorithm. The top level nodes represent
the current algorithm whereas the dashed nodes are new features. 35

4.2 Simplified class diagram showing the most important components and their relations. 36
4.3 Description of hypernode’s values, with sourcePosis and targetPosis being the list of

source and target segments’ positions. 37
4.4 Applying new dependencies. 38
4.5 Updating dependencies d and two-cycle t after splitting v1. 38
4.6 Checking d for being a conflict. However, the distances e and f are equal for both

orderings and thus do not care the arrangement. 39
4.7 Pseudo code for detection of overlaps during the comparison of hypernodes v1, v2 in

order to create a dependency. 40
4.8 Detecting potential areas to place link segments in. 41
4.9 Layout rendered with the old algorithm and showing specific calculation for the two

thresholds. Overlapping threshold (OTi) is computed with the minimal difference
between horizontal segments mi for routing space i with i P {1, 2}. The conflict
threshold (CT) is computed using the EES. 45

4.10 Setting for error-prone configuration of overlapping threshold when using a constant
¥ 0.5. Source segments’ vertical positions are hinted at by dashed lines, target segments’
positions by solid ones, with m = n being their vertical distances used to compute
the overlapping threshold (OT). The maximum space between horizontal segments is
named d. 45

5.1 Three graphs rendered with the new algorithm solving already introduced cases. . . . 47
5.2 Two graphs containing hyperedges, each represented by a layout computed with the

old algorithm (left) as well as with the new one (right). 48
5.3 The Nested Case with a layout by the new algorithm. Similar to the theoretical solution

hinted at in Figure 3.13b (see page 31). 49
5.4 The Cascade Case. 49
5.5 The Nested Case in a more complex variant. Now there are practically eight Simple

Cases nested in one graph while maintaining the nodes’ size. 50
5.6 The graph from Figure 5.5b with different node sizes. 50

6.1 Layout rendered with the new algorithm. One of the crossings would be avoidable if
using splitting. 52

6.2 Try to define two semantically different hyperedges sharing a number of ports. 53

x

List of Figures

6.3 Two approaches for solving the case introduced by Figure 6.2. 53
6.4 A detail of a modal model in Ptolemy II. There is a fan segment appended to the

TimedPlotter in order to divide both edges connected to its port. Source: [Lee09]. . . . 54

xi

Acronyms

EES edge-to-edge spacing

ELK Eclipse Layout Kernel

ELKT ELK Text Format

FS Feedback Set

FVS Feedback Vertex Set

JSON JavaScript Object Notation

KIELER Kiel Integrated Environment for Layout Eclipse RichClient

RS routing spaces

RTSYS Real-Time and Embedded Systems Group

SCCharts Sequentially Constructed Statecharts

xiii

Chapter 1

Introduction

In theory a graph is a conceptional mathematical structure bringing things in relation. It consists
of two sets of vital structures: the vertices (or nodes) represent elements of the relation and the edges
establish relations between vertices. But the human brain usually can understand things better when
seeing it, instead of descriptive mathematical structures. This is why there is a necessity for graphical
representations. Those drawn graphs are quite helpful to understand and explain complex relations
within their theoretical and practical setting. But for this matter it is vital for the visualization to be
comprehensible, which is the more difficult the bigger the graph is. Consider for example the drawing
process of a mind map, which is a common procedure of developing a graph directly during its
visualization. By doing so the graph may become more and more complex and thus unstructured,
since there is usually a limited area to draw on. Plus there could be new relations added later conflicted
by the initially chosen structure. An exemplary scenario is shown in Figure 1.1. There is a mind map
describing a number of animals divided by land-living and marine-living ones. After beginning to
draw, creating the first relations, and noting the first animals the drawing person noticed that a turtle

 land-living

 lion
 rabbit

 dog

 penguin

 marine life

 dolphin
 starfish

 turtle

 width of canvas

he

ig
ht

 o
f c

an
va

s?

?

?

 some animals

Figure 1.1. An example of a mind map becoming unstructured during the process of creation. Potential new
edges are highlighted as dashed lines.

1

1. Introduction

 Layer 1 Layer 2 Layer 3

n1
n3

n4
n2

n5

(a) Layed out with polyline edge routing. The layers are
explicitely highlighted.

n1

n2
n3

n4

n5

(b) Layed out with orthogonal edge routing.

Figure 1.2. A graph layed out with the layered algorithm, but with two different edge routings.

could live on land as well as in the oceans. In order to correct the structure it is necessary to add
a new relation between turtle and the land-living node. But since the layout is already set the new
edge now crosses other edges or nodes or go a long way around the other nodes, which is not longer
comprehensible or at least bad style. The best solution would be to rearrange the node turtle and place
it below the node penguin, but this would be additional work and would be quite complicated if the
graph is for example drawn on paper. To avoid this problem one could create this mind map directly
on a computer, so it is possible to simply rearrange the structure. But there is still the problem of how
to arrange it and of course the necessity of doing this regularly in order to have the expanding graph
be comprehensive at all times. This is where automatic layout may come in handy.

Automatic layout relies on an algorithm to place nodes and edges, which takes quite often as much
time as the development of the graph itself. This is why Kiel University’s Real-Time and Embedded
Systems Group (RTSYS) developed the framework Eclipse Layout Kernel (ELK)1 as an infrastructure to
compute the layout of graph structures. But what should such a layout look like? Since a graph as
a conceptional structure is so diversified in its representation, there could be numerous additional
requirements for a good layout relying on the actual relation a graph is standing for. For example the
nodes of a family tree should be drawn in the chronological order of generations or birth dates, while
it is necessary for a subway infrastructure’s map to somewhat resemble geographical positions of the
stations. This is why there cannot be one ultimate automatic graph layout algorithm and thus why ELK

provides a number of layout algorithms as well as the opportunity of implementing and integrating a
very own one. This thesis will discuss a problem introduced in Section 1.1, dealing with one of those
provided layout algorithms: the layered algorithm.

The layered algorithm is based on the Sugiyama approach [STT81], which is also called the layered
approach. It relies on a partitioning of its nodes in layers which results in a layout with a notion of
direction often used to show specific data flows between components, which I will refer hereinafter as
routing direction. A layer is a subset of the graph’s nodes and arranges them on the same level. An
example is given by Figure 1.2a. There are three layers—the first one contains the nodes n1 and n2,
the second n3 and n4 and the last only n5. In order to make descriptions easier I assume the routing
direction to always be from left to right. This means the layers are ordered horizontally and each layer
arranges its nodes in a vertical order. Of course ELK’s actual implementation has to work for all four

1https://www.eclipse.org/elk/

2

1.1. Orthogonal Edge Routing

n1 n2

(a) Problem: an overlapping occurs.

n1 n2

(b) Solution: Additional segments and space.

Figure 1.3. The problem of overlapping horizontal segments and a proposed solution.

directions, though.
The layered approach runs through five phases every one of them dealing with a specific problem.

The first four phases are amongst other things about assigning the graph’s nodes to aforementioned
layers and determining their placement. The last phase is called edge routing and lays out edges
between those layers. This phase is what this work will be about. Since the algorithm already ran
through the other phases once the edges get routed, the following assumptions hold: First, every node
has a layer and its node ordering is fixed and second, the edge routing only has to care about the
space between adjacent layers. A more precise description of the layered approach and its phases is
given in Section 2.2.

1.1 Orthogonal Edge Routing

The layered algorithm runs through five phases and thus through five algorithms solving the specific
problems. It is important to note that every one of these algorithms is replaceable by another one
which solves the problem as well, but maybe in a different way and with different results. For example
in Figure 1.2a the so-called polyline edge routing was used. However, the specific problem I am going
to discuss will be about orthogonal edge routing shown in Figure 1.2b. The orthogonal character of
this approach leads every edge to contain only vertical and horizontal segments. Further it lets every
regular edge, which cannot be drawn as straight horizontal edge, have exactly three segments in
total. It turns out that this feature can become problematic in some cases. This problem is shown
in Figure 1.3a. There are two horizontal segments overlapping each other. I already mentioned that
every graph may have special requirements for its layout to be good, but one characteristic is equal for
almost every graph: it must not have overlapping edges. This is because they would be impossible to
distinguish and thus to comprehend. Avoiding this means adding more segments as in Figure 1.3b.
During this thesis I will explain the orthogonal edge router’s functionality and search for reasons why
this problem may occur. Since the orthogonal edge routing assumes every edge to have not more than
one vertical segment, finding a solution may cause additional problems in the process.

1.2 Related Work

During my work I will cover a number of topics such as orthogonal edge routing and graph visu-
alization in general. As for the former, Georg Sander [San04] introduced an approach of routing
orthogonal hyperedges, which is an edge with multiple sources or targets, within a layered graph
layout. It arranges vertical segments with a specific internal graph structure, the segment crossing graph.
This is an idea the orthogonal edge router benefits from by using the approach for its own structure,
which will be explained in more detail during Section 2.3. Furthermore Sander provides an intuitive

3

1. Introduction

style of layout for drawing hyperedges. He proposes to draw a hyperedge for the longest possible
path as single edge and to perform the actual forking only right before reaching its sources or targets.
This idea inspired my handling with hyperedges when adding new segments which is described in
Section 3.3.2.

Visualization of graphs is a very complex topic due to the lack of generalization. Graphs are
conceptional structures which can be utilized for almost everything. Each use case comes with its own
requirements for a good layout. However, there are actually a number of common criteria applicable
for almost every graph. Characteristics like symmetry or the avoidance of overlaps and crossings
are generally considered as indicator for good layouts. Battista et al. [BET+98] propose a number of
notions a good layout should adhere to, as well as approaches and algorithms for automatic layout
algorithms used as examples to explain the layered approach in Section 2.2. While overlaps are trivial
cases of making a graph’s components incomprehensible, which I will show on examples during my
work, there is still the question how severe crossings and symmetry influence a layout’s clarity. This is
a matter Purchase et al. [PFJ95] dealt with by performing empirical studies to validate the hypotheses
of increasing a graph’s understandability due to reduction of crossings and providing local symmetry.
While they indeed provide evidence for graphs benefiting from crossing minimization, the advantages
of symmetry as a general way for enhancing clarity remain unproven.

1.3 Outline

After introducing the problem this work will begin with giving the basic information about the layered
approach and the orthogonal edge routing in Chapter 2. The reasons why the proposed problem’s
solution may not be as easy to realize as it seems will be discussed in Chapter 3. Further I will
discuss in this chapter why the problem shows up in the first place and prepare the actual process
of implementation by analyzing a number of problems I might encounter. The actual process of
implementation will be proposed during Chapter 4, its evaluation in Chapter 5. Finally in Chapter 6 I
will discuss a number of things, which could be realized or further improved in the future.

4

Chapter 2

Basic Knowledge

This chapter is meant to provide the theoretical basic knowledge needed to understand this thesis.
For this matter it starts with introducing a number of terms and definitions in order to understand
graphs as theoretical but also as visual structures. Additionally I present technologies I will use during
this thesis. Afterwards I explain the Sugiyama approach I already hinted at in Chapter 1. Finally the
orthogonal edge router is explained, the algorithm this thesis relies on.

2.1 Description of Terms and Technologies

Before discussing the theoretical basics and the algorithm to work with, I will first outline the
terminology. This contains the establishment of terms and introducing a number of technologies of
actual relevance for this thesis.

2.1.1 General Graph Structure

A graph is a conceptional structure representing a relation and consists of vertices and edges. Amongst
other things the following chapter will be about extending its structure, but initially I define the most
important terms needed to work properly with it.

In the core it is defined as pair (V, E) with V being the set of vertices and E � P(V)�P(V) the
set of edges. In the literature each graph is either directed or undirected, whereas this thesis assumes
it to be directed at any time. Hence for an edge e and two vertices s, t hold that e = (s, t) � (t, s). So
the edge has an explicitly defined source s and target t. Source and target could either be a node or a
list of nodes. An edge with multiple sources or targets is called hyperedge.

Further I define two functions in : V Ñ P(E), v ÞÑ {(x, v) | x P V} with in(v) representing all
its incoming edges as well as out : V Ñ P(E), v ÞÑ {(v, x) | x P V} with out(v) representing all its
outgoing ones. A vertex v with out(v) = ∅ is called a sink.

Furthermore I define the term path as sequence of vertices (v1, . . . , vi) for which holds that
{v1, . . . , vi} � V, {(v1, v2), . . . , (vi�1, vi)} � E, and i P N¡2 being its length. A path (v1, . . . , vi, v1) is
called a cycle.

2.1.2 Layout

As a layout this work will refer to a graph’s computation of relative placements in order to visualize it.
For this matter there are given dimensions width and height. Within those dimensions each vertex gets
arranged by a specific Cartesian coordinate (x, y) with 0 ¤ x ¤ dw and 0 ¤ y ¤ dh and dw, dh being
the dimensions. Further it has a size, too, also consisting of width and height.

The most important components are hinted at in Figure 2.1. In general an edge is defined as pair
of nodes (s, t) and is routed as straight line between those with an arrow head pointing at its target.
Since nodes in a layout are no longer theoretical points but have actual shapes, it is important to

5

2. Basic Knowledge

 anchor

 edge

 bendpoint

 node

 X

Y
0

 segment

 coordinate axes / dimensions

(a) A rendered layout and its components.

 junction
 point

(b) A rendered hyperedge.

Figure 2.1. General descriptions of a layout’s components.

define where the edge is linked to the node by anchor points. So an edge starts at its source’s anchor
point and ends at its target’s one, between both there may be bendpoints. Such a bendpoint bounds the
edge partially to a coordinate (x, y) and thus divides it in segments. This makes it a very important
tool for routing edges, since now an edge could be defined as sequence (s, b1, . . . , bn, t) with s, t being
anchors and bi being a bendpoint with i P {1, . . . , n} and n P N. Between those each segment is drawn
as straight route from one point to another. In fact an edge may be a curve as well, but most of this
work’s theoretical discussions regard to angular ones.

As for hyperedges, besides the fact that they have multiple sources or targets those may be indicated
by so-called junction points. A junction point is used as a semantic link between two segments and to
beware the structure for being mistaken as crossing or overlap.

Layouts rely on a specific notion of good and bad. What a good layout may look like might be a
matter of opinion. As described in the introduction it might be as well a matter of which kind of graph
is visualized in the first place. There are a few general characteristics marking a good layout, though.
In order to be comprehensible each layout should stick to those. The following three characteristics are
ordered in their relevance of severity.

1. Avoid overlaps
Avoiding overlaps is a very serious matter, since they make a layout in general incomprehensible.
Those could happen to every component of the graph, for instance between two edges’ segments
like shown in Figure 2.2a. A node could be overlapped as well, either by an edge or another node.

2. Use as few as possible bendpoints [BET+98, Chapter 2]
Every edge should be as short as possible to be comprehensible [PFJ95]. Hence this notion should
only be broken, if it could avoid another. In the following work this will be only done if it could
avoid an overlap.

3. Avoid crossings
If possible crossings should be avoided, since two edges crossing each other are hard to comprehend
as well [PFJ95]. There is an example of a crossing shown in Figure 2.2b. However, in most layouts the
chances of crossing edges are accepted in order to adhere to the aforementioned second approach
as it is done in Figure 2.2c.

Note that those are only examples, but the following work will stick to this notion and its given
relevance.

6

2.1. Description of Terms and Technologies

(a) Two edges overlapping
each other partially.

(b) Two edges crossing each
other.

(c) Adding a bendpoint to an edge to prevent
an overlapping of the node. The crossing is not
avoided. Both could be avoided with a rearrange-
ment of node locations.

Figure 2.2. Examples of bad layouts.

n2

n1

n3

n4 n5

n6

Simple node

Hierarchical node

Simple port

Simple edge

Hierarchical port

Short hierarchical edge

Self-Loop

n0 p1

p2

Long hierarchical edge

Figure 2.3. Hierarchical structure of an ElkNode. Source: [Sch]

2.1.3 Eclipse Layout Kernel

In Chapter 1 the Eclipse Layout Kernel (ELK) was introduced as framework providing an infrastructure
for automatic graph layouts. For this matter it provides a number of automatic layout algorithms,
such as the layered algorithm, as well as the opportunity of implementing a new one. For this matter
there is the ElkNode which is the graph structure used for the layout’s actual computation. Every
graph supposed to be laid out by ELK must be translated to an ElkNode. Afterwards it can simply be
translated back by extracting the computed coordinates and sizes.

ElkNode relies on hierarchy and is thus meant as nested graph structure. Each instance could be
either a simple node or otherwise hierarchical and hold its own graph. An example is shown in
Figure 2.3 hinting at the components. Hence an ElkNode is a tree, with the root node being the main
graph and each included node might include own graphs as well. A layout process will run recursively
and hence starts always with the most nested graphs. A very mighty tool provided by the ElkNode is
the management of additional options and properties. Those could be applied via the IPropertyHolder.
This way one may change for instance the intended algorithm used for the layout or the routing phase
if using the layered algorithm. Further note that the ports mentioned in Figure 2.3 stand for the anchors
linking the edges to nodes. For now I leave the definition of an edge as given in Section 2.1.1 and will

7

2. Basic Knowledge

1 // apply additional layout options

2 algorithm: layered

3 edgeRouting: ORTHOGONAL

4
5 node n1 // define nodes

6 node n2 {

7 layout [size: 30, 50] // define size

8 }

9 node n3 {

10 node n4 // nested graph

11 }

12
13 edge n3 -> n2 // define edges

14 edge n3 -> n1

(a) As textual representation in ELK Text Format (ELKT).

n1

n2n4

n3

(b) As a rendered layout.

Figure 2.4. A graph with three nodes and two edges described by two different representations.

extend it for using ports later in Section 2.3.
Such an ELkNode could be delivered to ELK directly or for example as JavaScript Object Notation

(JSON). Besides, there is the ELK Text Format (ELKT) letting one define a graph directly in a very simple
textual structure. An example for such a definition and the resulting layout is given in Figure 2.4.
Nodes can be simply defined with the keyword node followed by a single sequence of characters
defining its name which may be displayed as label in the final visualization shown in Figure 2.4b.
Edges can be defined with the keyword edge as it is done in lines 12 and 13 bringing the defined nodes
in relation. Optional values and properties can be passed to the graph, which is the root ElkNode, as it
is done in lines 1 and 2. As for all other nodes, they can be include additional options as well. In line 9
the node n3 defines a nested graph consisting of the simple node n4, whereas for the node n2 there is
an explicitly node size applied. Note that in the following work I will not explicitly define any node
sizes most of the time, when hinting at a textual graph structure an example relies on. If not stated
otherwise the nodes use an equal default node size as n1 does.

2.1.4 KIELER and SCCharts

An example for the usage of ELK and especially its layered algorithm is the Kiel Integrated Environment
for Layout Eclipse RichClient (KIELER)1. This is a tool for modelling and visualizing Sequentially
Constructed Statecharts (SCCharts) and further a research project of the RTSYS group. SCCharts is a visual
language for specifying safety-critical reactive system [HDM+14] and are an enhancement of Statecharts
introduced by Harel [Har87]. It relies on concurrent regions corresponding to threads. Within those
regions there are states and transitions, further there has to be an initial state to start at. Each transition
has a source state and a target state, is triggered by an input signal and may emit an own output signal
in the process. Such an output signal can be an input signal for another region’s transition. Hence
there is a data flow between regions. In Figure 2.5 an example of SCCharts is shown. There is no need
to understand the purpose of every region, but one may see that some transitions are triggered of

1https://www.rtsys.informatik.uni-kiel.de/en/research/kieler

8

2.2. The Sugiyama Approach

SCChart
input signal A, B
output signal O

S1 S2initState1 B / A/ A

- R1

ATinitState2 A / B

- R2

B UinitState3 A

- R3

Figure 2.5. An example of Sequentially Constructed Statecharts (SCCharts) with data flow between regions R1, R2,
and R3 routed by the orthogonal edge routing.

output from other ones. Those relations of one region’s output being other regions’ input is visualized
by orthogonal edges. It means furthermore that the regions correspond to nodes.

2.2 The Sugiyama Approach

To really understand the introduced problem and the algorithm to solve it, it is necessary to realize it
as part of many problems. This edge routing algorithm, which I will refer hereinafter as edge router,
is the last of a number of phases. Hence it has no power over any node’s vertical location already
determined by the node placement. It only gets a layout of placed nodes and some more information
about edges. Each of these phases is replaceable by another algorithm, which could result in a different
layout, even if the edge routing remains the same. In the following I will introduce the Sugiyama
Approach as context for the discussed algorithm, which will be introduced in detail afterwards.

The Sugiyama Approach was first introduced by Sugiyama et al. [STT81] and draws a directed
graph by arranging the majority of its edges in the same direction. Its basic characteristic is the
partitioning of the graph’s node set into layers, which are the reason the approach is also called layered
approach. Every node is assigned to exactly one layer. These layers are subsequent and rely on the
routing direction, which as mentioned is here from left to right.

More precisely the approach is divided into five phases introduced in the following, each with a
simple example:

2.2.1 Phase 1: Cycle Breaking

Assume an input graph G = (V, E) where V is the set of vertices and E the set of edges.
Since the layer arrangement only supports acyclic graphs, the first phase is about breaking potential

cycles of an input graph. This is important because as long as there are cycles it is impossible to draw
every edge in the same direction. A common approach is to use the Feedback Set (FS), a subset of
the directed graph’s edges whose reversal makes the graph acyclic. Reversing an edge e = (s, t) P E
with source s P V and target t P V means to swap source and target, so e1 = (t, s) is the reversed
edge corresponding to e P FS. A very simple way of finding such a FS is to order all vertices along
a horizontal line, so every edge is pointed to the right or left as shown in Figure 2.6. Now pick one
direction (preferably the one with fewer edges) and add each edge headed towards it to the FS—now a
reversal of all added edges results in an acyclic order for the graph. No vertex can now be part of a
cycle, because there are no edges leading back to it [BET+98, Chapter 9]. Later the layered approach’s
final task will be to restore every edge’s initial direction.

Since not every FS is actually a minimal one, a significant part of the cycle breaking is to minimize a
possible solution. For example the proposed simple approach chooses a random order for the vertices.

9

2. Basic Knowledge

 n3

 n4

 n1

 n2

 n3 n4 n1 n2

Figure 2.6. Comparison of a cyclic graph (left) and its linear representation (right).

So even if it is assumed to pick the direction with fewer edges to be reversed, an algorithm still has to
modify half of all edges in the worst case. A more efficient and popular variant is the greedy algorithm
presented by Eades et al. [ELS93], which relies on the proportion of outgoing to incoming edges for
every vertex and may produce a better but still not optimal solution.

The final output of this phase is a new graph G1 = (V, E1), where E1 might differ from E if the
phase actually reversed any edges.

2.2.2 Phase 2: Layer Assignment

Assume an acyclic input graph G = (V, E) where V is the set of vertices and E the set of edges.
The second phase introduces the layers, for instance as sequence L = (L1, . . . , Ln) with n P N¥1.

Every vertex is assigned to a layer for example with a function l : V Ñ L. The most important
characteristic for this partitioning is that every edge’s source has to be in a layer with an index smaller
than that of its target’s layer, thus every edge points in the same direction. An example is shown
in Figure 2.7a. So for every directed edge e = (s, t) P E with source s P V and target t P V and
j, k P {1, . . . , nL} with nL P N¥1 the number of layers it holds that l(s) = Lj ^ l(t) = Lk ñ j k. A
common approach for this is to compute the longest possible path in the graph and to define this many
layers. Next assign all sinks to the highest layer, remove them from the graph and repeat the process
for the next highest layers until all vertices are assigned. Through the removal of the sinks from the
step before and the fact that the graph is acyclic, there are new sinks in every step and because there
are as many layers as vertices in the longest possible path, there is at least one vertex in every layer.

However, the layered approach needs a proper layering which comes with an additional requirement.
Every edge’s source and target layer must be adjacent. So now for every directed edge e = (s, t) P E
with source s P V and target t P V and j, k P {1, . . . , nL} with nL P N¥1 the number of layers holds
that: l(s) = Lj ^ l(t) = Lk ñ k� j = 1. This is the reason for the introduction of dummy nodes. Every
long edge, which is an edge that does not satisfy the proper layering, fills their layer gaps with dummy
nodes and is replaced by a number of dummy edges which respect the proper layering. For example the
edge e = (n4, n2) shown in Figure 2.7b with n4 P L1 and n2 P L3 is replaced by two new edges e1, e2
with dummy node d1 P L2, such that e1 = (n4, d1) and e2 = (d1, n2).

The final output is a new graph G1 = (V1, E1, L, l), where V1 is the unity of V and the set of dummy
nodes, E1 is E with no long edges but a possible number of dummy edges, L is a sequence of layers
and l is the function assigning the vertices to those layers.

10

2.2. The Sugiyama Approach

 n2

 Layer 1

 n1

 Layer 2 Layer 3

 n4

 n1 n3

(a) The layering: All nodes are assigned to a layer. There
is a long edge between layer 1 and layer 3.

 n2

 Layer 1

 n1

 Layer 2 Layer 3

 n4

 n1 n3

 d1

(b) The proper layering: Introduced new dummy node
d1.

Figure 2.7. An example layer assignment. Note that this is only meant as a conceptionally sketch. The nodes have
no order until phase 3 has finished and yet no specific placement at all.

2.2.3 Phase 3: Crossing Minimization

Assume an acyclic input graph G = (V, E, L, l) where V is the set of vertices, E the set of edges, L a
sequence of layers, and l : V Ñ L a function assigning every node to a layer.

The third phase is about reducing the number of crossings inside the current graph layout. Assume
that each layer is a set of nodes with an own order defined by the function w : V Ñ N¥1, w(x) ÞÑ i
with i P {1 . . . nL} and nL being the size of the layer l(x).

Thanks to the proper layering explained in Section 2.2.2, it is possible to adapt the number of
crossings by just reordering the nodes. The barycenter heuristic also presented by Sugiyama et al.
[STT81] for example is doing just this by analyzing the connections between pairs of adjacent layers.
Declaring one layer as fixed and one as loose, the approach looks up the connected nodes from the layer
to be sorted (loose) to the fixed layer. For each node in the loose layer it now picks all connected nodes
in the fixed layer. For those connected nodes it sums up all its layer positions interpreted as weights
and divides this sum by the amount of connected nodes. This results in an average weight wa for the
original node in the loose layer.

It becomes clearer if looking at an example. There is one given in Figure 2.8a where a crossing
occurs. Two layers are taken in consideration: Layer i is fixed and Layer j is loose. Each position of
a node in those layers is enumerated from top to bottom. Let us compute the average weight wa for
m1. For now for m1 holds that w(m1) = 1 since it has the first position in layer j. It is connected
to two nodes in the fixed layer: n1 and n2 with the weights 1 and 2. Hence the average weight is
wa(m1) =

w(n1)+w(n2)
2 = 1+2

2 = 1.5. As for m2, the average weight is wa(m2) =
w(n1)

1 = 1
1 = 1.

Now one can simply sort the nodes by their average weights as done in Figure 2.8b. Here it would
mean to create a new ordering function w1 with an updated relation. Doing this for the whole loose
layer is called a layer sweep. Normally one turn of this algorithm is to perform a layer sweep for every
pair of layers from (L1, L2), (L2, L3) to (LnL�1, LnL) or from (LnL , LnL�1) to (L2, L1) with nL P N¥1 the
number of layers.

It depends on the graph’s complexity how many turns should be applied actually. Further the
results may differ depending on the first layer’s initial order. A common method is to run the algorithm
various times with the same number of turns, each with a randomized order of the first layer, and
then to pick the result with least crossings.

The final output is a new graph G1 = (V, E, L, l, w) with a new ordering function for the sequence
of layers.

11

2. Basic Knowledge

 m1

 m2

 Layer i
 [fixed]

 n1

 Layer j
 [loose]

 n1

 n2

 1.5

1

(a) A crossing occurs. Crossed edges are high-
lighted in red.

 n1 n1

 n2

 m2

 m1

 Layer i
 [fixed]

 Layer j
 [loose]

1

 1.5

(b) Alter ordering of loose layer to eliminate
the crossing.

Figure 2.8. Example layer sweep during a crossing minimization. The loose layer is highlighted in yellow and the
nodes to be ordered hold their average weight.

2.2.4 Phase 4: Node Placement

The fourth phase determines the vertical placement for every node. There are two fundamental
requirements: First, to draw every layer’s vertices one below the other and second, to maintain the
ordering between and inside the layers determined by the previous phases.

There are numerous ways to calculate the actual placement. For example one could care to place
the nodes such that the edges could be drawn as straight as possible. A common simple approach is
to let the dummy nodes shift the other nodes to the side, so the long edges become straight. A more
complex approach is the BK Placement by Brandes and Köpf [BK01].

2.2.5 Phase 5: Edge Routing

The last task is to draw the edges, replace the dummy nodes and to restore their original direction.
Depending on the preferred style of routing there are many ways to do this. A few examples are
shown in Figure 2.9. The easiest way would be to simply draw straight lines from source to target and
to replace the dummy nodes with bend points like in Figure 2.9b. In this case the direction could be
reversed by simply placing the arrow-head of the drawn edge on the other side. In fact this phase
may have to deal with hyperedges as well—that is, edges with multiple sources or targets. Another
approach is the orthogonal edge routing explained in the following.

2.3 Orthogonal Edge Router

The orthogonal edge router, which this work is about, was already hinted at during Chapter 1. Now I
dive deeper into its functionality.

The orthogonal edge router considers every adjacent pair of layers and routes their edges by using
only vertical and horizontal line segments. Thus, most important for this phase is the space between
the layers, the routing space, which is determined by this algorithm. Even after the node placement
phase has finished, the actual positioning of nodes is not final. The vertical coordinate is fixed, but the
horizontal one is not, because it depends on the computed routing space.

12

2.3. Orthogonal Edge Router

 Layer 1

 n1

 Layer 2 Layer 3

 n1 d1

 d2

 n2

 n3

 n4

(a) Initial layout right after node
placement.

 Layer 1

 n1

 Layer 2 Layer 3

 n1

 n2

 n3

 n4

(b) Routed with straight edges.

 Layer 1

 n1

 Layer 2 Layer 3

 n1

 n2

 n3

 n4

(c) Routed with curved edges.

Figure 2.9. Two different routing strategies of a setting given by the node placement.

Further it works not directly on nodes but on their ports. I already mentioned those in the terms
describing part of this chapter, now I introduce them properly. Such a port represents a potential link
between a node and its edges and corresponds to the anchor described in Section 2.1.2. Henceforth an
edge’s source and target are no longer defined as nodes but as ports. The same holds for a hyperedge’s
sets of source and target. In the input those ports may be explicitly defined, otherwise an edge’s source
or target node is replaced by a dummy port. In detail, assume for example two nodes n1 with port p
and n2 with ports q1 and q2. Now an edge e1 could be defined explicitly by the ports, for example
e1 = (n1.p, n2.q1), but a second edge e2 could be defined like e2 = (n1, n2.q2) with a bare node as
its source. Thus e2 would be replaced by e21 = (n1.d, n2.q2) with n1.d being a dummy port d added
to the node n1. The general advantage of ports is to gain control over an edge’s anchor points. For
example, one could specify their positions or fix their internal ordering, because the location of every
port is determined by the node placement phase, as long as not especially demanded otherwise. By
the time edge routing runs, a port is applied to a node’s side and the algorithm does distinguish the
ports in sources and targets depending on this side. So as long as the routing direction is defined as
right (or east) for a routing between two adjacent layers, a source port is defined as bounded to the
right side of a node in the left layer, whereas a target port as bounded to the left side of a node in the
right layer. An example is given in Figure 2.10a, where the explicitly defined ports are recognizable as
little black squares. While n1 is part of the left layer and has the edge’s source port on its right side,
n2 is part of the right layer and has the edge’s target port on its left side. Note that, since the cycle
breaking may have reversed some edges of the graph, the notion of source and target does not always
correspond to the actual input until the natural direction is restored in the end.

Let us move on to the actual process of routing edges between a pair of layers as it was when I
started work on this thesis. For this matter I start with a general description before describing details.

2.3.1 In General

The most general characteristic is that the orthogonal edge routing only generates vertical and
horizontal segments. Figure 2.10 shows an example of an edge routed with this approach as well
as the actual setting leading to this routing. There are three segments in total: two horizontal ones
and a vertical one. Within a routing space each edge has a source and a target specified by ports and
may have to bridge any vertical gap between them. Those corrections in height, which are the cause
for vertical segments, are placed in so-called routing slots. The main task of the orthogonal algorithm

13

2. Basic Knowledge

 n2

 n1

(a) The actual routed edge. The segment with
an arrowhead is the target segment, the other
horizontal one is the source segment.

 target height n2

 n1 source height

 gap to
 bridge

(b) The given setting to compute a routing.

Figure 2.10. Routing an edge from n1 to n2, both with an explicitly defined port, using the orthogonal edge
routing.

 RS 1 RS 2 RS 3

Figure 2.11. An orthogonal layout with highlighted routing slots and routing spaces (RS).

is to assign such a slot to the edges and to decide whether multiple edges can share one and thus
have their vertical segments on the same horizontal coordinate. This happens if that does not result in
overlapping segments. Otherwise the edge router adds another slot which causes one edge’s vertical
segment to be shifted rightwards and the space between the layers to grow. In order to produce a good
layout the algorithm should avoid as many routing slots as possible, so the routing space does not
grow excessively and stretch the final layout’s width more than necessary. In Figure 2.11 for example
there are two routing slots within the first routing space (RS 1), because the vertical segments cannot be
drawn on the same horizontal coordinate without overlapping. The vertical segments of the rightmost
routing space can share one slot without causing any problems. In conclusion there are two general
and very important assumptions about the orthogonal edge router directing most of its strategy. First,
every edge is drawn with at most one vertical segment. Second, the algorithm’s actual objective is to
determe the horizontal placement of those vertical segments, which will be explained in the following.

14

2.3. Orthogonal Edge Router

 n2

 n1

(a) No problem occurs.

 n2

 n1

(b) Two crossings occur.

 n2
 n1

(c) A conflict occurs.

 n2
 n1

(d) No problem occurs.

Figure 2.12. The relevance of ordering multiple vertical segments.

2.3.2 The Dependency Graph

By studying Figure 2.10b one may notice that, since the vertical coordinates of the ports are fixed,
the source’s and target’s heights are absolutely final. Thus the only thing the algorithm could change
about the horizontal segments would be their length. Of course those depend on the vertical segment’s
placement. For example placing the vertical segment more to the right would cause the horizontal
source segment’s length to increase while the target segment’s length decreases and vice versa if placing
it more to the left. But of course the sum of both is always the width of the routing space. After all this
is the reason the algorithm cares only about placing the vertical segment, which more precisely relies
on the routing slots. So the whole process of finding the best placement is a process of defining the
number of routing slots and assigning the vertical segments to them—or in other words, it is a matter
of ordering the vertical segments. Such an order is vital to avoid problems which could be caused by
the horizontal segments. To demonstrate the necessity of a proper order and to introduce the two core
problems, there are two graphs shown in Figure 2.12, each with two different orderings. For example
the graph in Figure 2.12a needs two routing slots, because otherwise the vertical segments would
overlap. Figure 2.12b shows the same graph with a different ordering causing two crossings. The
graph in Figure 2.12c describes a more complicated problem, the conflict. In order to produce a good
layout the algorithm always tries to avoid a conflict, which is the case for two horizontal segments
coming too close. The notion of too close is an arbitrary value defined by the algorithm itself. Again
we need a proper ordering like in Figure 2.12d and two routing slots overall, because otherwise the
vertical segments would come too close. Now I describe the process of arranging the vertical segments,
as well as the structure it relies on.

As aforementioned, a great amount of the edge router’s work is a process of ordering vertical
segments. There are routing slots to place the vertical segments inside. Some of those segments may
share routing slots, but for this matter it is vital to find a good arrangement of assigning those to the
slots, so they cause as less problems as possible. This arrangement is determined by the dependency
graph, an internal graph structure relying on an idea of Georg Sander [San04]. It serves to outline
relations of relative placements between vertical segments. What this means will become clear in the
following.

The algorithm works on its own representation of a vertical segment, the hypernode. For cases

15

2. Basic Knowledge

 v2

 v1

 n1

 n2

(a) v1 causes v2 to be shifted rightwards.

 v2

 v1 n1

 n2

(b) v2 causes v1 to be shifted rightwards.

 v2

 v1 n1
 n2

(c) Both segments share the slot.

 v2
 v1 n1

 n2

(d) No version is better.

Figure 2.13. Four different outcomes during comparison of vertical segments v1 and v2.

in which the differences between both terms do not absolutely matter, I proceed to refer to them
as vertical segments, though. The router creates a node in the dependency graph for every vertical
segment within the routing space with the final goal of computing the rank for every vertical segment,
which is in other words the index in the ordering of routing slots. But first it needs to find out the
edges for the dependency graph by comparing all vertical segments pairwise and deciding for each
pair whether one of them has to be shifted to the right to avoid problems. If a node is shifted to the
right, this means that its rank must be higher than the rank of the shift causing node.

Assume such a pair of vertical segments v1 and v2. The algorithm compares the layout for two
states: First, v2 is to the right of v1 and second, v1 is to the right of v2, which I will refer hereinafter
as v1 v2 and v2 v1, respectively and for a partial layout v1 v2 the alternative layout is v2 v1.
Further I call a layout better in case it produces fewer crossings or conflicts than another one (for now
the algorithm assumes one conflict to be much worse because this could be an overlap as well). For
such a better layout the algorithm may want one vertical segment to shift another one to the right and
represents this as dependency and thus as edge in the dependency graph. During the comparison of v1
and v2 there are now different outcomes distinguished in four cases corresponding to Figure 2.13:

(a) v1 shifts v2 to the right, because the layout for v1 v2 is better than the one for v2 v1. The
algorithm creates a dependency and thus an edge d = (v1, v2) in the dependency graph.

(b) v2 shifts v1 to the right, because the layout for v2 v1 is better than the one for v1 v2. The
algorithm creates a dependency and thus an edge d = (v2, v1) in the dependency graph.

(c) There is no need to shift one of them anyway, because both layouts produce no crossings or
conflicts. The algorithm creates no dependency and thus no edge in the dependency graph.

(d) It is not relevant which one is shifted, because both layouts produce the same number of crossings
or conflicts. The algorithm creates two dependencies and thus two edges d1 = (v1, v2) and
d2 = (v2, v1) in the dependency graph.

The vital difference between case (c) and case (d) is the position of the vertical segments: in case (c)
for both layouts there are no crossings or conflicts, because the segments are on completely different

16

2.3. Orthogonal Edge Router

heights. Hence, they could share the same routing slot provided that no other dependency prevents
this. In case (d) the shapes of both vertical segments intersect and thus they must not reside in the
same routing slot in order to avoid an overlap. As for horizontal straight edges, the router creates
no dependencies to those, since there are no vertical segments to be arranged. In fact it generates
hypernodes for them, though, but since there are no edges in the dependency graph I spare those in
most of my examples.

Furthermore, each dependency has a weight indicating how much better the layout is than its
alternative. For this matter the comparison counts each occurrence of conflicts and crossings for both
partial layouts and uses those values to compute the weight. For example if the layout v1 v2 causes
two crossings and no conflict, while v2 v1 causes six crossings and no conflicts as well, than the
result is a dependency (v1, v2) with a weight of 6� 2 = 4. Case (d) creates two dependencies each
with zero weight, which is called a two-cycle.

2.3.3 Assigning the Routing Slots

After the algorithm compared all vertical segments and created all dependencies, the internal depen-
dency graph must be checked for cycles. This is vital, because a cycle in the dependency graph means
a contradictory recommendation about the ordering. For example, three vertical segments v1, v2, v3
in a dependency graph forming a cycle with three dependencies (v1, v2), (v2, v3) and (v3, v1) would
result in a layout for which holds that v1 v2 v3 v1. The reason is that this cycle means that v3
should be right hand of v1, while in contradiction v1 should be right hand of v3. Since the realization
is impossible this cycle must be broken.

For this matter it tries to find a set of dependencies with the lowest sum of weights to reverse
them in order to break all cycles. Now it is important to be aware of the meaning of reversing a
dependency. Until now the router always chose the dependency causing the better layout. So reversing
a dependency (v1, v2) means choosing the dependency (v2, v1) and thus setting for a layout where
holds v2 v1 instead v1 v2. The simple fact that there is a dependency (v1, v2) means that the
partial layout v1 v2 is better and its dependency’s weight indicates by how much. So finding such a
set of minimal weights is important, because if the algorithm really has to reverse an edge, this means
to increase the number of crossings or overlaps. Reversing the set with minimal sum of weights means
choosing the least bad solution. Furthermore it breaks every two-cycle by deleting one of its edges.
Note that, since finding such a set of minimal weights is an NP-complete problem[BET+98, Chapter 9],
the algorithm’s solutions may be not optimal. There is an example graph and its final dependency
graph in Figure 2.14. The lighter colored edges of Figure 2.14b rely on two-cycles. Further now one
could see the reason why the algorithm needs those two-cycles in the first place, instead of simply
letting the comparison decide on one dependency. For instance in Figure 2.14b there is a cyclic path
(v2, v5, v4, v2) which would still exists after deleting for example the dependencies (v4,v5) and (v5,v2)
in order to break the two-cycles. Instead the algorithm deletes the dependencies (v5,v4) and (v5,v2)
and thus breaks all cycles with a set of dependencies whose sum of weights is zero.

The next task is to assign the actual rank value to those vertical segments. Since the dependency
graph is now free of cycles the algorithm computes the longest possible path in the graph and defines
this many routing slots for all vertical segments to be assigned to. Like the cycle breaking in the step
before this is reminiscent of a phase of the layered approach. Similar to the layer assignment phase
the algorithm now assigns all vertical segments to routing slots depending on their incoming and
outgoing dependencies. In Figure 2.15 this process is described for the setting shown in Figure 2.14. As
described in Section 2.2.2 for the assignment to layers the algorithm now puts all sinks in the routing
slot of the highest rank and deletes them from the graph. For the given example this means firstly to

17

2. Basic Knowledge

 v1

 v2

 v3

 v5
 v4

 v6

(a) The rendered graph with highlighted vertical
segments.

 v1

 v4 v2

 v5

(b) The dependency graph be-
fore cycle breaking.

 v1

 v4 v2

 v5

(c) The dependency graph after
cycle breaking.

Figure 2.14. A graph with the corresponding dependency graph. Note that v3 and v6 are theoretical vertical
segments not relevant for the dependencies and thus left out in visualized dependency graphs.

 v1

 v4 v2

 v5

 v4 v2 v1

 v5

 Slot 3

 v2

 Slot 2

 v4

 Slot 1

1

2 3

Figure 2.15. The assignment of routing slots which leads to Figure 2.14a and relies on the acyclic dependency graph
Figure 2.14c. There are two potential longest paths: (v4, v2, v1) and (v4, v2, v5), both of size 3. Corresponding to
the enumeration, the edges of lighter color hint at the chronological order of steps.

18

2.3. Orthogonal Edge Router

 n2

 n1

 n3

v

Figure 2.16. Construction of a hyperedge forming the same hypernode. The hyperedge is constructed by two
regular edges sharing the same source port. Both vertical segments touch and construct a bigger vertical segment
v.

assign v1 and v5 to routing slot 3 and deleting them from the graph. Now v2 is the only sink, which is
assigned to routing slot 2 in the second step. After deleting v2 there is only v4 left, so it is assigned
to slot 1 in the last step. The chronological order of deletions of nodes and edges in the dependency
graph is hinted at by the edges’ color becoming lighter. The routing space of the graph has three
routing slots, because of the longest possible path’s size of 3. Note that had the algorithm deleted the
dependency (v2, v5) to break the two-cycle, the longest possible path would be of size 4, causing the
routing space to be wider than necessary. So this is another reason to be careful when deciding on
how a two-cycle is supposed to be broken. In the end all vertical segments are assigned to a routing
slot’s rank. According to this rank value the algorithm places the vertical segments and routes the
complete edge by simply placing two bend points, one at the end of the source segment and one at
start of the target segment.

It is important to note that the actual routing process does not distinguish between hyperedges
and regular edges. In fact the router does only know regular edges, but merges a set of them into
one hypernode if they share a port. By using the same port two edges are forced to have overlapping
source or target segments. Since the complete hyperedge uses only one hypernode with one rank,
their vertical segments overlap or touch as well in order to bridge its own height-gap. Hence in the
final layout it is understood as one vertical segment. In this case the difference between a hypernode
and a vertical segments does actually matter. This relies on the fact that it is important to understand a
hyperedge as set of regular edges forced in the same hypernode. Those form together one homogenous
vertical segment in the final layout. Still each edge is routed independently. In Figure 2.16 there is an
example of a hyperedge consisting of two regular edges.

19

Chapter 3

Theory

Before starting to code, it is vital to think through as many potential problems I might encounter as
possible. As described in Section 2.3 the original algorithm assumes the edges to have at most one
vertical segment. But the proposed solution makes it possible for an edge to have more. Breaking such
a fundamental assumption will come with a number of problems during implementation. Besides,
there may be some parts of the original algorithm which I have to adapt in order to integrate the
new features. For those theoretical analytics there is an important fact which needs to be mentioned
again. The current algorithm uses a threshold to detect conflicts which relies on a notion of two edges
coming too close to each other. In the current state the algorithm does not distinguish between pure
conflicts and overlaps, because both are cases of segments coming too close. When analyzing layouts I
will indeed do this, though. For this matter it is now necessary to being absolutely clear about the
difference of conflicts for the algorithm, conflicts for me and actual overlaps. This is the reason I will
refer hereinafter to every conflict which is no overlap as a pure conflict, while a general conflict for the
algorithm still could be an overlap.

This chapter starts with a detailed description of the general problem.

3.1 The Problem

In Chapter 1 I already introduced the problem of overlapping horizontal segments. Figure 3.1a shows
this problem again, this time with additional port information. Of course there are more examples
of overlaps which I will show later in this chapter, but for the introductory explanation I use this
case, because it is easy to comprehend. Furthermore this is the reason why I refer to it in this work
by the graph’s working title, the Simple Case. There are two nodes, each in its own layer and both
placed at the same y-coordinate, just like their ports. As mentioned before, the vertical placement
of the nodes and ports is fixed by the time the algorithm starts the routing process. Now there are
two edges e1 = (p1, q2) and e2 = (p2, q1). The simple solution of routing both edges as straight lines
would form an X-shaped symmetric crossing, which is shown by laying out the same graph with the
polyline algorithm in Figure 3.1b. Using the orthogonal edge router, each regular edge is drawn with
three segments. In Figure 2.10b (see page 14) I explained the composition of orthogonal segments

n1 n2

p1

p2

q1

q2
(a) With orthogonal routing. An overlap occurs.

n1 n2

p1

p2

q1

q2
(b) With polyline routing. An X-shaped crossing occurs.

Figure 3.1. The Simple Case.

21

3. Theory

 n1 n2h

 e1 source e2 target

 e1 target e2 source

(a) Setting of segments with h being the height-gap be-
tween source and target to bridge for both edges.

 n1 n2 v1 v2

(b) Dependency (v2, v1) causes an overlap highlighted as
dashed line.

 n1 n2 v2 v1

(c) Dependency (v1, v2) causes an overlap highlighted as
dashed line.

 v2 v1

(d) Dependency graph containing a two-cycle.

Figure 3.2. Algorithm’s steps for routing the Simple Case’s edges with hypernodes v1, v2.

for an edge with two different heights for source and target, where the edge has two fix horizontal
segments and a height-gap between them to bridge. Corresponding to this one can see the same kind
of composition of segments for the Simple Case in Figure 3.2a. Now there are two height-gaps to
bridge for each edge, but it turns out that the source segment of e1 is on the same height as the target
segment of e2 and vice versa. Despite the fact that both bridge the same gap, each needs its own
vertical segment. This is why there are two vertical segments in the end and thus two hypernodes
in the dependency graph. Since those hypernodes have to bridge the same height-gap there must be
two routing slots. When comparing both hypernodes in order to find the best arrangement now both
alternatives suffer from overlapping, which is visualized in Figure 3.2b and Figure 3.2c. Therefore
the algorithm adds a two-cycle to the dependency graph in Figure 3.2d, meaning that no alternative
layout is better, but both vertical segments need an own routing slot to not overlap. The dependency
graph consists only of this two-cycle. Hence the cycle breaking deletes one of its dependencies and
decides on the other. After all the algorithm has no choice but to leave the layout with its overlap,
because there is no other choice than swapping the vertical segments’ placements. For that reason
an alternative must be found. As already hinted at during the introduction, this alternative implies
additional segments for one of the edges involved in the overlap. Those would give it more flexibility
for bridging the given height-gap, such that it would be possible to do this with two or more vertical
segments instead of one. What this may look like was sketched in the introduction as well and will be
discussed in more detail later on.

3.1.1 Critical Cycles

During the work on the general task I encountered an additional problem causing overlaps. Using the
Simple Case I described the situation of a two-cycle with both dependencies producing overlapping
horizontal segments. The cycle breaking needs to break this cycle and decide for one alternative. Which
one to decide for is in this case irrelevant, since both cause an overlap. But there may be cases like the
one shown in Figure 3.3 which I will refer to as the Cycle Case. There is a number of partial layouts
with each having one partial layout creating an overlap and an alternative one which does not. Hence
for each vertical segment there is a dependency avoiding an overlap. If those dependencies form a
cycle in the dependency graph one of them must be reversed and the overlap, which it was intended

22

3.2. Relevance and Reproduction

n1 n2

(a) With polyline routing. Two crossings oc-
cur.

n1 n2

(b) With orthogonal routing. A crossing and
an overlap occur.

Figure 3.3. The Cycle Case caused by three dependencies each avoiding an overlap. They form a cycle, which is
why the cycle breaking must reverse one of them.

 v3

 v1
 n2 n2

 v2

(a) Orthogonal routing with hinted hypernodes and the overlap high-
lighted as dashed line.

 v2

 v3 v1

(b) Dependency graph be-
fore cycle breaking. Con-
tains a cycle.

Figure 3.4. Ordering of hypernodes v1, v2, v3 for the Cycle Case.

to avoid, would be visible in the final layout. Referring to Figure 3.4a one can see that the comparison
checks three pairs of hypernodes v1 and v2, v1 and v3 as well as v2 and v3. When comparing for
instance v1 and v2 the partial layout v1 v2 causes an overlap, while its alternative v2 v1 does not.
The same holds for the other two pairs. For each pair there is one alternative causing an overlap and
one which does not. In the end this results in a cycle in the dependency graph shown in Figure 3.4b.
In this case the cycle breaking reverses the dependency (v3,v2), which produces an overlap in the final
layout. This problem could be handled together with the first problem, because additional segments
could solve it as well.

The actual difference between both is the difficulty of detecting them, which depends on the
number of hypernodes in the causing relation. The first problem was caused by only two hypernodes,
while this one relies on at least three. As long as the problem is restricted to only two hypernodes,
or in other words to a two-cycle, the algorithm could already detect it during the comparison of
hypernodes. Any other cycle must be detected afterwards.

3.2 Relevance and Reproduction

The next task is to discuss the actual relevance of the problem this thesis is about. In other words, how
often does this problem occur and how badly does it influence the layout? However, the very first
thing to do is to reproduce the problem, which turns out to be harder than expected. As simple as
the aforementioned X-shaped symmetric crossing may seem at first glance, its reproduction relies on
the fact that there are ports that belong to different nodes, but share the same y-coordinate. At this
point it is important to note that an overlap is always caused by two ports sharing the same vertical
coordinate. Consider the example given in Figure 3.5. The ports of n1 and n3 are placed at the same
y-coordinate and result an overlap for the layout shown in Figure 3.5a. As long as its alternative, shown
in Figure 3.5b, has no overlap the algorithm chooses that and the overlap will not be visible in the final

23

3. Theory

 n1 n3

 n2
 n4

 v2 v1

(a) Layout for which holds that v2 < v1.

 n1 n3

 n2
 n4

 v2 v1

(b) Layout for which holds that v1 < v2.

Figure 3.5. Creating dependency between two hypernodes suffering from overlap.

1 nodePlacement.strategy: SIMPLE

2 node n1 {

3 portConstraints: FIXED_ORDER

4 port p1 {portSide: EAST}

5 port p2 {portSide: EAST}

6 }

7 node n2 {

8 portConstraints: FIXED_ORDER

9 port q2

10 port q1

11 }

12
13 edge n1.p1 -> n2.q2

14 edge n1.p2 -> n2.q1

(a) Code for reproduction provided in ELK Text Format
(ELKT). It contains additional restrictions.

p1

p2

n1 q2

q1

n2

(b) Layout without node placement restriction.

p1

p2

n1

q2

q1

n2

(c) Layout without fixed port order.

Figure 3.6. Things to consider when reproducing Simple Case with ports p1, p2, q1 and q2.

layout. To force the algorithm to decide upon the inferior layout, one must bring the ports of n2 and n4
to the same height as well. But in a real application example the nodes do not always have the same
size nor the same number of ports, which may result in non-symmetric layouts and different port
positions making overlaps unlikely to appear. As for the Simple Case, it needs a number of additional
settings for reproduction which an average user may not even set in the first place. Nevertheless I start
the discussion of relevance by describing how to reproduce the Simple Case, since it was the issue
which initiated this thesis, and then continue with more common examples showing that the problem
is indeed relevant.

3.2.1 The Simple Case and Hierarchies

Figure 3.6a shows the code in ELK Text Format (ELKT) leading to the layout of Simple Case. There are
additional restrictions needed to trigger the overlap. First, in line 1 the node placement is changed

24

3.2. Relevance and Reproduction

to a simpler one, because the default node placement strategy, which is an adaptation of the one by
Brandes and Köpf [BK01], leads one of the edges to be rendered as a straight line by moving one of
the nodes upwards (see Figure 3.6b) and therefore avoids an overlap. The second restriction in lines 3
and 8 overcomes a more general feature; by default the port positions are not fixed, which leads an
X-shaped crossing to be routed as two horizontal straight lines (see Figure 3.6c) with no crossing at all
by simply swapping the positions of one of the node’s pair of ports. Additionally one node’s ports
must be in lines 4 and 5 forced right hand, because for ELK a fixed port order implies a fixed port side,
which is left on default.

It may seem like one has to force the algorithm to fail. However, the high amount of variety
provided by ELK’s layered algorithm is the reason both properties may be activated unintentionally
by other characteristics. For example the intervention of the default node placement is based on the
simple intention of minimizing the amount of bendpoints by drawing an edge straight, if possible.
This could easily be avoided by adding a third straight edge. Now the node placement does not change
the nodes’ positions, because it would cause the third, currently straight edge to lose its shape.

As for the port ordering, there are a number of other ways to fix it unintentionally, for instance
with hierarchical layouts. I already explained in Section 2.1.3 that ELK models hierarchy as a node
containing its very own graph structure. Such an included graph influences its parent node’s size and
is rendered inside. In Figure 3.7 there is an example of a hierarchical graph, its ELKT code as well as the
tree structure belonging to the graph. Note that the edge (p3, q3) is the aforementioned straight-lined
edge supposed to fix the node placement without changing the whole node placement strategy. The
actual graph includes three sub graphs in total, each consisting of two nodes. There are also four ports
p1, p2, q1, q2 connecting the nested graphs with the root graph’s nodes. Computing the layout of a
hierarchical graph runs recursively and starts with the innermost graphs, that is those with the deepest
depth in the hierarchical tree. These are the graphs inside n1 and n2. After the algorithm routed both
it cares for the root graph containing n1 and n2. Since the nested graphs’ layouts are already finished
and thus fixed, the ports are fixed as well, because changing their placement now would probably
invalidate the routes if the edges connected to the ports from the inside.

3.2.2 A More Likely Case

This example is more likely to occur, the 4Nodes Case. It is shown in Figure 3.8b and its code in
Figure 3.8a. Despite an equal node size there are no restrictions or special requirements as in the cases
before. Furthermore, the vertical segments belong to nodes which are not at the same height. Each
node’s position is bounded to the same height in order to draw the outer edges straight, which are
placed outward by the crossing minimization so the other edges do not cross them when bridging
their height-gap. The edges are linked with dummy ports which were added by the layered algorithm
and which are by default equally distributed over a node’s side. Hence, as long as the nodes’ sizes
and number of ports remain equal their ports will be placed at the same heights. In Figure 3.8c I
reproduced the case in SCCharts using the induced data flow mode. For this case to appear I used equal
node sizes for the regions. Note that this is no general characteristic for a layout in SCCharts, since those
are highly variable.

3.2.3 Conclusion and Relevance

After having introduced the characteristics of reproducing the problem it is necessary to discuss the
relevance of overlaps in general. One should note that every case just introduced relies on equal node
heights making a positioning of one node’s source port and another node’s target port at the same

25

3. Theory

1 node n1 {

2 port p1

3 port p2

4 port p3

5
6 // nested graph

7 node i1

8 node i2

9 edge i1 -> p1

10 edge i2 -> p2

11 }

12 node n1 {

13 port q1

14 port q2

15 port q3

16
17 // nested graph

18 node j1

19 node j2

20 edge j1 -> q1

21 edge j2 -> q2

22 }

23
24 edge n1.p1 -> n2.q2

25 edge n1.p2 -> n2.q1

26 edge n1.p3 -> n2.q3

(a) Code for reproduction provided in ELKT.

n1

i1

n2

j1 j2i2

root

(b) Corresponding hierarchy as tree. All parents
root, n1, n2 include one graph.

i1

i2

p1

p2

p3

n1

j1

j2

q1

q2

q3

n2

(c) The layout with overlapping edge segments.

Figure 3.7. An example with fixed port positions caused by its hierarchical structure.

y-coordinate more likely, which is vital for an overlap to occur. This is a restriction that does not hold
for every graph, but likely for an adequate number, since equal node sizes are indeed common. As
for SCCharts it seems rather unlikely since the node sizes are often very different. However, even for
different node sizes it is conceivable that the computation of port placements may set different ports at
the same height and might thus cause overlaps. In any case, while trying out different graph layouts
with equal node sizes I ran into those overlaps multiple times, even if not on purpose. For example I
encountered the 4Nodes Case without intentionally seeking it. Hence finally I would definitely call
this problem relevant, since it may indeed occur in common cases and further produces an overlap,
which is rightfully rated as very severe violation of good layout characteristics.

3.3 Tasks and Challenges

Giving edges the opportunity of using more than two vertical segments is a very serious breach to the
edge router’s assumption of every regular edge being able to be routed with at most three segments.
I therefore have to prepare for a number of challenges and upcoming issues in the process. First,
according to the conclusion of the relevance’s discussion I value the problem as indeed relevant, but

26

3.3. Tasks and Challenges

1 node n1

2 node n2

3 node n3

4 node n4

5
6 edge n1 -> n3

7 edge n1 -> n4

8 edge n2 -> n3

9 edge n2 -> n4

(a) Code for reproduction
provided in ELKT. There
are no restrictions at all.

n1

n2 n3

n4

(b) Corresponding layout.

H
input signal I
output signal O1_1
output signal O1_2
output signal O2_1
output signal O2_2

IS1

S1_1

S1_2

1: I / O1_1

2: I / O1_2

- R1

O1_2

O1_1

IS2

S2_1

S2_2

1: I / O2_1

2: I / O2_2

- R2

O2_1

O2_2

IS3

S3_1

S3_2

1: O1_2

2: O2_2

- R3

IS4

S4_1

S4_2

1: O1_1

2: O2_1

- R4

(c) A reproduction using induced data flow in SCCharts based on equally sized regions
R1, R2, R3, and R4.

Figure 3.8. The 4Nodes Case without explicitly defined ports.

mostly dependent on the criteria of an equal node size, which is not given for a moderate amount
of graphs. Hence despite its relevance it is no common case. The problem’s solution should consider
this and before breaking the algorithm’s assumptions of one vertical segment per edge it must be
absolutely sure about its necessity. During implementation I try to stick to the make the common case
fast paradigm, where fast here means to not increase the current runtime more than necessary. This
is easy for most cases, since the detection of an actual overlap may be no big deal. The comparison
of hypernode pairs during the creation of dependencies already checks for each pair of horizontal
segments’ distance falling below a specific threshold to detect conflicts. This check may be extended
by an additional one for actually being zero in constant time. Furthermore a solution is only necessary
if there is at least one pair of hypernodes for which holds that both partial layouts fail this new check.

This was the first naive approach before finding out about critical cycles introduced in Section 3.1.1,
which must be looked for despite any occurrence of the more common overlaps coming with a
two-cycle. Since finding cycles means additional computations for a common case, it may be wise to
find a way to avoid this if possible, which I will discuss in Section 4.3.

In the following I will explain more tasks and a few initial approaches, where the most challenging
topic is the question of what a general solution for overlaps should look like. How many segments do
the algorithm actually need and where should it place them? But first I discuss the actual difference
between overlaps and pure conflicts and how to classify them in theory.

27

3. Theory

 d1

 d2

 EES
 EES

E

E
S

 EES e1

 e2

 e3

 e4

Figure 3.9. Orthogonal layout with occurrences of edge-to-edge spacing (EES) and explicitly rendered dummy
nodes.

3.3.1 Thresholds and edge-to-edge spacing (EES)

I already mentioned the fact that the edge router does not distinguish between pure conflicts and
overlaps. Instead it generally tries harder to avoid conflicts than crossings. First of all I explain
this process in more detail and start by introducing a general value responsible for numerous
characteristics of the final layout, the edge-to-edge spacing (EES). In Figure 3.9 I highlighted a number
of its occurrences. Originally it was intended to be the minimal distance two edges should have at
any point. Hence it is used as spacing between routing slots, so that vertical segments comply with it.
Furthermore this means that the routing space between two layers always has a width of (nr + 1) �EES
with nr being the number of its routing slots. But the distances of all other edges’ horizontal segments
rely on their ports. As for the given example all four edges start at node n1. Hence n1 has four ports
equally distributed over its size and hence the edges’ horizontal source segments have the same
distances. Those may fall below the EES in many cases. Thus the EES is impossible to adhere to for
horizontal segments and they need an own threshold, the conflict threshold. It is an arbitrary value and
for now defined as 0.2 � EES. Further it is the reason why for instance e3 comes even closer to e2 than
the already too close port distance, instead of adding a third routing slot. For this case one might
consider this adequate, but it turns out to be too small in some cases. In Figure 3.10a is an example of
two segments coming each other very close without detecting a conflict. Note that this is still a matter
of perception and in the end a matter of proportion. This distance seems very small, but if n1 had
for instance 16 ports with the same node size it may turn out to be absolutely fine, since all edges’
distances would heavily decrease.

The conflict threshold is still bounded to the EES, which may lead to problems since it is modifiable
via the layout options. If one for instance sets the EES relatively high, the difference between a pure
conflict and an actual overlap would grow as well. Consider the comparison of two hypernodes v1,
v2 in order to decide on a dependency. While the partial layout v1 v2 may produce a conflict with
a distance of 1, which is almost an overlap (see Figure 3.10b as contrast), v2 v1 could produce a
conflict with a distance of 5 being absolutely understandable in the final layout. But the algorithm
is not able to distinguish them in their severity and adds a two-cycle which must be solved in the
cycle breaking by deleting one of the two-cycle’s dependencies. So it may be possible that the cycle
breaking deletes the dependency containing the conflict with distance 5 and thus the final layout ends
up with a pure conflict, which is nearly an overlap. Hence my first approach was to rank every conflict
of size less or equal 1 as overlap. In Section 4.5 I will explain why I changed my mind on this while
implementing the actual solution and instead introduced an additional overlapping threshold relying on

28

3.3. Tasks and Challenges

n1 n2

n3n4 n5

(a) The segments between nodes n1 and n2 come each other
very close, but are not treated as conflict.

n1

n2 n3

n4

n5

n6

(b) A pure conflict of size 1 occurs.

Figure 3.10. Two graphs with horizontal segments coming too close to each other.

the sizes between the ports.
Finally my conclusion is that using another value than the EES as notion of horizontal segments

coming too close to each other is basically a good choice. It comes with the problem of finding a
balance between EES, the actual space between ports, and a generally reasonable value to let the layout
look good, though. During the implementation it is essential to distinguish between pure conflicts and
overlaps and make their detection thresholds independent. Furthermore, since the conflict threshold
would be no longer responsible for detecting overlaps I may set the threshold higher and decrease its
severity in rating for a better partial layout between two hypernodes.

3.3.2 Additional Segments

In Chapter 1 I introduced a possible solution for the Simple Case, which one can see in Figure 3.11a
with a visual distinction between the different segments. Here another routing slot was added, causing
the routing space to grow by 1 � EES which I consider a small price for avoiding an overlap, but
nevertheless it is a matter to mention. This new routing slot now includes a new vertical segment
v2’ bounded to v2. Such a new vertical segment is an “outsourced” part of the original one. Hence I
call this division of one into two vertical segments a split. Those split parts must be linked together
via an additional horizontal segment which I will refer to as link segment. It solves the overlap by
giving the other edge’s vertical segment a horizontal segment to convert it to a crossing instead. The
first naive approach is to place this link segment directly in the middle between the corresponding
source and target segment’s height. This preserves the symmetry by maintaining equal distances
between all horizontal segments, which can be desirable for a good layout. However, Figure 3.11b
shows a problem: there may already be horizontal straight line edges which now cause a new overlap
with the link segment. For solving this I considered two approaches. One is shown in Figure 3.11c
and adds two new link segments on different heights and thus has three vertical segments in total.
Another approach is given in Figure 3.11d which adds only one link segment, but with an adjusted
position. An advantage of the first one is the still maintained symmetry, but one may easily recognize
the disadvantages: the second additional vertical segment v2” has no purpose at all despite bringing
symmetry. The same holds for the second link segment which reduces the distance between horizontal
segments’ for negligible benefits. Furthermore, on the new link segments’ positions there could already
be straight line edges as well. To solve this, further link segments would have to be added. Hence I

29

3. Theory

 n1 n2 v1
 v2 v2'

(a) Add one horizontal segment placed in the middle.

 v1 v2

 v2'
 n1 n2

(b) Placing additional segment blindly in the middle
may cause a new overlap.

 v1

 v2
 v2' n1 n2

 v2''

(c) Adding two horizontal segments, each placed in the
middle between own horizontal segments and the con-
flicting one.

 v1 v2

 v2'
 n1 n2

(d) Add one horizontal segment with computed
placement.

Figure 3.11. Different approaches of placing additional horizontal segments highlighted as dashed line and
bounded to vertical segments v2, v2’ and v2”.

n1 n2

(a) With polyline routing.

n1 n2

(b) With orthogonal routing. Two overlaps occur.

Figure 3.12. The Nested Case. The name derives on the fact that there is practically a Simple Case nested in another
Simple Case.

decided for the second approach. Likewise this is the main reason I decided to use for every solution
of overlaps exactly one link segment. In the following I will explain another one.

Before explaining I introduce the Nested Case in Figure 3.12 with two occurrences of overlapping.
This time the algorithm has to add link segments on two edges which causes a new problem. In
Figure 3.13a there is the first approach of a solution. Both link segments can be placed in the middle,
because there is no straight line edge preventing this. They need space between them, though. If placing
both link segments at the same y-coordinate they need more dependencies, since every horizontal
segment has vertical segments on its ends shifting each other away. Hence there must be a dependency
between v3’ and v4 to avoid a new overlap. However, in Figure 3.13b one can see a solution which
places the link segments on different y-coordinates and makes it possible for v4 and v3’ to share a
routing slot. This advantage holds not only for link segments. If possible the algorithm generally
should not place a new link segment on any y-coordinate of other horizontal ones, but between
them. This has to be mentioned, since it would be possible to do this, which is exemplary shown
in Figure 3.13c. It is possible, because link segments are never bounded to ports and thus could be
shifted to the left or right by any other horizontal dependency sharing the same y-coordinate, without
to worry for any overlaps. This shifting causes new unavoidable dependencies to those horizontal
segments, though. In the end no link placement should be placed on the y-coordinate of a horizontal
segment, whether it is an original or another new link segment. This means for each link segment

30

3.3. Tasks and Challenges

 n1 n2
 v1

 v2
 v3

 v3'

 v4

 v4'

(a) Using equal positions.

 n1 n2
 v1

 v2
 v3

 v3'

 v4

 v4'

(b) Compute individual positions. Using only positions between origi-
nal horizontal segments saves routing slots.

 n1 n2
 v1

 v2
 v3

 v3'

 v4

 v4'

(c) Compute individual positions. Using horizontal segment’s positions
is possible, but causes new unavoiable dependencies to those.

Figure 3.13. Try to shorten the routing space of the Nested Case with individual placement for link segments
highlighted as dashed lines.

to compute a very own individual placement and leads to the second reason to use only this one
additional link segment: minimizing the computations for placement.

The algorithm already provides an adequate solution for placing and ordering vertical segments
via its hypernodes. Hence I could use it to compute the arrangement of new vertical segments with
already existing ones. Furthermore it is the reason I rejected the idea of improving the placements in a
post processing step. But for the comparison of hypernodes to work properly it is paramount to have
already computed the placements of the link segments, so the algorithm knows the exact shapes of
the split vertical segments. This individual computation of placement comes with some convenient
advantages, though. In most cases one does not have to care about additional crossings, except if there
are hyperedges involved. First, consider the usage of only regular edges. Figure 3.14a shows a layout
with six crossings and four edges in total. If splitting the edge e1 the assignment to routing slots cares
for a good arrangement and there is no chance of getting additional crossings regardless of where
the link segment is placed. In Figure 3.14b there are three examples of placements distinguished by
different shades of blue. Each of these placements cause exactly the same number of crossings as
before. This requires to add the new vertical segments before the hypernodes are compared or maybe
comparing the new ones in a second run afterwards. Since the split vertical segments are partitions of
the original one they bridge in total the same height-gap as before and thus both together cross at
most the same number of horizontal segments as before. As for the link segment, since the routing
space is growable, there is no chance for any crossing which could not be handled by applying new
dependencies and a new routing slot, if necessary. Since the assumption is to split the nodes before
actually computing the placements and to reorder all new introduced vertical segments, the only
matter is the following:

31

3. Theory

 e4

 e3

 e2

 e1

(a) Layout without split edge. Six crossings occur.

 e4

 grow

 e3

 e2

 e1

(b) Layout with split edge e1 for different placements
of link segment hinted at by different shades of blue.
There are still six crossings for each.

Figure 3.14. Relation between split regular edges and crossings with edges e1, e2, e3, and e4.

Assume there is an ordering for two hypernodes v1 and v2 considering only regular edges such
that there are i P N crossings. Is there an ordering for v11, v21 , and v2, with v11 and v21 being the split
vertical segments of v1, with at most i crossings? This holds, because the vertical segments v11 and v21
are partitions of v1. So every horizontal segment crossing v1 can now either cross v11 or v21 , but not
both. The original horizontal segments of v1 are distributed to v11 and v21 and crosses v2 in total as
often as before. The only new introduced horizontal segment is the link segment which would be only
taken in consideration as potential crossing for the ordering v11 v2 v21 . So there is in the end always
an ordering with at most i crossings. Of course this excludes the crossing which is taken instead the
overlap in the first place.

Unfortunately this does not apply if using hyperedges. For the setting of Figure 3.15a it is actually
important where to set the link segment in order to avoid an unnecessary crossing. The edge e2
crosses the hyperedge e1 two times. As for Figure 3.15b there are two alternatives for placing. One
is highlighted in red and results still in two crossings, while the other one is blue and only causes
one crossing, which is even better than the original solution. The algorithm should of course be able
to decide for the better alternative, since it is another characteristic for a good layout to minimize
crossings if possible.

Another case considers splitting a hyperedge. For regular edges it holds that the split results in a
partition, but since a hyperedge contains more than two horizontal segments, it may have a form like
the one in Figure 3.15c. A split would require to pass all target segments to the new introduced vertical
segment which must grow in the process. It results a form shown in Figure 3.15d with two crossings
instead of only one. To solve this I could pass target and source segments to the new hypernode as long
as those lie in its reach which looks like as shown in Figure 3.15e. But I consider the resulting form as
rather strange and prefer to stick to the notion proposed by Sander of forking the hyperedge only right
before it reaches its target or source ports [San04]. Hence I decided to avoid to split hyperedges, if
there is an alternative regular edge to do it for instead. This way those cases may be at least minimized.

32

3.3. Tasks and Challenges

 e1

 e2

(a) Layout before splitting an edge. Two crossings oc-
cur in order to avoid the overlap.

 e1

 e2

(b) Layout after splitting e2 for different placements
of link segment. The placing is relevant to avoid the
second crossing.

 e1

 e2

(c) Layout before splitting the hyper-
edge. One crossing occurs.

 e1

 e2

(d) Layout after splitting the hyper-
edge. There are now two crossings,
regardless of the link segment’s
placement.

 e1

 e2

(e) Alternative splitting for hyper-
edges. There is now still one cross-
ing.

Figure 3.15. Relation between hyperedges and crossings with hyperedge e1 and regular edge e2.

33

Chapter 4

Implementation

In Chapter 3 I described a number of approaches I try to stick to. As mentioned before I try to always
adhere to the make the common case fast approach. Hence I try to not increase the actual runtime for a
common layout without visible overlaps too much, while trying to let the algorithm cope with them as
well. In the following I will describe the actual realization of the solution in its steps. Furthermore many
new functionalities involve a newly introduced overlapping threshold as well as the updated conflict
threshold. What those thresholds actually look like will be discussed in Section 4.5—for now it is only
important to note that there are two adjustable values. Those represent the distance two horizontal
segments should have (conflict threshold) as well as the one two segments must have (overlapping
threshold). Of course the latter is smaller. The reason to introduce their actual computation at a later
time is that this relies on a number of characteristics I want to introduce before.

4.1 General Structure

Before explaining the most important steps in detail, the initial question should be how and where to
fit a detection of and solution to overlapping in the current algorithm. I sketched the new arrangement
of functionality in Figure 4.1. The five nodes on the first level stand for the current orthogonal edge
routing algorithm. The most interesting parts of the new features happen before breaking the cycles
in the dependency graph. As mentioned in Chapter 3 the detection of overlaps caused by a two-
cycle happens during the comparison of hypernodes, while the critical cycles must be checked extra
afterwards. Finally the algorithm solves all overlaps by adding more horizontal and vertical segments.
More vertical segments means updating the arrangement of hypernodes with new dependencies.
Afterwards the algorithm resumes as usual, except for a few simple changes to the final placement’s
computation in order to be conform with the new structure.

The requirement for an individual computation of the horizontal segment’s placement comes with
another advantage. Since the algorithm must consider a number of characteristics anyway, such as
additional crossings and routing slots, it assumes to always find an adequate solution in the end.

 detect overlaps

 create
 hypernodes

 break cycles
 in dependencies

 assign to
 routing slots

 compute the
 placements

 break
 critical cycles

 solve
 overlaps

 compare hypernodes
 / create dependencies

Figure 4.1. Integrating the new functionality in the given algorithm. The top level nodes represent the current
algorithm whereas the dashed nodes are new features.

35

4. Implementation

-conflictThreshold : double
-overlappingThreshold : double
-routingDirection : AbstractRoutingDirection

+routeEdges() : int

OrthogonalRoutingGenerator

-ports : List<LPort>
-rank : int
-start : double
-end : double
-sourcePosis : List<double>
-targetPosis : List<double>

+splitAt(pos : double) : HyperNode

HyperNode -weight : int
-essential : boolean

Dependency

+solveOverlaps()
+addNodeToSplit(hn1 : HyperNode, hn2 : HyperNode)
-findPositionToSplit(hn : HyperNode, dummyPositions : List<Area>) : double
+addCriticalDependency(source : HyperNode, target : HyperNode)
+breakCriticalCycles()

OrthogonalOverlappingHandler

outgoing / incoming

source / target

0..*

2

0..*

0..* 1

1

add nodes and dependencies

splits

instantiates

instantiates

splitCausingNode / connectedNode

criticalDependencies

hyperNodesToSplit

Figure 4.2. Simplified class diagram showing the most important components and their relations.

Hence the algorithm runs the solving part exactly once for every suffering hypernode. Consider for
instance again the approach of Figure 3.11c (see page 30). Such a solution could start with the first
approach of Figure 3.11a setting the link segment blindly in the middle and splitting again if the
solution is not adequate. This may be faster in some cases, but in regards to all the matters discussed
during Section 3.3.2, it could end up in a bad layout if not considering potential advantages of every
other possible location to place the link segment.

The general class structure of the new edge router’s version is shown in Figure 4.2. Most of the
new features belong to the so-called OrthogonalOverlappingHandler (henceforth called handler). It is
held by the OrthogonalRoutingGenerator which is supposed to lay out a pair of adjacent layers and
implements the algorithm described in Section 2.3. While the handler cares for the actual solution, it
still falls to the general algorithm to detect cases of overlaps. The solution consists of two vital steps:
First, the algorithm computes an adequate position for the link segment and second, it splits the edge
at exactly this position and rearranges all vertical segments. In the following I will explain the details
of this solution and its detection.

4.2 Splitting of Hypernodes

As described in Section 2.3.2 the hypernode is the edge router’s representation of an edge. In Figure 4.3a
one can see the actual values the hypernode stores for this matter. First of all there are start and
end positions indicating the vertical segment’s reach. Further it has two lists of sorted positions:
sourcePosis storing the source segments’ positions and targetPosis doing this for the target segments.
Those must be lists in order to support hyperedges with multiple source or target segments. Note that
position only refers to the vertical dimension, since the horizontal position is not computed until the
end. Each of those positions is vital for the detection of crossings and conflicts during the comparison

36

4.2. Splitting of Hypernodes

 end

 start

 sourcePosis

 targetPosis

v

 X

Y
0

(a) Hypernode v before split.

 v end

 d start

 v sourcePosis

 d targetPosis

v

d

 d end = v start
 v targetPosis

 d sourcePosis
=

(b) Hypernode v and its dummy d after split.

Figure 4.3. Description of hypernode’s values, with sourcePosis and targetPosis being the list of source and
target segments’ positions.

of two hypernodes. One may see that the start value is the minimal horizontal segment’s position and
the end value the maximal one.

In order to solve an overlap the algorithm should be able to split the edges, which means in other
words splitting the hypernodes. In the following I will explain how I extended the hypernode to
cope with the new functionality. First of all, when introducing the hypernode I mentioned that it
stands especially for the vertical segment. Hence understanding it as a vertical segment is obvious
and represents the general algorithm’s notion of at most one vertical segment per edge. Except for
the overlapping issues discussed in this work, this notion is absolutely fine. Thus, instead of breaking
it, I decided to solve the overlaps with a workaround. My method to split a hypernode is shown in
Figure 4.3b. Basically the splitting creates another hypernode, the dummy hypernode (or dummy) d
which is bounded by the link segment to the original one, the split hypernode. For a hypernode, splitting
means handing over all target segment’s coordinates to the dummy while keeping those of the source
segments. In order to actually link both hypernodes the new link segment’s position becomes v’s
new targetPosis as well as d’s sourcePosis, which will of course always be of size 1, since there is
only one link segment. As for the given example the dummy’s start value is the original hypernode’s
start value and its end value is the position of the link segment. Note that this is not always the case
when using hyperedges. Since the dummy gets all of the target segment’s positions there may be
cases of some being below the link segment causing the vertical segment to grow. Simultaneously
some original hypernode’s source segments may be above its start value. This is the reason the vertical
segment’s shape must always be recalculated after the split, instead of simply applying the old start
and end values together with the position of the new link segment. An example was already shown
and explained for Figure 3.15d (see page 33).

4.2.1 Rearrangements

As mentioned, the two elementary detections of overlaps take place while and after comparing
hypernodes for creating dependencies. At this point it is necessary to clarify again that the algorithm
does not modify a given layout, as it may seem if looking at those before and after comparisons provided
as visual examples in this work. In fact the algorithm modifies the internal graph structure this layout
relies on, thus causing a different arrangement of routing slots and a new layout. Hence when running
the split phase, dependencies have already been calculated between all current hypernodes. The very
first approach was to delete those, adding the new hypernodes, and starting from scratch to recalculate

37

4. Implementation

 v1 v2
t

(a) Two-cycle t caused by the overlaps.

 v1 v2

dd

d

d

(b) Adding three new essential dependencies d.

Figure 4.4. Applying new dependencies.

 v1 v2

 v3
d

t

(a) Without splitting, there is a dependency between v3
and v1.

 v1

 v2 v3

d
d

t

(b) With splitting, the dependency (v3, v1) is no longer
necessary, since the link segment was placed providently.
Instead there is need for a dependency (v3, d).

Figure 4.5. Updating dependencies d and two-cycle t after splitting v1.

them all. But actually extending the amount of vertical segments and incorporate those in the current
ones is generally no problem, since this only means adding new nodes and edges to the internal
dependency graph it relies on. Besides, the actual computation of the total number of routing slots
and the assignment of hypernodes to those slots happens at a later time anyway. The actual extension
relies now on adding new segments as well as updating old ones. Regarding the former, there is a
process of splitting described in Figure 4.4. Every overlap, whether detected as two-cycle or in order
to break a critical cycle, is caused by exactly two hypernodes. This is always the case, since in one
routing space there could be at most two ports at the same height. As for Figure 4.4a it is caused by a
two-cycle between v1 and v2. The decision of which is to split is made by the handler. In this case
it is v1, while v2 is referenced as v1’s split causing hypernode. Remembering this during detection
is important in order to later add three essential dependencies caring for the partial layouts v1 v2
and v2 d, which is out of the question in order to create the distinctive order shown in Figure 4.4b.
The third one, v1 d, seems to be redundant due to the transitivity of the other two, but reassures
the structure additionally to an extraordinarily high weight for every essential dependency for being
broken by the cycle breaking.

As discussed during Section 3.3.2 the link segment is placed at an individually computed position
in order to minimize crossings and routing slots. For those minimizations to take effect all vertical
segments must be rearranged. This means that after adding new dependencies, the algorithm has to
update the original ones. The example in Figure 4.5a shows a hypernode v3 with a dependency to the
hypernode v1 going to be split, as well as to the other hypernode v2. After the split in Figure 4.5b
v3 no longer needs a dependency to the node v1, but instead one to the newly introduced dummy
hypernode. So the dependency (v3, v1) must be deleted. After splitting it must be decided for each
split hypernode’s dependency whether it must still be applied to it, just to its dummy hypernode,
or to both. During this update there is now a new check for horizontal segments coming each other
too close. However, this time it depends on the new introduced overlapping threshold, since the new
distances between current horizontal segments and the new link segment placed between them may

38

4.3. Problem Detection

 v1
 v2

d

e
f

(a) For the partial layout v1 v2.

 v1
 v2

d

e
f

(b) For the partial layout v2 v1.

Figure 4.6. Checking d for being a conflict. However, the distances e and f are equal for both orderings and thus
do not care the arrangement.

fall below the conflict threshold anyway. The two-cycle between v3 and v2 is maintained, because no
dependency is manipulated as long as its source or target is not explicitly involved in a split. “Explicitly
involved” means being actually part of the split. One may note that the two-cycle of Figure 4.4a is
gone for Figure 4.4b. Note that this was not deleted, but never added to the dependency graph when
using the handler, which will be explained as part of the following section’s discussion.

4.3 Problem Detection

In this section I will explain the detection of overlaps. As aforementioned the algorithm needs in fact
two detections. The first one takes place directly during the comparison of hypernodes and finds
overlaps caused for both alternative orderings of the two compared hypernodes. The second one must
look up specific cycles in the internal graph, after all original hypernodes are compared and created
their dependencies. Such a cycle must contain only those dependencies avoiding an overlap. I will
begin my explanations with the former one.

As already hinted at during Chapter 3 the first detection should be relatively easy which turns
out to be true during implementation. The original comparison of two hypernodes v1, v2 computes
for each partial layout v1 v2 and v2 v1 a value which represents the layout’s badness. Such
a value is the sum of crossings and conflicts caused if choosing this partial layout, with the latter
multiplied by an arbitrary constant. The constant is intended to put more weight on conflicts, since for
the original algorithm there is the chance of conflicts being an overlap. This detection of conflicts is of
particular interest for finding overlaps as well. For now the algorithm checks for v1 v2 whether v1’s
target segments come closer to v2’s source segments than the conflict threshold which I introduced
in Section 3.3.1. Why the comparison checks exactly those values to find conflicts is demonstrated
in Figure 4.6. The difference d is the only one of interest, because e and f remain the same for every
arrangement. Hence I extended the check of d for being smaller than the conflict threshold by another
one checking the same with the overlapping threshold, a value which will be explained later on.

How I fit this detection into the original comparison is shown as pseudocode in Figure 4.7. As
usual, dependencies are not applicable to a straight line, because an arrangement has no effect on it.
The comparison begins in lines 7 and 8 with counting every pure conflict and detecting overlaps in
the aforementioned manner. If both alternatives v1 v2 and v2 v1 failed the check for overlaps the
detection is triggered and the algorithm passes both hypernodes to the handler. The decision which
one is actually split is up to the handler. After deciding on a node I will refer to it as registered for
being split during the actual phase of solving overlaps. Note that there is no dependency added in
this case, which is the reason there is no two-cycle in Figure 4.4b. If no direct overlap is detected, there

39

4. Implementation

1 void createDependency(v1, v2) {

2 if (v1 or v2 is straight line)

3 return;

4
5 // count number of pure conflicts and overlaps for both variants

6 con1 = count number of pure conflicts and overlaps of v1 < v2;

7 con2 = count number of pure conflicts and overlaps of v2 < v1;

8
9 // input for the handler

10 if (con1 includes overlap && con2 includes overlap)

11 // register one hypernode for splitting

12 store v1 or v2 in handler;

13 else if (con1 includes overlap)

14 // reject v1 < v2

15 create critical dependency (v2, v1) and store it in handler;

16 else if (con2 includes overlap)

17 // reject v2 < v1

18 create critical dependency (v1, v2) and store it in handler;

19 else

20 resume as usual;

21 }

Figure 4.7. Pseudo code for detection of overlaps during the comparison of hypernodes v1, v2 in order to create a
dependency.

are additional checks regarding the second detection of critical cycles.

Despite the fact that critical cycles are a very rare phenomenon they must be precluded for every
graph. Since finding a cycle can be generally tedious work, it would be wise to find other ways of
confirming their absence without checking every possible path in the dependency graph. First of all,
such a cycle consists of only critical dependencies. Those are dependencies avoiding an overlap. This
is why the algorithm would for instance add in line 16 such a critical dependency from v2 to v1 if
v1 v2 causes an overlap. After creation it is stored directly by the handler which cares for a potential
cycle breaking once the comparison is done. In Section 3.2 I explained that every overlap, whether it is
avoided by a dependency or not, relies on the fact that a source port is placed at the same y-coordinate
as another edge’s target port. It may happen in some cases, but it is rather unlikely for a real life
example. This implies that in many cases we could avoid the cycle detection anyway, because there are
less than three critical dependencies. And even if there were more, it may be a moderate number in
most cases.

Upon finding a critical cycle the algorithm simply chooses one of its hypernodes, deletes its critical
dependencies, and registers it for splitting. Afterwards the process is repeated until no cycle is detected
any more. Despite that there is no need to care for the dependencies’ weights, since I let every critical
dependency be weighted equally, I admit that for the current state there is still room for enhancements.
The algorithm could use for instance a minimal Feedback Vertex Set (FVS) to split the fewest possible
number of hypernodes in order to break the cycle. The FVS is a set of nodes breaking the cycle on
deletion, which relies on an NP-complete problem [GJC79] and corresponds to the FS described in
Section 2.2.1. But since this issue is so rare I decided to reduce the invested effort and to concentrate

40

4.4. Solve Overlaps

Figure 4.8. Detecting potential areas to place link segments in.

on more common problems.

4.4 Solve Overlaps

After both phases of detection finished and registered a number of hypernodes for being split, the
actual process of finding a solution begins. Such a solution consists of a number of tasks. The approach
starts with finding possible locations to place link segments at and continues by deciding for each
registered hypernode which position may be the best one for its split. Afterwards the hypernode gets
split and its dependencies experience an update before proceeding with the next one. In the following
I will explain each of these tasks and hint at the notions they rely on.

The very first thing to do is to find possible locations for a link segment to being placed at. As
discussed in Section 3.3.2 the link segments should not be placed at the same y-coordinate as other
horizontal segments to avoid unnecessary dependencies. So the handler looks for spaces between all
current horizontal segments high enough to place a new link segment in. A space is high enough as
long as the overlapping threshold fits into it two times, because this way a newly introduced segment
does not have to worry about any conflict. This relies on the fact that new calculated dependencies
uses this new threshold for the conflict detection. Hence, in these detected spaces it is possible to
place the link segments without creating new dependencies in the process, except for those created
by the update mentioned in Section 4.2.1. For more compatibility the handler provides the spaces as
one dimensional areas, an example is given in Figure 4.8. To avoid that multiple link segments are
placed at the same y-coordinate, every area is consumed by using it for a split. This way every area is
used only once. Since hypernodes of smaller size have fewer possibilities of placing their link segment,
the algorithm sorts all registered hypernodes by their vertical segment’s size before the placement.
Consider for example again the example Figure 3.13 (see page 31). If the algorithm placed the link
segment of the bigger hypernode in the middle, the smaller one would have no possible area left.
Note that the overlapping threshold’s flexibility reassures that there are always areas being considered
high enough, regardless of the placement of ports. This characteristic will be further explained in
Section 4.5.

41

4. Implementation

4.4.1 Placing the Link Segments

After computing a number of possible areas to place the segments in, the solution must assign
those. For this matter it now works through the sorted list of registered hypernodes and decides
on a position for each. So for a registered hypernode the handler starts to select all areas which are
actually in its vertical segment’s reach. For all those it creates a rating. Relying on Section 3.3.2 I
assume that there could be no new dependency for the split hypernode or its dummy, except those
regarding the mentioned update. This is the reason the handler takes only the current dependencies
into consideration when rating the specific position. Such a rating checks for potential new crossings
and dependencies a splitting would cause on this position. Relying on this rating the handler decides
for a position. The rating depends on the following criteria sorted by their relevance, with every
criterion only taken in consideration, if the previous one is equal for two compared positions.

1. The minimal number of caused crossings.
This is the prime directive. Regarding the introduced notions for good layouts presented in
Section 2.1.2 it is necessary to avoid as much crossings as possible. Since in order to avoid overlaps
there are already additional segments and bendpoints anyway, the crossing minimization is the
only basic characteristic of a good layout this rating may actually influence. Differences in the
number of crossings should be only the case for hyperedges involved in the overlap, as I discussed
in Section 3.3.2.

2. The minimal number of caused dependencies.
This way the handler tries to minimize new dependencies in order to shorten the resulting routing
space. For many graphs the avoidance of stretched layouts is a common characteristic as well. Since
the layered approach relies on a notion of direction laying out nodes subsequentially, these kinds of
layouts tend to be rather wide anyway. This is the reason to not list this as a common criterion in
Section 2.1.2, but still it is a matter to avoid unnecessary wide layouts if possible.

3. The area’s size.
Since in the end placing a link segment means halving the original distance between two horizontal
segments, it is indeed a wise decision to choose the area of biggest size.

4. The minimal distance to the middle between the registered hypernode’s source and target segment.
If nothing else matters, a link segment should be placed as near to the middle as possible, in order
to provide symmetry.

Note that the handler does not have to worry about any conflict for the rating, since it computed areas
with adequate distances previously.

After deciding that the hypernode should be split, the handler adds the essential dependencies
and distributes the original ones over the split hypernode and its dummy. The area is now consumed
and the handler proceeds with the next registered hypernode.

Unfortunately this whole process suffers from one general problem. The rating relies on all vertical
segments’ shapes, while simultaneously those rely on the result of the rating, at least for all registered
hypernodes. This means that dependencies to other hypernodes registered for a split which is not
performed yet may be inaccurate in some cases, since their vertical segment’s shape is not the final
one. However, this only affects the enhancements of saving routing slots, and even this only in a little
number of cases, hence I value this issue for now as tolerable. It seems to be a very rare case of having
multiple unavoidable overlaps in a graph anyway.

42

4.5. Adjustments to Thresholds

4.5 Adjustments to Thresholds

The last and most challenging topic is the discussion of reasonable values for the new overlapping
threshold which was mentioned a few times by now. Its purpose is the strict differentiation between
overlaps and pure conflicts. I also hinted at the reason to use a threshold instead of simply checking
the segments for having actually no distance at all. The example shown in Figure 3.10b (see page 29)
shows a pure conflict relying on a distance of 1, hence the segments touch and seem to overlap as well.
The first naive approach was to use a constant overlapping threshold of 1, so every distance less or
equal is interpreted as an overlap. In the following I will explain why I changed my mind on that
during implementation and how I adapt the conflict threshold in the process. The actual computation
will be explained at last.

ELK comes with a high amount of variety for different options and placement restrictions which
could be applied to a graph. The layered algorithm itself adds even more. For example it distributes
all defined ports equally over a node’s source and target’s sides, but one can define exact positions as
well. Every solution must consider this as well as every other optional characteristic which makes it
hard to adhere to everything. As for the ports’ placements, there are cases of port distances falling
below any reasonable value. This could be caused by an equal distribution of far too many ports. If
the port distance falls for instance below 1, a constant overlapping threshold would detect overlaps
almost everywhere. Why this would be bad was already explained in Section 3.3.1 for the conflict
threshold. After all, the whole notion of finding better partial layouts and recommending those via the
dependencies relies on a balance, which could be disturbed by adding high-valued dependencies for
almost everything. The reason is the cycle breaking solving an NP-hard problem in a good, but indeed
not perfect way. An increasing number of cycles makes inconvenient decisions of the cycle breaking
more likely. Hence, one approach could be to deny the solution of overlaps for those unreasonable
distances, because a solution may end up in a layout which is still confusing. But since the whole layout
process is bounded to predefined node sizes and thus on predefined distances between horizontal
segments, my opinion is that the algorithm should be able to handle even those cases adequately. Thus
I decided for a variable overlapping threshold which could fall below any reasonable value as well,
since in the end two touching edges are still slightly more comprehensible than two overlapping ones.
Chapter 5 will provide a number of examples for very low port distances.

So the overlapping threshold depends not on the EES, but on the distances of ports. Further it takes
only those ports in consideration that have actually an edge linked to it, whose positions in other
words correspond to all original horizontal segments involved in the routing. This comes with an
inconvenience: For now only the hypernodes know their horizontal segments, but there is no general
overview of all of them. Such an overview is vital to compute for example the areas for placing the link
segments. Unfortunately it requires to iterate over all hypernodes, store every horizontal segment’s
position in a list, and sort it afterwards which means additional runtime. This is why an earlier version
of my algorithm performed this computation only to find the areas, if actually solving an overlap and
spared the common case. But since introducing the new threshold I must extend this feature for the
common case as well, in order to properly detect the overlaps. Now there are generally two ordered
lists of source and target segments which can be used to compute all distances. Their minimum
is in the end the intended port distance to use. Only now the algorithm can use it to compute the
overlapping threshold before the comparison of hypernodes. Nevertheless I value this as necessary
and accept the additional runtime in the common case for now as unavoidable.

There are two other characteristics necessary to mention when dealing with port distances. First,
for a graph with high spaces between the horizontal segments, the minimal distance and thus the
overlapping threshold turns out to be relatively big, since I consider the distance between all ports,

43

4. Implementation

not only those of the same node. Second, the conflict threshold is computed for every routing process
between two adjacent layers. Hence, those may differ for the routing spaces in a graph. The former
comes with the requirement to limit the threshold to a maximum which I define as 2. This value
stems from the fact the original algorithm tried to avoid overlaps with a threshold of 0.2 � EES with
the latter being 10 unless defined otherwise. So I figured out 0.2 � 10 = 2 as an adequate maximum.
Simultaneously, this maximum may not solve the differing thresholds per routing space, but makes
them hard to notice, since an overlapping threshold t is now always a value with 0 t ¤ 2.

As for the conflict threshold, since its purpose of avoiding conflicts is now decoupled from
considering overlaps, there are a few characteristics I adapted. First of all, it is generally increased.
This was avoided in the past, since a conflict was always valued as potential overlap and thus as very
severe. Bringing us to the next point, it is not severe any more. Overlaps are avoided elsewhere and
in the end a pure conflict only indicates two edges coming a bit closer than they should be. Instead
now I value a crossing as more severe, because a basic notion of good layouts is to avoid those, not to
maintain a specific distance between edges. Anyone who might disagree with that may simply adapt
the constant every crossing is now multiplied with. Another topic is a reconsideration of deriving the
conflict threshold from the EES. One approach was to use the minimal distance, since the algorithm
computes it anyway in order to set the overlapping threshold. But in the end I abandoned this idea,
because of the deviations between the routing slots I already discussed for the overlapping threshold.
For this threshold they would be much worse, since the constant to multiply the distance with is
bigger and has no maximum. Instead I decided to leave it as it is, computed by using the EES, and just
to adapt the constant.

Finally, after explaining the minimal difference between horizontal segments, I introduce the actual
computation of both thresholds. This explanation is accompanied by an exemplary setting in Figure 4.9.
This example shows a layout rendered with the old algorithm, but with appended hints for all new
and generally relevant notions of distance. First of all, both thresholds rely on their own constant.
The conflict threshold’s computation remains the same, but I modified the constant from 0.2 to 0.5
in order to shorten the accepted distances, which were in my opinion too small in some cases. Note
that this constant is arbitrary and found experimentally. It may be adapted in the future if it turns out
to be insufficient. Since differentiating it from overlaps it benefits from much more freedom and less
relevance, though. In the example there are actually two cases of too small spaces visible. To show
that the new conflict threshold (CT) would solve this, if using the updated algorithm, I appended it to
those cases. Note that the conflict threshold remains the same for both routing spaces. However, the
overlapping threshold is computed with 0.2 �m with m being the aforementioned minimum distance
between source or target segments. In the example those are m1 and m2 computing the overlapping
thresholds OT1 and OT2 for each routing space. To demonstrate the slight differences between both
overlapping thresholds they are contrasted with each other below the general computations in the
example. Furthermore the computations are given in the example as well, together with markers
representing their actual sizes.

The aforementioned constant for computing the overlapping threshold is for now defined as 0.2. As
final topic of this chapter I want to explain why. Contrary to the arbitrary constant for pure conflicts,
there are actual reasons this value must remain lower than 0.5 and should be lower than 0.25. Since
those reasons are much more comprehensible with an example, there is a hypothetical setting given in
Figure 4.10. The edges are hidden, but the vertical positions of their horizontal segments are hinted
at as lines. Those connected to n1, the source segments, are dashed lines, while the target segments,
connected to n2, are solid ones. The algorithm looks up the minimal distances between all source
segments m and all target segments n which are equal in this case. Hence, the minimal distance to
compute the overlapping threshold is m = n. Assume now a constant of 0.5 halving this minimal

44

4.5. Adjustments to Thresholds

 m1

 EES

 m1

 OT1 = 0.2 * m1

 EES

 CT = 0.5 * EES

 CT

 CT

 m2

 Routing Space 1 Routing Space 2

 m2

 OT2 = 0.2 * m2

 OT1 ≠ OT2

Figure 4.9. Layout rendered with the old algorithm and showing specific calculation for the two thresholds.
Overlapping threshold (OTi) is computed with the minimal difference between horizontal segments mi for routing
space i with i P {1, 2}. The conflict threshold (CT) is computed using the EES.

 n2n1
m

d

n
 OT = 0.5 * m = d

 m = n

Figure 4.10. Setting for error-prone configuration of overlapping threshold when using a constant ¥ 0.5. Source
segments’ vertical positions are hinted at by dashed lines, target segments’ positions by solid ones, with m = n
being their vertical distances used to compute the overlapping threshold (OT). The maximum space between
horizontal segments is named d.

45

4. Implementation

distance to use it as actual overlapping threshold. Since the port positions are determined such that
every area between a source and a target segment is half the minimal distance, there may be cases of
found overlaps. For example if there are applied edges similar to the Nested Case (see Figure 3.12 on
page 30). After detecting those overlaps, the handler searches for areas to place the link segments. As
described in Section 4.4 it uses the overlapping threshold to validate all areas with this fitting in twice,
in order to let a segment, which is placed in it, adhere to this value. But all areas have the same size of
d = m � 0.5 = to with to being the overlapping threshold. The handler would find no area to place the
segments in. To actually fit in those areas of size d, it must hold that to

d
2 = 0.25 �m. However, for a

threshold constant below 0.5 the algorithm should find no overlaps in this example. This relies on the
fact that it picks the minimum of distances and all source ports have vertical distances to all target
ports of at least d = 0.5 �m ¡ c �m = to with c being a constant with 0.25 ¤ c 0.5. So still there is
no chance of finding an area, but probably no chance for causing overlaps as well. To be honest, I am
not absolutely sure if the latter discussed case with this constant c could actually happen with any
setting or additional option applied to the algorithm. Hence I decided to be on the safe side and thus
let it be below 0.25. Besides, 0.2 seems to me like an adequate value, since in most cases it leads the
threshold to vary between 1 and 2. The former value was my initial intended threshold while the latter
represents the default conflict value of the original algorithm used to avoid overlaps.

46

Chapter 5

Evaluation

This chapter is meant to analyze the algorithm proposed in this thesis and to compare it with the old
one. For this matter I will introduce a number of new examples as well as a comparison of layouts
produced by both. Furthermore I will check whether I accomplished the actual goal of avoiding
overlaps. I start with the solutions to a few problems I introduced during my explanations and
theoretical assumptions in the chapters before.

5.1 General Examples

The avoidance and detection of the general problem represented by the Simple Case in Figure 5.1a
is actually not much additional effort. It is detected during the comparison of hypernodes. Since
in this case there are only two of them, the whole comparison of hypernodes cares for only one
pair. As described in Section 4.3 the detection leads to no additional dependency, since an overlap
is found. Hence the solution resumes with splitting one of the hypernodes with only one possible
area to place the segment in and no dependencies to update. The resulting structure relies on the
essential dependencies added by the solution, which are described in Section 4.2.1. As for the graph
in Figure 5.1b, there are actually three hypernodes since one stands for the straight-lined edge. But
such straight lines do not create dependencies and thus the only difference to the Simple Case is the
number of possible areas to use. For this case it does not matter which area is chosen, though. In
Figure 5.1c there is the case of a pure conflict of size 1, introduced in Figure 3.10b (see page 29). Edges
with a distance of this size seem to actually overlap, which is the reason I value them as overlaps as

n1 n2

(a) The Simple Case (see Figure 3.1a on page 21).

n1 n2

(b) The graph described in Figure 3.11 (see page
30) cannot place its link segment in the middle,
because there is already a segment.

n1

n2 n3

n4

n5

n6

(c) The graph from Figure 3.10b (see page 29) with a pure
conflict of size 1 between the edges (n1, n3) and (n2, n5).

Figure 5.1. Three graphs rendered with the new algorithm solving already introduced cases.

47

5. Evaluation

n1 n2

(a) A hyperedge overlapping a regular
one.

n1 n2

(b) The regular edge gets split. It denies the upper
area for setting the link segment in order to avoid
a second crossing.

n1 n2

(c) Two overlapping hyperedges which
are not to distinguish anymore.

n1 n2

(d) Solution avoids overlap and produces two un-
avoidable crossings instead.

Figure 5.2. Two graphs containing hyperedges, each represented by a layout computed with the old algorithm
(left) as well as with the new one (right).

well, as explained in Section 3.3.1.

5.2 Hyperedges and Crossings

In Section 3.3.2 I hinted at the problems if dealing with hyperedges. When splitting, those could
cause new crossings if not handling this split adequately. The rating process, explained in Section 4.4,
is supposed to decide on an area to place the link segment in, which is of particular interest here.
Figure 5.2 provides two examples of a graph containing hyperedges. In Figure 5.2a there are two
edges, a regular one and a hyperedge overlapping each other. The regular one gets split and has now
two potential areas to choose from. It computes a rating for both, with the result of the upper one
causing two crossings and the lower one causing only one. Since crossing minimization is the prime
directive for the rating, it chooses the latter as shown in Figure 5.2b. The second graph in Figure 5.2c
considers two hyperedges. The split hyperedge looks as in Figure 5.2d, since I decided for a split to
divide source and target segments in general. In this case the rating denied the lowest area since this
had caused three crossings.

5.3 Saving Routing Slots

The next topic is the saving of routing slots. A first example is the solution to the Nested Case in
Figure 5.3. The resulting layout is slightly different to my theoretical setting given in Figure 3.13b.
However, those differences rely only on the actual arrangement which remains equivalent in its number
of crossings and routing slots. In the end the rating saved one routing slot, hence it has in total only
one more as for the layout produced by the old algorithm causing two overlaps. I explained in the
final part of Chapter 3 why there cannot be more crossings after splitting than before, as long as there
are only regular edges considered. Of course this excludes the additional crossing taken instead the
overlap in the first place. That is, because it relies on the X-shape discussed in Section 3.1 and is thus
unavoidable, as long as adhering to the routing spaces. So while the original layout of the Nested Case,

48

5.4. Minimizing the Port Distances

n1 n2

Figure 5.3. The Nested Case with a layout by the new algorithm. Similar to the theoretical solution hinted at in
Figure 3.13b (see page 31).

n1 n2

(a) There occur two overlaps with the old algorithm.

n1 n2

(b) Computation of placement leads to no additional rout-
ing slot when using the new algorithm.

Figure 5.4. The Cascade Case.

presented in Figure 3.12 (see page 30), included four crossings and two overlaps, the new algorithm
produces six crossings and no overlap.

As for the Cascade Case given in Figure 5.4, there is actually no new routing slot needed. The
secondary directive for the rating is the minimization of resulting dependencies. One may see in the
the original layout Figure 5.4a that there are in total three potential areas between the ports to place a
link segment in, whereas both vertical segments to split could reach two of them. The middle area is a
possible area for both. Further it can be seen in Figure 5.4b that neither uses it in the actual solution.
This relies on the additional dependency which were caused between both split edges if one of their
vertical segments’ link would be placed in the middle area. Of course this characteristic is only taken
in consideration since there is for each placement the same number of crossings.

5.4 Minimizing the Port Distances

As explained in Section 4.5 I value it as necessary for the algorithm to produce correct layouts, even
for port distances getting very small. For this matter I introduced the new conflict threshold. It relies
on the minimal distances between all ports and is the reason the algorithm is able to handle complex
layouts such as the one given in Figure 5.5. Note that this case is only a theoretical one, since it is
based on fixed port orders and node placements as explained for the Simple Case in Section 3.2.1.
The resulting layout is syntactically correct, though it is highly recommended to increase the node
sizes for this to be more comprehensible. However, an early approach of mine was to leave such a
layout as it is, since the solution would bring many computations, while it results in a layout which is
in the end not at all more comprehensible. I decided against this for two reasons. First, this solution
is still more reasonable than overlaps. Second, it gives a better notion for solving the problem with
increased node sizes. Consider a user getting my solution, it would directly know that it could be
more comprehensible with greater node sizes. A user getting the old algorithm’s result may rather be
bothered by the overlaps than actually realize the node sizes as too small.

Unfortunately, since the conflict threshold scales with the very small port distances, it is now very
small as well. This turns out to be reasonable for the aforementioned layout, but may produce a
number of bad examples if not all pairs of opposing ports share the same y-coordinate. To demonstrate

49

5. Evaluation

n1 n2

(a) There are eight overlaps in total with using the old algorithm.

n1 n2

(b) The layout remains unreasonable due to way too small distances between segments if using the new algorithm.

Figure 5.5. The Nested Case in a more complex variant. Now there are practically eight Simple Cases nested in
one graph while maintaining the nodes’ size.

n1 n2

(a) With slightly different node sizes.

n1 n2

(b) With significantly different node sizes.

Figure 5.6. The graph from Figure 5.5b with different node sizes.

this I modify the node sizes in Figure 5.6a in order to produce slight differences between the port
placements. This results in some conflicts being valued as overlap and some as just that, a conflict.
However, despite being inconvenient, those are still no real overlaps. Nevertheless one should note that
the conflict threshold is computed for every routing space relying on the minimal distance between all
ports lying in it. Hence cases like the one shown in Figure 5.1c could suffer from this. In case there is a
node in the same routing space having a number of connected edges as those in Figure 5.6 minimizing
the conflict threshold below 1, the conflict would be not valued as overlap.

50

Chapter 6

Conclusion and Future Work

In this chapter I draw a conclusion and summarize the work discussed in this thesis. Furthermore I
will go into more detail about where my proposed solution provides further room for enhancements
and sketch a few approaches for what it could be used for.

6.1 Conclusion

The orthogonal edge router used to lay out every edge with at most one vertical segment. This
characteristic relies on the fact that each edge, which would be diagonal if drawing it straight, can
be drawn with three orthogonal segments instead. My thesis proved that it could lead to problems
with overlaps and thus violate the general notion of a good layout by producing ambiguity. Such
overlaps make edges impossible to distinguish and thus the graph incomprehensible. Besides proving
the problem’s existence it declared its relevance, especially for graphs using equal node sizes which is
a popular characteristic. Therefore, the final goal of my work was to solve this issue by introducing an
extension for the given algorithm relying on additional segments for edges as a last resort to avoid an
overlap.

This goal is accomplished by the new OrthogonalOverlappingHandler which realizes those addi-
tional segments with linking two hypernodes semantically and hence the vertical segments visually.
Furthermore it turned out that the general addition of segments comes with the necessity of consider-
ing the potential production of additional crossings and spaces as well. I solved this problem with an
approach which relies on checking out every possible location for every registered hypernode. This
means serious additional expenses in the runtime and is thus a matter I would like to be reconsidered
in the future and maybe to improved. But for now I value both approaches, the actual solution and
its included crossing avoidance, as an appropriate first step towards a new domain of considering
features based on the orthogonal edge router’s new capability of handling overlaps.

6.2 Future Work

Despite a number of problems to care for, the proposed solution came, of course, with a lot of new
possibilities as well. The purpose of this work was bringing edges more flexibility due to additional
segments. At the current state this is only used as a last resort for avoiding overlaps. This chapter will
describe a two hints at new features which might or might not benefit from my overlapping solution.

6.2.1 Reconsider Relevance of Crossings

Despite the discussed problem of overlapping segments the algorithm’s notion of at most one vertical
segment per edge is absolutely fine. As now proven, though, there are cases of this lack of flexibility
standing in the way of a good layout. Besides overlaps, there are other problems in regards to this.

51

6. Conclusion and Future Work

n1 n2

Figure 6.1. Layout rendered with the new algorithm. One of the crossings would be avoidable if using splitting.

My proposed solution is supposed to break the algorithm’s general assumption only if absolutely
necessary, that is to avoid overlaps. Thus the avoidance of overlaps is its prime directive. Since there
are only two possible partial layouts for two vertical segments, an overlap included by one of them
forces the algorithm to apply the second one. In other words now the algorithm will avoid overlaps at
any cost. Such a cost may be a crossing which could be avoided if deciding on a split instead.

In Figure 6.1 is a layout produced with the new algorithm. There occur two crossings and one
would be avoidable with a split edge. The regular edge could be split and the link segment placed
above the upper source segment of the hyperedge. As described there are only two possible alternatives.
One causes an overlap, but the other one does not. Hence the algorithm decides for the other one,
despite the fact that it could avoid the crossing with a split. The algorithm would be able to handle
this case if one adapts the comparison of hypernodes. For instance the whole comparison could try to
avoid crossings as prime directive. If both partial layouts cause equal numbers of crossings, the pure
conflicts may decide for a dependency. Hence, a partial layout v1 v2, which number of crossings is
bigger than its alternative’s, forces a dependency (v2, v1). Before adding this dependency the partial
layout v2 v1 could be checked for causing an overlap and if doing so, the algorithm performs a split
using my approach.

Of course this is only a raw idea. Implementing this would bring a few new challenges. For instance
modifying the crossing detection, which for now also counts two crossings for pure overlaps with a
distance of zero. The reason is that a hypernode having a horizontal segment’s coordinate on another
hypernode’s horizontal segment’s coordinate crosses its vertical one as well, which holds for both.
Besides, there may be a few adaptions to prevent segments from coming too close, when primarily
deciding on the least number of crossings. Maybe the general notion of distinguishing between pure
conflicts and overlaps may actually become obsolete in the process, since now both are in most cases
only avoidable with a split anyway.

6.2.2 Uniting Hyperedges

The next topic was initially under consideration to be part of this thesis and thus should be worth
to discuss. In the current state the orthogonal edge router does not provide a proper handling for
hyperedges. Instead one must build a hyperedge by letting a number of edges share the same port.
So in order to define a hyperedge between three nodes n1, n2, and n3 with n1 being the source and
{n2, n3} being the target set, there must be an explicitly defined port n1.p as well. This port makes it
possible to define the hyperedge as two regular edges (n1.p, n2), (n1.p, n3). When creating hypernodes
the orthogonal edge router will add initially one port to a hypernode and crawls recursively through
every other port connected to it in order to add them as well. In the end the hypernode has more
than two ports appended to it as well as multiple source or target segments. For this case it is three
ports, one source segment, and two target segments. The whole ordering process happens to this one
hypernode, while every regular edge it consists of finally gets routed on its own using the hypernode’s
rank.

52

6.2. Future Work

1 node n1 {port p}

2 node n2

3 node n3 {port q}

4 node n4

5
6 edge n1.p -> n3.q

7 edge n2 -> n3.q

8 // divide semantically?

9 edge n1.p -> n3.q

10 edge n1.p -> n4

(a) Representation in ELKT. Two hyperedges
sharing the same ports p and q.

n1

n2 n3

n4

(b) The final layout. Both hyperedges unite to a
bigger one and are impossible to distinguish.

Figure 6.2. Try to define two semantically different hyperedges sharing a number of ports.

 n1 n4

 n2 n3

 v2

 v1 v1 dd d

(a) Solving approach with split.

 n1 n4

 n2 n3

 v2 v1

(b) Solving approach without split.

Figure 6.3. Two approaches for solving the case introduced by Figure 6.2.

This workaround does the trick, but comes with a few inconveniences. One example is uniting
hyperedges. For some cases one may want to define two semantically different hyperedges sharing
the same port. This is not possible, since the edge router would put both in the same hypernode and
define them as one big hyperedge. A possible scenario is showcased in Figure 6.2. An early approach
to fix this was the application of additional vertical segments. With my new algorithm this would be
possible. There is still the question of necessity, though.

In the current state there is no possibility to divide those two hyperedges semantically and my
algorithm could not change that. But after solving this problem, for instance with a simple property
appended to the edges, it may help to distinguish both visually in the final layout. A hint of a solution
is shown in Figure 6.3a. As aforementioned, this solution requires a semantic differentiation in order to
provide separate hypernodes v1 and v2 for both hyperedges. If doing so, one of them could be split to
cross the other one instead of overlapping it. Unfortunately it does only affect the inner routing space.
Hence I would recommend some kind of angle to fan out the outer port connecting segments, as it is
shown in the example. Those angles should lead to another horizontal segment having at least the
overlapping threshold’s distance to the other one. Similar angles are already provided in Ptolemy II1, a

1http://ptolemy.berkeley.edu/ptolemyII/

53

6. Conclusion and Future Work

Figure 6.4. A detail of a modal model in Ptolemy II. There is a fan segment appended to the TimedPlotter in order
to divide both edges connected to its port. Source: [Lee09].

framework for actor-oriented design [Bro16], as shown in Figure 6.4. They could be injected during the
final routing process as additional bendpoint. The adjusted horizontal segment should be used already
during the comparison, though, and I will refer to them as fan segments. I would highly recommend
to use such a segment. Otherwise there is still an overlap which is bad for the layout whereas one
must force the algorithm to ignore those overlaps which leads to bad code style, since it would be a
workaround in a workaround. With consideration to the fan segments, simultaneous vertical segments
lose a lot of potential as solution to uniting hyperedges. In Figure 6.3b the same solution is shown
without splitting being absolutely fine.

This is only an example, though. It could be a matter to consider possible advantages of additional
vertical segments. And even without them, a possible approach using the aforementioned fan segments
would at least benefit from the overlapping threshold I introduced in this thesis. Since it is computed
with the least possible space between any horizontal segments, it provides the possibility of placing
those segments without worrying about any overlap.

54

Bibliography

[BET+98] Giuseppe Di Battista, Peter Eades, Roberto Tamassia, and Ioannis G. Tollis. Graph drawing:
algorithms for the visualization of graphs. 1st. Upper Saddle River, NJ, USA: Prentice Hall
PTR, 1998. isbn: 0133016153.

[BK01] Ulrik Brandes and Boris Köpf. “Fast and simple horizontal coordinate assignment”. In:
vol. 2265. Sept. 2001. doi: 10.1007/3-540-45848-4_3.

[Bro16] Christopher Brooks. Ptolemy ii: an open-source platform for experimenting with actor-oriented
design. Poster presented at the 2016 Berkeley EECS Annual Research Symposium. Feb.
2016. url: http://chess.eecs.berkeley.edu/pubs/1166.html.

[ELS93] Peter Eades, Xuemin Lin, and W. F. Smyth. “A fast and effective heuristic for the feedback
arc set problem”. In: Inf. Process. Lett. 47.6 (Oct. 1993), pp. 319–323. issn: 0020-0190. doi:
10.1016/0020-0190(93)90079-O. url: http://dx.doi.org/10.1016/0020-0190(93)90079-O.

[GJC79] M.R. Garey, D.S. Johnson, and Michael S. Mahoney Collection. Computers and intractability:
a guide to the theory of np-completeness. Books in mathematical series. W. H. Freeman, 1979.
isbn: 9780716710448.

[Har87] David Harel. “Statecharts: a visual formalism for complex systems”. In: Science of Computer
Programming 8.3 (1987), pp. 231–274. issn: 0167-6423. doi: https://doi.org/10.1016/0167-6423(87)

90035-9. url: http://www.sciencedirect.com/science/article/pii/0167642387900359.

[HDM+14] Reinhard von Hanxleden, Björn Duderstadt, Christian Motika, Steven Smyth, Michael
Mendler, Joaquın Aguado, Stephen Mercer, and Owen O’Brien. “Sccharts: sequentially
constructive statecharts for safety-critical applications: hw/sw-synthesis for a conservative
extension of synchronous statecharts”. In: SIGPLAN Not. 49.6 (June 2014), pp. 372–383.
issn: 0362-1340. doi: 10.1145/2666356.2594310. url: http://doi.acm.org/10.1145/2666356.2594310.

[Lee09] Edward A. Lee. Finite state machines and modal models in ptolemy ii. Tech. rep. UCB/EECS-
2009-151. EECS Department, University of California, Berkeley, Nov. 2009. url: http:

//www2.eecs.berkeley.edu/Pubs/TechRpts/2009/EECS-2009-151.html.

[PFJ95] Helen Purchase, Robert F. Cohen, and Murray James. “Validating graph drawing aesthet-
ics”. In: Graph Drawing 1027 (Sept. 1995). doi: 10.1007/BFb0021827.

[San04] Georg Sander. “Layout of directed hypergraphs with orthogonal hyperedges”. In: Graph
Drawing. Ed. by Giuseppe Liotta. Berlin, Heidelberg: Springer Berlin Heidelberg, 2004,
pp. 381–386. isbn: 978-3-540-24595-7.

[Sch] Christoph Daniel Schulze. “Text in diagrams: challenges to and opportunities of automatic
layout”. submitted. PhD dissertation. Faculty of Engineering, Kiel University.

[STT81] K. Sugiyama, S. Tagawa, and M. Toda. “Methods for visual understanding of hierarchical
system structures”. In: IEEE Transactions on Systems, Man, and Cybernetics 11.2 (Feb. 1981),
pp. 109–125. issn: 0018-9472. doi: 10.1109/TSMC.1981.4308636.

55

https://doi.org/10.1007/3-540-45848-4_3
http://chess.eecs.berkeley.edu/pubs/1166.html
https://doi.org/10.1016/0020-0190(93)90079-O
http://dx.doi.org/10.1016/0020-0190(93)90079-O
https://doi.org/https://doi.org/10.1016/0167-6423(87)90035-9
https://doi.org/https://doi.org/10.1016/0167-6423(87)90035-9
http://www.sciencedirect.com/science/article/pii/0167642387900359
https://doi.org/10.1145/2666356.2594310
http://doi.acm.org/10.1145/2666356.2594310
http://www2.eecs.berkeley.edu/Pubs/TechRpts/2009/EECS-2009-151.html
http://www2.eecs.berkeley.edu/Pubs/TechRpts/2009/EECS-2009-151.html
https://doi.org/10.1007/BFb0021827
https://doi.org/10.1109/TSMC.1981.4308636

	Introduction
	Orthogonal Edge Routing
	Related Work
	Outline

	Basic Knowledge
	Description of Terms and Technologies
	General Graph Structure
	Layout
	Eclipse Layout Kernel
	KIELER and SCCharts

	The Sugiyama Approach
	Phase 1: Cycle Breaking
	Phase 2: Layer Assignment
	Phase 3: Crossing Minimization
	Phase 4: Node Placement
	Phase 5: Edge Routing

	Orthogonal Edge Router
	In General
	The Dependency Graph
	Assigning the Routing Slots

	Theory
	The Problem
	Critical Cycles

	Relevance and Reproduction
	The Simple Case and Hierarchies
	A More Likely Case
	Conclusion and Relevance

	Tasks and Challenges
	Thresholds and edge-to-edge spacing (EES)
	Additional Segments

	Implementation
	General Structure
	Splitting of Hypernodes
	Rearrangements

	Problem Detection
	Solve Overlaps
	Placing the Link Segments

	Adjustments to Thresholds

	Evaluation
	General Examples
	Hyperedges and Crossings
	Saving Routing Slots
	Minimizing the Port Distances

	Conclusion and Future Work
	Conclusion
	Future Work
	Reconsider Relevance of Crossings
	Uniting Hyperedges

	Bibliography

