
Safety Analysis of the Steam Boiler in
SCCharts

Tokessa Hamann

Bachelor’s Thesis
September 30, 2024

Prof. Dr. Reinhard von Hanxleden
Real-Time and Embedded Systems Group

Department of Computer Science
Kiel University

Advised by
M. Sc. Jette Petzold

Selbstständigkeitserklärung

Hiermit erkläre ich, dass ich die vorliegende Arbeit selbstständig verfasst und keine anderen
als die angegebenen Quellen und Hilfsmittel verwendet habe.

Weiterhin erkläre ich, dass die digitale Fassung dieser Arbeit, die dem Prüfungsamt per
E-Mail zugegangen ist, der vorliegenden schriftlichen Fassung entspricht.

Kiel,

iii

Abstract

Risk analysis is a crucial aspect of system development to ensure safety and minimize potential
losses. One of these analysis is System-Theoretic Process Analysis (STPA), developed by
Leveson, which is used during system development. Although STPA is effective in identifying
safety flaws, conducting the analysis manually, is time-consuming and complex. To streamline
the process, Petzold developed the Pragmatic Automated System-Theoretic Process Analysis
(PASTA) tool, which fully supports STPA and aims to make the procedure more efficient.
However, PASTA has not yet been tested on larger systems, which is the focus of this thesis.
For this reason, STPA is applied to the steam boiler system specified by Abrial et al. and the
performance of PASTA on this larger system is evaluated.

In parallel, the thesis also models the steam boiler using Sequentially Constructive Stat-
echarts (SCCharts), a visual language suited for specifying safety-critical reactive systems.
SCCharts have been previously used to model the steam boiler with a focus on manual verifica-
tion of automatic generated code and object-oriented features, but not with an emphasis on
verification of the steam boiler model. This thesis shifts the focus towards verification using
Linear Temporal Logic (LTL) formulas.

The evaluation demonstrates that both PASTA and SCCharts are capable of handling larger
systems effectively, but also identifies missing features that could enhance the visualization
and usability of the tools. Recommendations are proposed to address these limitations and
improve the overall user experience in future iterations.

v

Acknowledgements

First of all, I want to thank Prof. Dr. Reinhard von Hanxleden for the opportunity to write
this thesis and for the constructive and helpful feedback during its conception.

Moreover, I want to thank the entire Real-Time and Embedded Systems group for their
warm welcome. In particular, I want to express my gratitude to my advisor M. Sc. Jette
Petzhold, for her continuous guidance and support during both the analysis and writing
process. I would also like to thank Dr.-Ing. Alexander Schulz-Rosengarten for his insightful
ideas on modeling the steam boiler and his assistance with challenges related to SCCharts.

Furthermore, I am deeply thankful to my family for their steadfast support throughout
my studies, especially my sister Florina Hamann who proofread parts of this thesis. Finally, I
would like to thank my friends who have always supported me. Special thanks go to Finn
Evers, Merlin Felix and Yorik Hansen for their feedback, help and good company during the
entirety of this thesis and especially during the last days.

vi

Contents

1 Introduction 1
1.1 Problem Statement . 1
1.2 Outline . 2

2 Preliminaries 3
2.1 Steam Boiler . 3
2.2 System-Theoretic Process Analysis . 5

2.2.1 Define Purpose of the Analysis . 5
2.2.2 Model the Control Structure . 6
2.2.3 Identify Unsafe Control Actions . 6
2.2.4 Identify Loss Scenarios . 7
2.2.5 STPA Outputs and Traceability . 9

2.3 Context Tables . 9
2.4 Sequentially Constructive Statecharts . 11
2.5 Linear Temporal Logic Formulas . 13
2.6 Used Technologies . 14

2.6.1 KIELER . 14
2.6.2 Pragmatic Automated System-Theoretic Process Analysis 15

3 Related Work 17
3.1 STPA Tools . 17

3.1.1 STAMP Workbench . 17
3.1.2 STPA Capella . 19
3.1.3 SafetyHAT . 20

3.2 Risk Analyses of the Steam Boiler . 21
3.2.1 Fault Tree Analysis (FTA) of the Steam Boiler 22
3.2.2 Hazard and Operability Analysis (HAZOP) on a flame tube boiler 22
3.2.3 HAZOP on a coal-fired boiler . 24

3.3 Models . 24
3.3.1 The Steam Boiler in Statecharts and Z . 24
3.3.2 The Steam Boiler in SCCharts . 26

3.4 Verification . 27

4 The Steam Boiler in PASTA 29
4.1 Analysis . 29

4.1.1 Define Purpose of the Analysis . 29
4.1.2 Model the Control Structure . 31

vii

Contents

4.1.3 Identify Unsafe Control Actions . 36
4.1.4 Identify Loss Scenarios . 41

4.2 Challenges . 43
4.2.1 Automatic Identifier Updates . 43
4.2.2 Context Table . 44
4.2.3 Loss Scenarios . 45

5 The Steam Boiler Model in
Sequentially Constructive Statecharts 47
5.1 Modelling . 47

5.1.1 Steam Boiler Modelling Process . 47
5.1.2 Approaches for Developing a Verifiable Model 54
5.1.3 Verification . 55

5.2 Challenges . 58

6 Evaluation 61
6.1 Analysis of PASTA . 61

6.1.1 User guidance . 61
6.1.2 Visualization . 63
6.1.3 Language Server Updates . 64
6.1.4 Context Table . 65
6.1.5 Loss Scenarios . 66

6.2 Steam-boiler SCChart Model . 67
6.2.1 User Guidance . 67
6.2.2 Visualization . 68
6.2.3 Debugging . 69
6.2.4 Comparison to other Models . 70

7 Conclusion 73
7.1 Summary . 73
7.2 Future Work . 73

7.2.1 Evaluation of PASTA’s LTL Formulas . 74
7.2.2 Steam Boiler Model . 74
7.2.3 Evaluation of KIELER’s Model Checker . 75

Bibliography 77

List of Abbreviations 81

viii

List of Figures

2.1 Physical units of the steam boiler [SDH19]. 4
2.2 Control structure door controller [Tho13]. 7
2.3 Traceability between STPA outputs [Lev18]. 9
2.4 SCCharts elements [Sch24b]. 12
2.5 ABO SCChart [HDM+14]. 13
2.6 Illustration of the intuitive semantics of LTL [BK08]. 14

3.2 Stakeholder table in STPA Capella [Con24]. 19
3.3 Loss creation and tracing in STPA Capella. 20
3.5 Fault tree of the water level [PTL13]. 23
3.6 Main components and their services in the architectural model [BW96]. 25
3.7 The steam boiler divived in four subsystems [dT06]. 26

4.1 Losses, hazards and system-constraints of the steam boiler. 30
4.2 The steam boiler control strcuture. 31
4.3 Process model of the Operator in code form and as diagram. 34
4.4 Challenges with hazard IDs. 44

5.1 Abstracted steam boiler model . 48
5.2 The booting of the physical units. 49
5.3 Unit fail protocol of the physical units. 51
5.4 Unit fail protocol of the program. 51
5.5 Program2 SCChart. 52
5.6 Model of the water level sensor. 53
5.7 Water level ranges. 54
5.8 The Valve in SCCharts. 56
5.9 The model checker table in KIELER. 57

7.1 Physical units of the steam boiler [SDH19]. 75

ix

List of Tables

2.1 Unsafe Control Actions (UCAs) for the open door control action [Tho13]. 8
2.2 Context Table for automated door controller [Tho13]. 10
2.3 Rule Table for open door control action. 10
2.4 Process model flaws [Tho13]. 11

xi

Chapter 1

Introduction

Risk is an inherent aspect of human life and a constant factor in our daily existence [AR10]. As
technologies have become an increasingly significant part of people’s day-to-day lives, safety in
complex systems became of high importance, particularly in industries such as transportation,
energy, and manufacturing, where system failures can lead to fatal consequences. Diverse
hazard analysis techniques have been developed in order to improve system safety. One of
them is the System-Theoretic Process Analysis (STPA) [Lev18]. It is a safety analysis method
designed to identify potential hazards by focusing on unsafe interactions between components
rather than failures of individual components. However, despite its well-structured approach,
applying STPA manually can be a complex, and error-prone process, especially for intricate
systems, as it often requires significant time and effort without software support. While
visual diagrams illustrating relationships between STPA elements can aid understanding,
creating them manually is labor-intensive. In order to aid in this matter, Petzold developed
a tool aimed at systematizing STPA named Pragmatic Automated System-Theoretic Process
Analysis (PASTA) [PKH23]. It is intended to streamline the safety analysis process by offering
structured workflows and automation features. However, its effectiveness on larger, more
intricate systems has not yet been thoroughly tested, presenting a gap in understanding its
scalability and practicality.

One well-established system used for academic research and testing of safety method-
ologies is the steam boiler problem, first specified by Abrial et al. [Abr05]. The steam boiler
provides a well-defined and sufficiently complex system for testing tools like PASTA.

SCCharts are particularly well-suited for safety-critical systems due to their deterministic
nature and the fact that they eliminate problems related to race conditions. These features
make SCCharts a powerful tool for modelling systems that require high reliability and pre-
dictability. Two SCChart models of the steam boiler system already exist, the first one focused
primarily on the evaluation of how well manual user verification can be done on source
code automatically generated by the model compiler [SDH19] and the second one explored
object-oriented features in SCCharts [Sch24a]. Nonetheless, no model exists that focused on the
verification of the system.

1.1 Problem Statement

In order to close the gaps mentioned above, this thesis seeks to evaluate how effectively PASTA

supports the application of STPA on a larger system such as the steam boiler by conducting

1

1. Introduction

a STPA and to uncover potential challenges or limitations that may arise. In addition to the
safety analysis, the steam boiler will be designed using SCCharts, with a focus on verifying
the system’s behaviour. The verification of the model will be done with the help of Linear
Temporal Logic (LTL) formulas. The objective is to evaluate the applicability and limitations
of SCCharts when modelling a larger system focused on verification.

1.2 Outline

The next chapter introduces the foundations for this thesis, such as the steam boiler speci-
fication, the STPA process, SCCharts, LTL formulas and used technologies. Chapter 3 reviews
existing tools supporting STPA and other risk analyses conducted on the steam boiler. Fur-
thermore, it presents existing steam boiler models and their verification approaches from
the literature. In Chapter 4, the process of the steam boiler STPA in PASTA is explained and it
addresses the challenges that were encountered during the analysis. Afterwards, Chapter 5
describes the process and approaches used to model the steam boiler in SCCharts. It shows
the verification process on a small example and addresses the challenges that arose during
the modelling. In Chapter 6, the features of PASTA and SCCharts are evaluated for the usage of
analysing or modelling the steam boiler. Furthermore, additions to the tools are proposed
that would improve the user experience. The chapter also compares the different SCChart

models to show their differences and similarities. Finally, Chapter 7 concludes the thesis with
a summary and potential future work.

2

Chapter 2

Preliminaries

It is essential to have a foundational knowledge of STPA, SCCharts, LTL formulas and the
technologies used, to understand the evaluation of PASTA and the modelling method in
SCCharts. Section 2.1 outlines the steam boiler specification, which is used in the following
analysis and modelling. After that, Section 2.2 explains the STPA process and Section 2.3 the
context tables that can be used for its third and fourth step. Section 2.4 introduces SCCharts

and Section 2.5 the LTL formulas, which can be used to verify the SCChart model. Subsequently,
Section 2.6 discusses the technologies used for the analysis and implementation.

2.1 Steam Boiler

The Steam Boiler Specification Problem [Abr05] is a well-established system used for academic
research and testing of safety methodologies. The behaviour of the control program of the
steam boiler is not trivial, as the requirements lay emphasis on a fault-tolerant behaviour of
the system. Figure 2.1 illustrates the system defined in the specification, which consists of the
following entities:

• the steam boiler
• a valve to evacuate water
• a device to measure the amount of water in the steam boiler
• four pumps to inject water into the boiler
• four pump controllers
• a device to measure the output steam from the boiler
• an emergency stop switch
• the message transmission system between the steam boiler and the control program

These entities are physically limited. The water level must lie in-between M1 and M2, because
the steam boiler could be seriously damaged otherwise. It ideally lies between the safety
levels N1 and N2 for optimal steam production, while C denotes the maximal capacity of the
steam boiler. Furthermore, the variables U1 and U2 are the maximum gradient increase and
decrease of steam respectively.

The overall operation of the program consist of the reception of messages from the physical
units, their analysis, and a following transmission to the units with new control commands.
For this purpose, the program takes the global state of the physical environment into account
and switches, based on these states, to five different modes: initialization, normal, degraded,

3

2. Preliminaries

Water level
Steam level

Pump

N1

N2

M2

Valve

Pump Controller

M1

Figure 2.1. Physical units of the steam boiler [SDH19].

rescue and emergency stop. In the initialization mode, the program waits for the units to get
ready and then ensures that the water level is between normal operating limits. It does this
by either emptying the water via the valve or increasing the water level by activating the
pumps. In normal mode, the program tries to maintain the safety water level. This is done by
activating and deactivating the pumps alone, because the controller cannot control the heat of
the steam boiler. It will stay in this mode until a failure is detected. The degraded mode tries to
maintain a safe water level despite failures of one or more non-vital pieces of equipment. The
mode changes back to normal after the components got repaired by the operator. When the
water sensor has failed, the program goes into rescue mode, where the water level needs to be
estimated via the other sensor information for operating the steam boiler. Should an error
also be detected in these sensors, the program goes into emergency stop mode. In the emergency
stop mode, the program has been instructed to stop, because either the water level is near to
one of the critical limits, multiple pieces of equipment have failed, there is a transmission
failure between the program and physical equipments, or the operator stopped the program
manually.

4

2.2. System-Theoretic Process Analysis

2.2 System-Theoretic Process Analysis

System-Theoretic Process Analysis (STPA) [Lev18] is a hazard analysis technique based on
System Accident Model and Processes (STAMP), which is used to identify potential causes of
accidents during a system’s development and develop a safe system. In contrast to traditional
hazard analysis techniques, such as Fault Tree Analysis (FTA) [Ves81], Failure Modes and
Effects Criticality Analysis (FMECA) [Rob93], Event Tree Analysis (ETA) [II05], or Hazard and
Operability Analysis (HAZOP) [Kle99], where the hazards arise from component failures, STPA

also considers emergent properties that lead to accidents. This means that STPA assumes
that accidents can also arise from unsafe interactions among system components, none of
which have necessarily failed. As a result, STPA finds all the scenarios that traditional analyses
can find, along with additional scenarios previously undetected. The results of STPA can be
used to create new requirements, identify mitigations, evaluate design decisions, define test
cases, develop leading indicators of risk, etc. [Lev18]. STPA is an iterative process that can be
applied before an accident has occurred and then updated and modified over time when new
information arises. The analysis of the system is split into four consecutive steps, which will
be discussed in more detail in the next subsections.

2.2.1 Define Purpose of the Analysis

In the first step, the purpose of the analysis is defined. For this, stakeholders and losses need to
be identified. A loss has hereby a broader definition. It involves something of value for the
stakeholder, e.g. loss of life, damage to environment, or loss of revenue.

Afterwards, the system that needs to be analysed and its boundaries are specified, so that
system-level hazards can be identified. The system is a set of components that work together
to achieve some common goal. It may contain subsystems or be part of a larger system. A
hazard is a system state or set of conditions that lead to a loss in worst-case environmental
conditions. It can be further refined into sub-hazards.

For the hazards, system-level constraints are defined, which specify system conditions
or behaviours that need to be satisfied to prevent hazards. Each sub-hazard should also be
covered by a sub-constraint.

As an illustrative example, consider a train with a basic automated door control sys-
tem [Tho13]. A loss that could be studied is the loss of life or injury to a person. This results
in the following hazards:

H-1: Doors close on a person in the doorway [L-1]
H-2: Doors open when the train is moving or not in a station [L-1]
H-3: People are unable to exit during an emergency [L-1]

System-level constraints can then be derived from these hazards:
SC-1: Doors must stay open if a person is in the doorway [H-1]
SC-2: Doors must stay closed when the train is moving or not in a station [H-2]
SC-3: Doors must be able to open during an emergency [H-3]

5

2. Preliminaries

2.2.2 Model the Control Structure

In the second step, a structure capturing functional relationships and interactions between
system components is built, called control structure. It is composed of feedback control loops
that enforce constraints on the behaviour of the overall system modelled. A control loop
consists of a controller, controlled processes as well as control-feedback loops between the
controllers with each other or controlled processes. The controller sends control actions to
enforce constraints on a controlled process. Moreover, it has a control algorithm that determines
the action of the controller and a process model that represents the controller’s beliefs about its
environment. The vertical axis of the control structure indicates control and authority of the
different components. In this structure, downward arrows represent the control actions and
upward arrows the feedback of the control-feedback loops.

During this, responsibilities can be assigned to each entity of the control structure. The
responsibilities are refinements of the system-level constraints that define what each entity
needs to do, so that as a unit they enforce the constraints.

Coming back to the door controller example, a possible control structure could look like
Figure 2.2. The control structure consists of the automated door controller with its control
algorithm and process model. It gets input information about the train and emergencies.
Furthermore, it commands the door actuator to open or close the door, which in turn uses
mechanical force to move the physical door. The door then gives feedback of its mechanical
position to the door sensor, which sents the feedback of the position and if the door is clear
back to the controller.

An example of a responsibility for the door actuator can be:
R-1: Open or close the door when commanded by the door controller [SC-1, SC-2, SC-3]

2.2.3 Identify Unsafe Control Actions

In this step, the control structure is analysed to identify control actions that can lead to
hazards in a specific context and worst-case environment. These control actions are called
Unsafe Control Actions (UCAs) and can be dangerous in four ways:

• Not providing the control action leads to a hazard

• Providing the control action leads to a hazard

• Providing a potentially safe control action but too early, too late, or in the wrong order

• The control action lasts too long or is stopped too soon

These types should be considered for all control actions, although some may not be appli-
cable in every case. Analogous to system-level constraints, controller constraints are identified,
which define the specific behaviours that controllers must follow to prevent UCAs.

Possible UCAs for the control action open door are shown in Table 2.1

6

2.2. System-Theoretic Process Analysis

Automated Door Controller

Door
Sensor

Door
Actuator

Physical
Door

Process Model

door clear: yes / no
door position: open / closed
train motion: moving / stopped
train positon: aligned / not aligned
emergency: yes / no

Control
Algorithm

open door
close door

mechanical
force

mechanical
position

door position
door clear

train position
train motion
emergency

Figure 2.2. Control structure door controller [Tho13].

2.2.4 Identify Loss Scenarios

In the last step, loss scenarios are identified. These loss scenarios describe causal factors, which
can lead to an UCA and therefore hazards. There are two types of loss scenarios that need to
be considered in the STPA: Scenarios that lead to an UCA and scenarios where an improperly
executed or not executed control action leads to a hazard.

The first case can further be divided into Unsafe controller behaviour and Causes of inadequate
feedback and information. For the first type, the process involves working backward from the
UCA to the factors for the loss scenario. There can be different reasons why the controller
executes unsafe behaviour, for example: failures of the physical controller, an inadequate
control algorithm, unsafe control input from another controller, or an inadequate process
model. For finding causes of inadequate feedback and information, the system needs to be
analysed to find their source. For the second case, factors that involve the control path as
well as factors that relate to the controlled process must be considered to find scenarios that
can lead to hazards. It is important that these factors are not reduced to a single one but are
seen as a whole scenario. Otherwise, non-trivial cases where components interact between

7

2. Preliminaries

Table 2.1. UCAs for the open door control action [Tho13].

control
action

not
provided

provided
wrong timing

or order
stopped to soon /
applied to long

open door UCA-1: Door
open command
not provided
when train is
stopped
at platform
and person in
doorway [H-1]

UCA-2: Door
open command
not provided
when train is
stopped and
emergency
exists [H-3]

UCA-3: Door
open command
provided when
train is moving
and there is no
emergency [H-2]

UCA-4: Door
open command
provided when
train is stopped
unaligned with
platform and
there is no
emergency [H-2]

UCA-5: Door
open command
is provided
more than X
seconds too
late after
train stops
during an
emergency [H-3]

N/A

themselves and combination of factors leading to hazards may be overlooked.

Applying the fourth step of the analysis to the example above results in the following loss
scenarios as example for both cases of Unsafe controller behaviour and for Causes of inadequate
feedback and information:

Scenario 1 for UCA-1: The door actuator fails when the train is stopped at a platform
and a person is in the doorway, causing the open door control action not to be provided
[UCA-1]. As a result, the controller closes the door on a person in the doorway [H-1].

Scenario 2 for UCA-1: The train is stopped at a platform and a person is in the doorway,
but the door actuator does not provide the control action to open the door [UCA-1]. This is
the case because the door actuator believes that the doorway is clear. This flawed process
model will occur if the signal indicating that the doorway is occupied is not received. The
indication may not be received when needed if any of the following occur:

• obstruction of the door clear sensor
• door clear feedback is delayed
• failure of door clear sensors
• etc.

As a result, the controller closes the door on a person in the doorway [H-1].

Scenario 3 for UCA-1: The automated door controller sends the open door command upon
reaching the station, but the door is not opened due to actuator failure. As a result, the
controller closes the door on a person in the doorway [H-1].

8

2.3. Context Tables

2.2.5 STPA Outputs and Traceability

The overall traceability between the different elements of the analysis, which were shown in
the previous section, can be seen in the traceability diagram in Figure 2.3. The results of STPA

can be used for creating requirements for the system, identifying design recommendations,
defining test cases, designing more effective safety management systems and more [Lev18].

Losses

System-level-Hazards Systen-level
constrains

Responsibilities

Controller
constrains

Unsafe
Control
Action

Scenarios
(with UCAs)

Scenarios
(without UCAs)

Figure 2.3. Traceability between STPA outputs [Lev18].

2.3 Context Tables

Applying STPA manually can be particularly tedious, especially in complex systems, mak-
ing partial automation a valuable approach to reduce the workload. Thomas developed
an automation method for creating contexts that help identify UCAs, as well as detecting
conflicts between safety requirements and other system requirements [Tho13]. Thomas first
formalized UCAs, to support the UCA generation process, by splitting the UCAs up in four
components: the source controller, type, control action, and context. The context is defined
by the process variables of the process model and their respective values. Context tables were
then introduced [Tho13], to systematically conduct step three of STPA. These tables assist in
identifying the full set of UCAs from the system’s control structure. Each context table analyses
one control action combined with the different UCA types, across all possible contexts.

The context table is structured as follows. In the first column is the control action that is to
be examined for hazardous behaviour. All possible combinations of values of the individual
process variables of the associated process model are then listed in the following columns.
Each row represents a possible combination of the values of the variables, whereby some
rows are taken together using the any value. The last columns show whether a control action

9

2. Preliminaries

is unsafe. This is determined by the analyst, who decides whether the control action in each
row could realistically result in a listed hazard from the behaviour outlined in that context. If
this is the case, a new UCA is identified and added to the set of UCAs.

The automated door controller example with the open door control action is considered
again. In the context where the train is stopped and is aligned with a platform, but people are
standing in the doorway, and there is no emergency, hazardous consequences are detected.
The hazard occurs when the control action is never or too late provided. This means that
a new UCA needs to be defined. Part of the context table for the control action open door is
shown in Table 2.2. The stopped too soon / applied too long column is omitted because it is not
applicable in the case of the open door control action.

Table 2.2. Context Table for automated door controller [Tho13].

Control
Action

Door
Clear

Door
Position

Train
Motion

Train
Position

Emergency
never

provided
provided
anytime

too early /
late

open
door

any closed moving any no no yes yes

open
door

any closed stopped
not

aligned
no no yes yes

open
door

any closed stopped any yes yes no
yes

(too late)
open
door

no closed stopped aligned no yes no
yes

(too late)
open
door

...

Gurgel et al. [GHD15] introduced a rule-based approach that represents an algorithmic
alternative to the manual method of filling context tables. This way, the approach aids in
the identification of hazardous contexts, which is otherwise both time-consuming and prone
to errors due to the complexity and large number of possible contexts. Rules are defined
as logical expressions of variable states, and mean that those states represent a hazardous
context. For variables where the specific state is irrelevant, the keyword any is used, allowing
flexibility in rule creation. These rules are defined directly before creating the context tables,
with each rule specifying the conditions under which a control action is considered unsafe.
For instance, a rule table for the open door control action can be seen in Table 2.3. The first rule
applies when the train is moving and there is no emergency and the second rule applies if
there is no emergency, but the train is not aligned with the platform.

Table 2.3. Rule Table for open door control action.

Index
Door
Clear

Door
Position

Train
Motion

Train
Position

Emergency

R1 any any moving any no
R2 any any any not aligned no

10

2.4. Sequentially Constructive Statecharts

Once the rules are established, they must be checked for conflicts, redundancy, and
correctness. The context tables are then created using these rules, systematically confirming,
which rows are hazardous, rather than manually checking each one. For example, all rows
in the context table where Train Motion is moving and Emergency is no would be judged as
hazardous, when the first rule is applied. This rule-based method significantly reduces the
effort and time required for the process by partly automating the identification of hazardous
contexts, making it more efficient and adaptable to changes. It shifts the focus of the UCAs

identification process from analysing each context manually to refining and managing the
rules, thus enhancing both the accuracy and the efficiency of the analysis.

However, context tables can not only help with step three of STPA, but also with the fourth
step, the identification of loss scenarios. They assist in this process by revealing scenarios
that lead to UCAs by uncovering a flawed process model. Some possible types of process
model flaws can for example be seen in Table 2.4. This technique also provides traceability
by allowing the exact hazards relevant to each process model flaw to be readily determined
from the existing context tables. Given the UCAs and context tables, basic scenarios can even
be generated automatically, but identifying causal factors still require manual effort. However,
this approach reduces redundancy between UCA identification and scenario analysis, ensuring
that only scenarios that definitively lead to a loss are considered.

Table 2.4. Process model flaws [Tho13].

Hazardous control action Process model flaws
Open door command provided
when train is moving

Controller incorrectly believes train is not moving

Open door command provided
when train is stopped unaligned
and there is no emergency

Controller incorrectly believes train is aligned
Controller incorrectly believes there is an emergency

Open door command not provided
when train is stopped and an
emergency exists

Controller incorrectly believes train is moving
Controller incorrectly believes no emergency exists

Open door command not provided
when train is stopped at platform
and person in doorway

Controller incorrectly believes train is moving
Controller incorrectly believes the door is clear
Controller incorrectly believes train is not aligned

2.4 Sequentially Constructive Statecharts

Sequentially Constructive Statecharts (SCCharts) are a synchronous statecharts dialect with
Sequentially Constructive (SC) semantics. It was introduced by von Hanxleden et al. [HDM+14]
for specifying safety-critical reactive systems. SCCharts use a similar notation to statecharts
[Har87] and are inspired by SyncCharts [And96]. Furthermore, they are based on the SC

Model of Computation (MoC), which provides them with deterministic concurrency. There

11

2. Preliminaries

are two dialects of SCCharts, the core and the extended SCCharts, which are built upon the core
dialect. The elements of both can be seen in Figure 2.4.

Figure 2.4. SCCharts elements [Sch24b].

The core dialect is a minimal set of simple features designed for easy compilation. It
consists of states, variables, regions, and transitions, which can optionally have triggers and
effects. Figure 2.5 shows the ABO SCChart, a well-established introductory example that shows
the core features of SCCharts. The SCChart produces the outputs O1 and O2 according to the
input A and B. In the first transition, O1 and O2 are set to false. After that, both A and B
can set O1 to true, which can happen with a different timing. Furthermore, A overrides the
boolean B to true. After both boolean A and B were true, O1 is set to false and O2 to true in
the last transition.

One of the core elements of SCCharts are regions, e.g. HandleA and HandleB, which are used
to compose SCCharts hierarchically and to express concurrency, when they are in the same
state. A state is called a superstate if it has one or more regions e.g. AB. The regions are
executed as soon as the superstate is entered. Each region must have an initial state e.g. init
and might have a final state e.g. GotAB in which it terminates. A superstate only terminates
if all its regions reached their final state. SCCharts react in synchrony and in discrete ticks. A
tick is a program reaction that consists of a finite amount of smaller computation, which are
considered to take no time [Hal92]. SCCharts behave in a control-flow manner whereby they
transition from one state to another. This transition goes as follows: each active state checks its

12

2.5. Linear Temporal Logic Formulas

ABO
input output bool A, B
output bool O1, O2

init

AB

WaitA

DoneA

A
/ B = true;
 O1 = true

- HandleA

WaitB

DoneB

B
/ O1 = true

- HandleB

GotAB/ O1 = false;
 O2 = false

/ O1 = false;
 O2 = true

-

Figure 2.5. ABO SCChart [HDM+14].

available outgoing transitions—-these can be ordered by priority labels—-whether its trigger
expression holds e.g. is B true?, takes the first match, executes its effect sequence e.g. set O1

to true, and passes activity on to the target state. This continues until no further transition
can be taken, which marks the end of the tick. Transitions have a specific timing, concerning
the discrete ticks. They can either be immediate or delayed. Immediate transition can be taken
immediately during execution, while delayed transitions require that at least one tick has
passed after their source state was entered, which means a delayed transitions gets ignored
in the initial tick after entering the state. An immediate transition would be that in HandleA

and a delayed transition that in HandleB. Furthermore, SCCharts can have multiple values in
a tick for signals, channels and local variables due to their SC. This is because SCCharts act
according to the Initialize-Update-Read Protocol (IURP). It allows a variable to be relatively
updated several times after it has been initialized by an absolute write. This means in the ABO

example that B is false in the absolute write, then it gets updates relatively to true in HandleA

and after that, the transition in HandleB reads B so that the transition can be taken.
The extended set is a rich set of advanced features for easier modelling that are reducible

to the core set. It allows writing SCCharts that can be referenced by states of other SCCharts

[SMS+15]. This referenced state then has to provide a binding for all input and output
variables of that SCChart module. In addition to classical statechart design, SCCharts also
provide a dataflow notation [Smy21]. In special dataflow regions, SCCharts can be instantiated
as actors and control logic is expressed as equation systems.

2.5 Linear Temporal Logic Formulas

Linear Temporal Logic (LTL) formulas express the abstract order in which events occur. For
example, event A occurs after event B. The basic LTL formulas are built out of atomic propositions,

13

2. Preliminaries

the boolean connectors such as conjunction ^, and negation ␣, and two temporal modalities
the next-operator X and the unil-operator U. They are defined as the LTL formulas over the set
S of atomic propositions and a P S are formed by the following grammar:

φ ::= true | a | φ1 ^ φ2 | ␣φ | Xφ | φ1 U φ2

Formal semantics of LTL are not covered in this thesis but can be looked up in the book by
Baier and Katoen [BK08]. Figure 2.6 demonstrates the intuitive semantics of LTL that are used
in this work. The operators G, which represents always and F representing eventually can be
expressed using the until-operator as follows:

Fφ ” true U φ Gφ ” ␣F␣φ

a arbitrary arbitrary arbitrary arbitrary
...a

aarbitrary arbitrary arbitrary arbitrary
...Xa

a b
...aUb

a
...Ga

a a a a

a b a b b arbitrary

Fa

a arbitrary
...

Figure 2.6. Illustration of the intuitive semantics of LTL [BK08].

2.6 Used Technologies

This section discusses the technologies involved in the application of STPA and the modelling
of the steam boiler with SCCharts. Section 2.6.1 explains how KIELER is employed, which is
used for modelling the steam boiler in SCCharts and visualizing this model. Following that,
Section 2.6.2 introduces PASTA, which is used for the safety analysis of the steam boiler.

2.6.1 KIELER

The KIELER project1 is a research project about enhancing the graphical model-based design of
complex software systems, developed by the Real-Time and Embedded Systems group at Kiel

1https://github.com/kieler

14

https://github.com/kieler

2.6. Used Technologies

University. In the past, the tool KIELER was built around the Eclipse Integrated Development
Environment (IDE)2, but today is also supported for Visual Studio Code3 [Ren18; Dom18;
KRD+24].

Part of the KIELER project are the semantics, which focus on the meaning of the symbols
used in the modelling languages, particularly synchronous languages. This part of the project
primarily deals with SCCharts, including specialized automatically generated graphical views,
model-transformation-based compilation, and simulation. The KIELER tool hereby uses a
text-first approach, for generating the diagrams. This means that the source model is edited
textually, whereby the diagram is automatically generated.

Another, relatively new part of the KIELER project is the Kieler Process Analysis, which
performs a safety analysis of a system. This part covers the PASTA tool, which combines STPA

with pragmatics-aware modelling and visualization techniques. PASTA is discussed in more
detail in Section 2.6.2.

In the context of this thesis, the tools from the KIELER project are primarily used for
performing a STPA in PASTA, which visualizes the control structure and traceability diagram,
and using SCCharts to model and visualize the steam boiler.

2.6.2 Pragmatic Automated System-Theoretic Process Analysis

The tool Pragmatic Automated System-Theoretic Process Analysis4, developed by Petzold et
al. [PKH23], is designed to support STPA. It is implemented as a Visual Studio Code (VSCode)
extension5 and provides a new language derived from the STPA process. This language
evaluates the current progress of the STPA process using the built-in language server. PASTA

differentiates itself from other STPA tools through its automatic visualization with a text-first
approach, bridging the gap between purely textual and purely graphical tools [PH23]. PASTA

offers two main advantages. First, its visualization capabilities, which can display both the
control structure of a defined system and the traceability diagram in a separate figure. It
also utilizes extensive filtering features, allowing multiple views of the underlying model
to handle large graphs. For example, users can choose to view a single figure, toggle the
visibility of individual STPA elements, or display only one UCA along with its connections
to other components. Second, the entire analysis is conducted in a purely textual format,
eliminating the need for users to familiarize themselves with a new User Interface (UI).

2KIELER in Eclipse
3KIELER in VSCode
4https://github.com/kieler/stpa
5https://code.visualstudio.com/

15

https://github.com/kieler/semantics/wiki/quick-start-guide
https://github.com/kieler/semantics/wiki/vs-code-extensions
https://github.com/kieler/stpa
https://code.visualstudio.com/

Chapter 3

Related Work

This chapter reviews existing research and tools relevant to the topics covered in this thesis.
First, Section 3.1 examines various tools designed to support STPA, highlighting their features.
The discussion then shifts in Section 3.2 to existing risk analyses conducted on the steam
boiler system, which serve as a foundation for further safety studies. Additionally, this chapter
explores different modelling approaches applied to the steam boiler in Section 3.3. Finally,
Section 3.4 looks into the verification of the steam boiler.

3.1 STPA Tools

Several tools already support the use of STPA, with the main challenge being to assist in
its application by offering a systematic process, aiding in repetitive tasks, and producing
a comprehensive list of safety requirements. This section presents three tools designed to
support STPA.

3.1.1 STAMP Workbench

The STAMP Workbench1 was created by the Information-technology Promotion Agency (IPA)
in Japan as an open-source project. The tool offers various views for different steps in the
STPA process and displays a description of the view when hovering over it. This description
entails the Purpose, Input, Processing, Output, and Remarks of the specific view.

Initially, preconditions can be entered into a table by providing an Identifier (ID) and a
description. Losses, hazards, and constraints are displayed in a unified view, represented by a
table with columns for each aspect, as illustrated in Figure 3.1a. Linking is achieved implicitly
by placing the related components in the same row. Each component is assigned an ID and a
description.

Another available view is the Component Extracting Table in which components can be
added to the control structure. For each component, attributes such as name, responsibility,
control action, feedback, I/O, and remarks can be specified. Using this table, the control
structure diagram can be automatically generated, if the components that should be shown
are selected. However, it can also be manually drawn using drag-and-drop functionality. A
control structure can be seen in Figure 3.1b. In the Control Structure Diagram, the automatically

1https://www.ipa.go.jp/en/digital/complex_systems/stamp_workbench.html
2https://www.ipa.go.jp/en/digital/complex_systems/stamp_workbench.html

17

https://www.ipa.go.jp/en/digital/complex_systems/stamp_workbench.html
https://www.ipa.go.jp/en/digital/complex_systems/stamp_workbench.html

3. Related Work

(a) STAMP Workbench table example.

(b) Control structure in the STAMP Workbench.

Figure 3.1. Views in the STAMP Workbench2.

generated control structure is customizable and additional elements such as comments can
be added.

For the UCA view, a table is used where control actions are automatically populated
by extracting them from the control structure. However, this table does not function as
a context table, as proposed by Thomas [Tho13]. To identify causal factors, a control loop
diagram specific to each control action can be accessed, showing only the relevant components.
Additionally, hint words for identifying causal factors are provided, and results are recorded
in the HCF Table. In this view, the relevant UCA must first be selected, after which a table
for documenting causal factors is displayed. Each entry includes an ID, the causal factor, the
associated hint word, and scenarios. Finally, countermeasures can be recorded in a dedicated
countermeasures table, which also displays the associated HCF and UCA.

18

3.1. STPA Tools

3.1.2 STPA Capella

STPA Capella [CRD+22] is an experimental add-on tool for Capella3, which is a tool for
model-based systems engineering build on Eclipse. It is open-source and was developed by
Oliver Constant4. It enables the users to perform STPA analyses in a model-based fashion,
either standalone or in combination with Capella or Arcadia system architecture modelling.
Albeit experimental, it has been successfully used in several real-world projects.

STPA Capella has a built in concept that allows the user to define stakeholder and their
values, which are first entered in one table and then linked to the respective losses in another
table. This can be seen in Figure 3.2.

Figure 3.2. Stakeholder table in STPA Capella [Con24].

Afterwards the losses, hazards and system-level constraints can be defined in their
respective table. The process of defining a new element is as follows: First, the correct
directory needs to be clicked to add a new Cappella element. For example, a loss can be
created by right-clicking on the Losses directory first, then Loss can be selected and described
in individual input fields in the loss table. This process is shown in Figure 3.3a. After that,
the traceability can be added to each element. This is done in a separate window, which is
shown for a connection to a hazard in Figure 3.3b.

In the next step, the control structure is defined by adding the Capella Elements for
components and actions. Furthermore, the responsibilities can be specified in an extra table
for each component. In the same directory, also the UCAs are identified. In the last step, loss
scenarios and constraints are specified in the same manner as the losses and hazards.

3https://mbse-capella.org/
4https://github.com/labs4capella/stpa-capella

19

https://mbse-capella.org/
https://github.com/labs4capella/stpa-capella

3. Related Work

(a) Creating a new loss.

(b) Selecting hazards that concern a loss.

Figure 3.3. Loss creation and tracing in STPA Capella.

3.1.3 SafetyHAT

Safety Hazard Analysis Tool (SafetyHAT)5 was developed at the Volpe National Transportation
Systems Center in the USA and is designed to assist analysts in learning STPA [BV+14]. It
accomplishes this by offering selection options, such as potential causes for loss scenarios.
The STPA process is broken down into eight steps. The first three steps involve inputting
system information such as the components of the system, their type and connection as well

5https://www.volpe.dot.gov/infrastructure-systems-and-technology/advanced-vehicle-technology/

safetyhat-transportation-system

20

https://www.volpe.dot.gov/infrastructure-systems-and-technology/advanced-vehicle-technology/safetyhat-transportation-system
https://www.volpe.dot.gov/infrastructure-systems-and-technology/advanced-vehicle-technology/safetyhat-transportation-system

3.2. Risk Analyses of the Steam Boiler

as their respective control actions. This is followed by four steps dedicated to the core STPA,
the identification of losses, hazards, UCAs and loss scenarios. The view of the last STPA step
can be seen in Figure 3.4. All steps have a form guidance that explains how to use the view
and the Causal Factor Analysis also provides the user with a Causal Factor Diagram. Finally,
the analysis results can be exported to Excel.

Figure 3.4. Causal factor analysis view in SafetyHATa.

ahttps://www.volpe.dot.gov/infrastructure-systems-and-technology/advanced-vehicle-technology/

safetyhat-transportation-system

SafetyHAT was primarily developed for use in transportation system analysis, which
is why it includes transportation-specific guide phrases and causal factors. Additionally,
the categories for UCAs are expanded based on experience gained from applying STPA to
transportation systems. However, users have the flexibility to modify both the categories and
the guide phrases for causal factors.

3.2 Risk Analyses of the Steam Boiler

The steam boiler specification or similar steam boilers have already been analysed with
different risk analysis techniques with the goal of identifying possible unsafe scenario and

21

https://www.volpe.dot.gov/infrastructure-systems-and-technology/advanced-vehicle-technology/safetyhat-transportation-system
https://www.volpe.dot.gov/infrastructure-systems-and-technology/advanced-vehicle-technology/safetyhat-transportation-system

3. Related Work

defining requirements the system needs to uphold in order to be safer. Three of the existing
analysis are presented in this section.

3.2.1 FTA of the Steam Boiler

Prokhorova et al. [PTL13] are conducting a FTA on the steam boiler. They first define the
functional and safety requirements the system needs to fulfil. An example for the functional re-
quirements would be that When the water level is between N1 and M1, the pump shall be

switched on. Moreover, an example for the safety requirements would be During the system

operation, the water level shall not exceed the predefined safety bounds. The main haz-
ard of the system is identified as the overflow or lack of water. For this reason, the fault tree
shown in Figure 3.5 is based on the water level. It shows what the process is for the water
level to exceed it bounds. For this, the water level can be either too low or too high. The case
that the water level is too low is thereby fully developed. On the left side is shown how the
defect of the water level sensor and another unit can cause the water level to be incorrectly
determined if the steam boiler has no system to detect and tolerate these defects, which then
leads to a too low water level.

3.2.2 HAZOP on a flame tube boiler

Oliveira et al. [OR18] performed a HAZOP on two steam boilers in real life that are located
at the University Hospital of Santa Maria (HUSM). A steam boiler is defined as equipment
used to generate and accumulate steam at pressures higher than atmospheric pressure, using
any source of heat. The steam boilers at the HUSM are two flame tube boilers, which are
characterized by internal circulation of the combustion gases in operation with liquid or
gaseous fuels. The HAZOP application was limited to the boilers’ water and pressure of the
steam flow. Two Knots of the flame tube boilers system were considered for the analysis.
The first one was located in the boilers’ water supply and the second was situated in the
steam power of the pressure vessel. The procedure to identify possible risk was as followed.
First were the “Connections” identified, which are the probable critical points in the system.
Afterwards, guide words able to cover the possible deviations of the evaluated system were
determined and deviations and proposition of mitigation alternatives were assessed.

The risk analysis then revealed that the most dangerous factors are, on the one hand,
always triggered by a water level that is too high. This risk could be minimised by elaborating
and implementing a maintenance plan and a calibration plan. In addition, too low a water
level due to incrustation in the water pipe is recognised as a severe risk. According to
the analysis, this could be minimised by implementing an alarm system when the water
level is too low. On the other hand, excessively high steam pressure is always very risky,
and the scenario where the pressure register closes during the boilers’ operation is seen
as particularly dangerous. It is recommended to elaborate and implement a maintenance
plan, the substitution of the manual register by an automatic controller and investing in
qualification for boilers operator. Finally, it is considered very dangerous if the pressure is too

22

3.2. Risk Analyses of the Steam Boiler

Figure 3.5. Fault tree of the water level [PTL13].

low due to obstruction or leakage in the oil pipe. Here it is also recommended to create a
plan and to invest in the boilers’ course of operation for the operators.

23

3. Related Work

3.2.3 HAZOP on a coal-fired boiler

Rahma et al. [RH] conducted a HAZOP analysis on a steam boiler used for producing electricity.
It is a PT PJB’s coal-fired boiler system, which consists of a feed water system (steam drum),
steam system (superheater), and fuel system (furnace).

Possible losses that were identified, are the loss of production or property as well as injury
or death of bystanders. The analysis determined two study nodes with extremely high-risk
levels: the feed water setting to the steam drum has a damaged feed water pump, and the
steam pressure on the steam drum has a damaged safety valve. As a result, the water level is
low and the boiler trips. The controls implemented by PT PJB to minimise these risks are for
the first case that the pump is getting repaired or replaced and that a feed-water flow sensor
and a steam drum level sensor are getting installed. This is done so that this particular error
is detected early. For the second case, possible action to minimise the risks are the inspection
or repair of the safety valve, doing a leak check as well as checking the sensor level and the
pressure.

3.3 Models

The steam boiler specification has already been modelled with different methods. Three of
the existing models are presented in this section.

3.3.1 The Steam Boiler in Statecharts and Z

Büssow et al. [BW96] modelled the steam boiler specification in their work with statecharts
and Z. They first split the system in three compatible views: the architectural model, the
reactive model and the functional model.

The architectural model of a system describes the relationships between the classes of
components used in the system as well as the actual configuration of the system components
themselves.

The two other views are primarily concerned with the specification of the behaviour
of single components of the embedded control system. The functional model, defines a
component’s data structure, including data invariants and transformation relations, capturing
its local state and input/output operations. From this model, constraints such as safety
properties can be derived. The second view, the reactive model, focuses on a component’s
interactions with other components, detailing its life-cycle and managing timing constraints.
It specifies how external operations are requested or supplied during state changes.

Figure 3.6 shows the architectural model of the steam boiler, which primary components
are the unit manager and the steam boiler control system. Two components were added
that differ from the specification. One being the MonitoredPump, which monitors the pumps
and their controllers. The other being the UnitManager, which was introduced to distinguish
between the non-periodic processing of signals and their periodic transmission.

24

3.3. Models

UnitManager

LEVEL_FAILURE_DETECTION
STEAM_FAILURE_DETECTION
PUMP_FAILURE_DETECTION
PUMP_CONTROL_FAILURE_DETECTION
PROGRAM_READY
VALVE
MODE
OPEN_PUMPS
CLOSE_PUMPS

SteamBoiler

INIT.STOP
TRANSMISSION_ERROR
LEVEL
LEVEL_REPAIRED
PHYSICAL_UNITS_READY
PUMP_CONTROL_REPAIRED
PUMP_CONTROL_STATE
PUMP_REPAIRED
PUMP_STATE
STEAM
STEAM_BOILER_WAITING
STEAM_REPAIRED

Vave

MonitoredPump

Pump PumpControlWaterSensorSteamSensor

Figure 3.6. Main components and their services in the architectural model [BW96].

The steam boiler system is structured around a unit manager that controls several physical
units. The unit manager plays a key role by handling two tasks: sampling sensor data and
status information from actuators (e.g., pumps) and periodically transmitting this data to
the main control system. Additionally, it processes control messages sent between the steam
boiler control system and the physical units, managing communication errors by sending
transmission error messages if problems occur.

The unit manager requests data from sensors and actuators periodically and transmits it
to the central control system, while also receiving and forwarding operating mode data to the
physical units. It handles failure detections, repair acknowledgments, and any communication
errors between the physical units and the main control system.

The reactive model splits the model in an NoEmergency and in an Emegerency state. The
system can only run in the first one. Furthermore, it is specified that the pumps need an extra
state for balancing the pressure.

The functional model then defines the values each unit can have and at what value the
state of a unit changes. Moreover, it does define when the system is considered to be in a
specific mode and how the transmissions should work.

25

3. Related Work

3.3.2 The Steam Boiler in SCCharts

The steam boiler was already modelled in SCCharts twice. In the work from Smyth et al.
[SDH19] the steam boiler was heavily abstracted. It can have no transmission failures and
the signals are all modelled as booleans. This is the case, because the focus was on a user
study on manual user verification of different source codes that were generated by automatic
code generators. The SCChart was compiled to C with three different approaches and it was
shown that manual verification can be time-consuming and is error prone if the user has no
clear mapping between states and transition of the original model and the generated code.
Therefore, the participants performed better if the generated code followed a state pattern
that preserves original model structures and names.

In the work from Schulz-Rosengarten [Sch24a] the focus lies on using Object-Orientated
(OO) design principles to model the steam boiler so that the OO features of SCCharts can be
evaluated. For this reason, the model is heavily built upon modularisation with the help of
inheritance, extending interfaces and using abstract classes for transmission failures. The
results of the evaluations illustrates that the new OO SCCharts are capable of expressing an OO

architecture and its implementation in one model, while various derived views can visualize
different structural aspects.

The similarities and differences of the two SCChart models and the one designed in this
work are discussed in more detail in Section 6.2.4.

Figure 3.7. The steam boiler divived in four subsystems [dT06].

26

3.4. Verification

3.4 Verification

The work by Riva et al. [dT06] verifies the steam boiler. For this, a model was created that
consists of four subsystems and can be seen in Figure 3.7. This was done in order to avoid
the state explosion problem. A natural approach to solving this problem is to divide the
system into components and to perform local verifications on separate components and then
to deduce a number of global properties for the whole system.

The verification of the system’s correctness involves ensuring that 55 declarative properties
derived from system requirements are satisfied. Due to the complexity and size of the
system, a modular verification approach was adopted to manage state explosion and resource
constraints. For this, properties were translated into LTL formulas for formal verification.
Global properties were broken down into local properties relevant to each component and
each component was verified under certain assumptions about its environment. To enhance
efficiency, assumptions were automatically generated based on the behavior of input events.

27

Chapter 4

The Steam Boiler in PASTA

The focus of this thesis is for one part to perform a STPA in PASTA on a bigger system, to later
evaluate the usefulness of the tool in aiding in the analysis. For this reason, a risk analysis
of the steam boiler was carried out, which made it possible to identify possible risks and
scenarios that could lead to them. This chapter presents the process of the STPA that was
performed with the help of PASTA and addresses the challenges that occurred and how these
were solved.

4.1 Analysis

This section explains the process of performing a STPA in PASTA. It explores the individual
steps of the STPA and how it was carried out for the steam boiler in PASTA. Additionally,
it explains in detail certain special cases where either the specification was deviated from
and the reasons behind these decisions or where a specific approach was chosen due to the
limitations of the tool.

4.1.1 Define Purpose of the Analysis

The first step of STPA is to identify the losses of the system. For this, Leveson [Lev18] advises to
first identify the stakeholders such as users, operators or producers and determine their stake
in this system. Each of these values can then be translated to a loss. This approach has the
advantage that the analyst first familiarizes themselves with all aspects of the system and its
users, making it less likely that losses will be overlooked. In addition, a basic understanding
of the system is already established. A feature to do this does not yet exist in PASTA, so that
one can only record the stakeholders separately for oneself or immediately identify the losses.

1 Losses

2 L1 "Loss of life or injury"

3 L2 "Loss or damage to physical units"

4 L3 "Loss or damage to proper communication among system components"

5 L4 "Loss or damage to objects or environment around the system"

6 L5 "Loss of revenue"

Listing 4.1. Losses of the steam boiler.

Possible stakeholder are the companies who produce and use the steam boiler respectively.
They value human life, the environment, a good product or production and the satisfaction

29

4. The Steam Boiler in PASTA

of the client. Other possible stakeholders are the steam boiler operator and the residents that
live near the companies. They value a safe working and living environment. These stakes can
be translated to the losses seen in Listing 4.1.

The hazards, that can lead to losses, are then identified and shown in Listing 4.2.

1 Hazards

2 H1 "Steam-boiler is outside of safe water levels" [L1, L2, L3, L4, L5] {

3 H1.1 "Water level is too low"

4 H1.2 "Water level is too high"

5 }

6 H2 "The heat is outside safe levels" [L1, L2, L3, L4, L5]

7 H3 "System integrity is lost" [L1, L2, L3, L4, L5]

8 H4 "Inadequate steam production" [L5]

9 H5 "Wrong operation mode" [L1, L2, L4, L5] // also STOP

Listing 4.2. Hazards of the steam boiler.

For each hazard a system-level constraint is defined. In this case, a constraint only states that
the hazard cannot occur even in a worst-case environment. For example, the system-level
constraint for H2 “The heat is outside safe levels” would be SC2 “The heat must always

be at a safe level”. All system-level constraints can be found on github. The connection of
the losses, hazards and constraints values can be seen in Figure 4.1.

L1 L2 L3 L4 L5

H1

H1.1 H1.2

H2 H3
H4

H5

SC1

SC1.1 SC1.2

SC2 SC3 SC4SC5

Figure 4.1. Losses, hazards and system-constraints of the steam boiler.

The losses and hazards were kept to a minimum, as is good practice. An exception was
only made for the distinction between the loss of physical units and the loss of communication
between the components. This is the case, because according to the specification of the steam
boiler, the system can still continue to operate if certain physical components fail, whereas

30

https://github.com/Tokessa/STPA

4.1. Analysis

it immediately goes into an emergency stop if there is a problem with the communication.
Furthermore, this thesis introduced a hazard that specifies that the system can also have a
problem with the heat if it is outside a certain range. This analysis therefore also considers
the heater of the steam boiler, which is not considered in the specification, as it cannot be
regulated by the steam boiler controller. H1 is also subdivided into subhazards, as this is the
main hazard in the specification and the feature of the subhazard can also be presented in
this way. Such a subdivision would also have been possible for H2, but this was not done
as the main focus should be on the physical units of the specification and one example is
sufficient for evaluating the feature.

4.1.2 Model the Control Structure

Repair heater

STOP

Operator

Water-level(v)
Steam-level(v)

Controller

Heater on
Heater off

Unit fail protocol

Outside
Controller

Heater information
Unit fail protocol

Heater

Physical Units

Pump Subsystem

Water-level
Sensor

Steam-level
Sensor

Valve

OPEN_PUMP(n)
CLOSE_PUMP(n)

Unit fail protocol

Pump
Controller

Pump
Sensors

Failure ack(n)

Pumps

Start booting
Repair unit

Control heater Heater information
Mode(n)
Failures

PUMP_STATE(n,b)
PUMP_REPAIRED(n)

PUMP_STATE(n,b)
PUMP_REPAIRED(n)
PUMP_CONTROL_STATE(n,b)
Unit fail protocolUnit fail protocol

PROGRAM_READY
MODE(n)

Unit command
Unit fail protocol

PHYSICAL_UNITS_READY
STEAM_BOILER_WAITING
Unit values
Unit fail protocol

Water throughput(v1,v2)

Throughput
Pump Subsystem state

Figure 4.2. The steam boiler control strcuture.

In the next step, the control structure for the steam boiler was defined. An abstraction
of it can be seen in Figure 4.2, as the original control structure, which PASTA created, was
too large for this explanation. The original control structure can be found on github. In the
abstracted version of the control structure, as well as in the original, there are control actions
and feedback actions, which are capitalized. This means that these signals are defined in the
specification. All other signals have been added for a more complete analysis of the steam
boiler.

31

https://github.com/Tokessa/STPA

4. The Steam Boiler in PASTA

The system is monitored by an Operator. This Operator is responsible for starting and
stopping the system and repairing the physical units. It also receives information about the
mode of the system, component failures and transmission failures. n denotes here the five
different modi, that the steam boiler system can be in.

The system is managed by two controllers. These are separated, as one of the controllers,
called the Outside Controller, operates the Heater, which is not part of the actual steam boiler
specification of Abrial et al. [Abr05] and is for that reason kept separate from the rest. The
Outside Controller is responsible for activating and deactivating the Heater. For this purpose,
it also receives information about the water level and steam level from the Controller, where v

denotes the values for the respective level. Moreover, it gets information about the Heater
- its state and heat value - from the Heater itself, as the physical heater and its sensor are
modelled as one module. This is because this work focuses on the steam boiler specification
and therefore the control structure should not be enlarged too much by other units. For this
reason, other components such as tubes, the deaerator, or combustion chamber, are also not
listed.

The control action from the Outside Controller and the feedback from the Heater also has
a so called unit fail protocol. This is defined as follows: the control unit detects a failure of a
physical component and as a consequence sends a FAILURE_DETECTION control action to
the concerning unit. The unit then has to answer with a FAILURE_ACKNOWLEDGEMENT
feedback when it received this action. After the Operator has repaired the physical unit, it
sends a REPAIRED signal as feedback and waits in turn for the REPAIRED_ACKNOWL-
EDGEMENT from the control unit. This protocol is used by every physical component and
their respective controller if a failure was detected.

The other controller, simply called the Controller, is responsible for managing the units
named in the specification. In this case, it performs the tasks that the program has assumed
in the specification. It boots the program, transfers the individual modes that the system is in
at a certain point in time to the components and controls the physical units. For being able to
do this, it receives the values that the system outputs, such as the position of the valve or the
water and steam level. It also receives the STEAM_BOILER_WAITING signal, with which
the program starts booting, and PHYSICAL_UNITS_READY when all physical units have
finished booting. In addition, it executes the unit fail protocol with the Valve, the Steam-Level
Sensor and the Water-level Sensor.

The specification does not explicitly state what happens if the Valve breaks, as it is
assumed that this will not happen. Since this assumption is unlikely to be met in a real
system, it is also assumed in this analysis that the Valve can break. It follows the same unit
fail protocol as the other physical units in the event of a failure and subsequent repair.

Contrary to the specification, the Controller does not control the pumps and their sensors
directly, but indirectly through the Pump Subsystem. This subdivision was carried out so
that the individual controllers have fewer process variables, as this allows the context tables in
PASTA to be better utilized. The process variables of the control structure will be discussed in
more detail later in this subsection and the context tables are considered in more detail as

32

4.1. Analysis

part of step three of STPA in Section 4.1.3. The Controller regulates the Pump Subsystem by
forwarding the minimum and maximum throughput that all the pumps should have, so that
the system can control the pumps accordingly. The required throughput is determined by
the values of the remaining sensors. Then the Pump Subsystem gives feedback actions of the
current throughput and the general state of the system back to the Controller. The state here
is whether all units are working, parts have failed or everything has failed. This information
needs the Controller in order to control the system.

The Pump Subsystem consists of three components: the Pump Controller, Pump Sensors
and Pumps. There are four of each of the pumps and sensors, as stated in the specification.
It should also be noted here that the pump controller referred to by Abrial et al. [Abr05]
is in this case the Pump Sensor and the Pump Controller is a controller in the sense of
a controller in STPA, which regulates units. The subsystem works as follows: the Pump
Controller sends the control action to open or close a pump. n stands for the respective pump
that is to execute the action. The pumps then give their state as feedback for the sensor. The
n again stands for the respective pump, and b is the respective state: open or closed. The
sensor then passes this feedback on to the Pump Controller with its own state. In this case,
the state is again denoted by b, which now stands for water flowing or water not flowing in
the respective pump. The Pump Controller also handles the unit fail protocol for the pumps
and their sensors. It only forwards the error status to the Controller so that a repair can be
carried out. The protocol is executed directly with the Pump Sensors, and these also transmit
the REPAIR signals of the Pumps because the sensors recognizes the repairs. However, the
FAILURE_ACKNOWLEDGEMENT is passed directly from the Pumps to the Pump Controller
as feedback.

The Operator and all controllers also have a process model with process values, which
they need to decide which control action is to take for a specific context. The Operator has
process variables that tell them for all physical units whether these are defective so that they
can repair them. Moreover, they know if it came to a transmission failure and the mode of the
system, so that they can stop or start it in an emergency. Figure 4.3 shows what this looks like
in code in PASTA and what it looks like as a diagram.

The Outside Controller only needs to know about the defects of the Heater and, if
transmission failures occur, to either pass this on to the Operator or apply the unit fail
protocol. The protocol needs three variables: one variable to know if the Heater acknowledged
the fail and two variables in which the defect of the Heater is split into. One of the defective
variables indicates whether the Heater was previously faulty, while the other indicates whether
the Heater is now faulty. This is done to determine whether the Heater has been repaired. It is
considered repaired if it was previously defective and is now functioning correctly, indicating
that the issue has been resolved and the defect no longer persists. The Outside Controller
also knows the state of the Heater and its heat in order to be able to switch it on and off
appropriately. Certain ranges are specified for the heat in which it can be located. The ranges
were defined in this way because different UCAs can be found depending on the range. The
specific variable ranges, which are specified in the code, can be used later for automated

33

4. The Steam Boiler in PASTA

1 processModel {

2 pumpSubsystemDefective: [yes=[true], no=[false]]

3 valveDefective: [yes=[true], no=[false]]

4 levelSensorDefective: [yes=[true], no=[false]]

5 steamSensorDefective: [yes=[true], no=[false]]

6 transmissionDefective: [yes=[true], no=[false]]

7 mode: [initialization=[0], normal=[1],

8 degraded=[2], rescue=[3], emergencyStop=[4]]

9 heaterDefective: [yes=[true], no=[false]]

10 }

Operator

pumpSubsystemDefective
yes
no

valveDefective
yes
no

levelSensorDefective
yes
no

steamSensorDefective
yes
no

transmissionDefective
yes
no

mode
initialization
normal
degraded
rescue

emergencyStop

heaterDefective
yes
no

Figure 4.3. Process model of the Operator in code form and as diagram.

creation of models and also serve to improve understanding of the process variables. For this
reason, they were defined for all variables. The heat variable then looks as follows:

1 heat: [belowLimit=[MIN, H1], belowNormal=[MIN,L1], normal=[L1, L2],

2 aboveNormal=[L2,MAX], aboveLimit=[H2, MAX]]

The variables indicatie hereby the physical limit of the Heater. The heat must lie in-between
H1 and H2, because the steam boiler and heater could be seriously damaged otherwise. It
ideally lies between the security levels L1 and L2 for optimal steam production.

The Controller has process variables that specify the failures of transmissions and all
units. But this time no DefectiveBefore variable exists, because it is only needed to know if
a unit was repaired. This is the case, because the UCAs for the unit fail protocol were only
defined exemplary for the Heater and omitted for the rest of the units, because it is the same
for all of them. Moreover, it does allow the controller to have fewer process variables, which
allows the context tables to be better utilized. The only other difference is the Pump Subsystem,

34

4.1. Analysis

because this does not have a binary state: defective and not defective. Instead, only parts can
be defective, as it is an entire system of units. The Controller must therefore react differently
if only one part is defective, as the system can then still run, whereas it must stop if all
pumps are defective. It also has variables that indicate, which mode the system is in and
whether it is ready to start at all. The second is the case when the Controller has received the
PHYSICAL_UNITS_READY signal from all units. Finally, it has variables that describe the
values and states of the units. The values are again divided into ranges, as with the Heater.
In addition to the water level, there is also a calculated water level. This is required if the
water level sensor is defective, and the system goes into rescue mode, as the water level can
no longer be measured reliably.

Lastly, the Pump Controller has process variables that specify the failures of transmissions
and all different pumps and their respective sensors. It also has variables that describe the
value and states of the components. The value is again divided into ranges, as before, and
all throughputs are combined to one. There is no variable that indicates whether the water
in the pumps is flowing, which would be the sensor value for the pump sensors. This is the
case, because the variable is only used to know if there is a defect with the pump or their
respective sensor. But since there are already variables indicating that defect, no additional
variable is needed. The mode is required because the subsystem not only has to decide when
to open or close the pumps, but also when to start or stop the whole system.

All components were then analysed to identify the respective responsibilities they need to
adhere, so that the system-level constraints can be fulfilled. They all are responsible to uphold
the unit fail protocol. They do this by returning an acknowledgement for a fail signal, if they
are a physical unit, and an acknowledgement for a repair signal, if they are a controller. In
addition, the controllers must first recognize the error and inform the units while the units
are informing the controllers of a repair. Otherwise, the tasks of the components are generally
to listen to the higher hierarchical unit when it gives a control action and to update it with
feedback. The controllers also have the responsibility to make decisions on states and the
sensors have the responsibility to only pass on correct data. The Controller’s responsibilities
are shown in the following as an example:

1 Controller {

2 R5 "Must adhere to start and stop command from the Operator" [SC1, SC3, SC4, SC5]

3 R6 "Decides what state the valve should have" [SC1, SC3, SC4, SC5]

4 R7 "Decides what throughput the pumpSubsystem shall have" [SC1, SC3, SC4]

5 R8 "Decides what mode the steam-boiler system should be in

6 (also decides the state of the PumpSubsystem)" [SC1, SC3, SC4, SC5]

7 R9 "Detects failures and acts accordingly

8 (send failure to physical units / change mode)" [SC1, SC3, SC4, SC5]

9 R10 "Needs to inform Operator of important system data" [SC2, SC3, SC4, SC5]

10 }

35

4. The Steam Boiler in PASTA

4.1.3 Identify Unsafe Control Actions

In the third step, the control actions of the control structure were analysed to find the UCAs.
PASTA offers two options for defining UCAs. Firstly, the traditional method, where all UCA

types are analysed for a control action and then the UCA with the associated context and
hazards are written down textually. Secondly, context tables can be used. The analyst specifies
rules for contexts that are seen as unsafe. These contain the concrete values of the process
variable and the hazards to which these can lead, when they are provided or not provided.
The UCAs described in this way are then displayed in the context table. These types are
specified beforehand. For example, part of the UCAs for the control action valve from the
Controller, with the type not provided, provided and too late, are shown with the traditional
method in Listing 4.3 and with the use of context tables in Listing 4.4. In this work, the second
method was chosen due to the advantages described in Section 2.3.

1 UCAs

2 Controller.valve {

3 notProviding {

4 UCA70 "Valve command to open the valve is not provided

5 when mode is initialization, the waterLevel is higher then N2

6 and the valve is closed." [H1.2, H4]

7 UCA71 "Valve command to close the valve is not provided

8 when mode is initialization, the waterLevel is inside its boundaries

9 and the valve is open." [H1.1, H3, H4]

10 UCA72 "Valve command to close the valve is not provided

11 when mode is initialization, the waterLevel is lower then N1

12 and the valve is open" [H1.1, H3, H4]

13 }

14 providing {

15 UCA73 "Valve control action is provided, when mode is normal and therefore not

16 initialization as needed for the command" [H1, H3, H4, H5]

17 }

18 tooEarly/Late {

19 UCA79 "Valve command to close the valve is provided too late,

20 when mode is initialization, the waterLevel is above N2

21 and the valve is open." [H1.2, H4]

22 UCA80 "Valve command to open the valve is provided too late,

23 when mode is initialization, the waterLevel is above N2

24 and the valve is closed." [H1.1, H3, H4]

25 }

26 }

Listing 4.3. UCAs in traditional notion in PASTA.

36

4.1. Analysis

1 Context-Table

2 RL16 {

3 controlAction: Controller.valve

4 type: not-provided

5 contexts: {

6 UCA70 [mode=initialization, waterLevel=aboveBoundary, valve=close]

7 [H1.2, H4]

8 UCA71 [mode=initialization, waterLevel=insideBoundary, valve=open]

9 [H1.1, H3, H4]

10 UCA72 [mode=initialization, waterLevel=lowerBoundary, valve=open]

11 [H1.1, H3, H4]

12 }

13 }

14 RL17 {

15 controlAction: Controller.valve

16 type: provided

17 contexts: {

18 UCA73 [mode=normal] [H1, H3, H4, H5]

19 }

20 }

21 RL18 {

22 controlAction: Controller.valve

23 type: too-late

24 contexts: {

25 UCA79 [mode=initialization, waterLevel=upperBoundary, valve=close]

26 [H1.2, H4]

27 UCA80 [mode=initialization, waterLevel=insideBoundary, valve=open]

28 [H1.1, H3, H4]

29 }

30 }

Listing 4.4. UCAs written with the help of context tables in PASTA.

The mode has five possible values, which are the modi described in the specification.
Moreover, the ranges of the process variable waterLevel from Listing 4.4 are divided in five
different ranges that are shown in Listing 4.5.

1 waterLevel: [belowBoundary=[0,M1], lowerBoundary=[0,N1],

2 insideBoundary=[N1, N2], upperBoundary=[N2, MAX], aboveBoundary=[M2, MAX]]

Listing 4.5. The ranges of the waterLevel process variable.

As mentioned before, the variables M1 and M2 are those between which the water level must
lie, because the steam boiler could be seriously damaged otherwise. Between N1 and N2 is
the ideal water level range for optimal steam production. The valve process variable is binary.

The UCAs shown in Listing 4.4 and all others have been identified as follows. First, I
selected a controller for which all control actions were to be defined. Then, for each control

37

4. The Steam Boiler in PASTA

action, all possible UCA types were analysed and contexts were found that lead to hazards.
The control actions for the unit fail protocol were first skipped and then only listed once as an
example, which will be explained in more detail later. As a final step, I looked at the control
table for the respective control actions to check whether a context does not yet lead to a UCA

that is actually unsafe. The context tables were not used more actively in the writing of the
UCAs because of the challenges described in Section 4.2.2.

Furthermore, the use of the method with context tables itself can cause issues with certain
UCAs when attempting to describe their contexts precisely. This is the case because a context
can no longer be detailed textually, and must instead rely on the meaningfulness of the
process variables. Such a case occurs with the control action setThroughput from the Controller.
In this situation, a UCA occurs if the throughput range is not set to a different value when
the water level becomes too high or too low. If the status of the pumps is not changed in this
context, it can lead to a loss of integrity of the steam boiler and inadequate steam production.
However, the water level can be determined in two different ways, depending on which
mode the program is currently in. In the optimal scenario, the water level is determined by
the water level sensor, but if the system is in rescue mode, the measured waterLevel of the
sensors can no longer be used, because of a sensor failure. This means that the water level
needs to be calculated with the values of the other sensors, so that the system can use the
calculatedWaterLevel, which has the same ranges as the waterLevel. This differentiation results
in different contexts for UCAs. It is only unsafe not to provide a control action if the specific
water level matches the mode of the system. However, with PASTA there is no possibility
to introduce a not in a rule to define that the measured water level is always taken, except
in rescue mode. This is discussed in more detail in Section 6.1.4. The only way to describe
this would be to list all other modes individually, that use waterLevel. However, this option
was discarded as the additional UCAs would have made the analysis more complex and
time-consuming. Instead, there is a comment at this point that indicates the circumstance of
the correct mode that has to be taken, as shown in Listing 4.6.

1 RL20 {

2 controlAction: Controller.setThroughputRange

3 type: not-provided

4 contexts: {

5 UCA83 [waterLevel=lowerBoundary] [H1.1, H3, H4] // mode not rescue

6 UCA84 [waterLevel=upperBoundary] [H1.2, H4] // mode not rescue

7 UCA85 [mode=rescue, calculatedWaterLevel=lowerBoundary] [H1.1, H3, H4]

8 UCA86 [mode=rescue, calculatedWaterLevel=upperBoundary] [H1.2, H4]

9 }

10 }

Listing 4.6. UCAs for control action setThroughputRange type not provided.

Another problem occurs with the pumps and their sensors. According to the specification,
there is only ever one signal that controls the respective pumps and sensors, which has the
number of the pump or sensor as an attribute. This has also been modelled in the control

38

4.1. Analysis

structure and is represented by an n as described in Section 4.1.2. However, in this way it is
no longer possible to distinguish in the contexts of the UCAs exactly, which unit the signal
went to, as it is recognized by PASTA as one signal. This could be avoided by modulating a
single signal for each pump and sensor. Nevertheless, this solution was rejected as it would
have made the control structure much more unclear. This decision has no major influence on
the UCAs, which consider the control actions openPumps and closePumps, as the throughput
is already considered as a whole and therefore the number of units is abstracted for the
respective control action. However, a restriction exists for the unit fail protocol. It can still be
decided whether the control action pumpFailDet is not provided for the correct unit. This is
the case because if there is no transmission failure and the program got no acknowledgement
from the unit, the control action could not have been provided for the correct unit. In all
other cases, it must be assumed that the control action went to the wrong unit, even if it
is not explicitly specified by the process variables, but only noted in a comment. A similar
problem exists with all signals that are not binary. This means that they can either be received
by different units, or transmit more than two different values. With the control action mode,
for example, it is not clear, which mode the system is being changed to, only that it is being
changed. For this reason, there are also comments at these UCAs that indicate, which mode
the system is to be changed to, in order for the UCA to occur.

All UCAs for the unit fail protocol were only identified exemplary for the Outside Con-
troller when the Heater fails, as they are the same for all unit controller pairs, except that the
respective failure is from a different component. The Heater was selected here as component
and not a unit from the specification because the controller, which manages the Heater, had
only a few process variables, so that the context table could still be used. The problems
that arose with more process variables are described later in Section 4.2.2. The unit fail
protocol comprises two control actions, the FailDet and the RepAck. The heaterDefective, heater-
DefectiveAck, heaterDefectiveBefore and transmissionFailDet signal are binary. It is considered a
transmission failure if either a signal has been received, whose presence is aberrant, or if a
signal has not been received, whose presence is indispensable. The latter is recognized by
a timeout. It could either occur because the controller was delayed in giving the signal or
because the signal was lost in between. The type stoppedTooSoon can be neglected for both
control action, as the signals are not continuous. Otherwise, it is for example considered
unsafe if the heaterFailDec was not provided when the heater is defective, the program detects
no transmission failure, but there is also no acknowledgement from the heater, that would
indicate that the control action was provided. This could result in a wrong mode and therefore
a wrong temperature of the heater and possible loss of integrity of the steam boiler. For the
heaterRepAck, two variables are used to decide if the repair acknowledgement is needed as
described in Section 4.1.2. It is for example necessary to provide a heaterRepAck signal if the
heaterDefective is false and heaterDefectiveBefore is true. All UCAs for the unit fail protocol
can be seen in Listing 4.7.

39

4. The Steam Boiler in PASTA

1 RL38 {

2 controlAction: OutsideController.heaterFailDec

3 type: not-provided

4 contexts: {

5 UCA130 [heaterDefective=yes, heaterDefectiveAck=notReceived, transmissionFailDet=no]

6 [H2, H3, H4]

7 }

8 }

9 RL39 {

10 controlAction: OutsideController.heaterFailDec

11 type: provided

12 contexts: {

13 UCA131 [heaterDefective=no] [H4, H5]

14 }

15 }

16 RL40 {

17 controlAction: OutsideController.heaterFailDec

18 type: too-late

19 contexts: {

20 UCA132 [heaterDefective=yes] [H2, H3, H4]

21 }

22 }

23 RL41 {

24 controlAction: OutsideController.heaterRepAck

25 type: not-provided

26 contexts: {

27 UCA133 [heaterDefective=no, heaterDefectiveBefore=yes, transmissionFailDet=no] [H4, H5]

28 }

29 }

30 RL42 {

31 controlAction: OutsideController.heaterRepAck

32 type: provided

33 contexts: {

34 UCA134 [heaterDefective=yes] [H2, H3, H4]

35 UCA135 [heaterDefectiveBefore=no] [H5]

36 }

37 }

38 RL43 {

39 controlAction: OutsideController.heaterRepAck

40 type: too-late

41 contexts: {

42 UCA136 [heaterDefective=no, heaterDefectiveBefore=yes] [H4, H5]

43 }

44 }

Listing 4.7. Exemplary UCAs for the unit fail protocol, exemplified on the heater.

40

4.1. Analysis

The following is a brief overview of the contexts of the remaining UCAs, which did not
have any major problems. Firstly, the control actions of the Operator are considered. Here, a
UCA occurs when the Operator initiates an emergency_stop if it is not an emergency or does
not do so if it is an emergency. An emergency is hereby defined by the same circumstances
in which the program switches in the emergency stop mode in the specification [Abr05].
The Heater should be stopped if the system is in emergency_stop or the Heater has an error,
and should already be started in the initialization mode. In addition, the program should be
started if there is no defect, and a physical unit should be repaired if it is defective.

The remaining UCAs of the Outside Controller occur when the Heater is switched on or
off at an incorrect temperature. This means that the Heater is switched on when it is too hot
and switched off when it is too cold. Additionally, these control actions should always be sent
in time.

The remaining control actions of the Controller follow next. It outputs the PROGRAM_-
READY signal if waterLevel is insideBoundary, the valve is closed and the steam is zero. The
mode must be changed according to the specification. The remaining UCAs of the valve control
action occur if the valve is used in an incorrect mode or at an incorrect water level. Moreover,
the throughput should be promptly newly set if the water level goes out of the safety range.

Finally, the UCAs of the Pump Controller occur if it does not open or close the pumps at
the correct water level or if the unit fail protocol is not executed as already described for the
Heater. The complete list of all the UCAs determined in this work, which were not discussed
in detail here, can be found on github.

4.1.4 Identify Loss Scenarios

In the final step, I defined loss scenarios for the respective UCAs. For these, the associated
UCA and the connection to the respective hazards were specified, while the scenario and its
context had to be written down textually. Some examples of loss scenarios from the control
action valve are shown in Listing 4.8.

1 Scenario58 for UCA70

2 "The Controller fails when the mode is initialization, the water level is above the

3 boundary and the valve is still closed, causing the control action to open the valve not

4 to be provided." [H1.2, H4]

5 Scenario60 for UCA70

6 "The mode is initialization, the water level is above the boundary and the valve is still

7 closed, but the Controller believes that the water level is inside its boundaries. So that

8 the control action to open the valve is not provided. This could occur, when:

9 - the water level sensor failed

10 - the response from the water level sensor was delayed

11 - due to wear over the time, has the sensor a drift in its data, leading to a wrong

12 feedback

13 - depending on the specific sensor used, there could be different inferences with the

14 signal (temperature changes, water disturbances, impurities in water, scale)

15 - error in the controllers’ software, leading to a wrong interpretation of

41

https://github.com/Tokessa/STPA

4. The Steam Boiler in PASTA

16 the water level" [H1.2, H4]

17 Scenario67 for UCA73

18 "The mode is normal, but the Controller provides the valve control actions because it

19 believes that the mode is initialization, resulting in falsely moving the valve. This

20 flawed model will occur when the following holds:

21 - The mode change from the Controller is delayed

22 - The Controller calculated the wrong mode" [H1, H3, H4, H5]

23 Scenario72 for UCA79

24 "The mode is initialization, the water level is above normal, the valve is closed. The

25 processing of the correct valve state was delayed, so that the action to open the valve

26 came too late." [H1.2, H4]

27 Scenario73 for UCA79

28 "The mode is initialization, the water level is above normal, the valve is closed. The

29 transmission of the correct valve state was delayed, so that the action to open the valve

30 came too late and was already detected as a transmission failure." [H1.2, H4]

Listing 4.8. Loss Scenarios for the valve control action.

Most of the loss scenarios of valve and other control action can be traced back to following
action sequences. The associated controller has a failure because of which a control action
can not be sent. This is a possible scenario for all UCAs that have the type not provided. An
example scenario with this sequence of events can be seen in Scenario58.

It is also possible for an UCA to occur if some part of the program was delayed. This
can either happen, while a sensor or the controller is processing, or when the transmission
happens. Scenario72 and Scenario73 are examples for this kind of scenario that leads to a too
late UCA.

Another possibility for the occurrence of UCAs is the wrong belief of a controller, which
means that a process variable has another value then the controller believes. The reasons
for this wrong belief can be diverse. It is possible that the corresponding sensor, that is
responsible for the value of the process variable, has failed. Other reasons are that due to
wear over time the sensor has got a drift in its value, so that it does not transmit the real
value any more. Such a wrong reading could also occur, when the sensors were not properly
calibrated before the system was started or when it was not correctly installed or repaired in
the first place. Moreover, environmental factors can lead to incorrect measurements due to
interference. The environmental factors are varied and differ for the various sensors.

All sensors may encounter issues with rapid temperature changes, potentially resulting
in incorrect measurements. Additionally, the water level sensor could provide inaccurate
readings due to water disturbances, impurities of the water, or limescale build-up on the
sensor over time. The steam level sensor might face challenges with wet steam, condensation,
or blockages caused by limescale or other small particles. Dust and debris in the system,
electrical noise, or excessive moisture, could negatively affect the single pump sensor. Lastly,
the heat sensor could also experience problems due to dust and debris or excessive moisture,
as well as electromagnetic interference, or electrical noise.

42

4.2. Challenges

It is also possible that the program has a wrong belief, if the controller has a software error,
which leads to a wrong interpretation of the correct value. Examples of these kinds of action
sequences that lead to an incorrect belief are shown in Scenario60. The control algorithm can
also be wrong in the sense that it does not misinterpret a value, but calculates the control
action incorrectly with the values given to it. An example for this case would be a wrong
system mode, shown in Scenario67.

Another critical aspect of the system that could lead to incorrect beliefs involves the
transmissions. On the one hand, these can be delayed, so that value was delivered too late. On
the other hand, a signal can be corrupted, so that it was misinterpreted as a different value or
the transmission line is noisy, which leads the system to perceive the noise as a signal.

For the UCAs that handle the unit fail protocol, wrong beliefs about the status of a system
component also occur, when the system dynamics are not well defined, leading a controller to
a wrong interpretation of the status of a physical unit. This also occurs when the component’s
feedback is incorrect but still compatible with the system dynamics, so that a failure is not
detected by the program. Since this work introduces additional components that may also
be defective, I wrote a specification that has been added in the form of comments to these
components, to indicate when the respective component is considered defective. The valve
can be seen as defective, when the water level does not change if the valve should be open or
when the water level changes even though the valve should be closed, the pumps are off and
the system is still in initialization mode, so that the heater is still turned off. Moreover, the
heater is defective, when its value lies outside the possible limits or when the program detects
that the unit indicates a value, which is incompatible with the dynamics of the system.

In general, false beliefs are a major factor that can lead to UCAs of any type and therefore
occur in many scenarios.

4.2 Challenges

A number of challenges arose during the analysis of the steam boiler, which are described
in more detail below. It will be discussed how the respective challenges arose and what
options were available to circumvent them. Furthermore, I explain the impact these resulting
limitations had on the analysis.

4.2.1 Automatic Identifier Updates

The challenge that was the most time-consuming to fix in this analysis, was due to the
automated creation of the IDs. This is the case, because there are multiple different defects
that can occur with the creation. Most of them can easily be fixed by undoing the previous
action with ctrl + Z. However, this process can sometimes be more time-consuming if the
program has performed numerous actions to create the IDs, as all these actions must now be
undone. This is particularly time-consuming if the analyst does not immediately realize that

43

4. The Steam Boiler in PASTA

the language server has broken the IDs or when there are a lot of changes. In this case, the
incorrectly made updates have to be adjusted manually.

One of the possible ways, for the IDs to break is that changing the ID sometimes writes into
the string behind it, which is used to describe the element, so that the analyst must change
the text again manually. For example, it is possible to define a hazard for which the ID and
the description are already written down, but not yet the connection to the loss. If a .1 is
now inserted after the ID, the ID is copied to the fourth last position in the string, and then
everything between the new and old ID is deleted. However, if the loss connection is written
down first and then the .1 is inserted, the ID is inserted before the existing ID. In addition,
each further keystroke inserts further IDs at the front. Both cases can be seen in Figure 4.4. On
the left side is the sequence of the first described case shown and on the right side that of the
second.

(a) Hazard IDs copied into description. (b) Duplication of IDs in hazards.

Figure 4.4. Challenges with hazard IDs.

However, IDs have not only posed a challenge for hazards, but also for UCAs and loss
scenarios. I was unable to determine the cause of the incorrect creation of the IDs. However, I
had the feeling that a large system and a larger number of elements led to more problems
occurring. For example, the IDs were usually determined incorrectly if many had to be
updated. The language server could write the IDs incorrectly in various ways. For example,
numbers could be duplicated, or written in the wrong order, keywords and comments were
overwritten or IDs in general put at the wrong place.

Another challenge that occurred with the IDs was that the automatic updating of them
sometimes took a lot of time. For instance, adding a new loss scenario at a higher position
could require updating around a hundred IDs, causing the analyst to wait several minutes for
the changes to take effect. However, the processing time was not always consistent. In some
cases, the IDs were updated immediately, even in similar situations.

4.2.2 Context Table

More challenges occurred, while using the context tables. Firstly, the procedure used to
create the context tables in PASTA is still very simple. This means that the table is created by
brute force and can only ever be displayed in full for one control action, which makes its
creation very slow. For this reason, tables with more than sixteen variables can no longer be
displayed. In the control structure for the steam boiler was this the case for the Controller. The
Pump Subsystem was created to reduce the amount of process variables in the Controller’s

44

4.2. Challenges

process model. However, both the Controller and the Pump Controller had in the final control
structure still too many process variables, so that the visualization of the context table cannot
be used because the program stopped working.

Another challenge encountered while using the context tables was their limitation to
only displaying controllers with a depth one. For example, it was not possible to select
control actions of the Pump Controller. This is the case, because it is located within the Pump
Subsystem, which is located inside the Physical Units, and as a result has a depth of three.
Consequently, the table was unable to display the control action because the context table
had not yet been expanded to include subsystems.

Lastly, there were two small challenges that made writing contexts more difficult. On
the one hand, the fact is that not only process variables that are possible for the respective
control action are suggested in the contexts, but also process variables from other controllers
or variables that are not even process variables. It would speed up the process of UCAs context
creation, if there would be a feature that only suggests process variables that actually match
the respective control action. For example, in many IDEs if one wants to call a function of a
class, only the possible functions of that class are displayed as suggestions. A similar feature
would also be good for PASTA. On the other hand, it is not possible to write a context of
an UCA, while having the context table open. It switches the view from the context table
to the diagram after an automatic update that occurs after some time. This is problematic
because one cannot see the context table, while writing the rules. This makes the process of
identifying UCAs more time-consuming because the analyst needs to switch manually back to
the context table. Moreover, sometimes this leads to a server crash, so that the program needs
to be restarted.

The controller constraints were not specified in this paper because the challenges men-
tioned above required a lot of time and most constraints only say the opposite of the
respective UCA. As an example for UCA70, the constraint for the controller would be C70 "In

initialization mode, if the waterLevel is aboveBoundary and the valve is closed, the

Controller must give the control action valve to open the Valve." [UCA70].

4.2.3 Loss Scenarios

The biggest challenge with the loss scenarios were the amount of text that have to be written
manually. This amount can significantly be reduced by automating the text for the contexts of
the loss scenarios. At the moment, the process for writing loss scenarios is as follows. First, the
ID of the scenario and the associated UCA are specified. Then the control action, the controller
that executed it, the context and the actual scenario that triggers the UCA are written down
textually in a string. This effort can be reduced, as the control action, controller and context
are already known through the connection to the UCA and the context table, allowing them to
be noted automatically.

It should also be considered whether this additional information is needed at all at this
point or whether it would not be sufficient if it were added automatically when the report is
created. By removing this information, the loss scenarios would gain in clarity, and it would

45

4. The Steam Boiler in PASTA

be easier to recognize how they differ. However, the analyst would then no longer be able to
find the context in the same place as a loss scenario when creating the report. This could be
particularly confusing for users who have already carried out STPAs with other tools, as the
context is also part of the scenario according to the STPA handbook [Lev18].

Due to these challenges and the large number of UCAs, writing the loss scenarios took a
lot of time. As a result, there is not a scenario for every UCA. For time reasons, UCAs related
to the operator were omitted, as they are not part of the specification. In addition, UCAs for
the throughput were also excluded since they deviate from the specification. For the UCAs

related to the mode control action, only the scenarios for not-provided were detailed further.

46

Chapter 5

The Steam Boiler Model in
Sequentially Constructive Statecharts

The focus of this thesis is to design the steam boiler in SCCharts, to later evaluate the usefulness
of the language in aiding in the modelling. For this reason, a steam boiler was modelled,
which adheres very closely to the specification and focuses on verification. This chapter
presents the process of designing the steam boiler in KIELER and addresses the challenges that
occurred and how these were solved.

5.1 Modelling

This section explains the process of designing the steam boiler with SCCharts. It explores
the individual approaches that were looked into to design a model that is easily to verify.
Additionally, it shows the process of designing and explains in detail certain special cases
where either the specification was deviated from and the reasons behind these decisions or
where a specific approach was chosen due to the limitations of the tool.

5.1.1 Steam Boiler Modelling Process

When I started modelling the system, I was initially heavily guided by the specification,
as this described how the individual components should communicate with each other. In
addition, even before I started modelling, I considered a few approaches as to what features
the model should display so that it can be verified later. These approaches are explained
in more detail in Section 5.1.2. I also orientated myself on the steam boilers from Schulz-
Rosengarten [Sch24a] and Smyth et al. [SDH19], which were already modelled in SCCharts but
had different focuses. Here, I have adopted individual aspects from both of them that I found
advantageous for the analysis. As an example, I took up a similar idea to the abstract classes
from Schulz-Rosengarten, which were used to write the models for the unit fail protocol.
In this way, the model for the program and for the units only needed to be written once
and were then bound with the correct variables in the respective components. From Smyth’s
work, I had the idea of writing an environment and representing the whole system as a
dataflow region. A more detailed comparison of the individual steam boiler models follows
in Section 6.2.4.

After that I started modelling with the easiest component, which is in the case of the
steam boiler system the valve. It had only three features that it needed to fulfil. First of all, it

47

5. The Steam Boiler Model in
Sequentially Constructive Statecharts

needed to open and close when given the VALVE command. Furthermore, it needed to detect
a transmission failure when either the VALVE command was given outside the initialization
mode or when the booting signal was given multiple times. The valve does not need to handle
the unit fail protocol because it does not break according to the specification. The model was
also used in Section 5.1.3 to show that the concepts considered in this thesis work, as it is
relatively small and so that there are few requirements that the model must fulfil in order to
be verified.

program2

env

valvesteamLevelSensor

waterLevelSensor pump

pumpController

pumpMonitor

STEAM_BOILER_WAITING

STOP

Figure 5.1. Abstracted steam boiler model

Figure 5.1 shows the composition of the main components of the steam boiler. The
program2 has a minimal version of the responsibilities that are mentioned in the specification.
It initializes the steam boiler by checking the steam value and then adjusting the water level
with either the valve or the pumps. Furthermore, it does change the modes according to
the sensor values and detects transmission failure for its signals. Other functionalities such
as starting and stopping the pumps or detecting when the physical units are defect, were
outsourced to other models. This was done because it was unclear if the program module
would work without compile error, which is explained in more detail in Section 5.2. The
Pump Subsystem that was seen in the STPA was here again changed to the pumps and their
respective sensors that are controlled by the program as given in the specification. The pump

and pumpController are therefore in charge of the same aspects that are described in the
specification. The pumpMonitor was added, which opens and closes the pumps according to
the water level and calculates the pumps’ throughput. Moreover, it also closes the pumps in
case of the system switching into the emergency mode. Furthermore, the system consists of

48

5.1. Modelling

two other sensors, namely the water level sensor and the steam level sensor, which measure
the respective variable’s value and detect if there are inconsistencies with the values. They
then pass this on to the program as a defect. The last physical unit that is part of the system
is the valve. It is only used in the initialization mode for emptying the water out of the
boiler. The last module of the model is the environment. It is responsible for simulating the
physical conditions in which the steam boiler would be located. This means that it calculates
the water level and steam level, and it indicates when a second has passed. This is required
because, as described in Section 2.4, SCCharts do not have any built-in notation of time, so
that the time needs to be modelled as signal. Moreover, it also determines the calculated
water level when the water level sensor is defective. The last two components are the signals
STEAM_BOILER_WAITING and STOP, which can only be given from outside the system, and start
and stop the system. Furthermore, the system has a Config file, which is omitted in this graph.
The Config decalres, for example, the amount of pumps in the system, what the maximum
increase and decrease of the water and steam level is or after how much time a transmission
is seen as a failure. The arrows in the diagram show how the individual components interact
with each other.

These interactions can lead to different transmission failures that each unit must take care
of. All physical units must ensure that they only receive the booting signal once. Additionally,
all units have to handle the unit fail protocol, except the valve. There are a few additional
signals that only individual components have. For example, the valve must ensure that it
does not receive the VALVE signal outside the initialisation mode. In this mode, the program
also has signals that may only be emitted at certain times. For example, the PHYSICAL_-
UNITS_READY signal may only be received after PROGRAM_READY has been sent by the
program and STEAM_BOILER_WAITING may only be received once.

Booting
input signal booting
output signal PHYSICAL_UNITS_READY
output bool transmissionFailure

WaitForBoot

Booted

NoUnexpectedMessages

Error

booting
/ transmissionFailure = true

- UnexpectedMessages

booting
/ PHYSICAL_UNITS_READY

-

Figure 5.2. The booting of the physical units.

The SCChart shown in Figure 5.2 shows the diagram all physical units reference to detect a
transmission failure of the booting signal. The signal should only be sent once to indicate to
the units that they should start booting. If they are ready, they must answer the program with

49

5. The Steam Boiler Model in
Sequentially Constructive Statecharts

a PHYSICAL_UNITS_READY signal. The booting protocol is then completed, so that the system
switches to a final state. If the booting signal is detected again in this state it is detected as a
transmission failure and the system switches in an error state.

Figure 5.3 is showing the model of the unit fail protocol for all physical units. It is
initialized in the Normal state because there is no defect detected. If the unit then gets a
fail message, it switches in the Failed state and acknowledges the fail message with an
failAckMsg. The unit sends a repair message to the program and waits for the respective repair
acknowledgement, after it got repaired. The system has a transmission failure if the repair
acknowledgement is received in any other state or if the acknowledgement needs more ticks
then specified in the Config for the transmission_timeout. The unit transitions into a final
error state if a transmission failure is detected. Normally, this state would then be joined to a
final error state on the highest depth level. This is done on the one hand to make the model
easier to understand, as it is clear that the system has an error in this state. On the other
hand, it is modelled so that the superstate cannot be left with an abort when an error has
occurred. However, this option was not chosen here, as it triggered a compiler error. Instead,
it is checked before each transition whether the transmissionFailure is true, as in this case there
is an error in the system and no transition should take place. The last step is to switch back
to the normal state when the unit has received the repair acknowledgement.

The specification does not define what happens if the failure message is sent at the
same time or even before the repair message is acknowledged. For this reason, I have
specified a behaviour that the program must follow. It exists two cases that needs to be
considers: the signals are received at the same time, the failure message is received before
the acknowledgement. In the first scenario, the model first transitions to Normal and then in
the same tick to Failed. In the second scenario, it transitions directly to Failed. It should not
actually be possible for the failMsg to be sent before the repairAckMgs, as the repairMsg is
responded to immediately, while a new failMsg is delayed by at least one tick in the program2.
However, if for some reason the repairAckMsg is lost and a new failMsg is already received,
this is not recognized as an error by the program, as the new error is more important than
the acknowledgement. The importance of the failMsg is therefore the reason that the state at
the end of a tick in both cases is Failed.

Figure 5.4 shows the unit fail protocol of the program. It is quite similar to the model of
the physical units as it shows the responding side. It also starts in Normal state and switches
when the unit has a defect. The program then waits for the acknowledgement of the failure
message. It is also not specified what happens if the acknowledgement and the repair message
are received at the same time. In a similar form to the units diagram, I specified that a signal
is more important than an acknowledgement. For this reason, the model always ends in the
Repaired state. When both signal are present at the same time, the diagram first transitions
to FailAck and in the tick then to Repaired. In the case, that the repairMsg is received first,
it directly transitions to the Repaired state and is not classified as transmission failure. A
transmission failure occurs, if the acknowledgement takes too long, if an acknowledgement or
a repair message is received in the Normal state or when an acknowledgement is received twice.

50

5.1. Modelling

PhysUnits
input int clk
input signal failMsg
input signal repairAckMsg
output signal repairMsg
output signal failAckMsg
output bool transmissionFailure

Normal

NoUnexpectedMessages

Error

repairAckMsg
/ transmissionFailure = true

- UnexpectedMessages

Failed
during failMsg / failAckMsg

NoUnexpectedMessages

Error

repairAckMsg
/ transmissionFailure = true

- UnexpectedMessages

AwaitRepAck

AwaitAcknowledge
immediate during / repairMsg; clk++

Wait

Error

clk >=
Config.TRANSMISSION_TIMEOUT

/ transmissionFailure = true

- MissingAck

failMsg &&
!transmissionFailure
/ failAckMsg

repairMsg &&
!transmissionFailure
/ clk = 0

1: repairAckMsg &&
!transmissionFailure

2: failMsg &&
!transmissionFailure
/ failAckMsg

- RepairHandling

Figure 5.3. Unit fail protocol of the physical units.

These error states are then joined to a final error state due to the advantages described above
as this lead to no error. Lastly, the model transitions back to Normal if the repair message
is no longer received. This is the case, because the repair message is sent as long as the
acknowledgement was not received. It therefore must be assumed, that the acknowledgement
was only received when no more repair message was sent.

ProgramTransFail
input int clkTrans
input bool defective
input signal repairMsg
input signal failAckMsg
output signal failMsg
output signal repairAckMsg
bool transmissionFailure

Normal

NoUnexpectedMessages

Error

failAckMsg || repairMsg
/ transmissionFailure = true

- UnexpectedMessagesFailAckRep

AwaitFailed

AwaitAcknowledge
immediate during / failMsg; clkTrans++

Wait

Error

clkTrans >=
Config.TRANSMISSION_TIMEOUT

/ transmissionFailure = true

- MissingAck

FailAck

NoUnexpectedMessages

Error

failAckMsg
/ transmissionFailure = true

- UnexpectedMessagesFailAck

Repaired
during repairMsg / repairAckMsg

Error

1:

2: defective
/ failMsg;
 clkTrans = 0

1:

2: failAckMsg

3: repairMsg
/ repairAckMsg

1:

2: repairMsg
/ repairAckMsg

1: !repairMsg

2: defective
/ failMsg;
 clkTrans = 0

- RepairHandling

Figure 5.4. Unit fail protocol of the program.

Figure 5.5 shows the SCChart of the program. The local declarations as well as input and
output variables are omitted due to the clarity of the diagram. The collapsed regions consist of
the unit fail protocol with the different physical units and the check for transmission failures

51

5. The Steam Boiler Model in
Sequentially Constructive Statecharts

Program
+ TransFailPump + TransFailPumpController + TransFailSteamSensor + TransFailLevelSensor + InitTransmissionFail

NoEmergency

Initialization
+ Init

Normal

Degraded

Rescue

Emergency

1: / mode = 4 2:
PHYSICAL_UNITS_READY
&& pre(progReady)
/ mode = 1

1: transmissionFailure |
transmissionFailureUnits |
criticalLevel
/ mode = 4

2: levelSensorDefective
/ mode = 3

3: steamSensorDefective ||
pumpDefective ||
pumpControllerDefective
/ mode = 2

1: transmissionFailure |
transmissionFailureUnits |
criticalLevel
/ mode = 4

2: levelSensorDefective
/ mode = 3

3: !steamSensorDefective
&& !pumpDefective &&
!pumpControllerDefective
/ mode = 1

1: transmissionFailure |
transmissionFailureUnits |
criticalLevel ||
steamSensorDefective ||
pumpDefective ||
pumpControllerDefective
/ mode = 4

2: !levelSensorDefective
/ mode = 1

-

Emergency

1: 3 STOP
/ mode = 4

2:

- modes

Figure 5.5. Program2 SCChart.

of the STEAM_BOILER_WAITING and PHYSICAL_UNITS_READY signals. The mode region shows how
the program switches between the different modi described in the specification. If there was
no error in the initialisation phase, the system goes into the normal mode. It switches to
the degraded mode if a physical unit has a defect, and to the rescue mode if the water level
sensor is defective. In this mode, the water level is calculated by the environment and no
longer measured by the sensor. Because the logic of which water level value has to be taken
is defined in the plant2 module, the implementing the control logic for program as well as
the Pump Monitor is independent of the source of the water level information. The system
switches to emergency mode if a transmission error was detected or multiple critical physical
components fail. The switch to a mode in which more units are defective is always immediate,
whereby the switch back when the units are no longer defective is delayed. This is the case,
because the defect of a component is more critical than the repair of a unit. After a failure, the
superestate joins to a final emergency state, which can also be transitions to if the operator
sends the STOP signal three times.

52

5.1. Modelling

As described above, it is not the program that detects the failures of the physical units,
but the physical units themselves, which then send the information to the program. This
was done because the units already have all the information needed to detect an error, thus
preventing the program from ever working with incorrect values and possibly making the
wrong decisions.

As an example of failure detection of a physical unit, the model for the water level
sensor is examined in more detail. The model can be seen in Figure 5.6. The Booting and
TransmissionFailure regions contain the models described above for booting the unit and
the unit fail protocol. In the last region, WaterLevelConsistency, it is determined whether the
water level sensor has a defect and what the last valid water level was. A dataflow region was
chosen for this region as it allows direct computations within a region and the region has
otherwise no real state change.

WaterLevelSensor
input output int levelValues
output int lastValidLevel
output bool defective
int clk
input signal booting
input signal failMsg
input signal repairAckMsg
output signal repairMsg
output signal failAckMsg
output signal PHYSICAL_UNITS_READY
output bool transmissionFailure

B @ Booting (booting, PHYSICAL_UNITS_READY, transmissionFailure)
+

- Booting

TransFail @ PhysUnits (clk, failMsg, repairAckMsg, failAckMsg, repairMsg, transmissionFailure)
+

- TransmissionFailure

int diff = 0

0

levelValues

pre

-

diff

<
11 >

>

1

*

>

&&

<

- * <

&&

|| defective

!

lastValidLevel

pre(levelValues)

pre(levelValues) - levelValues 0 -> pre(levelValues) - levelValues

levelValues < 0

levelValues > 11

diff > 0

1 * 1

diff > 1 * 1

diff > 0 && diff > 1 * 1

diff < 0

(-1)
(-1) * 1 diff < (-1) * 1

diff < 0 && diff < (-1) * 1

levelValues < 0 || levelValues > 11 || diff > 0 && diff > 1 * 1 || diff < 0
&& diff < (-1) * 1

!defective

!defective ? levelValues

- WaterLevelConsistency

Figure 5.6. Model of the water level sensor.

There is an error in the water level sensor, as defined in the specification [Abr05], if the
water level is outside the possible values. This means that it is either less than zero or greater
than the capacity of the steam boiler. Otherwise, it is recognised as a defect if the water level
changes faster than it should be able to according to the configuration. Furthermore, the
water level is saved as lastValidLevel if the sensor is not recognised as defective. Original,
the defective was defined with a config file as seen in Listing 5.1. The advantage of this
approach was, that on the one hand, values can easily be changed and stayed the same in
each module without the need to change all of them manually. On the other hand, it is more
evident what each number stands for without having to look it up, making the diagram easier
to understand. However, the region has now the real numbers at the places of the config file
because the program has otherwise produced an error.

53

5. The Steam Boiler Model in
Sequentially Constructive Statecharts

[0, M1], (M1, M1.1), [M1.1, N1.2], (N1.2, N1], (N1, N1.1],
(N1.1, N2.2], (N2.2, N2), [N2, N2.1), [N2.1, M2.2], (M2.2, M2), [M2, C), [C]

Figure 5.7. Water level ranges.

1 defective = levelValues < 0 || levelValues > scchart(Config).C ||

2 (diff > 0 && diff > (scchart(Config).P * scchart(Config).NUM_PUMPS))||

3 (diff < 0 && diff < (-scchart(Config).P * scchart(Config).NUM_PUMPS))

Listing 5.1. Original code of the defective value of the water level sensor.

As a result of the challenges discussed in Section 5.2, it was not possible to produce a
fully functional program. The single components are working and can be simulated but
due to scheduler errors in the plant2 module, which combines all components so that they
can communicate, the model can not be compiled. The scheduler errors occur because of
instantaneous loops.

5.1.2 Approaches for Developing a Verifiable Model

One idea to simplify the verification of the model was to severely limit the values of water
level and steam level, as a large number of values slow down the verification considerably.
Accordingly, it was decided to use a very small number of integers in the model to represent
the respective values. The individual integers stand for different ranges in which the water- or
steam level can be located. The ranges for the water level can be seen in Figure 5.7. C is again
the maximum capacity of the boiler. In addition, the already known values for the optimal
production of steam N1 and N2 and the safety values M1 and M2 in which the water level
must be located, have been extended by further division of the values. Values with the suffix
.1 indicate that the value is slightly larger, and values with the suffix .2 indicate a slightly
smaller value. This results in an order relation for the variable N1: N1.2 ă N1 ă N1.1. The more
detailed categorisation is necessary as this is the only way to find problems with transitions.
If these ranges are then translated into integers, the numbers from 0 to 11 are obtained.

One of the biggest challenges with model checker is the state explosion problem [CKN+12].
The problem describes the circumstance that as the number of state variables in the system
increases, the size of the system state space grows exponentially. A model checker now needs
to check the whole state space in order to verify the model, but this is difficult with the
growth of the state space because the verification needs too long. As a result, the second idea
is, to limit the amount of states that are used in the model to limit the state explosion.

The procedure for implementing this approach was to consider for each SCChart whether
a state was really necessary or whether it can be combined with another without changing
the desired behaviour. It was also necessary to consider whether states should be reduced
or whether the diagram should still be easy for people to read. For example, the initial idea
was to combine the degraded mode and the normal mode in the program. This would have
been possible because both require the same water level and both have the same transitions

54

5.1. Modelling

to other modes. However, it would no longer have been possible to tell from the state whether
all physical units were intact or whether some had a defect. In the end, I decided against this
approach because the additional state makes the model easier to understand, and it is also
more similar to the specification.

To further avoid the state explosion problem, the third idea was to modularise the system.
Modular verification can be conducted by partitioning the system into components, each
one corresponding to a subsystem in the specification. In turn, the global properties will
be modularised in local properties, enabling each one to be verified over the proposed
components. One idea here was to install a pump subsystem, as with STPA, for example, and
then verify this in a modular way.

Only the first of these approaches was used in the actual model. This is due to the fact
that the compiler created many instantaneous loops, which could often only be solved by
deviating from the considerations. For example, a new Wait state was inserted at certain
points where a loop would have been created without the additional tick the state provides.
However, this does not correspond to the approach that as few states as possible should be
used.

5.1.3 Verification

As proof of concept, the Valve was exemplary used to show that the SCChart models can be
verified using the ideas from this work if the challenges from Section 5.2 had not occurred.
The SCChart Valve can be seen in Figure 5.8. It has three regions: Booting, TransmissionFailure
and Valve.

The Booting region was already described in detail above. The TransmissionFailure is
responsible for monitoring that the VALVE signal only gets sent in initialization mode.
That means that after the first change to a mode unequal zero, as that is the number for
initialization, the Valve transmit a transmission failure if it receives another VALVE signal.
Furthermore, is it not possible for the program to change the mode back to zero without
restarting, which is why there is no transition back to Initialization. In the Valve region, the
actual function of the Valve happens, namely that it either opens or closes when it receives
the VALVE signal, depending on which state it is currently in. The state is then noted in the
valve variable, where true indicates open and false indicates closed. It should be noted here
that the state of the Valve cannot be switched in the first tick. Moreover, the VALVE signal
either never occurs or occurs in even numbers, with a correct program sequence, as the valve
must always be closed at the end and it starts in a closed position.

1 @LTL "F(booting -> F(PHYSICAL_UNITS_READY)) && F(booting -> X(G(booting -> transmissionFailure)

2 || G(!booting)))"

3 @LTL "F(Mode != 0 -> X(G(VALVE -> transmissionFailure) || G(!VALVE)))"

4 @LTL "G(!VALVE && !valve) || G(VALVE -> (valve -> F(VALVE -> !valve)))"

Listing 5.2. LTL formualas for the valve.

55

5. The Steam Boiler Model in
Sequentially Constructive Statecharts

Valve
input int Mode
input signal VALVE
output bool valve = false
input signal booting
output signal PHYSICAL_UNITS_READY
output bool transmissionFailure

B @ Booting (booting, PHYSICAL_UNITS_READY, transmissionFailure)

Booting
input signal booting
output signal PHYSICAL_UNITS_READY
output bool transmissionFailure

WaitForBoot

Booted

NoUnexpectedMessages

Error

booting
/ transmissionFailure = true

- UnexpectedMessages

booting
/ PHYSICAL_UNITS_READY

-

-

- Booting

Initiliazation

NotInit

NoUnexpectedMessages

Error

VALVE
/ transmissionFailure = true

- UnexpectedMessages

Mode != 0

- TransmissionFailure

Closed Opened

VALVE
/ valve = true

VALVE
/ valve = false

- Valve

Figure 5.8. The Valve in SCCharts.

The other component needed for verification, apart from the model, are LTL formulas,
which state the rules the model needs to follow in order to be verified. The rules for the Valve
model can be seen in Listing 5.2.

The first rule is for the Booting region. It says that if there is eventually a booting signal,
then is PHYSICAL_UNITS_READY in the future. Furthermore, if there is a booting signal then
from the next step, if another booting signal then transmissionFailure is true or there is
no more booting globally after the first booting. This rule ensures that the Valve sends a

56

5.1. Modelling

PHYSICAL_UNITS_READY when it is booted and that it detects a transmission failure if the
booting signal is issued more than once. The second rule is for the TransmissionFailure region.
It declares that the Mode is eventually unequal to zero some time in the future. Then from the
next step, if the signal VALVE is received, then transmissionFailure is true, or there is globally
no signal VALVE in the future. This rule ensures that a transmission failure is also detected
for the VALVE signal, as the signal may only be used in initialisation mode as defined in the
specification. The last rule is for the Valve region. It states that the signal VALVE is either
globally never present or it is globally first present and then sometime in the future again
present. Hereby, valve is set true in the first instance and wrong in the second instance, which
indicates if the valve is opened or closed. This rule therefore ensures that the VALVE signal
only occurs in even numbers and that the valve boolean is set to the correct state. It is of
course possible to define more than one rule for a region, but this was not necessary for the
Valve example.

If the model is now verified using the rules mentioned, it is important to note that
numerical variables are only permitted if they are integers that also have a specific range
in which they can be located. This is because the possible values of the variables would
otherwise be too large for them to be verified properly. With Valve, there is only one variable
that is an integer, namely the Mode. A range from zero to four can be specified here, as it
is clear that the mode can have five different values. In general however, the range should
always be selected so that all possible integer values are within it, as otherwise possible
failures of the rules will not be found. The range can be specified in KIELER with @AssumeRange

<start range>, <end range>.

Running the rules in KIELER results in all rules being passed, indicating that the Valve has
been verified. The appearance of the model checker in KIELER is shown in Figure 5.9, where it
is evident that all rules passed and that individual names can be assigned to them. The circle
with two arrows are used to reload the model checker, while the green arrow initiates the
verification process. The adjacent arrow, labelled Start Counterexample, starts a simulation.
However, it does not automatically display a counterexample if a rule has failed.

Figure 5.9. The model checker table in KIELER.

57

5. The Steam Boiler Model in
Sequentially Constructive Statecharts

5.2 Challenges

The biggest challenge I faced while writing the model, was the creation of instantaneous
loops due to how the compiler works. Most of the instantaneous loops developed due to
the abortion of superstates. As a result, the SCChart was no longer able to compile. I used
three different strategies to break the instantaneous loops. Deleting immediate transitions and
joins, adding pre to values and inserting new states between transitions so that the original
transitions take one tick longer. All these states have the name Wait in order to differentiates
between them and the states used for the actual behaviour of the program. In order to find
the instantaneous loops, Eclipse was used to see the marked loops. The reason why VSCode

could not be used for this task is explained later.
The procedure for finding and eliminating an instantaneous loop is as follows. First, the

diagram is used to recognise which variables trigger the instantaneous loop. However, it is
difficult to recognise in the Basic Blocks view, where exactly the variables are set that lead to
the instantaneous loop, which is why, the Surface / Depth view is used. This view is chosen
because it is the last one in which states occur, and thus the compiler has already done all
the conversions so that the chart is written in the core notation. Here, one has to search
manually for the respective variable, because there is no tool that would allow one to search
in diagrams. The only aspect that speeds up the search is to look in the Basic Blocks view to
see in which region the loop happens and then finding this region in the diagram. However,
this method only slightly speeds up the search for the right variable, especially if it is a large
diagram. For this reason, eliminating instantaneous loops was very time-consuming and was
therefore no longer done in the plant2 model.

Another problem that occurred here, which slowed down fixing the loops even more, is
that loading the diagram in Eclipse is very slow. If the diagram is moved or zoomed in on,
it takes a few seconds for the change to actually take place. In addition, a stack overflow
frequently occurs with larger programs, where the program prompts the user to close the
program. However, this is not necessary and the program can still be used normally after the
message was closed.

Another challenge is posed by the simulator, which can be compiled in KIELER in three
different ways: netlist-based compilation, priotity-based compilation and state-based compila-
tion. In addition, each compilation can be executed in C or Java. In this thesis, it was decided
to use the netlist-based approach. This is because it is more powerful than the priority-based
approach, and the state-based approach has problems with parallel regions, which are very
common in the steam boiler model. In addition, C was used for the actual compilation, as
this is slightly faster. However, the system needed to be restarted quite often in order to
simulate the system because it otherwise did not find the correct PATH variable. This made the
simulation very time-consuming, as it took some time to restart the program. In addition, it
was not always immediately clear whether the model still had an error or whether the error
was triggered by the program.

Despite these performance problems, Eclipse had to be used for a large part of the
modelling instead of VSCode. This st the case because it was otherwise not possible to use

58

5.2. Challenges

signals correctly in dataflow regions. However, as this feature was used in plant2, the absence
of the feature would mean that the diagram can no longer be displayed in later transformation
steps, making it virtually impossible to solve instantaneous loops. Eclipse was also used due
to the fact that VSCode does not mark the actual instantaneous loops in the diagram. It can
still recognise the instantaneous loops and marks the scheduling error with an exclamation
mark in the view selection but does not show the loop. For this reason, it is not really possible
to find the loops in VSCode and to fix them later.

59

Chapter 6

Evaluation

In this chapter, the benefits of PASTA for risk analysis on large systems are evaluated and
compared with other tools that were already mentioned. In addition, the function of SCCharts

for modelling the steam boiler is evaluated and the steam boiler modelled in this thesis is
compared with the steam boilers already available in SCCharts.

6.1 Analysis of PASTA

This section looks at the advantages and disadvantages of the PASTA tool and evaluates to
what extent it is suitable for carrying out a STPA on a larger system such as the steam boiler
and where there might still be potential for improvement.

6.1.1 User guidance

The user already needs a good knowledge of STPA, in order to use PASTA because the tool
does not provide any guidance to explain the process. However, each step of STPA can be
done with the help of PASTA and it also provides the help of context tables. PASTA does not
currently have any documentation, so the notation of STPA elements must be learnt from
examples. Such an example can be found in the Details page of the VSCode extension. Here,
it is important to ensure that the example is always kept up to date, allowing the user to
stay informed of all the features of PASTA. For example, the subhazards and subsystems are
currently missing from the control structure and it is therefore unclear for a new user how to
write them down or if this is even possible.

Furthermore, it is nowhere mentioned that snippets can be used. Snippets are a unique
selling point of PASTA, as only PASTA uses such a system. They consist of control structure
components and their control and feedback actions and are designed to help users create a
control structure more quickly. For this reason, there are already ready-made snippets that
map parts of the control structure, which occur in many systems, such as the loop: controller ->
actuator -> physical unit -> sensor -> controller. These snippets are displayed graphically and can
then simply be selected, whereby they are inserted at the end of the already existing control
structure. They can also be customized at this place in the code. In addition, own snippets can
be created by selecting the desired part of the control structure and then right-clicking on the
command add diagram snippet. In this way, snippets can then be used again in new control
structures. As a result, snippets not only speed up the creation of control structures, but

61

6. Evaluation

also show beginners established substructures from which they can build their own control
structure.

Another benefit of PASTA is that compared to other tools, the creation of new losses,
hazards, etc. and their connections within the analysis with other elements is much faster.
One of the tools that has been inspected in Section 3.1 is the STAMP Workbench. Here, a new
loss is first added using the Add Accident button. Then a new hazard can be added with Add
Hazard or an already written hazard can be selected for this loss with Select Hazard. However,
if the written loss is then to be assigned a hazard that already exists, Add Hazard must first
be pressed and then Select Hazard to choose an exsting hazard. This system can lead to a
confusing appearance, as hazards are listed again after each loss associated with them, so
that they are often duplicates, which are furthermore not automatically sorted by ID. A large
table is quickly created, as the same principle is also applied to the system-level constraints
in which the analyst has. If this process is now applied to the steam boiler, as was done in
Section 4.1 in PASTA this would result in a table of the size twenty times six, whereas in PASTA

it is fifteen lines of code. Similar problems occur with other tested STPA tools. With STPA
Capella, the correct element such as Losses must first be right-clicked, then the correct Capella
element selected and described in individual input fields. After that must the traceability be
added again individually in a separate window. In SafetyHAT, all parts of the analysis must
also be clicked through individually and added with many button clicks. These many buttons
may help beginners who do not usually write much code or similar structural text, but it
is much more time-consuming than simply typing. This is the case, because there the user
needs to search for the right button, window, or key combination to add a particular element.
The only real advantage of this system is that not only the IDs but also the entire descriptions
of the individual elements are displayed, which eliminates the need for looking up IDs.

A similar feature also exists in PASTA, by choosing the Automatic option for displaying
descriptions in the traceability diagram. When this option is activated, the diagram shows the
descriptions of the STPA elements that are connected to the elements that are currently written.
For example, when a new hazard should be defined the description of all the losses is shown
in the traceability diagram. In this way, all descriptions of the elements that are currently
being used are displayed and no IDs need to be memorised. However, it should be noted
at this point that the feature is not yet working properly, and therefore no descriptions are
displayed at all. However, if this bug is fixed, it would be a valid alternative for the selection
options in other STPA tools. Furthermore, a feature could be added that allows parts of the
analysis to be collapsed. This would work in the same way as with functions or classes in
other programming languages, where only the name with the associated input is visible,
while the rest is collapsed. In PASTA, only the heading such as ControlStructure could remain.
In this way, it would be possible to view system-level constraints and responsibilities at the
same time, which would be advantageous as they are linked to each other.

Another feature that should be added to help the user, is that if an STPA element is
changed, all other elements to which it is linked should be marked. At the moment, either
nothing happens or the link is deleted if the associated ID has not existed for a while. Here it

62

6.1. Analysis of PASTA

would be useful to mark all elements that are linked to the changed element, as it is possible,
for example, that the IDs have changed, which means that the links now lead to the wrong
element. This would speed up the analysis as the changes cannot be overlooked so quickly. It
would also be practical if there was a way for the analyser to automatically remove all the
markers. This would be useful if, for example, only a spelling mistake has been corrected and
for this reason, no other elements need to be adjusted. For example, this could be done, by
clicking on a marked element and selecting remove all markers or by clicking on the changed
element and selecting this option.

A further feature, that would help a new user get started, is the addition of stakeholders.
Currently, PASTA supports no form of defining stakeholders, which can be used to identify
losses. Here, a feature as described in Section 3.1.2 can be added. In PASTA, such an implemen-
tation would look somewhat different, as the stakeholders and their values are not recorded
in a table, but in textual form. Here, for example, values could be recorded in the same form as
losses and then linked to the respective stakeholders. This could also be shown in an additional
diagram, with the stakeholders at the top and all the values they have below. If desired, the
respective losses that were identified by the values could also be linked to the values so that
these are then displayed below them.

6.1.2 Visualization

The visualisation was identified as an advantage of PASTA compared to other STPA tool, it
will be examined in more detail in this subsection. One big advantage of PASTA visualisation
process is that it happens automatically. This means that in PASTA the diagram is described
textually and the layout of the individual components with the respective control and feedback
actions is done by the program. As already mentioned in Section 3.1, STAMP Workbench
and STPA Capella also have this feature. However, the automatic layout is not as advanced
as in PASTA. Furthermore, in STAMP Workbench, a layout can be created manually for the
diagram by adding individual components using drag-and-drop, which are then connected
with arrows where actions are added. Moreover, SafetyHAT has no option to create a diagram
itself so that only a file can be uploaded. The advantage of PASTA’s approach is that changes
can be made quickly to the diagram without having to manually adjust the entire layout. This
is therefore very well suited to the iterative process of STPA. In addition, PASTA is the only
program that displays a traceability diagram.

Another feature of PASTA that greatly helps with the overview in the diagram are the many
different filters that PASTA has to offer. For example, it is possible to select which diagram is
to be displayed, whether the process variables are to be shown in the control structure and
which STPA elements are to be displayed. It is also possible to select only a specific control
action so that all elements related to it are displayed. The filters make it easier to work with
the diagrams and also ensure that they can be created more quickly. This is relevant because a
challenge when creating the diagrams is that as the size of the system to be analysed increases,
the program takes increasingly longer to do its work. With the model from this thesis, it can

63

6. Evaluation

take minutes for the diagram showing the traceability to load. This only gets worse if the
control structure is to be displayed at the same time.

For the control structure, a filter could also be added that allows subcomponents to be
collapsed so that only the hierarchically higher components are displayed. This could create
more clarity in systems with many subcomponents and perhaps also reduce the size of the
structure so that it can be better shown to others.

In addition to the filters, there are also a few selection options that change the appearance
of the diagram. For example, it is possible to select a colour style and decide, which element’s
description and not just the ID is displayed. In the last case, it would be a good addition
if this selection was not just a drop-down menu where either one element or all elements
can be selected, but if a checkbox is clicked, the label for an ID is to be displayed, as with
the filters. Furthermore, it is possible to define a hierarchy level for each component of the
control structure, which then can be activated. However, this hierarchy does not really work
at the moment because the OutsideController has a hierarchy level of one while the Operator

has a hierarchy level of zero, but the controller is shown higher in the control structure than
the operator. It makes here no difference if the Hierarchy is enabled or not. So it would be
nice if this feature would be functioning correctly as it would contribute to the clarity of the
diagram.

The last feature, which helped a lot with the orientation in the code, is that parts of the
diagrams can be clicked to get to the respective place in the code. So it is possible to click
on either a controller or a respective STPA element so that the code jumps to exactly the
place where the respective element is defined. This is particularly useful for larger systems,
as it allows the program to be controlled quickly if changes or additions need to be made.
In addition, the click on a specific element also highlights it and all other elements that
are connected with it in the traceability diagram. Furthermore, clicking on another element
results in also highlighting all of its connection additionally to the first element clicked. This
feature creates a lot of clarity, especially with large diagrams, when only the connection of
one element in particular is to be viewed or a group of elements. With this feature, it would
also be desirable to add the possibility that clicking on the element again demarks it with
all its connections. At the moment, it is only possible to deselect all elements, so that if the
wrong element is clicked once, all elements have to be selected once again. Here, it could also
be added that there exist an option that the description of only the highlighted elements are
displayed while the rest is shown with their IDs.

6.1.3 Language Server Updates

The language server has two main tasks, that are relevant for the evaluation. On the one
hand, it checks the code and marks if elements of the analyses or references are still missing
or if the code has an error. Such an error can for example occur, when a process variable is
used that is from a different controller or which has other values. The language server helps
here to easily find these errors. Furthermore, the marking of elements if they are missing a

64

6.1. Analysis of PASTA

reference is really helpful, to keep an overview of the elements for which parts of the analysis
are still missing.

On the other hand, the language server is tasked with updating the IDs. This can be really
helpful because elements can easily be added or deleted at any point without manually
changing any of the IDs. However, one of the biggest challenges discussed in Section 4.2 were
caused by wrong updates from the language server, which would mostly lead to incorrect IDs.
Furthermore, this updates would increasingly take more time with the increasing number of
UCAs and loss scenarios.

Nevertheless, many problems were already solved. As a result, the control actions of the
subhazards can now also be selected in the context table, their control actions are getting
marked, when still some of the analysis steps of a control action is missing, and the traceability
diagram shows the connection always correctly.

6.1.4 Context Table

The context tables are a valuable addition to PASTA, as they offer a comprehensive overview of
all possible contexts that can lead to UCAs. This systematic approach minimizes the likelihood
of overlooking any cases. An improvement is that all different types of UCAs are displayed
in a single table, saving time on switching and requiring the contexts to be considered only
once for all types. However, the procedure used to create the context tables in PASTA is still
very basic. The fact that the table is created by brute force and can only ever be displayed
in full for one control action makes its creation very slow. For this reason, tables with more
than sixteen variables can no longer be displayed, which severely limits the usefulness of the
function for larger systems. It would then be necessary to abstract and analyse the system at
a high-level first and perhaps take a closer look at individual parts later. It would also help if
PASTA used logical simplification and thus combined rows. This would not only speed up the
creation of the program’s table, but also the analysis, as it would not require going through
contexts that have already been recognised as unsafe.

However, PASTA already uses the rule-based approach, which was introduced in Section 2.3.
This works in such a way that the written contexts of the UCAs represent the individual rules
of the context tables. A process variable is automatically assigned the value any if it is not
listed by the respective controller. This incorporation significantly reduces the effort and
working time by partly automating the generation process.

In Section 4.1.3 it was noted that it was not possible to use a not in the context table,
which would have made it easier to analyse the setThrougput control action. This is because
the water level is only calculated in rescue mode and otherwise measured, so a not could
have combined many UCA, as not all modes have to be listed individually, but simply not

rescue can be written. However, this is not a feature in PASTA, as it does not occur in rules
defined by Gurgel et al. [GHD15]. The reason for this is that a not could lead inexperienced
analysts in particular to combine UCAs that actually lead to different hazards or contain
a different scenario. For example, when analysing the steam boiler, there were UCA that I
initially thought should be grouped together, but on closer inspection it turned out that they

65

6. Evaluation

were actually different. For this reason, I would not include a not in PASTA at first, even if it
could be useful in rare cases. And if this feature should be added, it should be pointed out
that UCAs might be different after all and that the not should therefore be used with extreme
caution.

In Section 2.3, it was also mentioned that context tables can also be used to identify loss
scenarios. With PASTA, it was possible to use the context tables as a guide and to get an
overview of the respective contexts in which the loss scenario occurs. It can also help to
recognise process flaws. However, there is no automatic traceability that links the scenario
with the respective UCA and thus the context. This would save the analyst a lot of time, as
the context would not have to be written down again manually for each scenario, although it
would already be known from the context table, which is redundant.

Other challenges and possible solution were already mentioned in Section 4.2.2. However,
since PASTA is a tool that is currently under active development, the problem that only control
actions that were not nested could be selected in the context table has already been fixed. This
is why in the current version also control actions from the Pump Controller can be selected
for the context table.

6.1.5 Loss Scenarios

In Section 4.2.3 were also challenges for the loss scenarios identified. One of these was that a
lot of text needed to be written for the scenarios. Here, a feature can be added to link specific
causes for loss scenarios, which often happen, such as incorrect beliefs. In Section 4.1.4, for
example, was mentioned that a lot of the wrong beliefs were caused by failures or incorrect
values for sensor reading. It is possible to add a new category, which is used to note subcauses
for loss scenarios. These would work similar to the snippets that one writes down causes for
loss scenarios and these can then marked and added to this section. However, contrary to the
snippets this would not be an extra window in VSCode but only a textual block above the loss
scenarios. Causes then also can be added directly in this block by just writing them in this
part and adding an ID for later referencing. It is then possible to reference these subcauses in
the loss scenarios, where they get documented automatically in the string. This would save a
lot of time and repetitive work. For example, causes for the wrong belief of the water level
are the following:
- the water level sensor failed
- the response from the water level sensor was delayed
- due to wear over the time, has the sensor a drift in its data, leading to a wrong feedback
- depending on the specific sensor used, there could be different inferences with the signal

(temperature changes, water disturbances, impurities in water, scale)
- error in the controllers’ software, leading to a wrong interpretation of the water level

This could look exemplarily like in Listing 6.1. The SCA1 would then be replaced by the
text in the Subcasuses either when the file is saved the next time or when the ID is clicked and
the option Write Subcasuses is chosen.

66

6.2. Steam-boiler SCChart Model

1 Subcasuses

2 SCA1 "- the water level sensor failed

3 - the response from the water level sensor was delayed

4 - due to wear over the time, has the sensor a drift in its data, leading to a wrong

5 feedback

6 - depending on the specific sensor used, there could be different inferences with the

7 signal (temperature changes, water disturbances, impurities in water, scale)

8 - error in the controllers’ software, leading to a wrong interpretation of the water level"

9

10 LossScenarios

11 Scenario1 for UCA1

12 "The mode is initialization and the water level is below normal. But the Controller believes

13 that it is normal, so that it sends the control action progReady. This could occur, when:

14 SCA1" [H1, H3, H4, H5]

Listing 6.1. Feature proposal for subcauses in PASTA.

It would also be good to have a feature that makes it possible to mark certain parts of a
string differently. At the moment, the individual scenarios are very similar and long at the
same time, which makes it difficult for the analyst to immediately differentiate between the
individual scenarios. If the differences could be marked, it would be easier to recognised
them quickly when reading through the loss scenarios at a later time.

6.2 Steam-boiler SCChart Model

This section looks at the advantages and disadvantages of SCCharts in the KIELER tool and
evaluates to what extent it is suitable for designing the steam boiler with a focus on verification
and where there might still be potential for improvement.

6.2.1 User Guidance

SCCharts have a number of features that make them well-suited for modelling the steam boiler.
Firstly, they are deterministic, which is particularly important in a critical system, as it must
always be clear how the system behaves in a given situation. It is also particularly useful
when working with many signals that have an effect on the system. This is because it clearly
determines the order in which transitions are taken.

Furthermore, SCCharts are particularly suitable for systems that work with different states,
as they are state-oriented. With the steam boiler, it was therefore very intuitive to convert the
specification into a model with states, as the modes already describe different states of the
system.

SCCharts also offer many different features that are useful for modelling. For example,
regions are used to describe program sequences that run in parallel. Some superstates were
also used, as certain processes often have to take place in a state. For example, the initialisation

67

6. Evaluation

state in the program2 has inner states, which ensure that the initialisation works correctly.
There is a similar situation with the pumps, as they also follow a certain process to open
and close, but this can only happen if the pump is not in the defect state. This could also
be modelled differently with a flat hierarchy, but the hierarchical model is very intuitive.
The use of references is also very practical when modelling a larger system. In this way,
individual modules can be designed and then put together afterwards so that you have a
modular structure.

There are many other features that can help with modelling that have not been mentioned
here. However, this also highlights a challenge with SCCharts. There are many features that a
user will not use or understand, especially at the beginning. One reason for this is the lack of
a complete documentation and available documentation, which is only updated sporadically.
Another reason is the sheer number of features in SCCharts which initially makes it unclear
where they could be used best. For this reason, users often stick with the same features and
model everything with them, even though another feature might be more suitable. Here it
would be useful if the documentation was always kept up to date and if there was an example
of how each feature is written in SCCharts and where typical use cases are.

Since the model checker was also used in this work, some ideas have arisen as to which
features it could still be missing. The most important feature to add would be a correctly
functioning button that provides a counterexample. At the moment, it is not always clear
why an LTL formula has failed. For this reason, it would be practical to start a simulation
that shows the user a counterexample where the LTL formula fails. This would save a lot of
time, as it would not be necessary to think of an example manually, since the model checker
would simply display the example that it has already found. Another good enhancement
would be the addition of error messages when the model checker has an exception. These
can be triggered by various circumstances, such as an incorrect LTL formula or the absence
of an @AssumeRange before an integer variable. At the moment, however, there is no feedback
indicating where the possible exception could come from. For this reason, it can take a long
time before the cause can be found and rectified.

6.2.2 Visualization

An advantage of SCCharts is the variety of views of the model, as well as filter options. After
the model has been compiled, it can be viewed in the KIELER view for each compilation
step. This makes it easy to see exactly what the compiler is doing and at which step errors
may still occur in the program. Due to the many filters and display options, it is possible to
view exactly those parts of the diagram in the form that is currently required. For example,
declarations can be omitted, the length of the labels of a transition can be adjusted and the
progression of the diagram can be swapped from top to bottom to left to right. In this way,
the diagram can display exactly what the user wants, which also facilitates the presentation
of a system.

Another feature that helps with the overview is that the diagram automatically adjusts
how much of it is visible depending on the zoom level. This means that if a larger system is

68

6.2. Steam-boiler SCChart Model

modelled, which has a hierarchical structure, only the names of the superstates are displayed
when zoomed out, but no longer their inner regions, because these then become too small.
This function ensures that even large systems remain readable and that the rough relationships
between the states can be quickly recognised.

The only problem with the diagrams is that they sometimes take a long time to load. This
phenomenon is particularly noticeable in the Eclipse version of KIELER, where the using of the
diagrams also frequently leads to stack overflows. If a diagram is to be enlarged or moved,
this action is usually delayed by several seconds, resulting in a lag in the diagram. This limits
the usefulness of the diagram, as it is much more time-consuming to work with it.

One feature that could be added is that clicking an element in the diagram leads to
jumping to the position of the element in the code. This could work similarly to PASTA. For
example, clicking on a transition would take the user to that transition in the code, while
clicking on a state or region would take the user to the start of that element. This would make
it easier to navigate through the code, as the diagram is often used for modelling, and it
would not be necessary to manually search for the point in the code that needs to be updated.

Another feature that already exists in PASTA and would also be well suited for SCCharts is
the ability to click on a signal in the dataflow region and then see its connections highlighted.
This would make it easier for the user to recognise how certain components are connected,
which can quickly become confusing, especially in large diagrams with many connections.

Another feature that would save a lot of time would be the addition of a search function
in the diagrams. This would allow the diagram to be searched for a region, state, variable
or other elements. It would also be good to have a setting that allows automatic zoom, as
otherwise the element will be found, but the user will not be able to see it because it is too
small at the current zoom level. It would also be good if there was an option that highlighted
all the elements searched for and not just one.

6.2.3 Debugging

The debugging of large systems has already been recognised in other reports as one of the
biggest weaknesses of SCCharts [SMS+19]. This fact has not changed since the report was
written. In this work, the system was mainly debugged to find and repair instantaneous
loops. This was a particular challenge because the variables were created during compilation
and therefore had to be found in the chart. Here it would be good if the feature mentioned
in Section 6.2.2 was added, because it would speed up the search for the variables in the
diagram considerably.

It would also be good if the VSCode version added the feature that instantaneous loops
can also be displayed.

Another challenge while debugging in SCCharts is that it is very difficult to recognise the
actual error from the error messages alone. In the case of instantaneous loops, these are
schedule errors in which the basic blocks are specified between which no schedule can be
found. However, this error message alone is of little use if the basic blocks cannot be displayed
or if these errors are not marked there. Other error messages are also of little help to the

69

6. Evaluation

user, as these contain only the stacktrace of the compiler leading to the error, but as the user
does not know the internal code of the compiler, it is often difficult to understand the actual
error from the message and then correct it. Here it would be good if the error messages
were adapted so that they can also be understood by a user who has no insights into the
development of KIELER.

6.2.4 Comparison to other Models

The steam boiler has already been modelled twice in SCCharts, but the focus of those models
differed from that of this thesis. The first being a user study on manual user verification of
different source codes, which were generated for a steam boiler, while the second focussed on
object-orientated approaches to model the steam boiler to test the OO features of SCCharts. In
order to better differentiate between the models, the following section looks at the differences
and similarities between them.

The Steam Boiler by Smyth

The biggest differences between the steam boiler that was modelled in this thesis and the
model from Smyth et al. [SDH19] is that Smyths model omits all transmission failure related
protocols and shortens the unit fail protocol. The model assumes that all transmission are
reliable and correct so that no retransmits and timeouts are needed. Furthermore, the model
has no checks if a signal is sent at the correct time or is a transmission failure. The model
simplifies the protocol for component failures. In both the specification and the steam boiler
model from this paper, the program detects that a component has failed. It then sends a failure
message to the affected component that must acknowledge this signal. After the component
has been repaired at a later time, it sends a repair signal to the program, which the program
must acknowledge. In the case of Smyths model, a failure is triggered by the user clicking on
a component in the visualisation of the steam boiler. The repairing of the signal is then done
in the same way. Both the failure and the repair message expect no acknowledgement from
either the physical unit or the program.

A major difference between Smyths model and the specification is that the heater was
also modelled in this version. This means that there are different modes that the heater can
adopt, in which it emits different amounts of heat. If the steam boiler is in initialisation or
emergency stop mode, the heater is off and cools down slowly, in normal mode the heater
heats up quickly to a higher temperature and in degraded or rescue mode the heater heats
up more slowly to just half the maximum temperature that it can have in normal mode. The
water level is then also calculated with the heat of the heater. However, the steam level is
never changed and just stays at zero for the whole time the system is running. Furthermore,
the model has no valve module, but the valve is part of the environment as it can only open
to release water, but has no functionality that checks if it is only used in initialisation mode
or if there is a transmission failure.

70

6.2. Steam-boiler SCChart Model

The model has some other features where it differs from the specification, it has four
different pumps but they can only be activated or deactivated all at once. This means that
their functionality is more similar to the model in this thesis where only one pump is used,
with the only difference being that different pumps can break. However, this breakage has no
influence on the functionality of the pumps in Smyth model. Furthermore, the model uses
only booleans and no signals for its variables.

The SCChart, which is used to change modes, is very similar in both models. The only
differences are that in Smyths model the manual STOP only needs to be triggered once that
in rescue mode the failure of the steam level sensor or the pump controller does not switch
the system into emergency stop mode, and, as already mentioned, there are no transmission
failures. In addition, in Smyths model the program takes over the activation of the pumps,
as is also defined in the specification. In the model in this thesis, this was outsourced to the
Pump Monitor due to the modularisation of the system.

Another difference is that Smyths model does not recognise whether a unit has a defect
by the values of the physical units, but a defect is triggered from outside by clicking on a
component. The model has also been visualised so that it shows the current status of the
steam boiler and the user can interact with it.

Another difference is that all physical units of Smyths model use object-orientation to
inherit from a physicalDevice class. This provides a region that takes care of booting and
processing the defect of the unit. In the model from this thesis, different SCCharts are also used
in several other modules, but this is done by referencing the SCChart and not by inheritance.

Furthermore, it would not be possible to verify the model because it uses floats for the
water and steam level variables as well as for the throughput of each pump and heat value.
However, the state explosion problem would not be such a big problem, but this is rather due
to the fact that Smyths model was abstracted so heavily that it does not have all functions
that were described in the specification and thus the number of states is kept lower.

The two models are very similar in other respects. They both use an environment and
calculate their system in a dataflow region. In addition, physical units such as the pump or
the sensors are modelled in the same way, apart from the differences already mentioned.

The Steam Boiler by Schulz-Rosengarten

The biggest difference in Schulz-Rosengartens steam boiler is the use of object-orientated
methods in his steam boiler model. He therefore defined interfaces for each physical unit,
that are extended by the module. Furthermore, the controller, which operates the whole
system, inherits from all physical units and the MonitoredPumpControl inherits from all other
pump related modules. Additionally, abstract classes were defined for all different kinds
of transmission failures. There exist classes for a missing signal, an unexpected signal and
a transmission timeout. These are then used for every signal that can have a transmission
failure. Furthermore, it exits an abstract class for the water level, as it can be either measured
or calculated.

71

6. Evaluation

Schulz-Rosengarten added two new modules for regulating the pumps and their con-
trollers, the MonitoredPump module and the MonitoredPumpControl. These are tasked with
activating the pumps, getting their throughputs and monitoring their failures. This model
also has four different pumps and controllers that can be activated independently. This is the
reason why it is closer to the specification than the model in this thesis in that regard. How-
ever, the pumps do not need five seconds to open, which then differs from the specification
and my model.

The SCChart, which is used to change modes, is very similar in both models. The only
differences are that in Schulz-Rosengartens model the transmission failures are modelled
by using the abstract classes, the management of the water level is part of the Controller In
addition, in Schulz-Rosengartens model the program takes over the activation of the pumps,
as is also defined in the specification. In the model in this thesis, this was outsourced to the
Pump Monitor due to the modularisation of the system.

Another difference between the models is that only my model has an environment. That
means that the model from Schulz-Rosengarten needs to be updated manually. There is
no module that calculates the water or steam level, and the PHYSICAL_UNITS_READY signal
needs to be sent from the outside. This means that the units have no booting time and the
PROGRAM_READY signal is not checked for transmission failures. As a result, the user has a lot
more work to simulate the steam boiler, because they have to make sure that the entered
values match the behaviour of the steam boiler so that no defects occur. In addition, the user
must also signal that units have been repaired.

It would also not be possible to verify the model because it also uses floats for the water
and steam level variables as well as for the transmission timeout. Additionally, the state
explosion problem would be a challenge in verifying the model because the model uses many
states due to the object-orientated approach. As a result, the verification process would take a
long time and would probably not be feasible.

The unit fail protocol is in both models almost the same. The only difference being that in
the model from Schulz-Rosengarten the inner regions are dataflow region that are using the
abstract transmission failures classes to define a failure. Furthermore, the sensor modules are
also very similar, as they detect a failure and have the unit fail protocol in a dedicated region.

72

Chapter 7

Conclusion

This chapter serves as a summary for the contributions of this thesis. Section 7.1 includes
the STPA of the steam boiler and the design of steam boiler model focused on verification.
Furthermore, it provides an overview of the evaluation of the applicability and limitations of
the PASTA tool and SCCharts for this process. Additionally, Section 7.2 explores potential future
work to expand the analysis of the tools as well as the refinement and visualization of the
model.

7.1 Summary

In this thesis, a full STPA of the steam boiler was conducted in PASTA. It was shown that many
different attributes and components lead to UCAs and that the analysis of the system already
has a large size so that it needed to be abstracted and cut in some parts.

In the second part, the steam boiler was modelled using SCCharts with the focus on
verification. For this reason, approaches were identified to enhance the model’s verifiability.
These approaches being: limiting the range of values and the amount of states, modularising
the system for partial verification. It was then shown on the valve module that a verification
with LTL formulas is possible.

The evaluation of the tools revealed that both can be used to either analyse or model
larger systems such as the steam boiler. However, this process still contains some challenges
that must first be overcome in order to obtain a functioning product. In addition, features
have been identified that support the user, and new features have been proposed to improve
visualisation and the user experience. Some of this being the addition of stakeholders, the
logical simplification in context tables, or the marking of changes from connection in PASTA,
or the addition of a search function in diagrams in SCCharts.

In conclusion, both tools show much potential to be used on larger systems. Nonetheless,
still some features exist that need to be worked on, in order to have a good user experience.

7.2 Future Work

There are multiple functions of PASTA as well as KIELER that still need evaluation, which were
not tested in this thesis. Furthermore, the model of the steam boiler must be modified so that
it is compileable.

73

7. Conclusion

7.2.1 Evaluation of PASTA’s LTL Formulas

PASTA has multiple features that were not used in this work. One of them is the ability to
automatically generate LTL formulas for a written analysis. These could then be used for the
verification of a model of the analysed system. In the future, LTL formulas could be written
for all modules of the steam boiler model and then compared to the formulas created by
PASTA. This could be used to evaluate how well the automatic creation of the LTL formulas
works and where work might be still needed.

7.2.2 Steam Boiler Model

The steam boiler model presented in this work is only functioning in its single components.
These can be compiled and simulated. However, the complete model represented by program2

still has many instantaneous loops and can therefore not be compiled. In the future, these
loops need to be fixed in order to get a working model.

Furthermore, the model can be visualised to help show the functioning of the steam boiler.
This can be done with kviz as it was already shown in the steam boiler model by Smyth et al.
[SDH19]. In order to animate the Scalable Vector Graphics (SVG) of the steam boiler shown in
Figure 7.1, a kviz file needs to be written, which specifies the changes in the SVG if a specific
signal occurs or a value changes. For example, a physical unit turns red, when it is defect, the
water level changes, the valve opens and closes, or the rotors are turning when the pumps are
open. Moreover, a display needs to be added to show, which mode the system is in and what
values the sensors are measuring. In Listing 7.1 is shown how the turning red of a physical
unit can be displayed when it is defective. The example chosen here, is the defect of the pump.
The image tag references the correct SVG, with the keyword handle is the signal defined that
changes the appearance of the steam boiler. pump is the ID of the SVG element that changes its
appearance and after that follows the javascript line, which changes the colour either to red
or black, depending on the state of the pump.

1 image "elevator.svg"

2

3 handle failMsgPump

4 in "#pump"

5 with (elem, status)

6 ’elem.style.fill = status ? "red";’

7

8 handle failMsgPump

9 in "#pump"

10 with (elem, status)

11 ’elem.style.fill = status ? "black";’

Listing 7.1. Unit defect in kviz.

74

7.2. Future Work

Water level
Steam level

Pump

N1

N2

M2

Valve

Pump Controller

M1

Figure 7.1. Physical units of the steam boiler [SDH19].

7.2.3 Evaluation of KIELER’s Model Checker

Future work would also include, to verify the steam boiler model with the LTL formulas
defined in Section 7.2.1. For this, the model needs to be updated so that it works and is also
suitable for the verification process. This means, for example, that all integer values must have
an @AssumeRange so that the model checker knows what range it needs to test for the variables.
After the model is verified, the model checker can also be evaluated. The model checker was
developed by Stange in his master thesis [Sta19], where it was evaluated on smaller models.
However, its performance on larger systems has not yet been tested. Thus, the steam boiler
model presents a valuable opportunity to assess its effectiveness on a more complex system.

75

Bibliography

[Abr05] Jean-Raymond Abrial. “Steam-boiler control specification problem”. In: Formal
Methods for Industrial Applications: Specifying and Programming the Steam Boiler
Control (2005), pp. 500–509.

[And96] Charles André. “Synccharts: a visual representation of reactive behaviors”. In:
I3S, Sophia-Antipolis, France, Tech. Rep. RR (1996), pp. 95–52.

[AR10] Terje Aven and Ortwin Renn. Risk management and governance: concepts, guidelines
and applications. Risk, Governance and Society. Springer Berlin, Heidelberg, 2010.
isbn: 9783642139260. doi: https://doi.org/10.1007/978-3-642-13926-0.

[BK08] Christal Baier and Joost P. Katoen. Principles of model checking. English. United
States: MIT Press, May 2008. isbn: 978-0-262-02649-9.

[BV+14] Christopher Becker, Qi Van Eikema Hommes, et al. Transportation systems safety
hazard analysis tool (safetyhat) user guide (version 1.0). Tech. rep. John A. Volpe
National Transportation Systems Center (US), 2014.

[BW96] Robert Büssow and Matthias Weber. “A steam-boiler control specification with
statecharts and z”. In: Formal Methods for Industrial Applications, Specifying and
Programming the Steam Boiler Control (the Book Grow out of a Dagstuhl Seminar,
June 1995). Ed. by Jean-Raymond Abrial, Egon Börger, and Hans Langmaack.
Berlin, Heidelberg: Springer-Verlag, 1996, pp. 109–128. isbn: 978-3-540-49566-6.
doi: 10.1007/BFb0027233.

[CKN+12] Edmund M. Clarke, William Klieber, Miloš Nováček, and Paolo Zuliani. “Model
checking and the state explosion problem”. In: Tools for Practical Software Verifica-
tion: LASER, International Summer School 2011, Elba Island, Italy, Revised Tutorial
Lectures. Ed. by Bertrand Meyer and Martin Nordio. Berlin, Heidelberg: Springer
Berlin Heidelberg, 2012, pp. 1–30. isbn: 978-3-642-35746-6. doi: 10.1007/978-3-642-

35746-6_1. url: https://doi.org/10.1007/978-3-642-35746-6_1.

[Con24] Oliver Constant. Github. 2024. url: https://github.com/labs4capella/stpa-capella.

[CRD+22] ERTS 2022 proceedings. June 2022, pp. 95–100, 191–200. url: https://hal.science/hal-
03704287.

[Dom18] Sören Domrös. “Moving model-driven engineering from eclipse to web technolo-
gies”. In: (Nov. 2018). url: https://rtsys.informatik.uni-kiel.de/~biblio/downloads/

theses/sdo-mt.pdf..

77

https://doi.org/https://doi.org/10.1007/978-3-642-13926-0
https://doi.org/10.1007/BFb0027233
https://doi.org/10.1007/978-3-642-35746-6_1
https://doi.org/10.1007/978-3-642-35746-6_1
https://doi.org/10.1007/978-3-642-35746-6_1
https://github.com/labs4capella/stpa-capella
https://hal.science/hal-03704287
https://hal.science/hal-03704287
https://rtsys.informatik.uni-kiel.de/~biblio/downloads/theses/sdo-mt.pdf.
https://rtsys.informatik.uni-kiel.de/~biblio/downloads/theses/sdo-mt.pdf.

Bibliography

[dT06] Claudio de la Riva and Javier Tuya. “Automatic generation of assumptions
for modular verification of software specifications”. In: Journal of Systems and
Software 79.9 (2006). Selected papers from the fourth Source Code Analysis
and Manipulation (SCAM 2004) Workshop, pp. 1324–1340. issn: 0164-1212. doi:
https://doi.org/10.1016/j.jss.2005.11.570. url: https://www.sciencedirect.com/science/article/

pii/S0164121205001664.

[GHD15] Danilo Lopes Gurgel, Celso Massaki Hirata, and Juliana De M. Bezerra. “A
rule-based approach for safety analysis using stamp/stpa”. In: 2015 IEEE/AIAA
34th Digital Avionics Systems Conference (DASC). 2015, 7B2-1-7B2–8. doi: 10.1109/

DASC.2015.7311464.

[Hal92] Nicolas Halbwachs. Synchronous programming of reactive systems. Vol. 215. Springer
Science & Business Media, 1992.

[Har87] David Harel. “Statecharts: a visual formalism for complex systems”. In: Science
of computer programming 8.3 (1987), pp. 231–274.

[HDM+14] Reinhard von Hanxleden, Björn Duderstadt, Christian Motika, Steven Smyth,
Michael Mendler, Joaquín Aguado, Stephen Mercer, and Owen O’Brien. “Sccha-
rts: sequentially constructive statecharts for safety-critical applications: hw/sw-
synthesis for a conservative extension of synchronous statecharts”. In: Proceedings
of the 35th ACM SIGPLAN Conference on Programming Language Design and Imple-
mentation. PLDI ’14. Edinburgh, United Kingdom: Association for Computing
Machinery, 2014, pp. 372–383. isbn: 9781450327848. doi: 10.1145/2594291.2594310. url:
https://doi.org/10.1145/2594291.2594310.

[II05] Clifton A. Ericson II. “Event tree analysis”. In: Hazard Analysis Techniques for
System Safety. John Wiley & Sons, Ltd, 2005. Chap. 12, pp. 223–234. isbn:
9780471739425. doi: https://doi.org/10.1002/0471739421.ch12. eprint: https://onlinelibrary.

wiley.com/doi/pdf/10.1002/0471739421.ch12. url: https://onlinelibrary.wiley.com/doi/abs/

10.1002/0471739421.ch12.

[Kle99] Trevor Kletz. Hazop and hazan - identifying and assessing process industry hazards.
Fourth. Institution of ChemicalEngineers, 1999.

[KRD+24] Maximilian Kasperowski, Niklas Rentz, Sören Domrös, and Reinhard von
Hanxleden. “KIELER: a text-first framework for automatic diagramming of
complex systems”. In: Diagrammatic Representation and Inference, 14th International
Conference, DIAGRAMS ’24. To be published, 2024.

[Lev18] Leveson, Nancy G. and Thomas, John P. STPA handbook. MIT Partnership for
Systems Approaches to Safety and Security (PSASS). Cambridge, Massachusetts,
U.S., 2018.

78

https://doi.org/https://doi.org/10.1016/j.jss.2005.11.570
https://www.sciencedirect.com/science/article/pii/S0164121205001664
https://www.sciencedirect.com/science/article/pii/S0164121205001664
https://doi.org/10.1109/DASC.2015.7311464
https://doi.org/10.1109/DASC.2015.7311464
https://doi.org/10.1145/2594291.2594310
https://doi.org/10.1145/2594291.2594310
https://doi.org/https://doi.org/10.1002/0471739421.ch12
https://onlinelibrary.wiley.com/doi/pdf/10.1002/0471739421.ch12
https://onlinelibrary.wiley.com/doi/pdf/10.1002/0471739421.ch12
https://onlinelibrary.wiley.com/doi/abs/10.1002/0471739421.ch12
https://onlinelibrary.wiley.com/doi/abs/10.1002/0471739421.ch12

Bibliography

[OR18] Marcos Lucas de Oliveira and Janis Elisa Ruppenthal. “Using the hazop pro-
cedure to assess a steam boiler safety system at a university hospital located
in brazil”. In: Revista Gestão da Produção Operações e Sistemas 13 (Sept. 2018),
pp. 259–275. doi: 10.15675/gepros.v13i3.1959.

[PH23] Jette Petzold and Reinhard von Hanxleden. “Tool Support for System-Theoretic
Process Analysis”. In: Electronic Communications of the EASST 82 (2023).

[PKH23] Jette Petzold, Jana Kreiß, and Reinhard von Hanxleden. “Pasta: pragmatic
automated system-theoretic process analysis”. In: 2023 53rd Annual IEEE/IFIP
International Conference on Dependable Systems and Networks (DSN). 2023, pp. 559–
567. doi: 10.1109/DSN58367.2023.00058.

[PTL13] Yuliya Prokhorova, Elena Troubitsyna, and Linas Laibinis. “A case study in
refinement-based modelling of a resilient control system”. In: Software Engineer-
ing for Resilient Systems: 5th International Workshop, SERENE 2013, Kiev, Ukraine,
October 3-4, 2013. Proceedings 5. Springer. 2013, pp. 79–93.

[Ren18] Niklas Rentz. “Moving transient views from eclipse to web technologies”. MA
thesis. Kiel University, Department of Computer Science, Nov. 2018. url: https:
//rtsys.informatik.uni-kiel.de/~biblio/downloads/theses/nir-mt.pdf.

[RH] Ratih Andhika Akbar Rahma and Achmad Hasanudin. “Risk assessment analy-
sis in boiler system with hazard and operability study (hazop)”. In: Jurnal Ilmiah
Teknik Industri 22.2 (), pp. 213–220.

[Rob93] Michael Rossi Robert Borgovini Stephen Pemberton. Failure mode, effects and
criticality analysis (fmeca). Reliability Analysis Center, Apr. 1993. url: https :

//s3vi.ndc.nasa.gov/ssri-kb/static/resources/a278508.pdf.

[Sch24a] Alexander Schulz-Rosengarten. Language design for reactive systems — on modal
models, time, andobject orientation in lingua franca and sccharts. Kiel Computer
Science Series 2024/1. Dissertation, Faculty of Engineering, Kiel University.
Department of Computer Science, 2024. doi: 10.21941/kcss/2024/1.

[Sch24b] Alexender Schulz-Rosengarten. The sccharts syntax. 2024. url: https : / / rtsys .

informatik.uni-kiel.de/confluence/display/KIELER/Syntax.

[SDH19] Steven Smyth, Sören Domrös, and Reinhard von Hanxleden. A case-study on
manual verification of state-based source code generated by kieler sccharts. Tech. rep.
Kiel: Faculty of Engineering, 2019.

[SMS+15] Steven Smyth, Christian Motika, Alexander Schulz-Rosengarten, Nis Wechsel-
berg, Carsten Sprung, Reinhard von Hanxleden, et al. “Sccharts: the railway
project report”. In: Bericht Des Instituts Für Informatik 1510 (2015).

[SMS+19] Steven Smyth, Christian Motika, Alexander Schulz-Rosengarten, Sören Domrös,
Lena Grimm, Andreas Stange, and Reinhard von Hanxleden. “Sccharts: the
mindstorms report”. In: Kiel Computer Science Series (2019). url: https://nbn-

resolving.org/urn:nbn:de:gbv:8:1-zs-00000358-a4.

79

https://doi.org/10.15675/gepros.v13i3.1959
https://doi.org/10.1109/DSN58367.2023.00058
https://rtsys.informatik.uni-kiel.de/~biblio/downloads/theses/nir-mt.pdf
https://rtsys.informatik.uni-kiel.de/~biblio/downloads/theses/nir-mt.pdf
https://s3vi.ndc.nasa.gov/ssri-kb/static/resources/a278508.pdf
https://s3vi.ndc.nasa.gov/ssri-kb/static/resources/a278508.pdf
https://doi.org/10.21941/kcss/2024/1
https://rtsys.informatik.uni-kiel.de/confluence/display/KIELER/Syntax
https://rtsys.informatik.uni-kiel.de/confluence/display/KIELER/Syntax
https://nbn-resolving.org/urn:nbn:de:gbv:8:1-zs-00000358-a4
https://nbn-resolving.org/urn:nbn:de:gbv:8:1-zs-00000358-a4

Bibliography

[Smy21] Steven Smyth. Interactive model -based compilation— a modeller -driven development
approach. Kiel Computer Science Series 2021/1. Dissertation , Faculty of Engi-
neering ,Kiel University . Department of Computer Science , CAU Kiel, 2021.
doi: 10.21941/kcss/2021/1.

[Sta19] Andreas Achim Stange. Model checking for sccharts. Kiel, 2019. url: https://wiki.
rtsys.informatik.uni-kiel.de/bin/view/Theses/Completed%20Theses/.

[Tho13] John P Thomas IV. “Extending and automating a systems-theoretic hazard
analysis for requirements generation and analysis”. PhD thesis. Massachusetts
Institute of Technology, 2013.

[Ves81] Vesely, W.E.,Goldberg, F.F.,Commission, U.S. Nuclear Regulatory. Fault Tree
Handbook. NUREG-0492. Systems and Reliability Research, Office of Nuclear
Regulatory Research, U.S. Nuclear Regulatory Commission, 1981. url: https:

//www.nrc.gov/docs/ML1007/ML100780465.pdf.

80

https://doi.org/10.21941/ kcss /2021/1
https://wiki.rtsys.informatik.uni-kiel.de/bin/view/Theses/Completed%20Theses/
https://wiki.rtsys.informatik.uni-kiel.de/bin/view/Theses/Completed%20Theses/
https://www.nrc.gov/docs/ML1007/ML100780465.pdf
https://www.nrc.gov/docs/ML1007/ML100780465.pdf

List of Abbreviations

ETA Event Tree Analysis

FMECA Failure Modes and Effects Criticality Analysis

FTA Fault Tree Analysis

HAZOP Hazard and Operability Analysis

LTL Linear Temporal Logic

PASTA Pragmatic Automated System-Theoretic Process Analysis

SCChart Sequentially Constructive Statechart

STPA System-Theoretic Process Analysis

SVG Scalable Vector Graphics

STAMP System Accident Model and Processes

UCA Unsafe Control Action

SC Sequentially Constructive

MoC Model of Computation

IURP Initialize-Update-Read Protocol

IDE Integrated Development Environment

VSCode Visual Studio Code

UI User Interface

ID Identifier

IPA Information-technology Promotion Agency

SafetyHAT Safety Hazard Analysis Tool

OO Object-Orientated

81

	Introduction
	Problem Statement
	Outline

	Preliminaries
	Steam Boiler
	System-Theoretic Process Analysis
	Define Purpose of the Analysis
	Model the Control Structure
	Identify Unsafe Control Actions
	Identify Loss Scenarios
	STPA Outputs and Traceability

	Context Tables
	Sequentially Constructive Statecharts
	Linear Temporal Logic Formulas
	Used Technologies
	KIELER
	Pragmatic Automated System-Theoretic Process Analysis

	Related Work
	STPA Tools
	STAMP Workbench
	STPA Capella
	SafetyHAT

	Risk Analyses of the Steam Boiler
	FTA of the Steam Boiler
	HAZOP on a flame tube boiler
	HAZOP on a coal-fired boiler

	Models
	The Steam Boiler in Statecharts and Z
	The Steam Boiler in SCChart

	Verification

	The Steam Boiler in PASTA
	Analysis
	Define Purpose of the Analysis
	Model the Control Structure
	Identify Unsafe Control Actions
	Identify Loss Scenarios

	Challenges
	Automatic Identifier Updates
	Context Table
	Loss Scenarios

	The Steam Boiler Model in Sequentially Constructive Statecharts
	Modelling
	Steam Boiler Modelling Process
	Approaches for Developing a Verifiable Model
	Verification

	Challenges

	Evaluation
	Analysis of PASTA
	User guidance
	Visualization
	Language Server Updates
	Context Table
	Loss Scenarios

	Steam-boiler SCChart Model
	User Guidance
	Visualization
	Debugging
	Comparison to other Models

	Conclusion
	Summary
	Future Work
	Evaluation of PASTA's LTL Formulas
	Steam Boiler Model
	Evaluation of KIELER's Model Checker

	Bibliography
	List of Abbreviations

