
Christian-Albrechts-Universität zu Kiel

Bachelor Thesis

Interactive Transformations
for Visual Models

Ulf Rüegg

March 11, 2011

Department of Computer Science
Real-Time and Embedded Systems Group

Prof. Dr. Reinhard von Hanxleden

Advised by:
Dipl.-Inf. Christian Motika

ii

Eidesstattliche Erklärung

Hiermit erkläre ich an Eides statt, dass ich die vorliegende Arbeit selbstständig
verfasst und keine anderen als die angegebenen Hilfsmittel verwendet habe.

Kiel,

iv

Abstract

Model transformations are an integral part of Model Driven Engineering (MDE). But
these transformations are mostly executed silently and at once in the background.
The user does not gain any insight into the process of the transformation, and the
concrete coherences between the input model and its transformed version do not
become clear. In this thesis, an approach to visualize a transformation is presented.
The overall transformation is broken down into steps of a certain granularity. As
a result the transformation can be executed step-wise by successively performing
single steps. Each intermediate step is illustrated visually in order to improve the
overall comprehensibility. Erroneous transformations can be examined easier as it is
possible to locate the part of the transformation where the error is introduced more
precisely.
SyncCharts and Esterel are graphical and textual programming languages, re-

spectively, used for the design of reactive systems. A transformation between the
two languages is desirable in order to utilize each representation’s advantages. A
graphical representation improves comprehension while it is faster to edit a textual
representation. An implementation of a transformation that transforms an Esterel
program into a SyncChart and which is executable in steps is presented in the con-
text of the Kiel Integrated Environment for Layout Eclipse Rich Client (KIELER)
project.

vi

Contents

1 Introduction 1
1.1 KIELER . 2
1.2 Problem Statement . 3
1.3 Structure of this Document . 4
1.4 Esterel v5 . 4
1.5 SyncCharts . 6

2 Related Work 9
2.1 Esterel . 9

2.1.1 Statecharts to Esterel . 9
2.1.2 Synthesizing SyncCharts from Esterel 10

2.2 Model Transformations . 11
2.2.1 Transformation Languages . 11
2.2.2 KIELER Transformations . 11
2.2.3 Triple Graph Grammars . 12
2.2.4 Visual Debugging . 12
2.2.5 Integrating Textual and Graphical Modeling 13

3 Used Technologies 15
3.1 Eclipse . 15

3.1.1 Plug-in Mechanism . 15
3.1.2 Eclipse Modeling Framework 16
3.1.3 Xtext . 16
3.1.4 Xtend . 18

3.2 JUnit . 22
3.3 KIELER . 24

3.3.1 KIELER Execution Manager 24
3.3.2 KIELER Viewmanagement . 26
3.3.3 Thin KIELER SyncCharts Editor 27

4 Adaption of the Esterel Grammar in KIELER 31
4.1 Concept . 31

4.1.1 KExpressions . 31
4.2 Implementation . 34

4.2.1 Obstacles . 34
4.2.2 Result . 36

vii

Contents

5 Visual Transformation 39
5.1 A Generic Approach . 39

5.1.1 Graphical User Interface . 40
5.2 Esterel to SyncCharts Transformation 41

5.2.1 nothing . 45
5.2.2 pause . 46
5.2.3 halt . 47
5.2.4 abort . 48
5.2.5 assign . 52
5.2.6 await . 54
5.2.7 do-upto . 56
5.2.8 do-watching . 58
5.2.9 emit . 60
5.2.10 every . 62
5.2.11 if . 64
5.2.12 local-signal . 66
5.2.13 local-variable . 68
5.2.14 loop . 70
5.2.15 loop-each . 72
5.2.16 parallel . 74
5.2.17 present . 76
5.2.18 call . 78
5.2.19 sequence . 80
5.2.20 suspend . 82
5.2.21 sustain . 84
5.2.22 trap . 86
5.2.23 exit . 90

5.3 Optimization of SyncCharts . 93
5.3.1 Concept . 93
5.3.2 Removal of Unessential Conditional Pseudostates 94
5.3.3 Removal of Unessential Simple States (1) 96
5.3.4 Removal of Unessential Simple States (2) 98
5.3.5 Merging of Simple Final States 100
5.3.6 Removal of Unessential Normal Terminations 102
5.3.7 Removal of Unessential Macro States 104
5.3.8 Removal of Macro States with Only One Sub-State 106
5.3.9 Checking of a State’s Final Character 108

6 Implementation 111
6.0.10 Creation of a TransformationContext 111
6.0.11 Generic Execution . 113

6.1 Implementation of the Esterel to SyncCharts Transformation 116
6.1.1 Initial Transformation . 116
6.1.2 Xtend Implementation . 116

viii

Contents

6.1.3 Java Implementation . 118
6.2 Implementation of the SyncCharts Optimization 122

6.2.1 Xtend Implementation . 122
6.2.2 Java Implementation . 124

6.3 Implementation of the Controlling Combination 125

7 Validation and Experimental Results 129
7.1 Testing the Esterel Grammar . 129
7.2 Testing the Transformation Implementation 129
7.3 Experimental Results . 131

7.3.1 Transformation Durations . 131
7.3.2 Optimization Quality . 134

8 Concluding Results 137
8.1 Summary . 137
8.2 Conclusions . 138
8.3 Future Work . 139

A Sources 143

Bibliography 165

ix

Contents

x

List of Figures

1.1 Overview of KIELER [Fuh11] . 2
1.2 The ABRO program . 6

2.1 Esterel Studio GUI [Mot09] . 10
2.2 Small example of the conversion of a SyncChart to Synchronous C

(SC) code [Ame10] . 11
2.3 Schematic Triple Graph Grammars (TGG) 12
2.4 Integrating a graphical and a textual SyncCharts representation [Sch11] 13
3.1 Eclipse’s plug-in architecture as presented in its documentation1 . . 15

3.2 The Meta Object Facility (MOF) architecture [Sch11] 16
3.3 JUnit test result . 23
3.4 The KIELER Graphical User Interface (GUI) with its ThinKCharts editor

[Fuh11] . 24
3.5 KIEM User Interface . 25
3.6 Syntax of ThinKCharts [Fuh11] . 26
3.7 ThinKCharts metamodel . 28

4.1 Dependencies of some of KIELER’s metamodels 32
4.2 The annotations metamodel . 33
4.3 The KExpressions metamodel . 33
4.4 Xtext Esterel editor . 37

5.1 Schematic rule execution . 43
5.2 nothing’s transformation . 45
5.3 pause’s transformation . 46
5.4 halt’s transformation . 47
5.5 abort’s transformation . 49
5.6 assign’s transformation . 52
5.7 await’s transformation . 54
5.8 do-upto’s transformation . 56
5.9 do-watching’s transformation . 58
5.10 emit’s transformation . 60
5.11 every’s transformation . 62
5.12 if’s transformation . 64
5.13 local-signal’s transformation . 66
5.14 local-variable’s transformation . 68

xi

List of Figures

5.15 loop’s transformation . 70
5.16 loop-each’s transformation . 72
5.17 parallel’s transformation . 74
5.18 present’s transformation . 76
5.19 call’s transformation . 78
5.20 sequence’s transformation . 80
5.21 suspend’s transformation . 82
5.22 sustain’s transformation . 84
5.23 trap’s transformation . 87
5.24 exit’s transformation . 90
5.25 Notations of representative optimization diagrams 93
5.26 Removal of Unessential Conditional Pseudostates 94
5.27 Removal of Unessential Simple States (1) 96
5.28 Removal of Unessential Simple States (2) 98
5.29 Merging of Simple Final States . 100
5.30 Removal of Unessential Normal Terminations 102
5.31 Removal of Unessential Macro States 104
5.32 Removal of Macro States with Only One Sub-State 106
5.33 Checking of a State’s Final Character 108

6.1 Sequence diagram of the interaction with KiVi 112
6.2 Class diagram of the core package 112
6.3 Class diagram of the Java implementation 114
6.4 Combining of a TransformationContext 115
6.5 Initial transformation of an Esterel module 116
6.6 Transformation of the every statement 118
6.7 The effect of pre-transformation state selection 119

7.1 Testing of the transformation rules 130
7.2 Transformation and optimization of ABRO 131
7.3 Differences of the measured average values 133
7.4 Measured times for Recursive, Recursive+Setup, and Stepwise . . . 133
7.5 Measured times for Headless, Recursive, and Stepwise+Setup 133
7.6 Decrease of the number of states due to optimization 134
7.7 Decrease of the number of hierarchy levels due to optimization . . . 134

xii

Listings

1.1 ABRO in Esterel . 6

2.1 SC-Code . 11

3.1 Xtext specification of a phone book 17
3.2 A possible instance of the previously specified phone book 18
3.3 Xtend example of transforming a phone book 20
3.4 Transformed version of the previous Ducksburg.pb 20
3.5 Calling an Xtend method via the XtendFacade 21
3.6 Xtend calling a Java method . 21
3.7 Static Java method in a utility class 22
3.8 JUnit class file . 23

4.1 Declaration of several signals and variables 32
4.2 Esterel program and module . 34
4.3 Esterel statements . 34
4.4 A module’s interface . 35
4.5 Left-recursive grammar rule taken from [Ber00] 35
4.6 Left-factored result . 36
4.7 Using Xtext’s list assignment . 36
4.8 Embedding further expressions . 37

5.1 Pseudo code describing the basic structure of a transformation rule . 43
5.2 nothing’s grammar snippet . 45
5.3 nothing’s transformation snippet . 45
5.4 pause’s grammar snippet . 46
5.5 pause’s transformation snippet . 46
5.6 halt’s grammar snippet . 47
5.7 halt’s transformation snippet . 47
5.8 abort’s grammar snippet . 48
5.9 abort’s transformation snippet . 50
5.10 assign’s grammar snippet . 52
5.11 assign’s transformation snippet . 53
5.12 await’s grammar snippet . 54
5.13 await’s transformation snippet . 55
5.14 do-upto’s grammar snippet . 56
5.15 do-upto’s transformation snippet . 57

xiii

Listings

5.16 do-watching’s grammar snippet . 58
5.17 do-watching’s transformation snippet 59
5.18 emit’s grammar snippet . 60
5.19 emit’s transformation snippet . 61
5.20 every’s grammar snippet . 62
5.21 every’s transformation snippet . 63
5.22 if’s grammar snippet . 64
5.23 if’s transformation snippet . 65
5.24 local-signal’s grammar snippet . 66
5.25 local-signal’s transformation snippet 67
5.26 local-variable’s grammar snippet 68
5.27 local-variable’s transformation snippet 69
5.28 loop’s grammar snippet . 70
5.29 loop’s transformation snippet . 71
5.30 loop-each’s grammar snippet . 72
5.31 loop-each’s transformation snippet 73
5.32 parallel’s grammar snippet . 74
5.33 parallel’s transformation snippet 75
5.34 present’s grammar snippet . 76
5.35 present’s transformation snippet . 77
5.36 call’s grammar snippet . 78
5.37 call’s transformation snippet . 79
5.38 sequence’s grammar snippet . 80
5.39 sequence’s transformation snippet 81
5.40 suspend’s grammar snippet . 82
5.41 suspend’s transformation snippet . 83
5.42 sustain’s grammar snippet . 84
5.43 sustain’s transformation snippet . 85
5.44 trap’s grammar snippet . 86
5.45 trap’s transformation snippet . 88
5.46 exit’s grammar snippet . 90
5.47 exit’s transformation snippet . 91
5.48 Transformation snippet of rule1 . 95
5.49 Transformation snippet of rule2 . 97
5.50 Transformation snippet of rule3 . 99
5.51 Transformation snippet of rule4 . 101
5.52 Transformation snippet of rule5 . 103
5.53 Transformation snippet of rule6 . 105
5.54 Transformation snippet of rule7 . 107
5.55 Transformation snippet of rule8 . 108

6.1 Java pseudo code for the step method 113
6.2 Xtend method recursiveRule . 117
6.3 The initializeRule method . 117

xiv

Listings

6.4 The finalizeRule method . 117
6.5 Retrieving the next transformable state 120
6.6 Retrieving all transformable states 120
6.7 Predicate for rule1 . 122
6.8 Performing the optimization of rule1 122
6.9 Root rule for the SyncCharts optimization 123
6.10 Pseudo code collecting all states hierarchically ordered 124
6.11 Pseudo code of the execute method 126
6.12 Pseudo code of the process method 126

7.1 Testing a transformation rule . 130
7.2 Pseudo code for testing a transformation rule 131

A.1 The Esterel grammar . 143
A.2 The KiesUtil.ext extension file . 155

xv

Listings

xvi

Abbreviations

ATL Atlas Transformation Language

BNF Backus–Naur Form

CEC Columbia Esterel Compiler

CPN Colored Petri Net

DSL Domain Specific Language

EBNF Extended Backus–Naur Form

EMF Eclipse Modeling Framework

GMF Graphical Modeling Framework

GUI Graphical User Interface

IBM International Business Machines

IDE Integrated Development Environment

KIEL Kiel Integrated Environment for Layout

KIELER Kiel Integrated Environment for Layout Eclipse Rich Client

KIEM KIELER Execution Manager

KiVi KIELER Viewmanagement

KlePto KIELER leveraging Ptolemy Semantics

M2M model-to-model

MDE Model Driven Engineering

MOF Meta Object Facility

MWE Modeling Workflow Engine

MWE2 Modeling Workflow Engine 2

oAW openArchitectureWare

OCL Object Constraint Language

xvii

Listings

OMG Object Management Group

SC Synchronous C

SSM Safe State Machines

TGG Triple Graph Grammars

ThinKCharts Thin KIELER SyncCharts Editor

UML Unified Modeling Language

VHDL Very High Speed Integrated Circuit Hardware Description Language

XSD XML Schema Definition

XML Extensible Markup Language

xviii

Listings

xix

Listings

xx

1 Introduction

These days, embedded [LS11], real time, and reactive systems are omnipresent. Re-
active systems are in continuous interaction with the environment. They receive
information about the environment’s current state via sensors and react with a cer-
tain functionality. Such systems are, for instance, used in real time systems. Real
time systems focus on predictability and correctness rather than performance, and
have to consider the physical environment. Embedded systems perform computa-
tions in the context of other technical systems without the user noticing.
To illustrate consider the following systems: A mobile phone, the latest TV set,

a modern kitchen, or many parts of an automobile. Each of these devices contains
an electronic component controlling its function.
Furthermore, all of these devices have high requirements concerning safety, secu-

rity, reliability, and usability. They are getting more complex and their development
gets even harder, with relation to the previously mentioned requirements. Maintain-
ability, readability, and adaptability are just some of the demands for code, diagrams,
and everything else that is produced during the process that leads to a finished prod-
uct. However, as the systems get more complex, their code and diagrams get more
complex, too. Several unstructured and hardly readable diagrams combined with
poor tooling are presented by von Hanxleden and Fuhrmann [vHF10]. Diagrams like
these make it difficult to consider all interdependencies and to gain a good overview.
Thus, the need for appropriate programming languages and proper tools to support
the developer in his work is quite obvious.
Examples of such programming languages, designed for the development of reac-

tive systems, are Esterel [Ber00] or the graphical programming language SyncCharts
[And96]. Further noteworthy languages are Lustre [HR01] and Signal [GGBM91].
Some tools for the development of reactive systems are LabView [Nat08], SCADE
[Est06], and Ptolemy II [EJL+03].
Comparing graphical and textual editing yields the following result. On the one

hand, the advantage of a graphical programming language is a faster understand-
ing of the essential meaning of a diagram and its context, especially for an outside
person. On the other hand, in most cases the practiced developer prefers to edit
his code textually. This is usually faster and seems more natural [PTvH06]. Also,
high quality revision management exists for textual code while the comparison of
graphical models still faces some obstacles [Sch08]. For this reason a transformation
between a graphical and a textual representation is desirable. However, it is manda-
tory that semantics can be preserved and the expressiveness of either representation
can be covered by using the other representation’s syntax.

1

1 Introduction

1.1 KIELER

The Kiel Integrated Environment for Layout Eclipse Rich Client (KIELER)1 is an
academic research project that aims at improving the pragmatics of model based
design. In this context pragmatics relate to all practical aspects of handling a model.
This includes all facets of editing as well as browsing [FvH10b]. Main aspects are,
for example, automatic layout, structure-based editing, and proper view-management
[FvH10a, FvH10b], all of which are supposed to support the developer in his work.

KIELER is created by using Eclipse and its modeling facilities2 and is designed as
a testbed for new concepts of model-based design. Figure 1.1 shows an overview of
all components of KIELER. The projects are structured by their contribution either
to pragmatics, or to semantics, or to syntax.

KIELER Pragmatics

Dynamic
Views

Automatic
Layout

Meta
Lay-
out

Analysis

Evo-
lution-
ary

Force
Planar

Layered

Data
Flow

View
Manage-
ment

Model
Cre-
ation

Structure
Based
Edit-
ing

(KSBasE)

Textual
Edit-
ing

Model
Trans-
formation
(Esterel)

Examples

Visuali-
zation

Model
Visuali-
zation

Environ-
ment
Visual-
ization

Comparison
(KiViK)

Label
Manage-
ment

Compo-
nent
Compo-
sition

Data

Effi-
ciency

Libraries

Semantics

Execution
Manager
(KIEM)

Code
Gener-
ation

Synchronous
C/Java

Reactive
Pro-

cessors

Lego
Mind-
storms

UML
State
Ma-
chines

SimulationPtolemy
(KlePto)

SyntaxSyncCharts

Actor
Oriented

IEC
61499

Ptolemy

Generic
Model

Explorer
Model
Presen-
tation

Graphs

Figure 1.1: Overview of KIELER [Fuh11]

1http://www.informatik.uni-kiel.de/rtsys/kieler/
2http://www.eclipse.org/modeling/

2

1.2 Problem Statement

1.2 Problem Statement

The main goal of this thesis is to examine a solution and to give a possible im-
plementation for transforming one representation into the other one. It is not of
importance whether the transformation is a text-to-text or a text-to-graphic repre-
sentation. The exemplary implementation presented in this thesis sets its focus on
the text-to-graphic transformation of Esterel code to SyncCharts.
With regard to the tooling, the application of any transformation should appear

intuitive and has to be self-explaining as it aims at supporting the developer in his
daily work. Therefore, it has to be integrated seamlessly into Eclipse and has to
follow well-known editing paradigms.
To provide visual feedback during a transformation it is necessary to split the

overall process into steps, which are basically a specified extract of the overall trans-
formation. Thus, it is possible to perform single steps and visualize each intermediate
stage on the way from the source representation to the final result. For convenience
different modes of executing such a transformation should be offered. Step-wise
execution with visual feedback aims at supporting the understanding of the trans-
formation as it is performed slowly and the transformation’s line of action becomes
visible. It can also be used for debugging, the locating of mistakes made by the
programmer. Headless execution, the execution without any visual feedback, serves
as the natural choice to transform models quickly. Also, it is mandatory to provide
a mechanism to roll back single transformation steps in case the developer wants to
retrace an explicit transformation step.
First, a foundation for the convenient use of Esterel code is essential as motivated

in the introduction. This includes both, integrating it into the Eclipse context, and
providing commonly known programming paradigms like code completion, naviga-
tion, and formatting, on-the-fly syntax, and error checking.
Second, a base for the step-wise execution of arbitrary by using Eclipse technology

has to be developed.
Third, the Esterel to SyncCharts transformation, which serves as the primary

example, has to be implemented in a form that is easily executable. The execution
modes mentioned above have to be provided. As much existing work as possible,
provided by KIELER and possibly other sources, should be reused.
Fourth, because the sole application of generic transformation rules yields a rather

canonical and verbose SyncChart, a further post-processing is necessary to bring
it into a humanly better readable form. Fortunately, this can be done by some
optimization rules that simplify the SyncChart into a semantically equivalent, yet
more intuitive and comprehensible one.
Finally, adequate testing facilities have to be provided for everything that is de-

veloped. To sum up the following tasks can be determined:

1. Provide facilities to handle Esterel code in the context of KIELER.

2. Develop an approach to apply and to handle transformations visually.

3

1 Introduction

3. Implement both, the SyncCharts to Esterel transformation and the SyncCharts
optimization.

4. Define proper testing criteria and provide rudimentary tests.

1.3 Structure of this Document

The last part of Chapter 1 introduces Esterel and SyncCharts as it is essential for the
reader to know the basic concepts of these languages to understand the approaches
presented in this thesis.
Chapter 2 presents work related to this thesis, e. g., the first thoughts on the

Esterel to SyncCharts transformation by Prochnow et al. [PTvH06]. Additionally,
handling of model transformations and solutions to introduce visual debugging are
considered.
Chapter 3 introduces all used technologies that are used for the implementation.

Among these are basic Eclipse mechanisms, Xtext3, Xtend4, and several used fea-
tures of KIELER.
Afterwards, the integration of Esterel into the KIELER context is presented in

Chapter 4, including the adaption of an existing Esterel grammar into Xtext.
Chapter 5 starts with introducing a generic approach to deal with the Xtend-

based model-to-model (M2M) and in-place transformations. Also, the theoretical
foundations of the Esterel to SyncCharts transformation rules, as well as the Sync-
Charts optimization rules, are presented in further detail rule by rule. The concrete
example implementations are discussed in Chapter 6.
Chapter 7 depicts the used validation approaches and presents several results

produced by the implementation.
Finally, Chapter 8 summarizes the results of this thesis and gives a short outlook

on topics worth being discussed in the future.

1.4 Esterel v5

As stated in the introduction the Esterel language is used for the approaches and
implementations presented in this thesis. Therefore, the basic constructs of Esterel
have to be introduced.
Esterel v5 is described by Claus Traulsen [Tra10] in the following way.

“Esterel [BC84, PBEB07] is an imperative synchronous language. Es-
terel programs communicate with the environment and internally via
signals, which are either present or absent during one instant. Signals
are set present by the emit statement and tested with the present test.
Local signals can be declared by using the signal statement. Signals

3http://www.eclipse.org/Xtext/
4http://www.openarchitectureware.org/pub/documentation/4.3.1/html/contents/core_reference.html

4

1.4 Esterel v5

are absent per default: A signal is only present in a tick if it is emitted
in this tick. Esterel statements can be either combined in sequence (;)
or in parallel (‖). The loop statement simply restarts its body when
it terminates. All Esterel statements are considered instantaneous, ex-
cept for the pause statement, which pauses for one instant. The suspend

statement suspends its body when a trigger signal is present. Exception
handling is done via named exceptions, called traps. The trap statement
declares the scope of an exception. When the exception is raised with an
exit statement, the control is transferred to the end of this trap scope.
If multiple, different exceptions are raised in the same tick, the trap with
the outermost scope is taken.

From this small set of kernel statements derived statements are de-
clared. This includes simple statements like halt=loop pause, which
stops forever, but also the abort and weak abort statements, which ter-
minate their bodies when the trigger signal is present. Weak abortion
permits the execution of its body in the instant the trigger signal be-
comes active, strong abortion does not. Both kinds of abortions can be
either immediate or delayed. The immediate version already senses for
the trigger signal in the instant its body is entered, while the delayed
version ignores it during the first instant in which the abort body is
started.
Beside the pure status, a signal can also contain an additional value.

This value is persistent over ticks, if the signal is not emitted. If a
valued signal is emitted multiple times within a tick, a commutative and
associative function must be given to combine the signals. This ensures
that the signal value is unique within a tick. Esterel also has a notion
for variables, which can have different values within a tick. However,
they cannot be read and written in parallel, hence all race conditions are
syntactically excluded.”

Listing 1.2a shows the ABRO program, which is the Hello World of Esterel. In line
1 a module called ABRO is defined. Signals are defined in line 3 and 4; A, B and R

as input, O as output signal. In line 6 the program starts a loop which is reset
upon the presence of R. Line 7 specifies two parallel await statements that wait for
the occurrence of A, respectively B. The emit statement in line 8 emits O after the
termination of the previous parallel block. Finally, in line 11 the module is completed
by the end module keyword. For further information concerning the behavior of each
statement see the Esterel Primer [Ber00].
For the sake of completeness, it should be mentioned that the current version of

Esterel is v7. It comes with new constructs that are especially useful in hardware
design, for instance, arrays and bit vectors. The approaches presented here focus on
v5, hence v7 will not be discussed in further detail. For an overview of the difference
see Traulsen [Tra10].

5

1 Introduction

1 module ABRO:

2

3 input A, B, R;

4 output O;

5

6 loop

7 [await A || await B];

8 emit O;

9 each R

10

11 end module

(a) Esterel (b) SyncCharts

Figure 1.2: The ABRO program

1.5 SyncCharts

Chapter 5 explains the transformation of Esterel to SyncCharts. Chapter 6 presents
the actual implementation. Therefore, it is essential to know the syntax and basic
semantics of SyncCharts.
Claus Traulsen [Tra10] describes SyncCharts as follows:

“SyncCharts (also called Safe State Machines) are a Statecharts di-
alect with a synchronous semantics that strictly conforms to the Esterel
semantics. [...]
A procedural definition of the semantics of SyncCharts is given by [And03].
The basic object in SyncCharts is a reactive cell, which is a state with
its outgoing transitions. Reactive cells are combined to state-transition
graphs, called state regions in other Statecharts dialects. These are flat
automata with exactly one initial state, which is indicated by a bold bor-
der. A macro-state, like the control state on the example, consists of one
or more state-transition graphs. Additionally, SyncCharts can contain
textual macro-states, which consist of plain Esterel code. States can also
have internal actions: on entry, on exit and on inside. An on exit

action is executed whenever the state is left, whether this is done via an
outgoing transition or a parent state of this state is left itself. SyncCharts
inherit the concept of signals and valued signals from Esterel. Hence a
transition trigger can consist of an event, which tests for presence and
absence of values, and a conditional, which may compare numerical val-

6

1.5 SyncCharts

ues. Characteristic for SyncCharts are the different forms of preemption,
expressed by different state transition types. Weak and strong abortion
transitions as well as suspension can be applied to macro-states. Strong
abortions are indicated by a red dot on the arrow tail, like the tran-
sitions that restart the controller for each valid input in the example.
Weak abortions are drawn as plain arrows. A variant of weak abortions
are weak-delayed abortions, which only activate the target state in the
next instant. They make sure that states are not transient, what can
both simplify the compilation and the understanding of a SyncCharts.
A macro-state can either be left by an abortion, which has an explicit
trigger, or by a normal termination, which is taken if the macro-state
enters a terminal state. Normal terminations are indicated by a green
triangle at the arrow tail. Analogously to Esterel, all transitions can
either be immediate or delayed, where a delayed transition is only taken
if the source state was already active at the start of an instant. In con-
trast, immediate transitions may be taken as soon as the state becomes
active; this enables the activation and deactivation of a state multiple
times within one instant. Delayed transitions can also be count delayed,
i. e., the trigger must have been evaluated to true for a specific number
of times, before the transition is enabled. When a state has more than
one outgoing transition, a unique priority is assigned to each of them,
where lower numbers have higher priority. Weak abortions must have
lower priority than strong abortions, and if a normal termination exists,
it always has the lowest priority.”

The ABRO program should serve as an illustration, see Figure 1.2b. In the upper part
of the SyncChart the four signals A, B, R and O are defined. The inner state ABO has a
self-transition with R as the trigger, hence the transition is taken upon the presence
of R. The WaitAB state models the waiting for the signals A and B as parallel regions.
Within those regions the final state is reached by a transition with A, respectively B

as trigger. Finally, upon termination of the WaitAB state O is emitted as an effect of
a normally terminating transition.

7

1 Introduction

8

2 Related Work

There are two essential aspects in this thesis:

1. Esterel is considered with relation to proper tooling, and the synthesizing of
SyncCharts from Esterel is presented.

2. Model transformations are inspected, especially a possibility to execute a trans-
formation step by step. The proper visualizing of intermediate steps is ad-
dressed as well as the possibility to debug transformations.

2.1 Esterel
The Columbia Esterel Compiler

The Columbia Esterel Compiler (CEC)1 [EZ07] is an open-source Esterel compiler.
It supports Esterel v5 and can translate Esterel source code into a C program.
To recognize the Esterel constructs an Esterel grammar is used. The grammar
is represented in Extended Backus–Naur Form (EBNF) and serves as one of the
references for the construction of a grammar in this thesis.
During the translation several passes are performed, e. g., one pass is the creation

of an abstract syntax tree. Each pass’ result can be saved individually and is repre-
sented by an XML file. Furthermore, the CEC allows to expand an Esterel program
containing several modules into a single module. This is done by replacing each run

statement by the corresponding module. This expansion provides a straightforward
solution to handle multiple modules but reduces modularity and readability of the
Esterel code.

2.1.1 Statecharts to Esterel

Seshia et al. propose a translation of Statecharts to Esterel [SSBD99]. It aims at
the formal verification of Statecharts by using tools created for the verification of
Esterel programs.

Esterel Studio

Esterel Studio2 is an environment for the design of control-flow models, see Figure 2.1
for a screenshot. The tool supports the simulation of these models’ functionality.
1http://www.cs.columbia.edu/~sedwards/cec/
2http://www.esterel-technologies.com/

9

2 Related Work

Figure 2.1: Esterel Studio GUI [Mot09]

It also supports formal verification and automated generation of Very High Speed
Integrated Circuit Hardware Description Language (VHDL) and Verilog code.
Esterel Studio also provides a translation from Safe State Machines to Esterel.

The translation was proposed by André [And03].

2.1.2 Synthesizing SyncCharts from Esterel
First ideas concerning the topic of the synthesization of Safe State Machines (SSM)
from Esterel were presented by Prochnow et al. [PTvH06]. An exemplary imple-
mentation was provided by Kühl [Küh06] who also verified the correctness of the
presented approaches with formal proofs. The implementation was done in the con-
text of Kiel Integrated Environment for Layout (KIEL). However, no automatic
testing of the implementation was performed.

KIEL3 [PvH07] is the predecessor of KIELER and is a standalone Java application
possessing already many of the features provided by KIELER. KIEL lacks modularity,
reusability, and maintainability due to the implementation by using only native Java.
These problems are solved in KIELER with the help of the generic concepts provided
by Eclipse, e. g., the plug-in mechanism.
A first implementation of utilizing the modularity of KIELER was done by Lukasche-

witz [Luk10].
Both implementations mentioned do not provide any visualization of the actual

transformation. In both cases the Esterel file is taken as an input, and the completely
transformed SyncChart is presented afterwards. This work tries to enhance the
3http://www.informatik.uni-kiel.de/rtsys/kiel/

10

2.2 Model Transformations

(a) SyncCharts

1 S0:

2 PAUSE;

3 GOTO(S1);

4 S1:

5 PAUSE;

6 GOTO(S2);

7 S2:

8 HALT;

(b) SC–Code

Figure 2.2: Small example of the conversion of a SyncChart to Synchronous C (SC)
code [Ame10]

comprehensibility of the transformation by providing a mechanism to gain insight
into intermediate steps.

2.2 Model Transformations

2.2.1 Transformation Languages

Matzen [Mat10] gives a small overview concerning the topic of model transformations
and evaluates several transformation languages to choose the correct language for
a certain use case. The selection of Xtend as the transformation language used in
this thesis bases on Matzen’s explanations. A disadvantage of Xtend is the lack of
debugging facilities. The Atlas Transformation Language, also discussed by Matzen,
comes with built-in, well-known debugging facilities [JABK08], a simple break point
system to stop the control flow at a certain line of code.
In his work Matzen introduces a framework for structure-based editing. It allows

the developer to apply ready-made operations to a certain model. The changes to
the model are applied immediately so that the user receives direct feedback.

2.2.2 KIELER Transformations

There exist several M2M transformations in KIELER.
Amende [TAvH11, Ame10] presents a way to synthesize SC [vH09] code out of

SyncCharts, see Figure 2.2 for an example. SC is an extension of the C language
enriched by deterministic concurrency and preemption. Former approaches trans-
formed SyncCharts to Esterel and the Esterel code to C code. This approach has
several drawbacks, which can be prevented by using SC, e. g., the fact that it is hard
to see the coherences between the generated C code and the SyncChart.
Motika developed KIELER leveraging Ptolemy Semantics (KlePto)4 [Mot10, MSF+11],

4http://rtsys.informatik.uni-kiel.de/trac/kieler/wiki/Projects/KlePto

11

2 Related Work

domainA domainBcorrespondence

Figure 2.3: Schematic Triple Graph Grammars (TGG)

a framework that is capable of transforming a SyncChart to Ptolemy to simulate
the functionality of a SyncChart by using Ptolemy semantics.
Those two transformations are executed without the user having the possibility

to see any intermediate steps. A step-wise execution might be useful, especially in
terms of debugging.
To reach this target it has to be evaluated if it is possible to split the transfor-

mation process into pieces, and which step granularity seems to be reasonable. For
instance, the SC generation might be visualized by transforming a SyncChart’s states
one after another and building up the SC code piece by piece.

2.2.3 Triple Graph Grammars

TGGs [KW07] are a formalism used to define the correspondences between two dis-
tinct models. A triple graph consists of two graphs representing the models and a
third correspondence graph associating objects of the two models with each other.
In contrast to Xtend, TGGs are not restricted to one direction of the transformation.
A possible way to use TGGs for synchronizing models is presented by Giese and
Wagner [GW06].
Such a synchronization might be interesting to connect an Esterel file to a Sync-

Chart and to allow editing any of the two representations while synchronizing the
other one on-the-fly.

2.2.4 Visual Debugging

Jacobs and Musial [JM03] introduce an approach to perform visual debugging by
using the Unified Modeling Language (UML). To do so they link the program ex-
ecution to an UML object diagram and enhance its presentation by graph layout,
color encoding, and focus and context. Such a representation provides, additionally
to the program state, further structural information.
Schoenboeck et al. [JS09] note the problems of missing facilities to support the

debugging and the understanding of transformations. They try to solve the problem

12

2.2 Model Transformations

by using Transformation Nets which are a Domain Specific Language (DSL) on top
of Colored Petri Nets (CPNs).

Figure 2.4: Integrating a graphical and a textual SyncCharts representation [Sch11]

2.2.5 Integrating Textual and Graphical Modeling
The advantages of providing a textual and also a graphical representation of a model
were depicted in Chapter 1. An approach that goes beyond a plain transformation
from one model to another one is presented by Schneider [Sch11]. Schneider dis-
cusses the seamless integration of textual and graphical modeling. This includes
the immediate synchronization of either model upon any changes that were made in
the other model. He also provides an exemplary implementation by using KIELER’s
SyncCharts editor and a textual representation for SyncCharts, which he created,
see Figure 2.4 for a screenshot.
Such an approach is more complex than the transformation presented in this

thesis and demands high similarity of the two representations used. Esterel and
SyncCharts are convertible but each direction yields strongly deviating results, even
if the semantics are the same.

13

2 Related Work

14

Figure 3.1: Eclipse’s plug-in architecture as presented in its documentation3

3 Used Technologies

3.1 Eclipse
Eclipse1 was originally developed by IBM as a Java Integrated Development Environ-
ment (IDE) and is written in the Java language itself. Nowadays, it is maintained as
an open-source project and is the host for further languages, such as C, C++ and
PHP. Eclipse is also the host for a broad variety of modeling utilities2. The Eclipse
plug-in mechanism allows incremental development of complex projects and will be
discussed in the next sections.

3.1.1 Plug-in Mechanism
An Eclipse project can be developed by composing small pieces of functionality,
so-called plug-ins. Each of these plug-ins depends on others and provides some
new functionality. Figure 3.1 presents an overview of the plug-in architecture as
presented in the Eclipse documentation3. This can also be consulted to gain further
information on this topic.
Plug-ins enable a project to be more modular, expandable, and adaptable than

plain Java applications. To be used by other plug-ins, a plug-in has to specify
an interface or, in Eclipse terminology, extension points. These are XML schema
definitions containing the extension point’s specifications.
1http://www.eclipse.org
2http://www.eclipse.org/modeling/
3http://help.eclipse.org/galileo/nav/2

15

3 Used Technologies

M3

M2

M1

M0

MOF, Kermeta, KM3, Ecoremeta-metamodel

metamodel

model

real world object

UML, Petri nets, Xtext, DSLs

Figure 3.2: The Meta Object Facility (MOF) architecture [Sch11]

3.1.2 Eclipse Modeling Framework

The Eclipse Modeling Framework (EMF)4 is used to define the abstract syntax of a
certain domain in the form of metamodels. It adheres to the MOF5 standard defined
by the Object Management Group (OMG). The MOF standard defines a four layer
architecture describing models.

M0: Physical objects of the reality, e. g., a screwdriver.

M1: A model of an M0 object, e. g., the description of the screwdriver.

M2: A metamodel of an M1 model, e. g., the specification of the model of a screw-
driver.

M3: A meta-metamodel of an M2 metamodel, which specifies the structure of a
metamodel.

These four layers are illustrated with some simple examples in Figure 3.2.
In EMF so-called ecore metamodels (M2) are defined by using class diagrams,

annotated Java code, or XML Schema Definition (XSD). With the help of such a
metamodel EMF can generate Java code to work with concrete models.

3.1.3 Xtext

The Xtext6 project was integrated into Eclipse in 2009 and previously developed in
the context of the openArchitectureWare (oAW) framework7. It aims at the creation
of textual Domain Specific Languages (DSLs), which is done by providing an EBNF-
like grammar. DSLs are small programming languages dedicated to a specific domain.
In contrast to General Purpose Languages, such as Java, they are only intended to
solve problems within their particular domain in a clear and compact way [Fow05].
4http://www.eclipse.org/emf/
5http://www.omg.org/mof/
6http://www.eclipse.org/Xtext/
7http://www.openarchitectureware.org/

16

3.1 Eclipse

Therefore, they are not capable to provide solutions for problems arising from a
totally different domain.

Xtext is used in Chapter 4 to define a grammar for the Esterel language, and as
a result it allows to use Esterel in the context of Eclipse and KIELER.

An additional advantage of Xtext is the automatic generation of a textual Eclipse
editor with functionalities like syntax highlighting or code completion. These can be
customized in nearly every way the developer wants it to be. Xtext also supports
grammar inheritance enabling the developer to extend existing grammars or his own
one to achieve good modularization and reusability.

Some of the basic elements of Xtext’s syntax are shown below. To illustrate the
use, Listing 3.1 shows a small example grammar which models a telephone book
with persons. In line 5 and 6 the corresponding rule PhoneBook is specified, which
starts with the string "phonebook" and expects at least a name and one Entry. An
Entry is defined in line 8 and 9 and demands a Person as well as a PhoneNumber. For
a Person fields for the name, optionally for the age and for the telephone number
are specified. A PhoneNumber consists of a pair of integers indicating the region code
and the actual number.

1 grammar de.cau.cs.kieler.pb.PhoneBook with org.eclipse.xtext.common.Terminals

2

3 generate phoneBook "http://www.cau.de/cs/kieler/pb/PhoneBook"

4

5 PhoneBook:

6 "phonebook" name=ID ":" entries+=Entry+;

7

8 Entry:

9 "person" "(" person=Person ")" number=PhoneNumber ";";

10

11 Person:

12 forename=ID surname=ID ("," "age" age=INT)?;

13

14 PhoneNumber:

15 code=INT "/" number=INT;

Listing 3.1: Xtext specification of a phone book

Listing 3.2 shows a possible instance of such a telephone book. Two persons,
Donald Duck and Scrooge McDuck, are recorded with forename, surname, and age.
One person is just recorded with forename and surname, obviously a female for
whom it is decent not to mention her age. Furthermore, for each person a telephone
number is stated.

17

3 Used Technologies

1 phonebook Duckburg :

2 person (Donald Duck, age 30) 121/1354;

3 person (Scrooge McDuck, age 98) 212/9843;

4 person (Daisy Duck) 121/2343;

Listing 3.2: A possible instance of the previously specified phone book

Cardinal Operators
? optional element

* arbitrary number of elements
+ at least one element

Assignment Operators
= assignment of one element
+= assignment of an element to a list of elements
?= boolean assignment, assigns true if element exists, false otherwise

Further Rules
| marks an alternative
[] cross-reference to an existing element
{ } simple action, enforces the creation of a specific type

3.1.4 Xtend
Besides Xtext, Xtend is a former project of the oAW framework, which has been
integrated into Eclipse. Xtend is part of the Xpand8 project. Originally, Xtend was
used to define extensions to a metamodel that was used with Xtend. Nowadays it
has evolved to a fully functional programming language. It is used particularly to
define transformations based on metamodels9. Therefore, the term of an extension
is equivalent to a method or a function.
Model transformations can be classified [MG06] with relation to the layers in-

troduced in Section 3.1.2. A transformation is called exogenous if the M1 source
model and the M1 target model are derived from different M2 metamodels, endoge-
nous transformations base on the same M2 metamodel and are called in-place if the
source and target M1 model is the same instance.
Xtend is used to implement the Esterel to SyncCharts transformation rules as well

as the SyncCharts optimization rules presented in Chapter 5. The first-mentioned
transformations are exogenous, they transform Esterel elements to SyncCharts el-
ements. The latter are endogenous in-place transformations as they optimize the
structure of a single M1 model.
8http://wiki.eclipse.org/Xpand
9http://blog.efftinge.de/2006/04/model2model-transformation-with-xtend_15.html

18

3.1 Eclipse

Expression Language

Xpand/Xtend comes with a simple expression language10, which is a mixture of the
Object Constraint Language (OCL) and Java. The most important functionality is
described as follows:

1. Arithmetic and boolean operators or operations, e. g., +, -, *, /, ==, !=, <, >.

2. Collections providing known operations from functional and declarative pro-
gramming languages, e. g., {1,2,3}.select(e|e > 2).

3. Simple data types (Integer, String, Boolean, Real).

4. Conditional expressions (if, switch).

5. Chained expressions (fstExpr -> sndExpr -> lastExpr).

6. The let expression to instantiate local variables.

Example

There are three features of Xtend that are exemplified in this section.
First, the so-called member syntax allows the invocation of methods in two dif-

ferent ways. Either the method’s name is written followed by the arguments in
parentheses or the first argument of the method is written followed by a dot, the
method’s name and possibly further arguments.
Second, in case more than one method is specified with the same name but with

arguments of distinct type, multiple dispatch decides which method to call. This
decision is made at runtime and depends on the type of the passed arguments.
Third, Xtend’s built-in collection types provide special operations, for instance,

to select a subset of elements or to iterate over the whole collection. To iterate over
a list it is sufficient to apply a method demanding an argument with the type of
the collection’s elements. In that case the method is called individually for each
element.
Listing 3.3 shows a small transformation example based on the previous phone

book DSL.
The phone book metamodel is imported by using the import statement in line 1.

Afterwards, a method called transformPhoneBook is defined in line 3, which calls two
further methods, reduceAge and addGyroGearloose.
Multiple dispatch can be observed in line 4, 8, and 12. The reduceAge method

call in line 4 yields the selection of the method defined in line 8 as the type of book
is PhoneBook.
Line 9 reveals a facet of Xtend’s collection types. The method reduceAge is applied

to each element of the entries collection.
10http://www.openarchitectureware.org/pub/documentation/4.3.1/html/contents/core_reference.html

19

3 Used Technologies

1 import phoneBook;

2

3 Void transformPhoneBook(PhoneBook book):

4 reduceAge(book) ->

5 book.addGyroGearloose()

6 ;

7

8 Void reduceAge(PhoneBook book):

9 book.entries.reduceAge()

10 ;

11

12 Void reduceAge(Entry e):

13 let p = e.person:

14 if p.age != null && p.age > 90 then

15 p.setAge(p.age - 20)

16 ;

17

18 Void addGyroGearloose(PhoneBook book):

19 let entry = new Entry:

20 let phoneNumber = new PhoneNumber:

21 let gyro = new Person:

22 gyro.setForename("Gyro") -> gyro.setSurname("Gearloose") ->

23 phoneNumber.setCode(231) -> phoneNumber.setNumber(2221) ->

24 entry.setPerson(gyro) -> entry.setNumber(phoneNumber)

25 ;

Listing 3.3: Xtend example of transforming a phone book

In lines 18–25 the method addGyroGearloose yields the creation of a new phone
book entry using local variables and chained expressions.

The execution of this transformation in the context of the previously introduced
Ducksburg phone book yields the result shown in Listing 3.4. In line 3 the age of
Scrooge McDuck dropped from 98 to 78 and in line 5 the new Entry Gyro Gearloose

can be seen.

1 phonebook Duckburg :

2 person (Donald Duck, age 30) 121/1354;

3 person (Scrooge McDuck, age 78) 212/9843;

4 person (Daisy Duck) 121/2343;

5 person (Gyro Gearloose) 231/2221;

Listing 3.4: Transformed version of the previous Ducksburg.pb

20

3.1 Eclipse

Execution of Extensions

Xtend’s metamodel Extensions can be executed by using a so-called XtendFacade. All
of the required metamodels have to be registered. The file containing the extensions
has to be specified. The method that should be called has to be passed as well as
the demanded arguments.
Another way to execute extensions is to use the Modeling Workflow Engine (MWE)

and the Modeling Workflow Engine 2 (MWE2), respectively, which need the same
information as before. MWE11 is independent of any Java code but lacks flexibility.
This is because always an entry extension has to be called with the root element of
a model. Just the XtendFacade is used in the context of this thesis, therefore, MWE
will not be described in further detail.
Listing 3.5 presents a small example of how to use the XtendFacade. In line 1

the facade is instantiated by calling the static create method. As parameter the
location of the file containing the extensions is passed. In line 3 the actual method
someTransformation is invoked with the string AnyParameter as the parameter.

1 XtendFacade facade = XtendFacade.create("path/myExtensions");

2

3 facade.call("someTransformation", new Object[]{"AnyParameter"});

Listing 3.5: Calling an Xtend method via the XtendFacade

Java Extensions

Xtend provides the possibility to escape to Java in case its expressiveness is not
sufficient, for instance, in case some information should be printed to Java’s standard
output stream. In this case, any static Java method can be called. The Java method
is then evaluated as usual while Xtend awaits the return of the called method.
Listing 3.6 shows an Xtend method debug that takes one argument of the type

EObject. The debug method of the Utils class in the de.cau.cs.kieler.pb package is
called with obj as the argument. The Java method, which is presented in Listing 3.7,
just prints the result of the argument’s toString() method to the standard output
stream.

1 import ecore;

2

3 Void debug(EObject obj):

4 JAVA de.cau.cs.kieler.pb.Utils.debug(org.eclipse.emf.ecore.EObject);

Listing 3.6: Xtend calling a Java method

11http://wiki.eclipse.org/Modeling_Workflow_Engine_(MWE)

21

3 Used Technologies

1 package de.cau.cs.kieler.pb.Utils;

2

3 public final class Utils{

4 public static void debug(final EObject obj) {

5 System.out.println(obj.toString());

6 }

7 }

Listing 3.7: Static Java method in a utility class

Global Variables

Global variables have to be passed either to the MWE2 workflow or to the calling
XtendFacade prior to runtime. They can be used to pass information to Xtend, which
does not change during runtime, or in some cases it is not convenient to pass all
information by parameters.
Inside Xtend they can be retrieved by using the GLOBALVAR keyword.

3.2 JUnit

JUnit12 is a testing framework written in Java and originally created by Kent Beck
and Erich Gamma. It is used to create automated and repeatable tests of software
components, also referred to as white-box testing.
The JUnit framework serves as an automatic testing facility for the implemen-

tations presented in Chapter 6. The testing strategies and the definition of proper
JUnit tests are discussed in Chapter 7.
The usage of JUnit is simple. As shown in Listing 3.8 a mere Java class serves as

a frame. The @Before annotation depicts a method executed before the actual test
methods. It can be used to initialize everything needed. Each test case is bundled
into a method annotated with the keyword @Test. To identify the correctness of the
tested functionality either assertions or exceptions can be used. This does not rep-
resent the whole functionality of the JUnit framework but is enough to understand
its usage within this thesis. For further information see the JUnit documentation.
Furthermore, JUnit is well integrated into Eclipse which provides all functionality

to execute a test and to present its results clearly. See Figure 3.3 for a screenshot.
The left half shows a list with all specified tests if they were successful and the time
their execution took. The right half presents further information about the failure
of the selected test. In the given case this is an Exception with the information
message This is obviously wrong.

12http://junit.sourceforge.net/

22

3.2 JUnit

1 import org.junit.*;

2 import static org.junit.Assert.*;

3

4 public class JUnit {

5

6 int three = 3, nine;

7

8 @Before

9 public void setup() {

10 nine = 9;

11 }

12 @Test

13 public void testSquareRoot() {

14 assertEquals((int) Math.sqrt(nine), three);

15 }

16 @Test

17 public void testEquality() {

18 assertTrue(nine == three);

19 }

20 @Test(expected = ArithmeticException.class)

21 public void testDivisionByZero() {

22 float f = 5 / 0;

23 }

24 @Test

25 public void throwException() throws Exception {

26 if (1 != 0)

27 throw new Exception("This is obviously wrong!");

28 }

29 }

Listing 3.8: JUnit class file

Figure 3.3: JUnit test result

23

3 Used Technologies

Figure 3.4: The KIELER GUI with its ThinKCharts editor [Fuh11]

3.3 KIELER

In the next sections some features of KIELER are introduced in further detail. These
features are used by the exemplary Esterel to SyncCharts transformation implemen-
tation presented in this thesis. They provide the layer allowing interaction of the user
with the transformation and allow the step-wise execution of model transformations.
Figure 3.4 shows a first screenshot of the KIELER workbench.

3.3.1 KIELER Execution Manager
The KIELER Execution Manager (KIEM)13 [MFvH09, Mot09] is a generic execution
infrastructure based on Eclipse that can be used to execute arbitrary domain-specific
models. KIEM itself just provides an interface and represents a frame for such execu-
tions, e. g., scheduling several so called DataComponents representing different units
13http://rtsys.informatik.uni-kiel.de/trac/kieler/wiki/Projects/KIEM

24

3.3 KIELER

of an execution. A possible setup can be one DataComponent producing data of a
simulation and another one visualizing this data.

Graphical User Interface

KIEM provides a GUI with several buttons that control the execution. The user is
able to step the execution or run it with a certain delay between two consecutive
steps. The execution can be paused or completely stopped. Additionally, there is the
possibility to do backward steps.
One can also assemble some DataComponents in a schedule and enable or disable

them for the current execution. These buttons, together with a predefined schedule
to simulate SyncCharts, can be seen in Figure 3.5.

Figure 3.5: KIEM User Interface

DataComponent

A DataComponent provides several methods which the developer is supposed to
overwrite. They are automatically called by KIEM during an execution. The most
important ones are:

1. initialize(): This method is called prior to the begin of the execution.

2. step(): For each step that is initiated by either KIEM or the user this method
is called.

3. wrapup(): Once the execution is finished or the user aborts it this method is
called.

4. isProducer(): This predicate should return true if the DataComponent pro-
duces any data that might be used by other DataComponents.

5. isObserver(): This predicate should return true if the DataComponent wants
to observe data produced by another one. The specification has, like 4., im-
plications on the scheduling [Mot09] of the different DataComponents.

25

3 Used Technologies

3.3.2 KIELER Viewmanagement

KIELER Viewmanagement (KiVi)14 [Mül10] is intended to manage arbitrary visual
effects occurring during model based design. KiVi bases on the ideas presented by
Fuhrmann and von Hanxleden [FvH10b].
Basically it consists of three pieces:

Trigger: A Trigger is supposed to listen to certain events and inform KiVi upon
occurrence. Then, KiVi executes all interested Combination.

Effect: An effect is the actual action that is executed. For example, it might ma-
nipulate the view to meet certain criteria.

Combination: The Combination is the logic that decides how to react when it is
informed by a trigger about the occurrence of a certain event.

KiVi tries to keep the Combinations as simple as possible. They are the piece of
code each developer has to write himself, for instance, to apply a view management
effect. Triggers and Effects can often be reused as some of them are used in different
contexts. An example of such a use could be applying automatic layout to a diagram
either upon a button click or a model change.
The generic approach to execute implementations presented in Chapter 6 uses a

KiVi Effect. An advantage is the possibility to apply further Effects in combination
with a transformation without much effort.
14https://rtsys.informatik.uni-kiel.de/trac/kieler/wiki/Projects/KiVi

B

Root	State

Interface

Parallel	Regions

Anonymous	States

Named	Simple	States

Composite	or	
Macro	States

Initial	State Normal	State Conditional	
Pseudostate

Final	State

Transition	Trigger	/	Effect Delay	Counter

Immediate
Transition

Compound
Trigger

Priority

Strong	Abortion
Transition

Normal	Termination
Transition

Weak	Abortion
Transition

Valued	Signal
Emission

Initial	and
Final	State

Figure 3.6: Syntax of ThinKCharts [Fuh11]

26

3.3 KIELER

Furthermore, the interface connecting the user inputs with the accordant program
behavior is implemented by using a Combination, which allows the communication
with other viewmanagement elements and is well expandable.

3.3.3 Thin KIELER SyncCharts Editor
The Thin KIELER SyncCharts Editor (ThinKCharts) has been developed as a demon-
stration tool for new approaches of graphical modeling. See Figure 3.4 for a screen-
shot. Its first implementation was provided by Matthias Schmeling [Sch09] and uses
EMF and Graphical Modeling Framework (GMF). For further information on the
GMF part refer to the work of Schmeling.
The editor bases on the metamodel shown in Figure 3.7. All elements of Sync-

Charts, as introduced in Section 1.5, are represented by the metamodel. The con-
crete syntax is similar to the one used by Esterel Studio and is presented in Fig-
ure 3.6. A macro state containing all expressiveness of SyncCharts can be seen. All
black elements are syntax, while the description of each element is presented in blue.

27

3 Used Technologies

Figure 3.7: ThinKCharts metamodel

28

3.3 KIELER

29

3 Used Technologies

30

4 Adaption of the Esterel Grammar in
KIELER

There are several Esterel grammars [Ber00, PBEB07] and tools to work with Esterel,
such as Esterel studio1. But to satisfy the requirements stated in Chapter 1, e. g.,
usability in the form of sophisticated tooling and the integration into KIELER, it is
necessary to adapt such a grammar in the Eclipse context.
In this chapter the adaption of the Esterel language grammar is presented. Fur-

thermore, some small extracts of the actual grammar and solutions of the main
obstacles concerning the chosen approach are given.

4.1 Concept

Due to the intention of this thesis to use Esterel in the context of KIELER a good
integration into the current infrastructure is mandatory.

KIELER already provides an expression language based on Xtext. It is called
KExpressions and is used by the ThinKCharts editor. Its expressions are similar
to the expressions used in Esterel. Furthermore, Xtext generates automatically
sophisticated tooling, which can be customized to a nearly arbitrary extent. Hence,
Xtext seems to be the natural choice to realize a new implementation of an Esterel
grammar.
Existing Esterel grammars are usually documented in Backus–Naur Form (BNF) or

in EBNF and are therefore easily transferred into Xtext as the syntax is similar. The
primarily used references for the presented adaption are Potop-Butucaru [PBEB07]
and Berry [Ber00].
In the following, the reused infrastructure of KIELER is briefly introduced.

4.1.1 KExpressions

KExpressions is an expression language, which is developed by using EMF and Xtext.
Its connections within KIELER can be seen in Figure 4.1. The annotations meta-
model specifies how to annotate a plain object. The KExpressions metamodel uses
it and serves as the expression language for the synccharts metamodel. The dotted
box indicates that the expressions will be reused in the esterel metamodel as well.

1http://www.esterel-eda.com

31

4 Adaption of the Esterel Grammar in KIELER

annotations

kexpressions

esterel synccharts

Figure 4.1: Dependencies of some of KIELER’s metamodels

KExpressions provides basic arithmetic and boolean expressions and obeys com-
mon precedence rules. It also comes with the possibility to define TextExpressions,
which is handy to define host code in Esterel.
Such expressions may be:

1. Valued Expressions: (1 + 2 / 4 mod 5).

2. Boolean Expressions: (A and B or not (5 > 4)).

3. Text Expressions: ”printf(...)”.

Additionally, it specifies basic description of an interface declaration for signals and
variables. Signals and variables can have a type and an initial value. Furthermore,
signals can also be marked as input, output, inputoutput, or return.
Listing 4.1 shows the definition of two signals A and B with an initial value and

a type in line 2. Afterwards, two variables v1 of type integer are specified with an
initial value.

1 // signals

2 input A := 4 : integer, output O := 1.4f : float

3 // variables

4 var v1 := 1, v2 := 2 : integer

Listing 4.1: Declaration of several signals and variables

To get an overview of KExpressions’s metamodel, see Figure 4.3. It can be seen
that Signals and Variables are ValuedObjects which are additionally Annotatables.
The annotations metamodel can be seen in Figure 4.2 and defines essential func-
tionality to annotate NamedObjects with arbitrary Annotations. Expressions are
either ComplexExpressions or plain Values. ComplexExpressions can be composed
OperatorExpressions with an operator, e. g., + or *, ValuedObjectReferences that,
for instance, refers to an existing Signal, or to a TextExpression. Values can be
floats, integer, or booleans.

32

4.1 Concept

Another crucial reason for the re-use of KExpressions is the fact that the definition
of the SyncCharts metamodel bases on it. Hence, the rules for an Esterel to Sync-
Charts transformation can be kept simple. There is no need to transform Esterel
expressions into a form, valid in SyncCharts, as they use the same elements.

Figure 4.2: The annotations metamodel

Figure 4.3: The KExpressions metamodel

33

4 Adaption of the Esterel Grammar in KIELER

4.2 Implementation
In this section some pieces of the created Xtext grammar are presented. The basic
comprehension of the grammar is necessary to understand the implementation of
the Esterel to SyncCharts transformation.
The root element of an Esterel program is the Program element, which is defined

in Listing 4.2 in line 1 and 2. It can contain several modules and can be commented
in the Esterel typical way using %{ as starting, }% as ending delimiter. Lines 3 to
6 specify a Module which consists of a name, a possible interface declaration, and a
body with several statements.
Listing 4.3 shows the way statements can be combined. This can be done either

in sequence or in parallel. Each AtomicStatement is defined in its own separate rule
(see line 9-12), which is shown in Section 5.2 together with its transformation into
an equivalent SyncChart.

1 Program hidden(Esterel_SL_Comment, Esterel_ML_Comment, WS):

2 (modules+=Module)*;

3 Module:

4 "module" name=ID ":" (interface=ModuleInterface)? body=ModuleBody end=EndModule

;

5 ModuleBody:

6 statements+=Statement;

Listing 4.2: Esterel program and module

1 Statement:

2 Sequence ({Parallel.list+=current} "||" list+=Sequence)*;

3

4 Sequence returns Statement:

5 AtomicStatement ({Sequence.list+=current} ";" list+=AtomicStatement)* ";"?;

6

7 AtomicStatement returns Statement:

8 Abort | Assignment | Await | Block | ProcCall | Do | Emit | EveryDo |

9 Exit | Exec | Halt | IfTest | LocalSignalDecl | Loop | Nothing | Pause |

10 Present | Repeat | Run | Suspend | Sustain | Trap | LocalVariable |

11 VarStatement | WeakAbort;

Listing 4.3: Esterel statements

4.2.1 Obstacles
Interface Declarations

As stated above, KExpressions already provides basic support for the declaration of
signals and variables. However, Esterel allows the definition of domain specific types

34

4.2 Implementation

which can be used as the type of a signal or a variable. Therefore, the TypeIdentifier
rule is overwritten to allow the reference of newly specified types.
Also, Esterel’s interface declaration allows the declaration of Types, Sensors, Re-

lations, Tasks, Functions, and Procedures. Adding those is not much of a problem as
all of them can be combined with alternatives in one rule, as shown in Listing 4.4.

1 ModuleInterface:

2 (intSignalDecls+=InterfaceSignalDecl

3 | intTypeDecls+=TypeDecl

4 | intSensorDecls+=SensorDecl

5 | intConstantDecls+=ConstantDecls

6 | intRelationDecls+=RelationDecl

7 | intTaskDecls+=TaskDecl

8 | intFunctionDecls+=FunctionDecl

9 | intProcedureDecls+=ProcedureDecl)+;

Listing 4.4: A module’s interface

Removing Left-Recursion

Xtext uses an LL-Parser to evaluate the input. For this reason it does not support
left recursion, which is used a lot in EBNF grammars. An example of a left recursive
rule, taken from the grammar used as the prototype, is shown in Listing 4.5. As one
can see there, the SignalDeclList rule references itself as the left symbol of the rule
in line 3.
To transfer such rules into a form that is valid in Xtext one can use the so-

called left-factoring. This is shown in Listing 4.6. The left recursion is removed
by using a new rule SignalDecls, which either specifies a SignalDecl or another
SignalDeclList. The latter needs to be written in parentheses or any other symbols
assuring unambiguity.
However, this is not what is wanted as it introduces additional syntax. A better

solution is to use Xtext’s list assignment mechanism which yields cleaner results. Ad-
ditionally, considering the programmatic use lists can be processed easier compared
to strongly nested classes.
An example of the latter conversion can be seen in Listing 4.7. Here, at least

one SignalDecl has to be specified, followed by an arbitrary amount of SignalDecls,
each separated from the other one by a comma.

1 SignalDeclList:

2 SignalDecl |

3 SignalDeclList ’,’ SignalDecl;

Listing 4.5: Left-recursive grammar rule taken from [Ber00]

35

4 Adaption of the Esterel Grammar in KIELER

1 SignalDeclList:

2 left=SignalDecls (’,’ right=SignalDecls)?;

3

4 SignalDecls:

5 SignalDecl | ’(’ SignalDeclList ’)’;

Listing 4.6: Left-factored result

1 SignalDeclList:

2 signals+=SignalDecl (’,’ signals+=SignalDecl)*;

Listing 4.7: Using Xtext’s list assignment

Embedding further Expressions

Unfortunately, the reused KExpressions does not provide all of the expressions in-
cluded in Esterel. The missing expressions are function calls, traps, and constants.
To solve this problem the expressions need to be hooked into the existing KExpressions

implementation. For such cases Xtext’s inheritance mechanism allows to override
methods of the parent grammar, which is done for the mentioned expressions as
shown in Listing 4.8.
In line 10-11 the TrapExpression is defined. The use of an ISignal to reference

traps is a result of the internal implementation of traps. Afterwards, in line 13-14
a FunctionExpression is specified, which consists of a reference to a function name
and a various number of Expressions as parameters. At last, a ConstantExpression

can either be a referenced constant or any ConstantAtom, e. g., an integer or a float.
The insertion into the existing AtomicExpression rule of the original KExpressions

grammar can be seen in line 1-8 where the new expressions are added to the
AtomicExpression as alternatives.

4.2.2 Result
In Figure 4.4 the generated Esterel editor and a small sample input consisting of the
ABRO module and anotherModule can be seen. On the left bottom a program outline
is presented containing all main elements of the current program. Above this, small
error markers indicate the missing letter p in outut and the not yet finished emit

statement. At this point, also the code completion is worth to be mentioned. It
suggests finishing the letters emi to the emit statement. The last point to observe is
the syntax highlighting, which highlights each Esterel keyword in a bold, dark violet
font.
For further information concerning the grammar see Listing A.1 in the appendix.

36

4.2 Implementation

1 AtomicExpression returns kexpressions::Expression:

2 FunctionExpression

3 | TrapExpression

4 | BooleanValue

5 | ValuedObjectTestExpression

6 | TextExpression

7 | ’(’ BooleanExpression ’)’

8 | ConstantExpression;

9 TrapExpression returns kexpressions::Expression:

10 {TrapExpression} "??" trap=[kexpressions::ISignal|ID];

11 FunctionExpression returns kexpressions::Expression:

12 {FunctionExpression} function=[Function|ID] "(" (kexpressions+=Expression (","

kexpressions+=Expression)*)? ")";

13 ConstantExpression returns kexpressions::Expression:

14 {ConstantExpression} (constant=[Constant|ID] | value=ConstantAtom);

Listing 4.8: Embedding further expressions

Figure 4.4: Xtext Esterel editor

37

4 Adaption of the Esterel Grammar in KIELER

38

5 Visual Transformation

The meaning of the term transformation is ambiguous. It refers to completely
different issues depending on the area of application in which it is used. In the
context of this thesis it is used in the four following ways.
First, it stands for the transformation of a certain domain’s model into another

model (M2M). Second, it denotes an in-place transformation operating on a single
model within the same domain. Third, it can indicate an arbitrary extract of one of
the two transformations mentioned. This, for instance, might be just a single step
of a transformation that takes ten steps overall (the size of a step depends on its
definition). Last, the term can be used representatively for the sum of all previously
stated points.
This chapter is divided into three parts. In Section 5.1, criteria that are essential

to any transformation are pointed out. This section includes specifying the ab-
stract dimension of an arbitrary transformation. Based on these findings a possible
implementation is presented.
Afterwards, Section 5.2 introduces the theoretical foundations of the Esterel to

SyncCharts transformation. The foundations were presented and proved by Kühl
[Küh06] and implemented in KIEL. In this thesis they are just revisited and placed
into the new context of KIELER. The actual implementation is documented in Sec-
tion 6.1.
Section 5.3 presents optimization potential of SyncCharts as presented by Kühl.

5.1 A Generic Approach
The following requirements have to be considered to provide a generic approach for
arbitrary transformations.

Reusability The approach has to be usable within different domains and with diverse
technologies.

Expandability An existing transformation has to be changeable and to be expand-
able easily. It should be possible to add further transformations without diffi-
culty.

Comprehensibility The functionality of the transformation must be quickly under-
standable for developers and users. Developers should be able to write new
transformations without the need of working themselves through the whole im-
plementation first. Users should have the possibility to retrieve visual feedback
to gain a good understanding of the transformation process.

39

5 Visual Transformation

Usability A pleasant and logical interaction with the transformation process has to
be guaranteed by any user interface that is provided.

With the help of these requirements an abstract description of a transformation
can be specified including all common information for arbitrary transformations and
domains.
Two facets can be distinguished. First, there is the description of the actual

transformation which should be processed. This is basically a matter of what should
be done. Second, information about the context, in which a transformation takes
place, is required. This is a matter of where, how, and when.
The first point will be referred to as Transformation Description, the second one

as Transformation Context. In the following, both facets are described in further
detail.

Transformation Description

Elements Which elements of a model should be transformed?

Name The name of the transformation that should be executed.

Transformation Context

Transformation Description Which transformation should be executed?

Domain In which domain is the current transformation executed? Is it in-
place or M2M?

Definitions Where are the transformation rules defined?

Execution Environment How can the transformation be executed?

Modalities When and in which way should it be executed (e. g., step-wise or
batch)?

5.1.1 Graphical User Interface

The implementation of the user interface depends on the type of the performed
transformation.
For instance, the synthesis of SyncCharts from Esterel requires step-wise execution

with back steps. In contrast to this, a single button is enough for a transformation
that replaces all signals s by a signal s2 within a given SyncChart.
Therefore, the presented user interface is already adjusted to the needs of the syn-

thesis of SyncCharts from Esterel. However, it is suitable for other transformations
that have a successive character.

40

5.2 Esterel to SyncCharts Transformation

Performs a step.

Performs one step backwards if possible.

Performs the transformation from Esterel to SyncCharts until all Esterel ele-
ments are transformed.

In case there are Esterel elements left, these are transformed first. Afterwards,
a complete SyncCharts optimization is applied until no more states can be
optimized.

The user is able to determine the context that should be transformed by selecting
an element within the editor.

5.2 Esterel to SyncCharts Transformation
In this section the concept of each Esterel to SyncCharts transformation rule is pre-
sented. Esterel statements are nested hierarchically. This fact offers the opportunity
to construct atomic rules that handle just one statement a time. Each of these rules
can be applied individually and is assured to yield a correct result as the rule was
proven formally.
The following sections serve as a reference for each Esterel statement’s transfor-

mation into an equivalent SyncChart. They are structured in the following way:

1. A grammar snippet is shown describing the complete expressiveness of the
current Esterel statement.

2. A very brief description of the Esterel statement is given.

3. The equivalent SyncCharts macro state is characterized by a text and a repre-
sentative SyncChart diagram. A reference is given to the page of Kühl’s work
where the proof of this equivalence is presented.

4. The Xtend transformation of the particular statement is listed.

In the presented SyncCharts diagrams the following notations are used to keep the
diagrams as general as possible.

e1, en, ex: an effect (e. g., / O).

t1, tn, tx: a trigger (e. g., 1 < 5).

se1, sen: a signal expression (e. g., A and B).

v1, vn: a variable.

sig1, sign: a signal.

41

5 Visual Transformation

s1, sn: a statement.

proc1: a procedure.

trap1, trapn: a trap.

trapex1, trapexn: a trap expression.

...: indicates a sequence of elements (e. g., several states or transitions).

Xtend transformations

The transformation rules are implemented by using Xtend. For further details of
the motivation concerning the use of Xtend see Matzen [Mat10].
Each Esterel statement is transformed in the context of an explicit SyncCharts

state. For this reason, it is possible to name all Xtend methods in the same way,
pass the state and the statement as arguments, and let Xtend’s multiple dispatch
choose the fitting method. Also, the first and the last part of each rule is the same,
e. g., in each rule the current state’s name is changed according to the current Es-
terel element. This functionality is moved to two methods called initializeRule()

and finalizeRule(). Listing 5.1 shows the common structure of all implemented
transformation rules in pseudo code. Figure 5.1 depicts the execution of the trans-
formation of the abort rule in a schematic way.

42

5.2 Esterel to SyncCharts Transformation

1 Void initializeRule(State, EsterelObject):

2 // ...

3 ;

4

5 Void finalizeRule(State, EsterelObject):

6 // ...

7 ;

8

9 Void rule(State, EsterelObject):

10 // create new elements with let, e.g., let r = new Region

11 initializeRule()

12

13 // do statement specific transformation

14

15 finalizeRulel()

16 ;

Listing 5.1: Pseudo code describing the basic structure of a transformation rule

rule(State, Emit)

rule(State, Abort)

rule(State, Loop)

Input

State
Abort

.

.

.

trans.ext

multiple
dispatch

initializeRule()

finalizeRule()
rule(State, Abort)

Execution

Xtend

Figure 5.1: Schematic rule execution

43

5 Visual Transformation

44

5.2 Esterel to SyncCharts Transformation

5.2.1 nothing

Listing 5.2: nothing’s grammar snippet
1 Nothing:

2 {Nothing} "nothing";

Statement Description

The nothing statement terminates instantaneously.

Equivalent macro-state

Immediate termination is achieved by a state marked initial and final [Küh06, p. 48].

7−→

Figure 5.2: nothing’s transformation

Transformation

1 Void rule(State s, Nothing n):

2 let nState = new State:

3 let r = new Region:

4 initializeRule(s, n) ->

5 s.regions.add(r) ->

6 r.states.add(nState) ->

7 nState.setIsFinal(true) ->

8 nState.setIsInitial(true)

9 ;

Listing 5.3: nothing’s transformation snippet

45

5 Visual Transformation

5.2.2 pause

Listing 5.4: pause’s grammar snippet
1 Pause:

2 {Pause} "pause";

Statement Description

The pause statement pauses for one instant.

Equivalent macro-state

A pause for one instant is modeled by an initial state connected to a final state by
a weakly aborting transition [Küh06, p. 50].

7−→

Figure 5.3: pause’s transformation

Transformation

1 Void rule(State s, Pause p):

2 let r = new Region:

3 let initS = new State:

4 let finalS = new State:

5 let t = new Transition:

6 initializeRule(s, p) ->

7 s.regions.add(r) ->

8 r.states.add(initS) ->

9 r.states.add(finalS) ->

10 initS.setIsInitial(true) ->

11 finalS.setIsFinal(true) ->

12 // add transition

13 t.setType(TransitionType::WEAKABORT) ->

14 t.connectTransition(initS, finalS)

15 ;

Listing 5.5: pause’s transformation snippet

46

5.2 Esterel to SyncCharts Transformation

5.2.3 halt

Listing 5.6: halt’s grammar snippet
1 Halt:

2 {Halt} "halt";

Statement Description

The halt statement pauses without terminating.

Equivalent macro-state

An ever lasting pause is modeled by a single initial state [Küh06, p. 49].

7−→

Figure 5.4: halt’s transformation

Transformation

1 Void rule(State s, Halt h):

2 let r = new Region:

3 let ns = new State:

4 initializeRule(s, h) ->

5 s.regions.add(r) ->

6 r.states.add(ns) ->

7 ns.setIsInitial(true)

8 ;

Listing 5.7: halt’s transformation snippet

47

5 Visual Transformation

5.2.4 abort

Listing 5.8: abort’s grammar snippet
1 Abort:

2 "abort" statement=Statement "when" body=AbortBody;

3

4 AbortBody:

5 AbortInstance | AbortCase;

6 AbortInstance:

7 delay=DelayExpr ("do" statement=Statement "end" (optEnd="abort")?)?;

8 AbortCase:

9 cases+=AbortCaseSingle (cases+=AbortCaseSingle)* "end" (optEnd="abort")?;

10 AbortCaseSingle:

11 "case" delay=DelayExpr ("do" statement=Statement)?;

Statement Description

The abort statement terminates its body upon the occurrence of a certain delay
expression.

Equivalent macro-state

The abort statement is transformed into an initial state containing the body state-
ment. All cases are modeled by weakly aborting transitions that possess the delay
expression as a trigger. They are connected to a final state. Each of these states
contains the do statement if it exists.
The priority of each transition depends on the textual order of the Esterel code.
To cover the case that abort terminates without occurrence of any delay expression

a final state connected by a normally terminating transition is added [Küh06, p. 51].

48

5.2 Esterel to SyncCharts Transformation

7−→
n+1

...

...

Figure 5.5: abort’s transformation

49

5 Visual Transformation

Transformation

1 Void rule(State s, Abort a):

2 ruleAbort(s, a)

3 ;

4

5 // helping rule, to allow usual aborts as well as weak aborts to be handled

6 Void ruleAbort(State s, Abort a):

7 let r = new Region:

8 let initState = new State:

9 let caseStates = {}:

10 let finalState = new State:

11 let toFinalTrans = new Transition:

12 initializeRule(s, a) ->

13 // add new state

14 s.regions.add(r) ->

15 r.states.add(initState) ->

16 r.states.add(finalState) ->

17 // connect initial and final state with of a normal termination

18 toFinalTrans.setType(TransitionType::NORMALTERMINATION) ->

19 toFinalTrans.setPriority(1) ->

20 initState.setIsInitial(true) ->

21 finalState.setIsFinal(true) ->

22

23 // just an instance or cases?

24 (AbortInstance.isInstance(a.body) ?

25 // INSTANCE

26 handleAbortCaseSingle(r, initState, 1,

27 ((AbortInstance)a.body).delay,

28 ((AbortInstance)a.body).statement,

29 WeakAbort.isInstance(a))

30 :

31 // CASES

32 (toFinalTrans.setPriority(((AbortCase)a.body).cases.size + 1) ->

33 handleAbortCases(r, initState, 1, ((AbortCase)a.body).cases, WeakAbort.

isInstance(a)))

34) ->

35 toFinalTrans.connectTransition(initState, finalState) ->

36 // handle abort’s body statement

37 finalizeRule(initState, a.statement)

38 ;

39

40 Void handleAbortCases(Region parent, State source, Integer prio, List[

AbortCaseSingle] cases, boolean weak):

41 (cases.size > 1) ?

42 (handleAbortCaseSingle(parent, source, prio, cases.first().delay, cases.

first().statement, weak) ->

43 handleAbortCases(parent, source, prio + 1, cases.withoutFirst(), weak))

44 :

50

5.2 Esterel to SyncCharts Transformation

45 handleAbortCaseSingle(parent, source, prio, cases.first().delay, cases.first

().statement, weak)

46 ;

47

48 Void handleAbortCaseSingle(Region parent, State source, Integer prio, DelayExpr

expr, Statement body, boolean weak):

49 let caseState = new State:

50 let trans = new Transition:

51 caseState.setIsFinal(true) ->

52 parent.states.add(caseState) ->

53

54 // create and add transition (weak abort needs strong abortion!)

55 if !weak then trans.setType(TransitionType::STRONGABORT) ->

56 trans.setPriority(prio) ->

57

58 // handle delayexpr

59 trans.addDelayToTrigger(expr) ->

60

61 trans.connectTransition(source, caseState) ->

62 // care! the "do" body of abort might be null

63 if (body != null) then

64 // set body text

65 finalizeRule(caseState, body)

66 ;

Listing 5.9: abort’s transformation snippet

51

5 Visual Transformation

5.2.5 assign

Listing 5.10: assign’s grammar snippet
1 Assignment:

2 var=[kexpressions::IVariable|ID] ":=" expr=Expression;

Statement Description

The assign statement assigns an expression to a variable.

Equivalent macro-state

The assignment is realized as an effect of a transition connecting an initial state
with a final state [Küh06, p. 52].

7−→

Figure 5.6: assign’s transformation

52

5.2 Esterel to SyncCharts Transformation

Transformation

1 Void rule(State s, esterel::Assignment assign):

2 let r = new Region:

3 let initS = new State:

4 let finalS = new State:

5 let t = new Transition:

6 let sa = new synccharts::Assignment:

7 initializeRule(s, assign) ->

8 // setup states

9 s.regions.add(r) ->

10 initS.setIsInitial(true) ->

11 finalS.setIsFinal(true) ->

12 r.states.add(initS) ->

13 r.states.add(finalS) ->

14 // init transition

15 t.connectTransition(initS, finalS) ->

16 sa.setVariable(assign.var) ->

17 // care to convert the expression prior to adding it

18 if (assign.expr != null) then

19 (sa.setExpression(((Expression) clone(assign.expr)).convertEsterelExpression

())) ->

20 //add assignment to the transition

21 t.effects.add(sa)

22 ;

Listing 5.11: assign’s transformation snippet

53

5 Visual Transformation

5.2.6 await

Listing 5.12: await’s grammar snippet
1 Await:

2 "await" body=AwaitBody;

3

4 AwaitBody:

5 AwaitInstance | AwaitCase;

6

7 AwaitInstance:

8 delay=DelayExpr ("do" statement=Statement end=AwaitEnd)?;

9

10 AwaitCase:

11 cases+=AbortCaseSingle (cases+=AbortCaseSingle)* end=AwaitEnd;

12

13 AwaitEnd:

14 "end" "await"?;

Statement Description

The await statement awaits the occurrence of certain delay expressions and executes
the corresponding statement.

Equivalent macro-state

An initial state with an outgoing transition for each delay expression is created. All
transitions are weakly aborting and have the respective delay expression as a trigger.
Their target state is a final state with the corresponding do statement as their body.
Each transition’s priority depends on the textual order of the cases [Küh06, p. 53].

7−→ ...

...

n

Figure 5.7: await’s transformation

54

5.2 Esterel to SyncCharts Transformation

Transformation

1 Void rule(State s, Await a):

2 let r = new Region :

3 let initState = new State:

4 let caseStates = {}:

5 initializeRule(s, a) ->

6 // add state

7 s.regions.add(r) ->

8 initState.setIsInitial(true) ->

9 r.states.add(initState) ->

10

11 // just one instance or cases?

12 AwaitInstance.isInstance(a.body)?

13 handleAwaitCaseSingle(r, initState, 1,

14 ((AwaitInstance)a.body).delay,

15 ((AwaitInstance)a.body).statement)

16 :

17 handleAwaitCases(r, initState, 1, ((AwaitCase)a.body).cases)

18 ;

19

20 // as abort and await cases are equal, we use AbortCaseSingles

21 Void handleAwaitCases(Region r, State previous, Integer prio, List[AbortCaseSingle

] cases):

22 handleAbortCases(r, previous, prio, cases, true)

23 ;

24

25 Void handleAwaitCaseSingle(Region r, State previous, Integer prio, DelayExpr expr,

Statement body):

26 handleAbortCaseSingle(r, previous, prio, expr, body, true)

27 ;

Listing 5.13: await’s transformation snippet

55

5 Visual Transformation

5.2.7 do-upto

Listing 5.14: do-upto’s grammar snippet
1 Do:

2 "do" statement=Statement (end=DoUpto | end=DoWatching);

3

4 DoUpto:

5 "upto" expr=DelayExpr;

Statement Description

The do-upto statement executes its body until a specified expression evaluates suc-
cessfully. If the body terminates first, the execution is stopped until the expression
evaluates.

Equivalent macro-state

An initial state contains the body statement and a strongly aborting transition with
the signal expression as a trigger and a plain final state as the target. As there are
no further transitions it is guaranteed that the macro state is not left prior to the
occurrence of the signal expression [Küh06, p. 54].

7−→

Figure 5.8: do-upto’s transformation

56

5.2 Esterel to SyncCharts Transformation

Transformation

1 Void rule(State s, Do d):

2 // end is either DoUpto or DoWatching and just effects the outgoing context.

3 // hence we transform the "do" statement here and then decide

4 let r = new Region :

5 let initState = new State:

6 initializeRule(s, d) ->

7 s.regions.add(r) ->

8 r.states.add(initState) ->

9 initState.setIsInitial(true) ->

10 ((DoUpto.isInstance(d.end)) ?

11 handleDoUpto(s, initState, r, (DoUpto) d.end)

12 :

13 handleDoWatching(s, initState, r, (DoWatching) d.end)

14) ->

15 finalizeRule(initState, d.statement)

16 ;

17

18 Void handleDoUpto(State parent, State previous, Region parentR, DoUpto du):

19 let finalS = new State:

20 let t = new Transition:

21 // set a more explicit state name

22 parent.setLabelIfEmpty("Doupto State") ->

23 parentR.states.add(finalS) ->

24 finalS.setIsFinal(true) ->

25

26 t.setType(TransitionType::STRONGABORT) ->

27 t.connectTransition(previous, finalS) ->

28 t.addDelayToTrigger(du.expr)

29 ;

Listing 5.15: do-upto’s transformation snippet

57

5 Visual Transformation

5.2.8 do-watching

Listing 5.16: do-watching’s grammar snippet
1 Do:

2 "do" statement=Statement (end=DoUpto | end=DoWatching);

3

4 DoWatching:

5 "watching" delay=DelayExpr (end=DoWatchingEnd)?;

6

7 DoWatchingEnd:

8 "timeout" statement=Statement "end" (optEnd="timeout")?;

Statement Description

The do-watching statement aborts the execution of its body as soon as a specified
expression occurs. A possible timeout statement is executed. In case the body
terminates first the do-watching statement terminates as well.

Equivalent macro-state

The body statement is added to a new initial macro state. A normally terminat-
ing transition leads to a simple, final state. The specified expression is added to a
strongly aborting transition, which is connected to a final macro state. The latter
contains either the timeout statement or a nothing statement [Küh06, p. 56].

7−→

Figure 5.9: do-watching’s transformation

58

5.2 Esterel to SyncCharts Transformation

Transformation

1 // see doupto for the entry rule

2

3 Void handleDoWatching(State parent, State previous, Region parentR, DoWatching dw)

:

4 let abortF = new State:

5 let normalF = new State:

6 let abortT = new Transition:

7 let normalT = new Transition:

8 // set a more explicit state name

9 parent.setLabelIfEmpty("Dowatching State") ->

10 parentR.states.add(abortF) ->

11 parentR.states.add(normalF) ->

12 normalF.setIsFinal(true) ->

13 abortF.setIsFinal(true) ->

14 // transitions

15 abortT.setType(TransitionType::STRONGABORT) ->

16 normalT.setType(TransitionType::NORMALTERMINATION) ->

17 abortT.connectTransition(previous, abortF) ->

18 normalT.connectTransition(previous, normalF) ->

19 // add delay

20 abortT.addDelayToTrigger(dw.delay) ->

21 // if timeout

22 if (dw.end != null) then

23 finalizeRule(abortF, dw.end.statement)

24 ;

Listing 5.17: do-watching’s transformation snippet

59

5 Visual Transformation

5.2.9 emit

Listing 5.18: emit’s grammar snippet
1 Emit:

2 "emit" ((signal=[kexpressions::ISignal|ID]) | tick=Tick) ("(" expr=Expression "

)")?;

Statement Description

The emit statement emits a specified signal instantaneously.

Equivalent macro-state

The specified signal is emitted as an effect of a transition connecting an initial with
a final state [Küh06, p. 57].

7−→

Figure 5.10: emit’s transformation

60

5.2 Esterel to SyncCharts Transformation

Transformation

1 Void rule(State s, Emit e):

2 let initS = new State:

3 let finalS = new State:

4 let r = new Region:

5 let emitTrans = new Transition:

6 let emission = new Emission:

7 initializeRule(s, e) ->

8 s.regions.add(r) ->

9 initS.setIsInitial(true) ->

10 finalS.setIsFinal(true) ->

11

12 // add new states to region

13 r.states.add(initS) ->

14 r.states.add(finalS) ->

15

16 // add the effect

17 emitTrans.setIsImmediate(true) ->

18 emission.setSignal(e.signal) ->

19 emission.setNewValue(convertEsterelExpression((Expression)clone(e.expr))) ->

20 emitTrans.effects.add(emission) ->

21 // add transition to state

22 emitTrans.connectTransition(initS, finalS)

23 ;

Listing 5.19: emit’s transformation snippet

61

5 Visual Transformation

5.2.10 every

Listing 5.20: every’s grammar snippet
1 EveryDo:

2 "every" delay=DelayExpr "do" statement=Statement "end" (optEnd="every")?;

Statement Description

The every statement starts the execution of its body upon the first occurrence of
the specified delay expression. Afterwards, the body is started again each time the
delay expression evaluates successfully. In case the statement is already running it
is aborted first.

Equivalent macro-state

The macro state containing the body statement is entered by a transition, which has
the delay expression as a trigger, connected to an initial, plain state. Furthermore,
the macro state possesses a self-loop with the delay expression as a trigger [Küh06,
p. 58].

7−→

Figure 5.11: every’s transformation

62

5.2 Esterel to SyncCharts Transformation

Transformation

1 Void rule(State s, EveryDo e):

2 let r = new Region:

3 let initS = new State:

4 let everyS = new State:

5 let initT = new Transition:

6 let everyT = new Transition:

7 initializeRule(s, e) ->

8 // setup states

9 s.regions.add(r) ->

10 r.states.add(initS) ->

11 r.states.add(everyS) ->

12 initS.setIsInitial(true) ->

13 // init transitions

14 initT.setType(TransitionType::WEAKABORT) ->

15 everyT.setType(TransitionType::STRONGABORT) ->

16 initT.connectTransition(initS, everyS) ->

17 everyT.connectTransition(everyS, everyS) ->

18 // add delays

19 initT.addDelayToTrigger(e.delay) ->

20 everyT.addDelayToTrigger(e.delay) ->

21 // recursive

22 finalizeRule(everyS, e.statement)

23 ;

Listing 5.21: every’s transformation snippet

63

5 Visual Transformation

5.2.11 if

Listing 5.22: if’s grammar snippet
1 IfTest:

2 "if" expr=Expression (thenPart=ThenPart)? (elsif+=ElsIf)* (elsePart=ElsePart)?

"end" (optEnd="if")?;

3

4 ElsIf:

5 "elsif" expr=Expression (thenPart=ThenPart)?;

6

7 ThenPart:

8 "then" statement=Statement;

9

10 ElsePart:

11 "else" statement=Statement;

Statement Description

The if statement branches according to the evaluation of an arbitrary number of
expressions.

Equivalent macro-state

Each branch is represented by a transition connecting a common initial state with
a distinct final state. Each final state contains the corresponding statement. The
trigger of each transition is the respective expression. Priorities are set according to
the textual order [Küh06, p. 60].

7−→

...

n
n+1

...

Figure 5.12: if’s transformation

64

5.2 Esterel to SyncCharts Transformation

Transformation

1 Void rule(State s, IfTest ift):

2 let r = new Region:

3 let initS = new State:

4 let maxprio = 2 + ift.elsif.size: // priority for possible else case

5 initializeRule(s, ift) ->

6 s.setLabelIfEmpty("If State") ->

7 s.regions.add(r) ->

8 r.states.add(initS) ->

9 initS.setIsInitial(true) ->

10 // first if

11 handleIfSingle(r, initS, 1, ift.expr, (ift.thenPart != null) ? ift.thenPart.

statement : null) ->

12 if (!ift.elsif.isEmpty) then // possible else ifs

13 handleElseIfParts(r, initS, 2, ift.elsif) ->

14 if (ift.elsePart != null) then // possible else

15 handleIfSingle(r, initS, maxprio, null, ift.elsePart.statement)

16 ;

17 Void handleElseIfParts(Region parent, State previous, Integer prio, List[ElsIf]

elses):

18 handleIfSingle(parent, previous, prio, elses.first().expr,

19 (elses.first().thenPart != null) ? elses.first().thenPart.statement : null)

->

20 if(elses.size > 1) then

21 handleElseIfParts(parent, previous, prio+1, elses.withoutFirst())

22 ;

23 Void handleIfSingle(Region parent, State previous, Integer prio, Expression e,

Statement s):

24 let ifS = new State:

25 let ifT = new Transition:

26 parent.states.add(ifS) ->

27 ifS.setIsFinal(true) ->

28 if (e != null) then // setup transition

29 (ifT.setTrigger(convertEsterelExpression((Expression) clone(e)))) ->

30 ifT.connectTransition(previous, ifS) ->

31 ifT.setPriority(prio) ->

32 // if thenpart, recursive

33 if (s != null) then

34 finalizeRule(ifS, s) ->

35 // create artificial nothing

36 if (s == null) then

37 (let n = new Nothing:

38 rule(ifS, n))

39 ;

Listing 5.23: if’s transformation snippet

65

5 Visual Transformation

5.2.12 local-signal

Listing 5.24: local-signal’s grammar snippet
1 LocalSignalDecl:

2 "signal" signalList=LocalSignalList "in" statement=Statement "end" (optEnd="

signal")?;

3

4 LocalSignalList:

5 {LocalSignal} signal+=ISignal

6 ("," signal+=ISignal)*;

Statement Description

A local signal statement declares new local signals. Other declarations of the same
signal on a higher hierarchy level are hidden.

Equivalent macro-state

The new signals are added to the interface declaration of the current macro state
[Küh06, p. 61].

7−→

...,

Figure 5.13: local-signal’s transformation

66

5.2 Esterel to SyncCharts Transformation

Transformation

1 Void rule(State s, LocalSignalDecl ls):

2 let r = new Region:

3 let sigS = new State:

4 initializeRule(s, ls) ->

5 // setup

6 s.regions.add(r) ->

7 r.states.add(sigS) ->

8 sigS.setIsInitial(true) ->

9 sigS.setIsFinal(true) ->

10 // extract local signals

11 ls.signalList.extractLocalSignals(s) ->

12 // recursive

13 finalizeRule(sigS, ls.statement)

14 ;

Listing 5.25: local-signal’s transformation snippet

67

5 Visual Transformation

5.2.13 local-variable

Listing 5.26: local-variable’s grammar snippet
1 LocalVariable:

2 var=InterfaceVariableDecl "in" statement=Statement "end" (optEnd="var")?;

Statement Description

The var statement indicates the declaration of new local variables.

Equivalent macro-state

The newly declared variables are added to the interface declaration of the current
macro state [Küh06, p. 62].

7−→

, ...,

Figure 5.14: local-variable’s transformation

68

5.2 Esterel to SyncCharts Transformation

Transformation

1 Void rule(State s, LocalVariable v):

2 let r = new Region:

3 let varS = new State:

4 initializeRule(s, v) ->

5 // setup

6 s.regions.add(r) ->

7 r.states.add(varS) ->

8 varS.setIsInitial(true) ->

9 varS.setIsFinal(true) ->

10 // add variables to state

11 v.var.varDecls.extractLocalVariables(s) ->

12 // recursive

13 finalizeRule(varS, v.statement)

14 ;

Listing 5.27: local-variable’s transformation snippet

69

5 Visual Transformation

5.2.14 loop

Listing 5.28: loop’s grammar snippet
1 Loop:

2 "loop" body=LoopBody (end1=EndLoop | end=LoopEach);

3

4 EndLoop:

5 "end" "loop"?;

6

7 LoopEach:

8 "each" LoopDelay;

9

10 LoopDelay:

11 delay=DelayExpr;

12

13 LoopBody:

14 statement=Statement;

Statement Description

The loop statement executes its body and restarts it instantaneously upon termina-
tion.

Equivalent macro-state

The loop is realized as a macro state containing the body statement. The state
holds a self-transition that terminates normally [Küh06, p. 63].

7−→

Figure 5.15: loop’s transformation

70

5.2 Esterel to SyncCharts Transformation

Transformation

1 Void rule(State s, Loop l):

2 let r = new Region:

3 let loopState = new State:

4 let selfTrans = new Transition:

5 initializeRule(s, l) ->

6 // name has to be determined separately

7 (LoopEach.isInstance(l.end) ? s.setLabelIfEmpty("LoopEach State")

8 : s.setLabelIfEmpty("Loop State")) ->

9 // setup state

10 s.regions.add(r) ->

11 r.states.add(loopState) ->

12 loopState.setIsInitial(true) ->

13 // setup transition

14 selfTrans.setType(TransitionType::NORMALTERMINATION) ->

15 selfTrans.connectTransition(loopState, loopState) ->

16

17 // handle each case

18 if LoopEach.isInstance(l.end) then

19 (selfTrans.setType(TransitionType::STRONGABORT) ->

20 s) -> selfTrans.addDelayToTrigger(((LoopDelay)l.end).delay) ->

21

22 finalizeRule(loopState, l.body.statement)

23 ;

Listing 5.29: loop’s transformation snippet

71

5 Visual Transformation

5.2.15 loop-each

Listing 5.30: loop-each’s grammar snippet
1 Loop:

2 "loop" body=LoopBody (end1=EndLoop | end=LoopEach);

3

4 EndLoop:

5 "end" "loop"?;

6

7 LoopEach:

8 "each" LoopDelay;

9

10 LoopDelay:

11 delay=DelayExpr;

12

13 LoopBody:

14 statement=Statement;

Statement Description

The loop-each starts with the execution of its body immediately. Upon the occur-
rence of a delay expression the execution of the body is aborted and restarted. If
the body terminates, the execution is paused until the delay expression occurs.

Equivalent macro-state

The realization corresponds to the simple loop. Additionally, the self transition is
realized in the form of a strong abortion. The delay expression is added to the
transition as a trigger [Küh06, p. 64].

7−→

Figure 5.16: loop-each’s transformation

72

5.2 Esterel to SyncCharts Transformation

Transformation

1 Void rule(State s, Loop l):

2 let r = new Region:

3 let loopState = new State:

4 let selfTrans = new Transition:

5 initializeRule(s, l) ->

6 // name has to be determined separately

7 (LoopEach.isInstance(l.end) ? s.setLabelIfEmpty("LoopEach State")

8 : s.setLabelIfEmpty("Loop State")) ->

9 // setup state

10 s.regions.add(r) ->

11 r.states.add(loopState) ->

12 loopState.setIsInitial(true) ->

13 // setup transition

14 selfTrans.setType(TransitionType::NORMALTERMINATION) ->

15 selfTrans.connectTransition(loopState, loopState) ->

16

17 // handle each case

18 if LoopEach.isInstance(l.end) then

19 (selfTrans.setType(TransitionType::STRONGABORT) ->

20 s) -> selfTrans.addDelayToTrigger(((LoopDelay)l.end).delay) ->

21

22 finalizeRule(loopState, l.body.statement)

23 ;

Listing 5.31: loop-each’s transformation snippet

73

5 Visual Transformation

5.2.16 parallel

Listing 5.32: parallel’s grammar snippet
1 Statement:

2 Sequence ({Parallel.list+=current} "||" list+=Sequence)*;

Statement Description

All statements of a parallel statement are executed concurrently. parallel itself
terminates as soon as all inner statements have been terminated.

Equivalent macro-state

To model an equivalent macro state SyncCharts’ notation of regions is used. Each
inner statement is placed within its own macro state and added to a shared macro
state in parallel [Küh06, p. 65].

7−→
...

Figure 5.17: parallel’s transformation

74

5.2 Esterel to SyncCharts Transformation

Transformation

1 Void rule(State s, Parallel p):

2 initializeRule(s, p) ->

3 ruleParallelRecursive(s, p.list.copyList())

4 ;

5

6 Void ruleParallelRecursive(State parent, List[Statement] statements):

7 // if inner parallel, extract the statements

8 (Parallel.isInstance(statements.first()) ?

9 (

10 statements.addAll(((Parallel)statements.first()).list) ->

11 statements.remove(statements.first()) ->

12 ruleParallelRecursive(parent, statements)

13)

14 :

15 // else create this state and add it to the parallel region

16 (

17 let r = new Region:

18 let s = new State:

19 parent.regions.add(r) ->

20 r.states.add(s) ->

21 // add this to parallel

22 s.setIsFinal(true) ->

23 s.setIsInitial(true) ->

24

25 if(statements.size > 1) then

26 ruleParallelRecursive(parent, statements.withoutFirst()) ->

27

28 finalizeRule(s, statements.first())

29)

30)

31 ;

Listing 5.33: parallel’s transformation snippet

75

5 Visual Transformation

5.2.17 present

Listing 5.34: present’s grammar snippet
1 Present:

2 "present" body=PresentBody (elsePart=ElsePart)? "end" (optEnd="present")?;

3

4 PresentBody:

5 PresentEventBody | PresentCaseList;

6

7 PresentEventBody:

8 event=PresentEvent (thenPart=ThenPart)?;

9 PresentCaseList:

10 cases+=PresentCase (cases+=PresentCase)*;

11 PresentCase:

12 "case" event=PresentEvent ("do" statement=Statement)?;

13 PresentEvent:

14 expression=SignalExpression | "[" expression=SignalExpression "]" | tick=Tick;

Statement Description

The present statement tests the instantaneous value of one or several signal expres-
sions and branches accordingly.

Equivalent macro-state

The equivalent macro state correlates with the if statement presented in Figure 5.12.
The only difference between them is the use of signal expressions in case of present
[Küh06, p. 66].

7−→

n+1
n

...

...

Figure 5.18: present’s transformation

76

5.2 Esterel to SyncCharts Transformation

Transformation

1 Void rule(State s, Present p):

2 let r = new Region:

3 let pS = new State:

4 initializeRule(s, p) ->

5 s.regions.add(r) ->

6 r.states.add(pS) ->

7 pS.setIsInitial(true) ->

8 (PresentEventBody.isInstance(p.body) ?

9 // handle present ... then ... form

10 (let event = ((PresentEventBody)p.body).event.expression:

11 let thenPart = ((PresentEventBody)p.body).thenPart:

12 handleIfSingle(r, pS, 1, event, thenPart != null ? thenPart.statement :

null)

13)

14 : // handle present cases

15 handlePresentCases(r, pS, 1, ((PresentCaseList)p.body).cases)

16) ->

17 if p.elsePart != null then

18 (let maxprio = (PresentCaseList.isInstance(p.body) ? ((PresentCaseList)p.

body).cases.size + 1 : 2):

19 handleIfSingle(r, pS, maxprio, null, p.elsePart.statement))

20 ;

21 Void handlePresentCases(Region parent, State previous, Integer prio, List[

PresentCase] cases):

22 (cases.size > 1) ?

23 (handlePresentCaseSingle(parent, previous, prio, cases.first().event.

expression, cases.first().statement) ->

24 handlePresentCases(parent, previous, prio + 1, cases.withoutFirst()))

25 :

26 (handlePresentCaseSingle(parent, previous, prio, cases.first().event.

expression, cases.first().statement)

27)

28 ;

29 Void handlePresentCaseSingle(Region parent, State previous, Integer prio,

Expression e, Statement st):

30 let newS = new State:

31 let t = new Transition:

32 newS.setIsFinal(true) ->

33 parent.states.add(newS) ->

34 t.setPriority(prio) ->

35 t.setTrigger(convertEsterelExpression((Expression) clone(e))) ->

36 t.connectTransition(previous, newS) ->

37 finalizeRule(newS, st)

38 ;

Listing 5.35: present’s transformation snippet

77

5 Visual Transformation

5.2.18 call

Listing 5.36: call’s grammar snippet
1 ProcCall:

2 "call" proc=[Procedure|ID] "(" (varList+=[kexpressions::IVariable|ID]

3 ("," varList+=[kexpressions::IVariable|ID])*)? ")"

4 "(" (kexpressions+=Expression ("," kexpressions+=Expression)*)? ")";

Statement Description

The call statement calls an externally defined procedure. Several variables can be
passed as parameters.

Equivalent macro-state

The procedure call is added as an effect of a transition connecting an initial with a
final state [Küh06, p. 68].

7−→

Figure 5.19: call’s transformation

78

5.2 Esterel to SyncCharts Transformation

Transformation

1 Void rule(State s, ProcCall c):

2 let r = new Region:

3 let initS = new State:

4 let finalS = new State:

5 let t = new Transition:

6 let textEffect = new TextEffect:

7 initializeRule(s, c) ->

8 // setup

9 s.regions.add(r) ->

10 r.states.add(initS) ->

11 r.states.add(finalS) ->

12 initS.setIsInitial(true) ->

13 finalS.setIsFinal(true) ->

14 t.connectTransition(initS, finalS) ->

15

16 // first add variables

17 textEffect.subExpressions.addAll(c.varList.convertToReferences()) ->

18 // then add expressions

19 textEffect.subExpressions.addAll(c.kexpressions) ->

20

21 // create call statement

22 textEffect.setCode(c.proc.name) ->

23 t.effects.add(textEffect) ->

24 initS

25 ;

26

27 List[Expression] convertToReferences(List[IVariable] vars):

28 let list = {}:

29 list.addAll(vars.createValObjReference()) ->

30 list

31 ;

Listing 5.37: call’s transformation snippet

79

5 Visual Transformation

5.2.19 sequence

Listing 5.38: sequence’s grammar snippet
1 Sequence returns Statement:

2 AtomicStatement ({Sequence.list+=current} ";" list+=AtomicStatement)* ";"?;

Statement Description

The first statement of a sequence is started instantaneously. Upon termination it
passes the control immediately to the successive statement. In case all statements
are finished the sequence terminates itself.

Equivalent macro-state

Each sequential statement is represented as a macro state with the respective state-
ment as its body. Those macro states are connected by normal terminations accord-
ing to their textual order [Küh06, p. 69].

7−→ ...

Figure 5.20: sequence’s transformation

80

5.2 Esterel to SyncCharts Transformation

Transformation

1 Void rule(State s, Sequence seq):

2 let r = new Region:

3 let initial = new State:

4 let list = (List[Statement]){}:

5 initializeRule(s, seq) ->

6 s.regions.add(r) ->

7 initial.setIsInitial(true) ->

8 r.states.add(initial) ->

9 // as the grammar generates nested sequences, we flatten it first

10 // this is important to conserve order!

11 seq.flattenSequence(list) ->

12 // call recursively

13 ruleSequenceRecursive(r, initial, list.withoutFirst()) ->

14

15 // process body of first sequence state

16 finalizeRule(initial, list.first())

17 ;

18

19 Void flattenSequence(Statement s, List list):

20 Sequence.isInstance(s) ? (

21 (Sequence)s).list.flattenSequence(list)

22 :

23 (list.add(s))

24 ;

25

26 Void ruleSequenceRecursive(Region region, State previous, List[Statement]

statements):

27 let s = new State:

28 let t = new Transition:

29 // create the new state and add to the sequence chain

30 region.states.add(s) ->

31 t.setType(TransitionType::NORMALTERMINATION) ->

32 t.connectTransition(previous, s) ->

33

34 (((statements.size > 1) ?

35 // if more than 1 element we have to handle another one

36 ruleSequenceRecursive(region, s, statements.withoutFirst())

37 :

38 // else finished and the last one is a final state!

39 s.setIsFinal(true))) ->

40 finalizeRule(s, statements.first())

41 ;

Listing 5.39: sequence’s transformation snippet

81

5 Visual Transformation

5.2.20 suspend

Listing 5.40: suspend’s grammar snippet
1 Suspend:

2 "suspend" statement=Statement "when" delay=DelayExpr;

Statement Description

The suspend statement pauses its execution every time a certain signal expression
is true.

Equivalent macro-state

A new macro state is created with the signal expression as a suspension trigger
[Küh06, p. 70].

7−→

Figure 5.21: suspend’s transformation

82

5.2 Esterel to SyncCharts Transformation

Transformation

1 Void rule(State s, Suspend sus):

2 let r = new Region:

3 let susState = new State:

4 let act = new synccharts::Transition:

5 initializeRule(s, sus) ->

6 s.regions.add(r) ->

7 r.states.add(susState) ->

8 // setup

9 susState.setIsInitial(true) ->

10 susState.setIsFinal(true) ->

11 // add suspension

12 act.addDelayToTrigger(sus.delay) ->

13 susState.setSuspensionTrigger(act) ->

14 // recursive

15 finalizeRule(susState, sus.statement)

16 ;

Listing 5.41: suspend’s transformation snippet

83

5 Visual Transformation

5.2.21 sustain

Listing 5.42: sustain’s grammar snippet
1 Sustain:

2 "sustain" ((signal=[kexpressions::ISignal|ID]) | tick=Tick) ("(" expression=

Expression")")?;

Statement Description

The sustain statement emits the specified signal in every instant.

Equivalent macro-state

A simple initial state is created and a weakly aborting self transition is added. As
an effect of the transition the emission of the specified signal is added. The simple
state is not final. Therefore, it never stops emitting [Küh06, p. 71ff].

7−→

Figure 5.22: sustain’s transformation

84

5.2 Esterel to SyncCharts Transformation

Transformation

1 Void rule(State s, Sustain sus):

2 let r = new Region:

3 let initS = new State:

4 let finalS = new State:

5 let initT = new Transition:

6 let sustT = new Transition:

7 let emission = new Emission:

8 initializeRule(s, sus) ->

9 s.regions.add(r) ->

10 r.states.add(initS) ->

11 r.states.add(finalS) ->

12 initS.setIsInitial(true) ->

13 // setup transitions

14 initT.connectTransition(initS, finalS) ->

15 sustT.connectTransition(finalS, finalS) ->

16 emission.setSignal(sus.signal) ->

17 emission.setNewValue(convertEsterelExpression((Expression) clone(sus.expression

))) ->

18 initT.effects.add(emission) ->

19 sustT.effects.add((Emission) clone(emission))

20 ;

Listing 5.43: sustain’s transformation snippet

85

5 Visual Transformation

5.2.22 trap

Listing 5.44: trap’s grammar snippet
1 Trap:

2 "trap" trapDeclList=TrapDeclList "in" statement=Statement

3 (trapHandler+=TrapHandler)* "end" (optEnd="trap")?;

4

5 TrapDeclList:

6 trapDecls+=TrapDecl ("," trapDecls+=TrapDecl)*;

7

8 TrapDecl returns kexpressions::ISignal:

9 {TrapDecl} name=ID channelDescr=(ChannelDescription)?;

10

11 TrapHandler:

12 "handle" trapExpr=TrapExpr "do" statement=Statement;

Statement Description

The trap statement terminates the execution of its body statement upon occurrence
of a specified trap expression. It is possible to specify certain exception statements
that have to be executed if a trap expression evaluates successfully. In case several
expressions evaluate to true the specified statements are executed in parallel.

Equivalent macro state

In SyncCharts traps are modeled as usual signal. Therefore, a new signal is intro-
duced for each declared trap. An additional traphalt is created to stop the execution
of the trap. All new signals are added to the current macro state.
An initial macro state contains the body statement of the trap. A normally ter-

minating transition leads to a simple, final state, another weakly aborting transition
to a simple, non-final state with the traphalt signal as the trigger.
All specified trap expressions are connected with or. The created or expression

is added as the trigger to an immediate, weakly aborting transition that leads to a
new final macro state. The latter contains parallel regions for each trap handler.
Each region contains three states: First, an initial state, second, a simple, final state
reached by a weakly aborting transition, and last, a final macro state containing the
exception statement. The state is reached by a weakly aborting transition with the
corresponding trap expression as a trigger [Küh06, p. 75ff].

86

5.2 Esterel to SyncCharts Transformation

↓

...

...,

trapex1 or ... or trapexn

Figure 5.23: trap’s transformation

87

5 Visual Transformation

Transformation

1 Void rule(State s, Trap t):

2 let r = new Region:

3 let trapS = new State:

4 let finalS = new State:

5 let normalT = new Transition:

6 let haltS = new State:

7 let haltT = new Transition:

8 let haltSig = new ISignal:

9 initializeRule(s, t) ->

10 s.regions.add(r) ->

11 r.states.add(trapS) ->

12 r.states.add(finalS) ->

13 r.states.add(haltS) ->

14 // normal termination

15 finalS.setIsFinal(true) ->

16 normalT.setType(TransitionType::NORMALTERMINATION) ->

17 normalT.setPriority(3) ->

18 normalT.connectTransition(trapS, finalS) ->

19 // halt due to higher trap

20 trapS.setIsInitial(true) ->

21 // new signal to halt execution if higher trap fires

22 haltSig.setName("traphalt" + getNumberOfTraphalts(s)) ->

23 haltSig.addSignalToState(s) ->

24 haltT.connectTransition(trapS, haltS) ->

25 // immediate transition with traphalt signal

26 haltT.setIsImmediate(true) ->

27 haltT.setPriority(1) ->

28 (let vo = new ValuedObjectReference:

29 vo.setValuedObject(haltSig) ->

30 haltT.setTrigger(vo)) ->

31 // setup exit state

32 (let handleState = new State:

33 let handleExpr = new OperatorExpression:

34 let handleT = new Transition:

35 // setup state

36 handleState.setLabel("Trap Handler State") ->

37 handleState.setIsFinal(true) ->

38 r.states.add(handleState) ->

39 // copy all traps as signals

40 t.trapDeclList.trapDecls.addTrapSignalToState(s) ->

41 // transition

42 handleT.setIsImmediate(true) ->

43 handleT.setPriority(2) ->

44 handleT.connectTransition(trapS, handleState) ->

45 // collect traps

46 (t.trapDeclList.trapDecls.size > 1 ?

47 (t.trapDeclList.collectTraps(handleExpr) ->

88

5.2 Esterel to SyncCharts Transformation

48 handleExpr.setOperator(OperatorType::OR) ->

49 handleT.setTrigger(handleExpr))

50 : (let valObjRef = new ValuedObjectReference:

51 valObjRef.setValuedObject(t.trapDeclList.trapDecls.first()) ->

52 handleT.setTrigger(valObjRef))

53) ->

54 // create handler if existing

55 if !t.trapHandler.isEmpty then

56 handleTrapHandler(handleState, t.trapHandler)

57) ->

58

59 finalizeRule(trapS, t.statement)

60 ;

61 Void handleTrapHandler(State handleState, List[TrapHandler] handler):

62 handleTrapHandlerSingle(handleState, handler.first()) ->

63 if(handler.size > 1) then

64 handleTrapHandler(handleState, handler.withoutFirst())

65 ;

66 Void handleTrapHandlerSingle(State handleState, TrapHandler handler):

67 let r = new Region:

68 let initS = new State:

69 let macroS = new State:

70 let macroT = new Transition:

71 let finalS = new State:

72 let finalT = new Transition:

73 handleState.regions.add(r) ->

74 r.states.add(initS) ->

75 r.states.add(macroS) ->

76 r.states.add(finalS) ->

77 initS.setIsInitial(true) ->

78 // finalState setup

79 finalS.setIsFinal(true) ->

80 finalT.setIsImmediate(true) ->

81 finalT.setPriority(2) ->

82 finalT.connectTransition(initS, finalS) ->

83 // macroState setup

84 macroS.setIsFinal(true) ->

85 macroT.setIsImmediate(true) ->

86 macroT.setPriority(1) ->

87 macroT.connectTransition(initS, macroS) ->

88 macroT.setTrigger(convertEsterelExpression((Expression) clone(handler.trapExpr)

)) ->

89 // recursive

90 macroS.setJavaBodyReference(handler.statement) ->

91 macroS.recursiveRule(handler.statement)

92 ;

Listing 5.45: trap’s transformation snippet

89

5 Visual Transformation

5.2.23 exit

Listing 5.46: exit’s grammar snippet
1 Exit:

2 "exit" trap=[TrapDecl|ID] ("(" expression=Expression ")")?;

Statement Description

The exit statement triggers a specified trap. Possible traps defined in a hierarchy
level between the exit and the triggered trap are terminated.

Equivalent macro-state

The equivalent SyncChart is similar to the emit statement presented in Section 5.2.9.
As the signal the specified trap is emitted. To terminate traps defined on a hierar-
chy level between exit and the corresponding trap their traphalt signal is emitted
[Küh06, p. 84].

7−→

Figure 5.24: exit’s transformation

90

5.2 Esterel to SyncCharts Transformation

Transformation

1 Void rule(State s, Exit e):

2 let initS = new State:

3 let finalS = new State:

4 let r = new Region:

5 let emitTrans = new Transition:

6 let emission = new Emission:

7 initializeRule(s, e) ->

8 s.regions.add(r) ->

9 initS.setIsInitial(true) ->

10 // add new states to region

11 r.states.add(initS) ->

12 r.states.add(finalS) ->

13

14 // add the effect

15 emitTrans.setIsImmediate(true) ->

16 emission.setSignal(e.trap) ->

17 emission.setNewValue(convertEsterelExpression((Expression)clone(e.expression)))

->

18 emitTrans.effects.add(emission) ->

19 // find and add corresponding traphalts

20 findAndAddCorrespondingTraphalts(e.trap, s, emitTrans) ->

21 // add transition to state

22 emitTrans.connectTransition(initS, finalS) ->

23 initS

24 ;

Listing 5.47: exit’s transformation snippet

91

5 Visual Transformation

92

5.3 Optimization of SyncCharts

5.3 Optimization of SyncCharts
As explained in Section 1.2 an optimization of a transformed Esterel program is
essential to obtain a reasonable SyncCharts diagram.
A SyncCharts optimization can be used for removing obsolete elements of any

arbitrary SyncCharts diagram. Therefore, the presented transformations are also
applicable beyond the scope of this thesis.
The optimization rules were not proven formally, in contrast to the Esterel to Sync-

Charts transformation rules. So far, they are results of logical reasoning and yield
correct results for several small test examples. For this reason, it is not guaranteed
that they preserve semantics.

5.3.1 Concept
In the following sections the concept of each optimization rule is presented separately.
An optimization rule is applied to a state that meets certain conditions. These
conditions are enumerated and the modifications that are made are described with
the help of a short text.
Furthermore, two representative SyncCharts are presented illustrating the modifi-

cations. The left hand diagram contains a state having some optimization potential,
the right hand diagram is the optimized result.

(a) arbitrary macro state (b) macro state without final
state

Figure 5.25: Notations of representative optimization diagrams

Some notations are used to keep these representatives as compact as possible but
still conserve generality. The state seen in Figure 5.25a exemplifies an arbitrary
macro state or a simple state. Figure 5.25b expresses a macro state that does not
contain any final child state within its first hierarchically layer. Just as in Section 5.2
the two notations below are used.

e1, en, ex: an arbitrary effect (e. g., / O).

t1, tn, tx: an arbitrary trigger (e. g., 1 < 5).

Additionally, the Xtend implementation of each rule is presented. First, a predi-
cate testing the conditions is shown. Second, the rule applying the stated modifica-
tions is listed.

93

5 Visual Transformation

5.3.2 Optimization Rule 1 : Removal of Unessential Conditional
Pseudostates

Conditions

1. The state is a conditional pseudostate with just one outgoing transition.

2. The outgoing transition contains no triggers.

Modifications

All of the pseudostate’s incoming transitions are bent to the target state of the out-
going transition. The pseudostate and its outgoing transition are removed.

7−→

Figure 5.26: Removal of Unessential Conditional Pseudostates

94

5.3 Optimization of SyncCharts

Transformation

1 Boolean rule1applies(State s):

2 switch {

3 case isConditional(s) && hasNumberOfOutgoingTrans(s, 1) :

4 (isTransitionWithoutTaE(s.outgoingTransitions.get(0)) ? true : false)

5 default : false

6 }

7 ;

8

9 Void rule1(State s):

10 let targetState = s.outgoingTransitions.get(0).targetState:

11 let incomingTrans = s.incomingTransitions.copyListTrans():

12 // bend transition to new target

13 incomingTrans.setTargetState(targetState) ->

14 s.outgoingTransitions.get(0).removeTransition() ->

15 // remove conditional state

16 s.removeStateFromRegion()

17 ;

Listing 5.48: Transformation snippet of rule1

95

5 Visual Transformation

5.3.3 Optimization Rule 2 : Removal of Unessential Simple States (1)
Conditions

1. The state is a simple state, which is neither final nor initial.

2. The state has only one outgoing transition, which is immediate.

3. The transition has no further triggers.

Modifications

All of the simple state’s incoming transitions are bent to the target state of the out-
going transition. The effects of the outgoing transition are added to each incoming
transition. The simple state and its outgoing transition are removed.

...
tn/ent1/e1

7−→

n

...

Figure 5.27: Removal of Unessential Simple States (1)

96

5.3 Optimization of SyncCharts

Transformation

1 Boolean rule2applies(State s):

2 switch {

3 case isSimpleState(s) && !s.isFinal && !s.isInitial &&

4 hasNumberOfOutgoingTrans(s, 1) && isImmediateTransition(s.

outgoingTransitions.get(0)) &&

5 isTransitionWithoutT(s.outgoingTransitions.get(0)):

6 true

7 default : false

8 }

9 ;

10

11 Void rule2(State s):

12 let incomingTrans = s.incomingTransitions.copyListTrans():

13 let outgoingTrans = s.outgoingTransitions.first():

14 let effects = outgoingTrans.effects:

15 // bend transitions

16 incomingTrans.setTargetState(outgoingTrans.targetState) ->

17 // append effects

18 incomingTrans.addEffects(effects) ->

19

20 // if s is initial .. the new target needs to be initial

21 if s.isInitial then

22 outgoingTrans.targetState.setIsInitial(true) ->

23

24 // remove state and outgoing transition

25 outgoingTrans.removeTransition() ->

26 s.parentRegion.states.remove(s)

27 ;

Listing 5.49: Transformation snippet of rule2

97

5 Visual Transformation

5.3.4 Optimization Rule 3 : Removal of Unessential Simple States (2)
Conditions

1. The state is a simple state, which is neither final nor initial.

2. It exists exactly one incoming and one outgoing transition with the same trig-
ger.

3. The transition is not immediate.

Modifications

The delay counters of each trigger are summed up and set as the delay of the incom-
ing transition. The incoming transition is bent to the target state of the outgoing
transition. The simple state and the outgoing transition are removed.

7−→

Figure 5.28: Removal of Unessential Simple States (2)

98

5.3 Optimization of SyncCharts

Transformation

1 Boolean rule3applies(State s):

2 switch {

3 case isSimpleState(s) && s.hasNumberOfIncomingTrans(1) && s.

hasNumberOfOutgoingTrans(1)

4 && s.hasOnlyMatchingTriggerTrans() :

5 true

6 default : false

7 }

8 ;

9

10 Void rule3(State s):

11 let in = s.incomingTransitions.get(0):

12 let out = s.outgoingTransitions.get(0):

13 out.setSourceState(in.sourceState) ->

14 out.setDelay(in.delay + out.delay) ->

15 if s.isInitial then

16 out.targetState.setIsInitial(true) ->

17 removeTransition(in) ->

18 s.removeStateFromRegion()

19 ;

Listing 5.50: Transformation snippet of rule3

99

5 Visual Transformation

5.3.5 Optimization Rule 4 : Merging of Simple Final States
Conditions

1. The state is a macro state containing several simple final states.

Modifications

One of the simple final states is chosen to remain. The incoming transitions of all
other simple final states are bent to this one final state, and the states themselves
are removed.

n

... 7−→
...

n

Figure 5.29: Merging of Simple Final States

100

5.3 Optimization of SyncCharts

Transformation

1 Boolean rule4applies(State s):

2 switch {

3 case hasMultipleSimpleFinalSubStates(s) :

4 true

5 default: false

6 }

7 ;

8

9 Void rule4(State s):

10 let regions = (List[Region]) s.regions.select(e | e.states.select(e|e.

isSimpleState() && e.isFinal).size > 1):

11 regions.handleRule4()

12 ;

13

14 Void handleRule4(Region r):

15 let simpleFinals = r.states.select(e|e.isSimpleState() && e.isFinal):

16 // keep the first one and bend transitions there

17 let firstFinal = simpleFinals.first():

18 let simpleWithoutFirst = simpleFinals.withoutFirst():

19 simpleWithoutFirst.handleRule4rec(firstFinal)

20 ;

21

22 Void handleRule4rec(State s, State to):

23 let incomings = s.incomingTransitions.copyListTrans():

24 incomings.bendAndRemove(to)

25 ;

26

27 Void bendAndRemove(Transition t, State to):

28 let oldTarget = t.targetState:

29 t.setTargetState(to) ->

30 oldTarget.removeStateFromRegion()

31 ;

Listing 5.51: Transformation snippet of rule4

101

5 Visual Transformation

5.3.6 Optimization Rule 5 : Removal of Unessential Normal
Terminations

Conditions

1. The state is a macro state containing no final state.

2. The state has an outgoing normally terminating transition.

Modifications

The normally terminating transition is removed. If this removal leaves a state with-
out any incoming transition, this state is removed as well.

7−→

Figure 5.30: Removal of Unessential Normal Terminations

102

5.3 Optimization of SyncCharts

Transformation

1 Boolean rule5applies(State s):

2 switch {

3 case !isSimpleState(s) && hasOutNormalTransitions(s) && !hasFinalSubState(s)

&& !hasOnlySelfLoop(s):

4 true

5 default: false

6 }

7 ;

8

9 Void rule5(State s):

10 let outTrans = s.outgoingTransitions.select(e|e.type == TransitionType::

NORMALTERMINATION

11 && (s.isInitial || e.sourceState != e.targetState)).copyListTrans():

12 outTrans.removeTransAndPossiblyState()

13 ;

14

15 Void removeTransAndPossiblyState(Transition t):

16 let target = t.targetState:

17 t.removeTransition() ->

18 if(target.incomingTransitions.isEmpty) then

19 removeStateFromRegion(target)

20 ;

Listing 5.52: Transformation snippet of rule5

103

5 Visual Transformation

5.3.7 Optimization Rule 6 : Removal of Unessential Macro States
Conditions

1. The state is a macro state without defined signals or variables.

2. The state has no outgoing weakly or strongly aborting transitions.

3. It is not a parallel macro state and has a parent macro state.

Modifications

All of the macro state’s incoming transitions are bent to the contained initial state.
The contained final macro states are not final anymore and, in case a normal

termination exists, get a copy of the normal termination. The final simple states
are not final anymore as well and, in case a normal termination exists, get a new
immediate weakly aborting transition, leads to the target of the normal termination.
Any effect is copied.
The macro state and a possible normal termination are removed. The contained

elements are added to the higher hierarchy level.

...
n

n

/

7−→

...
n

n

...

...

/

Figure 5.31: Removal of Unessential Macro States

104

5.3 Optimization of SyncCharts

Transformation

1 Boolean rule6applies(State s):

2 switch {

3 case !hasOutWeakTransitions(s) && !hasOutStrongTransitions(s) && !

isSimpleState(s) &&

4 !hasSignalsVariables(s) && hasParentMacroState(s) && !

isParallelMacroState(s):

5 true

6 default: false

7 }

8 ;

9 Void rule6(State s, List[State] states):

10 let r = s.regions.first():

11 let initial = findInitialState(r):

12 let finalMacros = r.states.select(e|!isSimpleState(e) && e.isFinal):

13 let finalSimples = r.states.select(e|isSimpleState(e) && e.isFinal):

14 let incomingTrans = s.incomingTransitions.copyListTrans():

15 let normalTerms = s.outgoingTransitions.select(e|e.type == TransitionType::

NORMALTERMINATION):

16 // do not make states without incoming transitions or only one selfloop non-

initial

17 if (!incomingTrans.isEmpty) then

18 (if (!s.hasOnlySelfLoop()) then

19 initial.setIsInitial(false)) ->

20 // reroute all incoming transitions to the initial state

21 incomingTrans.setTargetState(initial) ->

22 initial.incomingTransitions.addAll(incomingTrans) ->

23 // if normal termination exist

24 (s.outgoingTransitions.size == 1) ?

25 (finalMacros.setIsFinal(false) -> // final macros become non-final

26 finalSimples.setIsFinal(false) -> // final simples become non-final

27 finalSimples.createImmediateWeakAbortTo(s.outgoingTransitions.get(0).

targetState,

28 s.outgoingTransitions.get(0)) ->

29 if !normalTerms.isEmpty then

30 finalMacros.copyNormalTransitionFrom(normalTerms.get(0))) : s ->

31 (let copyStates = r.states.copyListTrans(): // copy whole stuff

32 s.parentRegion.states.addAll(copyStates) ->

33 // add the inner states to the list, as there might be new optimization

potential

34 states.addToFrontOfList(copyStates)) ->

35 // remove old normal termination and old state

36 if (!normalTerms.isEmpty) then

37 normalTerms.removeTransition() ->

38 s.removeStateFromRegion()

39 ;

Listing 5.53: Transformation snippet of rule6

105

5 Visual Transformation

5.3.8 Optimization Rule 7 : Removal of Macro States with Only One
Sub-State

Conditions

1. The state is a macro state with just one sub-state.

2. The state is not a parallel macro state and has a parent macro state.

Modifications

The modification of the sub-state is analogous to the one presented in Section 5.3.7.
Additionally, possible weakly and strongly aborting transitions are added as out-
going transitions. The signal and the variable declarations of the sub-state can be
moved into the macro state.

7−→

Figure 5.32: Removal of Macro States with Only One Sub-State

106

5.3 Optimization of SyncCharts

Transformation

1 Boolean rule7applies(State s):

2 switch {

3 case !isSimpleState(s) && s.hasParentMacroState() && s.hasNumberOfSubStates

(1)

4 !hasSignalsVariables(s):

5 true

6 default: false

7 }

8 ;

9

10 Void rule7(State s):

11 let parentReg = s.parentRegion:

12 let incomingT = s.incomingTransitions.copyListTrans():

13 let outgoingT = s.outgoingTransitions.copyListTrans():

14 let states = (List[State]) {}:

15 s.regions.collectStates(states) ->

16 (let found = states.get(0):

17 parentReg.states.add(found) ->

18 incomingT.setTargetState(found) ->

19 outgoingT.setSourceState(found)

20) ->

21 s.removeStateFromRegion()

22 ;

Listing 5.54: Transformation snippet of rule7

107

5 Visual Transformation

5.3.9 Optimization Rule 8 : Checking of a State’s Final Character
Conditions

1. The state is a final macro state containing no final state.

Modifications

The state is no longer marked as final.

7−→

Figure 5.33: Checking of a State’s Final Character

Transformation

1 Boolean rule8applies(State s):

2 switch {

3 case !isSimpleState(s) && s.isFinal && !s.hasFinalSubState():

4 true

5 default: false

6 }

7 ;

8

9 Void rule8(State s):

10 s.setIsFinal(false)

Listing 5.55: Transformation snippet of rule8

108

5.3 Optimization of SyncCharts

109

5 Visual Transformation

110

6 Implementation

First, the requirements stated for the implementation are reconsidered.

1. The user should be able to process steps, to execute the whole transformation
at once, and to execute the transformation and optimize the transformed result
at the same time. Also, back steps have to be supported.

2. The changes of one single transformation have to be presented in a way that
is clearly understandable for the user.

3. A selection of the context, in which the next transformation is performed, has
to be applicable by the user.

The KIELER project serves as a basis for the whole implementation. KiVi and KIEM
are used to satisfy the demands of good usability and different kinds of execution
modes. As mentioned in Section 5.2 Xtend serves as the transformation language.
Figure 6.2 shows a class diagram of the core elements. In the diagram a class

TransformationDescriptor and an interface TransformationContext can be seen.
Both refer to the previously introduced specification of a transformation. The ac-
tual implementation of the latter depends on the technology used. Hence, just one
method named execute is specified. The executemethod demands a Transformation-

Descriptor as the argument and is supposed to perform the actual transformation for
the chosen technology and the chosen context. After the transformation is executed
any result is stored in the TransformationDescriptor and can be retrieved.

KiVi is used to execute an arbitrary transformation. A Combination contributes the
control buttons, mentioned above, to Eclipse’s user interface. As soon as a button
is clicked by the user the Combination sets up the TransformationContext, passes it
to a TransformationEffect, and schedules the effect. The TransformationEffect is
executed by KiVi concurrently, it calls the execute method of the context, and stores
the result. See Figure 6.1 for a sequence diagram.

6.0.10 Creation of a TransformationContext

To execute a transformation the TransformationContext has to be assembled. Be-
cause Xtend and Eclipse are used the following information has to be gathered. It
is combined in the XtendTranformationContext seen in Figure 6.3.

Model: It specifies the model which should be transformed (e. g., the root element
of a SyncChart).

111

6 Implementation

Figure 6.1: Sequence diagram of the interaction with KiVi

Figure 6.2: Class diagram of the core package

Transactional Editing Domain: The TransactionalEditingDomain is part of EMF
and manages commands that modify a model. It also holds an CommandStack

which can be used to provide undo/redo functionality. For further information
see the EMF documentation1.

1http://help.eclipse.org/helios/nav/23

112

Base Packages: A base package can be seen as the Java representation of a meta-
model. It contains the information how to access a metamodel’s objects (e. g.,
the EsterelPackage).

Extension File: The file containing the Xtend extensions needs to be specified.

Global Variables: Global variables used by the implemented Xtend methods have
to be available.

Xtend Facade: The latter three points can be combined in terms of an XtendFacade.

6.0.11 Generic Execution
In terms of preserving the unity of the Esterel to SyncCharts implementation and the
SyncCharts optimization implementation an abstract class is provided. The class
AbstractTransformationDataComponent can be seen in Figure 6.3. It serves as the
common base for the EsterelToSyncChartsDataComponent and the SyncChartsDataComponent.

1 step()

2 descriptor = getNextTransformation()

3 if (descriptor != null)

4 facade = new XtendFacade(getBasePackages(), getTransformationFile())

5 context = new XtendTransformationContext(facade, descriptor,

getTransactionalEditingDomain())

6

7 if (kiemMode)

8 // in kiemMode execute directly without the use of KiVi

9 effect = new TransformationEffect(context.execute())

10 effect.execute()

11 else

12 // remember the current context

13 this.currentContext = context

14

15 else

16 doPostTransformation()

Listing 6.1: Java pseudo code for the step method

The AbstractTransformationDataComponent extends the DataComponent class spec-
ified by KIEM. In this way a simple mechanism for step-wise execution is contributed
because of the natural functionality of KIEM. The step() method implements the
retrieval of the necessary information and execution of the transformation, as de-
scribed below.
Because a Combination is supposed to be the controlling piece and the execution

should be processed as a viewmanagement effect the DataComponent can operate
in two different modes. Either it can be used stand-alone, or it can serve as an

113

6 Implementation

information-collector providing the created TransformationContext to a Combination.
Listing 6.1 shows the implementation of the step method in pseudo code.
In Figure 6.3 the class XtendTransformationCommand can be seen. It extends

the RecordingCommand class provided by EMF. An RecordingCommand records all
changes, which are made concerning the underlying model, during the command’s
execution. This allows the applied changes to be undone. For this reason, the
XtendTransformationContext uses an XtendTransformationCommand for execution to
support undo functionality. Figure 6.4 depicts the creation of such a context as a
schematic. Listing 6.1 lists Java pseudo code for the step method.

Figure 6.3: Class diagram of the Java implementation

In the following, the methods demanded by the abstract class AbstractDataComponent
are discussed in further detail.

AbstractTransformationDataComponent(globVars): A map with global variables
can be passed to the constructor to make them available for the use within
Xtend.

getBasePackages(): The extending class has to provide all metamodels that are
required by the transformation.

114

XtendTransformationCommand

XtendTransformationContext

execute(TransformationDescriptor)

getLastResult()

TransformationDataComponent

XtendFacade

TransformationDescriptor

TransactionalEditingDomain

collected Information

pass on

store result

execute

Figure 6.4: Combining of a TransformationContext

getNextTransformation(): The next transformation that should be performed has
to be passed as a TransformationDescriptor.

getTransformationFile(): The extension file (.ext) containing the used extensions
has to be defined.

doPostTransformation(): Anything that has to be processed after the overall trans-
formation has finished should be done in this method.

115

6 Implementation

6.1 Implementation of the Esterel to SyncCharts
Transformation

In the first part of this section the Xtend implementation of the transformation rules
is looked at in further detail. Afterwards, the created Java classes are presented.

6.1.1 Initial Transformation

The first thing to consider is the fact that an Esterel source code file has to be
transferred into a SyncChart initially. On the left side of Figure 6.5 an Esterel source
file with the ABRO module can be seen. On the right side the initially transformed
SyncChart is presented. It consists of one single macro state called Esterel State,
which has the Esterel module as body text.
This initial step is implemented in Java without the use of Xtend. First, a new

SyncChart is created programmatically. Second, the Esterel module is added as body
text to the SyncChart’s root state. Also, the actual model is referenced by using the
bodyReference field of each SyncChart state, which can be seen in the corresponding
metamodel (Figure 3.7). Finally, the new SyncChart is opened in the editor.

Figure 6.5: Initial transformation of an Esterel module

6.1.2 Xtend Implementation

The Xtend implementations of the concrete transformation rules are already pre-
sented in each respective subsection of Section 5.2. In the following, the additional

116

6.1 Implementation of the Esterel to SyncCharts Transformation

methods necessary to process a transformation are explained. All used utility meth-
ods are listed in Listing A.2 in the appendix.
To achieve an efficient implementation the decision whether to finish the trans-

formation, or to do just one single step is passed to the Xtend via a global variable.
Otherwise the XtendFacade would have to be called separately for each transformable
Esterel element by Java.
For this reason a so-called recursiveRule is introduced. It is listed in Listing 6.2

and is supposed to be called at the end of each transformation rule with further
child Esterel elements. In line 2 the decision is made whether to execute a further
transformation rule or not to depend on the global variable recursive.

1 Void recursiveRule(State s, emf::EObject e):

2 if ((boolean) GLOBALVAR recursive) then

3 rule(s, e)

4 ;

Listing 6.2: Xtend method recursiveRule

Listing 6.3 presents the initializeRule method. In line 2 any body text is re-
moved from the current state. In line 3 the label of s is adapted according to the
passed esterelObject. E.g., The abort statement would yield a state labeled abort
State.

1 Void initializeRule(State s, emf::EObject esterelObject):

2 removeBodyText(s) ->

3 s.setLabelIfEmpty(esterelObject.metaType.name.replaceAll("esterel::", "") + "

State")

4 ;

Listing 6.3: The initializeRule method

Listing 6.4 shows the finalizeRule method, which is called at the end of each
transformation rule. In line 2 the passed esterelObject is set as BodyReference of
the current state s. In line 3 the recursiveRule is called and determines whether
the transformation stops at this point or not.

1 Void finalizeRule(State s, emf::EObject esterelObject):

2 setJavaBodyReference(s, esterelObject) ->

3 recursiveRule(s, esterelObject)

4 ;

Listing 6.4: The finalizeRule method

117

6 Implementation

1 Void rule(State s, EveryDo e):

2 let r = new Region:

3 let initS = new State:

4 let everyS = new State:

5 let initT = new Transition:

6 let everyT = new Transition:

7 initializeRule(s, e) ->

8 // setup states

9 s.regions.add(r) ->

10 r.states.add(initS) ->

11 r.states.add(everyS) ->

12 initS.setIsInitial(true) ->

13 // init transitions

14 initT.setType(TransitionType::WEAKABORT) ->

15 everyT.setType(TransitionType::WEAKABORT) ->

16 initT.connectTransition(initS, everyS) ->

17 everyT.connectTransition(everyS, everyS) ->

18 // add delays

19 initT.addTriggerToTransition(e.delay) ->

20 everyT.addTriggerToTransition(e.delay) ->

21 // recursive

22 finalizeRule(everyS, e.statement)

23 ;

(a) Input

(b) Transformed

Figure 6.6: Transformation of the every statement

In the following, the implementation of the every statement, presented in Sec-
tion 5.2.10, is explained in further detail. It should serve as the representative for
all of the other rules.
As seen in Figure 6.6 two new states and two new transitions have to be created.

This is done in line 3–6 by using the let expression. In line 7 the initializeRule

is called, it changes the state’s name into every State, and removes the body text.
The statement specific transformation takes place in line 9–20. The first transition
is marked as a WEAKABORT, the second one as a STRONGABORT, and both transitions
are connected to their respective states. The delay expression specified by the every

statement is set as the trigger of each transition. Finally, the finalizeRule is called
with every’s body statement and the new macro state everyS.

6.1.3 Java Implementation

In the following, the implementation of the EsterelToSyncChartsDataComponent, seen
in Figure 6.3, is described. As it extends the AbstractTransformationDataComponent

all demanded methods are discussed in further detail.

118

6.1 Implementation of the Esterel to SyncCharts Transformation

(a) Initial SyncChart

(b) No state was selected (c) The emit B state was selected

Figure 6.7: The effect of pre-transformation state selection

Global Variables

For this transformation just one global variable is specified. The recursive vari-
able determines whether Xtend should stop after the transformation of one Esterel
element or if it should transform all available elements.

Base Packages

• KExpressionsPackage: The KExpressions metamodel as introduced in Sec-
tion 4.1.1.

• EsterelPackage: The Esterel metamodel.

119

6 Implementation

• SyncChartsPackage: The SyncCharts metamodel, see Figure 3.7.

• EcorePackage: The base metamodel for all of the other metamodels.

Retrieval of the Next TransformationDescriptor

1 State getNextTransformableState(State parent)

2 if parent.isTransformable then

3 return parent

4

5 foreach child in parent.childrenStates

6 if child.isTransformable then

7 return child

8

9 foreach child in parent.childrenStates

10 next = getNextTransformableState(child)

11 if next != null then

12 return next

13

14 return null

Listing 6.5: Retrieving the next transformable state

1 List[State] getAllTransformableStates(State parent)

2 foundStates = List[State]

3 if parent.isTransformable then

4 foundStates.add(parent)

5 return foundStates

6

7 foreach child in parent.childrenStates

8 if child.isTransformable then

9 foundStates.add(child)

10 else

11 foundStates.addAll(getAllTransformableStates(child)

12

13 return foundStates

Listing 6.6: Retrieving all transformable states

Listing 6.5 and Listing 6.6 show pseudo code of the methods used for the retrieval
of the next transformable state or in case of the latter one all possible transformable
states.
The getNextTransformableState method is used for regular step-wise execution.

As the parent state either the root state, or a state selected by the user is passed to
allow the transformation in a certain context. The difference originating from such

120

6.1 Implementation of the Esterel to SyncCharts Transformation

a selection is depicted in Figure 6.7. No selection within the initial SyncChart would
yield the lower left result. Selecting the state that contains the emit B statement
yields the lower right result.
The method returns the first state of parent’s hierarchy that is transformable or

null. To do so the passed parent state is checked for transformability in line 2. In
line 5–7 the same is done for the child states of the current parent. The children of
the child states are tested in line 9–12.
The getAllTransformableStates method is used to determine all states that are

transformable and it therefore returns a list of states. This method is always called
with the model’s root state as parent parameter. If the root element still needs
to be transformed, it is returned immediately, as seen in line 5. If it is already
transformed, all child states are scanned and, in case any state is transformable,
added to the list to be returned. In line 10 this strategy is continued recursively. If
everything has already been transformed, an empty list is returned.
The TransformationDescriptor can be put together with the help of the informa-

tion about the next transformable state. Either the next transformable state or the
list with all transformable states is used as parameters. As mentioned earlier, all
rules are named rule, which is passed as the name to the TransformationDescriptor.
In case a list is passed an additional Xtend entry rule has to be specified which

processes each transformable state sequentially.

Post Transformation

Because that expressions used in the Esterel program are just copied into the Sync-
Chart the signal and variable references used in it still point to the signals and
variables defined in the Esterel program. This problem is solved by using the
ActionLabelProcessorWrapper created for SyncCharts, which is basically a parser
and serializer for the triggers and effects of a transition. It is applied in the scope
of one single SyncCharts diagram.

121

6 Implementation

6.2 Implementation of the SyncCharts Optimization
This section is split into two parts. First, the Xtend implementations are presented.
Second, the controlling Java classes are discussed.

6.2.1 Xtend Implementation
For each optimization rule two Xtend methods are implemented. First, a predicate
is created determining whether all conditions for that specific rule are met. Second,
the method applying the actual transformation is provided. Listing 6.7 shows an
example of such a predicate for rule1, which is presented in Section 5.3.2. In line 3
and 4 it is checked if s is a conditional state if it has one single outgoing transition,
and whether the outgoing transition has neither a trigger nor an effect.
In Listing 6.8 the actual appliance of the optimization is listed. In line 5 the target

state of the incoming transition is replaced. The superfluous transition is removed
in line 6. The needless conditional state is removed too, as seen in line 8. A recursive

1 Boolean rule1applies(State s):

2 switch {

3 case isConditional(s) && hasNumberOfOutgoingTrans(s, 1) :

4 (isTransitionWithoutTaE(s.outgoingTransitions.get(0)) ? true : false)

5 default : false

6 }

7 ;

Listing 6.7: Predicate for rule1

1 Void rule1(State s):

2 let targetState = s.outgoingTransitions.get(0).targetState:

3 let incomingTrans = s.incomingTransitions.copyListTrans():

4 // bend transition to new target

5 incomingTrans.setTargetState(targetState) ->

6 s.outgoingTransitions.get(0).removeTransition() ->

7 // remove conditional state

8 s.removeStateFromRegion()

9 ;

Listing 6.8: Performing the optimization of rule1

rule is used in the same way as it is described in Section 6.1.
Furthermore, the optimization implementation allows the selection of a subset of

rules, which is done by using global variables. In contrast to the Esterel to Sync-
Charts transformation the decision whether a state is optimizable or not cannot be
made on the side of Java as the predicates are implemented in Xtend. Therefore, a
list with all states of a SyncChart has to be passed to Xtend. Listing 6.9 shows the

122

6.2 Implementation of the SyncCharts Optimization

method ruleAll. It is the method that is called by the XtendFacade and tests for
each existing optimization rule if this rule should be applied, depending on a global
variable, and if all conditions are met for this explicit rule. This can be seen in line
7–22. In line 24 a processed state is removed from the states list. The recursiveRule
is called in line 28, and in line 29 the size of the states list is returned. Hence, if the
method returns 0, all optimization rules have already been processed for all states.

1 Integer ruleAll(List[State] states):

2

3 if states.size > 0 then

4 (

5 let s = states.first():

6 switch{

7 case ((boolean) GLOBALVAR rule1) && rule1applies(s) :

8 rule1(s)

9 case ((boolean) GLOBALVAR rule2) && s.isSimpleState() && rule2applies(s)

:

10 rule2(s)

11 case ((boolean) GLOBALVAR rule3) && s.isSimpleState() && rule3applies(s)

:

12 rule3(s)

13 case ((boolean) GLOBALVAR rule4) && rule4applies(s):

14 rule4(s)

15 case ((boolean) GLOBALVAR rule5) && rule5applies(s) :

16 rule5(s)

17 case ((boolean) GLOBALVAR rule6) && rule6applies(s) :

18 rule6(s, states)

19 case s.parentRegion != null && ((boolean) GLOBALVAR rule7) &&

rule7applies(s) :

20 rule7(s)

21 case s.parentRegion != null && ((boolean) GLOBALVAR rule8) &&

rule8applies(s) :

22 rule8(s)

23 default :

24 // this state is finished remove state

25 (states.remove(states.first()) -> ruleAll(states))

26 }

27) ->

28

29 recursiveRule(states)

30 -> states.size

31 ;

Listing 6.9: Root rule for the SyncCharts optimization

123

6 Implementation

6.2.2 Java Implementation

In the following, the implementation of the SyncChartsOptimizationDataComponent

seen in Figure 6.3 is described. The demanded methods of the AbstractTransformation-
DataComponent are discussed in further detail.

Global Variables

The global variable recursive is used the same way as mentioned in Section 6.1.3.
Furthermore, a global variable is introduced for each optimization rule to specify
whether the specific rule should be applied or not. Currently eight optimization
rules are implemented. Hence, the global variables rule1 to rule8 are supplied.

Base Packages

• KExpressionsPackage: The KExpressions metamodel as introduced in Sec-
tion 4.1.1.

• SyncChartsPackage: The SyncCharts metamodel seen in Figure 3.7.

• EcorePackage: The base metamodel for all of the other metamodels.

Retrieval of the Next Transformation

As mentioned earlier it is necessary to pass all available states to Xtend as the con-
ditions for an optimization are tested by a predicate implemented in Xtend. Again,
the context of the current optimization can be adapted by passing the currently
selected SyncCharts state.
Listing 6.10 shows the collectHierarchically method in pseudo code. In line 3

the parent state is added to the specified level of an internally held data structure.
In line 5 and 6 all child states are collected in the same way. However, it is more
efficient to start the optimization on the lowermost hierarchical level as the result
of one optimization rule can yield new optimization potential. Therefore, after the
collection of the hierarchy it has to be flattened to a list and passed inversely to the
ruleAll method.

1 collectHierarchically(State parent, Integer level)

2

3 addToHierarchy(parent, level)

4

5 foreach child in parent.states

6 collectHierarchically(child, level + 1);

Listing 6.10: Pseudo code collecting all states hierarchically ordered

124

6.3 Implementation of the Controlling Combination

Post Transformation

No post processing is required after a SyncCharts optimization.

6.3 Implementation of the Controlling Combination

The E2STransformationCombination seen in Figure 6.3 is a KiVi Combination. It
contributes the buttons introduced in Section 5.1.1 to Eclipse’s user interface and
contains the logic connecting user inputs with internal actions.
The E2STransformation listens to three different events. In terms of KiVi such

events are passed as state, e. g., ButtonState.

ActiveEditorState: The transformation can be performed in the context of two
Eclipse editors. First, an open Esterel editor allows the initial transforma-
tion of an Esterel file to a SyncChart. Second, a SyncCharts editor allows
either execution of the transformation of Esterel elements or the optimization
of the currently opened SyncChart.

ButtonState: The Combination listens to clicks of the contributed buttons.

EffectTriggerState: Scheduled TransformationEffects are executed concurrently.
Therefore, post transformation actions, e. g., automatic layout, have to be per-
formed after the effect has been executed. An EffectTriggerState contains
the information about an executed effect.

In Listing 6.11 pseudo code for the execute method is listed. In line 2, 6 and 14
the current event is determined. In case it is an activeEditorState the currently
active editor is remembered as seen in line 3.
If a button is clicked while the XtextEditor is opened, an initial transformation

will be processed. Otherwise, the pressed button is retrieved and the processmethod
is called to execute the correct transformation.
An effectState either yields the execution of a further transformation or the

appliance of automatic layout, see line 16–18. A further transformation will be
needed if the user presses the button triggering the complete transformation and
optimization of the currently opened SyncChart. In this case, all non-transformed
Esterel elements have to be handled by a TransformationEffect first. The effect has
to be executed, afterwards the optimization can be processed.
The process method is described in Listing 6.12. In line it 2 can be seen that

a DataComponent is created in kiviMode and respective to the passed button. The
DataComponent is initialized and one single step is performed to set up a TransformationContext.
This context is retrieved in line 5, and a new TransformationContext is scheduled in
line 7.

125

6 Implementation

1 execute(buttonState, activeEditorState, effectState)

2 if activeEditorState

3 this.currentlyActiveEditor = activeEditorState.getEditor()

4 return

5

6 if buttonState

7 if currentlyActiveEditor == XtextEditor

8 initializeTransformation()

9 else

10 b = buttonState.getButton()

11 process(b)

12 return

13

14 if effectState

15 if furtherTransformationNecessary

16 process(furtherTrans)

17 else

18 applyLayout()

Listing 6.11: Pseudo code of the execute method

1 process(button)

2 dataComponent = createRespectiveDataComponent(button, kiviMode)

3 dataComponent.initialize()

4 dataComponent.step()

5 context = dataComponent.getContext()

6

7 schedule(new TransformationEffect(context))

Listing 6.12: Pseudo code of the process method

126

6.3 Implementation of the Controlling Combination

127

6 Implementation

128

7 Validation and Experimental Results

This chapter presents the used testing approaches to validate the created Esterel
grammar, which was presented in Chapter 4 and the transformation implementation
presented in Chapter 6. Also, some experimental results are shown and several
measurements of execution times are discussed.

7.1 Testing the Esterel Grammar
The created Xtext grammar has to be tested with respect to its correctness. How-
ever, a complete formal analysis would be beyond the scope of this thesis. Hence,
a proper testing strategy covering the overall expressiveness of Esterel has to be
established.
A set of Esterel programs provided by the CEC1 serves as a test case. It includes

authentic programs and programs that cover various of possible expressions to check
the whole range of possible inputs.
Testing is done by iterating over all test files, parsing, and serializing them. In

case a program is not recognized correctly Xtext’s generated parser and serializer,
respectively, present readable error messages.

7.2 Testing the Transformation Implementation
In the following, an approach to test the implementations presented in Section 6.1
and Section 6.2 is discussed. Both are tested in the same way despite of the fact that
different input modules are used. For each Esterel to SyncCharts transformation
rule a representative Esterel module is constructed. The same is done for each
optimization rule by using a suitable diagram. They are supposed to cover as much
expressiveness as possible for the specific rule. In combination with this another
diagram is created by hand, which equals the correct result of the transformation
rule. Figure 7.1 illustrates this testing procedure.
For each transformation rule a JUnit test is written. The test transforms the input

automatically and compares the result to the expected diagram. The comparison
is done by using EMF Compare2. EMF Compare is able to compare two arbitrary
models, which have to base on an EMF metamodel, and to report differences. If there
are no differences, the transformation yields the expected result and is considered
correct.
1http://www.cs.columbia.edu/~sedwards/cec/
2http://wiki.eclipse.org/EMF_Compare

129

7 Validation and Experimental Results

Input

JUnit Test

Result

*_exp.kixs

*.kixs
or

*.strl
*.kixsTransformation Logic

EMF Compare

testNothing()
...
testOptRule1()
...

Diff
....
......
....

if isEmpty
--> successful

Figure 7.1: Testing of the transformation rules

1 performTest(inputFile, expectedFile) {

2 input = loadInput(inputFile);

3 expected = loadExpectedResult(expectedFile);

4

5 result = transform(input);

6

7 compare(result, expected);

8 }

Listing 7.1: Testing a transformation rule

Listing 7.1 shows the testing procedure in pseudo code which corresponds to the
gray box in Figure 7.1. In line 2 and 3 the input model and the expected diagram
are loaded. The input is either transformed to a SyncChart or optimized depending
on the input in line 5. In line 7 the result of the transformation is compared to the
expected result.
Listing 7.2 presents the JUnit test implementation for the nothing statement. The

first parameter of the performTest method specifies the input file, in this case an
Esterel file. The second parameter specifies the name extension of the diagram with
the expected result. In this case it would be named 02-nothing_exp.
This testing method has several weaknesses. For instance, EMF Compare fails

if the order of signals is changed. Not the whole expressiveness of a statement is
tested and the expected diagrams are created by humans. Hence, these diagrams
can contain errors as well.
A better way to test the correctness would be the simulation of an Esterel program

130

7.3 Experimental Results

prior to the transformation and the simulation of the transformed SyncChart. Both
simulation results could be compared to each other afterwards.

1 @Test

2 public void testNothing() throws Exception {

3 performTest("02-nothing.strl", "_exp");

4 }

Listing 7.2: Pseudo code for testing a transformation rule

7.3 Experimental Results

After the implementation details have been given this section presents an exemplary
transformation and studies execution times of the transformation as well as the
quality of the presented optimizations.
Figure 7.2 shows the ABRO program. In the leftmost diagram the initially created

SyncChart containing the Esterel module as the body text can be seen. The middle
diagram represents the fully transformed SyncChart. As one can see a lot of new
and unnecessary hierarchy levels have been introduced. These were removed in the
optimized SyncChart, which can be seen on the right hand side of the figure.

Figure 7.2: Transformation and optimization of ABRO

7.3.1 Transformation Durations

The Esterel programs provided by the CEC, mentioned in Section 7.1, were trans-
formed by using different measuring setups. This aims at getting an overview of the
implementation’s time consumption. The different measuring setups are introduced
in the following.

131

7 Validation and Experimental Results

1. Headless: The duration of a complete headless transformation is measured as
it is necessary to transform an Esterel file to SyncChart prior to opening the
SyncChart in the editor. This includes loading the resource and initializing all
needed classes, e. g., the EsterelToSyncChartsDataComponent.

2. Recursive: The duration of the recursive transformation itself is measured.
This is only the time the call of the XtendFacade and the Xtend execution
need.

3. Recursive+Setup: It is measured how long the creation of a new EsterelTo-

SyncChartsDataComponent and the recursive transformation takes.

4. Stepwise: The time which is needed to transform an Esterel program com-
pletely by using the step functionality programmatically is measured. This
means that the XtendFacade is called with a new TransformationDescriptor

and a new TransformationContext as long as any further state can be trans-
formed.

5. Stepwise+Setup: The duration of the latter including the initializing of a new
data component per step is measured.

The results can be seen in Figure 7.4 and Figure 7.5. For both figures the x-axis
represents different diagrams and is ordered by the recursive execution’s duration.
No correlation to the diagram size can be made. Furthermore, in Figure 7.3 the
calculated differences of several average values are presented.
This figure shows that the differences between points 2–4 are marginal. Some-

times, the Recursive+Setup execution took less time than the sole Recursive execu-
tion. This can be explained with the usual fluctuation in thread activity and pro-
cessor time. Therefore, the overhead of the creation of an XtendFacade and calling
it for every transformation rule, instead of using recursive execution, is negligible.
The Headless execution takes constantly ∼ 250ms longer than the Recursive one.

The additional time is needed to fetch the resource and set up all necessary classes,
which in a non-headless mode would be provided by the Eclipse editor before the
time measurement is started. Considering that this execution mode is triggered only
once for an Esterel program to transform it completely prior to opening it in the
editor ∼ 250ms is an acceptable execution time.
A critical increase in execution time shows the Stepwise+Setup execution, espe-

cially by using larger diagrams. For small diagrams the difference between the latter
and the Stepwise execution is very small but increases constantly for diagrams with
more hierarchy levels. The two measured values only differ in the creation of the
data component. Therefore, the increase in duration can be explained by the adding
up of the additional time needed for the instantiation of a new data component and
the creation of a new XtendFacade.
Further measurements showed that the average execution time of a single step is

lower than 10ms and therefore negligible compared to the time a user needs to press
a button.

132

7.3 Experimental Results

Headless − Recursive ∼ 250ms
Recursive − Stepwise ∼ 10ms
Recursive+Setup − Recursive ∼ 10ms
Stepwise − Stepwise+Setup ∼ 1000ms

Figure 7.3: Differences of the measured average values

0 ms

100 ms

200 ms

300 ms

400 ms

500 ms

600 ms

Recursive Recursive+Setup Stepwise

Figure 7.4: Measured times for Recursive, Recursive+Setup, and Stepwise

0 ms

1000 ms

2000 ms

3000 ms

4000 ms

5000 ms

6000 ms

Recursive Headless Stepwise+Setup

Figure 7.5: Measured times for Headless, Recursive, and Stepwise+Setup

133

7 Validation and Experimental Results

7.3.2 Optimization Quality

0
0,5
1
1,5
2
2,5
3
3,5
4
4,5
5

1

10

100

1000

states before states after before/after

Figure 7.6: Decrease of the number of states due to optimization

0

0,5

1

1,5

2

2,5

3

3,5

4

0

2

4

6

8

10

12

14

16

levels before levels after before/after levels

Figure 7.7: Decrease of the number of hierarchy levels due to optimization

To evaluate the quality and importance of the SyncCharts optimization some
measurements concerning the number of states were done, which can be seen in
Figure 7.6 and Figure 7.7.
Again, the CEC Esterel programs were used. They were transformed and optimized

and the number of states and hierarchy levels were measured prior to and after the
optimization. In the two figures just an extract of the results is presented for reasons
of clarity and comprehensibility.
The left axis refers to the number of states and hierarchy levels, respectively.

Green bars indicate the values prior to optimization, the orange ones the values
after optimization. The purple line is the ratio of the two mentioned values and is
quantified by the right axis.
Considering all results it shows that the number of states decreases on average by

a factor of 3, the number of hierarchy levels by a factor of 2.5.

134

7.3 Experimental Results

135

7 Validation and Experimental Results

136

8 Concluding Results

In this chapter the work of this thesis is summarized. Some conclusions are made
and future work is discussed.

8.1 Summary

In Chapter 1 some motivation for the step-wise execution and visualization of trans-
formations was given. Also, the languages Esterel and SyncCharts were introduced
as a transformation from Esterel to SyncCharts served as the primary example.
Two issues were addressed in particular. First, tools to work with Esterel, such as

the CEC or Esterel studio, were introduced. Second, the topic of model transforma-
tions was regarded. Transformation languages were discussed, other KIELER M2M
transformations were presented, and different approaches that do not use EMF were
depicted, such as TGGs.
In the following, the tasks of this thesis as stated in Section 1.2 are reconsidered.

Provide facilities to handle Esterel code in the context of KIELER.

An Esterel editor was created and embedded into KIELER. It bases on an Xtext
grammar and provides sophisticated tooling such as code completion, syntax high-
lighting, and code formatting. The adaption of an existing Esterel grammar was
presented in Chapter 4 aiming at meeting Xtext’s requirements.

Point out an approach to handle visual transformations.

In Section 5.1 criteria for the description of general transformations were specified.
Based on this a generic implementation was developed. In combination with KiVi
this implementation served as a framework to perform arbitrary transformations as
a view management effect.

Implement both, the SyncCharts to Esterel transformation and the Sync-
Charts optimization.

Section 5.2 and Section 5.3 reviewed the theoretical basis of the Esterel to Sync-
Charts transformation and the SyncCharts optimization as they were presented by
Kuehl [Küh06]. They are intended to serve as a reference for these specific transfor-
mation rules. For this reason the actual implementation in the Xtend language was
listed as well.

137

8 Concluding Results

A graphical user interface was developed. It provides different execution modes.
The user is able to perform a headless transformation and an optimization at once.
He can carry out the process in certain steps to understand the transformation’s
functionality.
The actual implementation of the two transformations was presented in Chapter 6.

Define proper testing criteria and provide rudimentary tests.

In Section 7.1 and Section 7.2 testing possibilities were depicted. Esterel files and
SyncChart diagrams covering as much expressiveness as possible were created. JUnit
served as an automatic testing facility and validated the provided test diagrams by
using EMF Compare.

8.2 Conclusions

The approaches presented in this thesis would not be practical without KIELER as
their basis. A step-wise execution with visualization of intermediate steps is made
possible by using automatic layout. Without automatic layout it would be very hard
to present intermediate steps in a structured and understandable form. Also, KIEM
and KiVi are sophisticated means to allow continuous user interaction.
The adaption of the Esterel grammar turned out to be more difficult than ex-

pected. The problem of Xtext’s expressiveness having several limits had to be solved,
and some weaknesses concerning the performance of the serialization showed up for
deeply nested constructs.
The choice to base the Esterel grammar on the KExpressions grammar was useful.

Particularly, the transformation of Esterel files to SyncCharts is simplified. This is
because the majority of signals, variables, and expressions of an Esterel file can be
transferred to a SyncChart without the need of further adaptations.
The atomicity of both, the Esterel to SyncCharts transformation rules and the

SyncCharts optimization rules, makes them easy to use. Short and precise rules are
well comprehensible and straightforward. Hence, the implementation in Xtend was
simple and errors could be located quickly.
Furthermore, the presented optimization rules turned out to be essential to obtain

readable SyncCharts. As mentioned in Chapter 7 first results show a reduction of
states and hierarchy levels by the factor of 3 and 2.5, respectively.
The execution of an arbitrary transformation is implemented by using a KiVi

Effect. This allows a seamless integration into the view management, which sim-
plifies the adding of additional visualizations, e. g., focus and context as discussed
in the next section.
To provide an easy user interface a controlling KIEM DataComponent is provides

as well as a KiVi Combination. However, the DataComponent results from first imple-
mentations. Because KIEM and KiVi base on different ideas the maintenance of both
controlling logics yields additional efforts to be performed.

138

8.3 Future Work

To sum up, it can be stated that an easy and pleasant way to execute transfor-
mations was presented while preserving expandability with relation to visualization
and user interaction.

8.3 Future Work

During this work several ideas to enhance the Esterel integration into KIELER (Chap-
ter 4), to extend the theoretical background of the Esterel to SyncCharts transfor-
mation (Chapter 5), and to improve the transformation execution itself emerged.
Most of the ideas are not an essential part of the presented implementation but
their realization would improve the usability of the tooling. Therefore, these ideas
are described in the following.

Esterel Code Formatting

Xtend comes with the possibility to define formatting information for its grammar
elements. This information can be applied to a source file via the generated tooling,
which then formats the source file automatically according to the defined rules.
Proper code formatting eases the fast understanding of pieces of code especially for

those people who did not write the code themselves. Furthermore, formatting pro-
duces structured and well readable code. Automatic tooling support saves time and
generates a consistent formatting amongst all developers and source files. Therefore,
it is particularly important while writing source code in a collaborative environment.

Integrating Esterel v7

There are two facets of this point. First, it would seem natural to extend the
v5 implementation and integrate v7 into the tooling. This includes extending the
existing grammar (Chapter 4) to meet the requirements of Esterel v7, for instance,
v7 allows arrays, which are not considered in the current implementation.
Second, a transformation of Esterel v7 source code to SyncCharts can be at-

tempted, which is a complex problem. Initially, it needs to be evaluated whether
such a transformation is possible. It is necessary to verify that the expressiveness
of SyncCharts is powerful enough to meet all of the new constructs. Furthermore,
transformation rules have to be declared and proven.
For both points it has to be validated that all other technologies used meet all

requirements.

Correctness of Optimization Rules

As mentioned in Section 5.3 the SyncCharts optimization rules that were presented
in this thesis have not been proven to maintain semantics. This should be done
in the future, or proper testing facilities should be provided. Such testing facilities
could simulate the behavior of a SyncChart. KIELER comes with tools to simulate a

139

8 Concluding Results

SyncChart and to retrieve information about the results, e. g., by using SC or KlePto.
Both, the non-optimized and the optimized SyncChart could be simulated with all
possible inputs. These might not be possible strategies to use for larger diagrams, so
in case proper inputs have to be developed, e. g., by selecting equivalence classes, see
black-box testing. Afterwards, the results of both simulations would be compared.

Further Optimization Rules

The optimization rules presented in Section 5.3 were developed in the context of
the Esterel to SyncCharts transformation. They aim at reducing the number of
hierarchy levels and produce a more compact SyncChart. Hence, it is just a set of
intuitive rules that does not cover the whole optimization potential. An additional
optimization rule might be one that removes unreachable transitions. Consider two
signals A and B and a transition with the trigger A or B and the highest priority.
This transition leaves a state with another transition, which has a lower priority
and the trigger B. The second transition will never be taken and can therefore be
removed.
A further rule might be one eliminating unnecessary signals, for instance, signals

that are declared or emitted but never tested and not specified as output signal.

Selection of Optimization Rules

Sometimes, the user wants to apply only a subset of the possible optimization rules.
This becomes especially useful during the process of testing. The current imple-
mentation already offers such a selection, as mentioned in Section 6.2.2. The user
interface could be adapted to provide functionality to activate or to deactivate cer-
tain rules.

Handling of Multiple Modules

Currently, the implemented Esterel to SyncCharts transformation is restricted to
one module within the Esterel file.
The CEC provides functionality to expand an Esterel program to reduce the num-

ber of modules to one. This could be implemented as an automated process that is
performed prior to the actual transformation.
Also, different strategies to handle multiple modules might be interesting. Each

module could be transformed into a separate SyncChafARRRRRf, or all modules
could be placed as an individual macro state within one SyncChart.
An approach to use SyncCharts with reference macro states to associate a model

with a macro state was presented by Bleidiessel [Ble10]. A SyncChart containing
such reference states can be expanded by replacing each reference macro state with
the actual model.

140

8.3 Future Work

Focus and Context during Transformations

A pragmatic aspect presented in [FvH10b] is Focus and Context. Focus and Context
proposes to apply automatic layout depending on the current focus and context. The
focus refers to elements of temporal interest, for instance, the currently transformed
elements during an overall transformation. The context includes, for instance, ele-
ments on the same hierarchy level.
Such a functionality would yield better clarity and comprehensibility, especially

concerning the transformation of large diagrams.

Side by Side Esterel and SyncCharts

In Eclipse it is possible to open and to show two editors simultaneously. Hence, an
Esterel file, which is being transformed, could be presented alongside of the currently
transformed SyncChart. To improve the comprehensibility it might be desirable to
highlight the currently handled Esterel statement and the corresponding SyncChart
element. Similar work is presented by [Sch11].

Xtend2

Currently, the implementation presented in Chapter 6 bases on the Xtend technology
introduced in Section 3.1.4. Xtend will be succeeded by Xtend2 1, which integrates
seamlessly into the Java code, bases on the Xbase2 language, and provides further
features that will not be described in further detail here.
As Xtend code is not fully compatible with Xtend2 some refactoring might be

necessary to use the implementations presented in this thesis with Xtend2. The
benefits and efforts of such an adaption should be examined as soon as Xtend2 is
released in a final version.

1http://blog.efftinge.de/2010/12/xtend-2-successor-to-xpand.html
2http://blog.efftinge.de/2010/09/xbase-new-programming-language.html

141

8 Concluding Results

142

A Sources

Listing A.1: The Esterel grammar
1 grammar de.cau.cs.kieler.kies.Esterel with de.cau.cs.kieler.core.kexpressions.

KExpressions

2

3 generate esterel "http://www.cau.de/cs/kieler/kies/Esterel"

4 import "platform:/resource/de.cau.cs.kieler.core.kexpressions/model/kexpressions.

ecore" as kexpressions

5 import "http://www.eclipse.org/emf/2002/Ecore" as ecore

6

7 // root rule. an esterel file can contain multiple modules

8 Program hidden(Esterel_SL_Comment, Esterel_ML_Comment, WS):

9 (modules+=Module)*;

10

11 // a module consists of an interface and a body

12 Module:

13 "module" name=ID ":" (interface=ModuleInterface)? body=ModuleBody end=EndModule

;

14

15 EndModule:

16 "end" "module"

17 | "."; //deprecated

18 ModuleBody:

19 statements+=Statement;

20

21 // Interface Declarations

22 // --

23 ModuleInterface:

24 (intSignalDecls+=InterfaceSignalDecl

25 | intTypeDecls+=TypeDecl

26 | intSensorDecls+=SensorDecl

27 | intConstantDecls+=ConstantDecls

28 | intRelationDecls+=RelationDecl

29 | intTaskDecls+=TaskDecl

30 | intFunctionDecls+=FunctionDecl

31 | intProcedureDecls+=ProcedureDecl)+;

32

33 // overwrite to add the EsterelTypeIdentifier

34 ChannelDescription:

35 (":" type=EsterelTypeIdentifier)

36 | ("(" type=EsterelTypeIdentifier ")")

37 | (":=" expression=Expression ":" type=EsterelTypeIdentifier);

143

A Sources

38

39 // overwrite to allow function references for signal declarations

40 EsterelTypeIdentifier returns kexpressions::TypeIdentifier:

41 type=ValueType

42 | typeID=ID

43 | {EsterelTypeIdentifier} ("combine" (type=ValueType | typeID=ID) "with" (func

=[Function|ID] |

44 operator=CombineOperator));

45

46 // overwrite to allow type definitions in a specific module

47 TypeIdentifier:

48 type=ValueType

49 | typeID=ID

50 | ("combine" (type=ValueType | typeID=ID) "with" operator=CombineOperator)

51 | {EsterelType} estType=[Type|ID];

52

53 // ==> Local Signal Declaration

54 LocalSignalDecl:

55 "signal" signalList=LocalSignalList "in" statement=Statement "end" (optEnd="

signal")?;

56

57 LocalSignalList:

58 {LocalSignal} signal+=ISignal

59 ("," signal+=ISignal)*;

60

61 // ==> Sensor

62 // -------------------------------------

63 SensorDecl:

64 "sensor" sensors+=SensorWithType ("," sensors+=SensorWithType)* ";";

65

66 SensorWithType:

67 (sensor=Sensor (":" type=TypeIdentifier)) | (sensor=Sensor "(" type=

TypeIdentifier ")");

68

69 Sensor returns kexpressions::ISignal:

70 name=ID;

71

72 // ==> Relations

73 // -------------------------------------

74 RelationDecl:

75 {Relation} "relation" relations+=RelationType ("," relations+=RelationType)* ";

";

76

77 RelationType:

78 RelationImplication | RelationIncompatibility;

79

80 RelationImplication:

81 first=[kexpressions::ISignal|ID] type="=>" second=[kexpressions::ISignal|ID];

82

144

83 RelationIncompatibility:

84 incomp+=[kexpressions::ISignal|ID] type="#" incomp+=[kexpressions::ISignal|ID]

("#"

85 incomp+=[kexpressions::ISignal|ID])*;

86

87 // ==> Types

88 // -------------------------------------

89 TypeDecl:

90 "type" types+=Type ("," types+=Type)* ";";

91

92 Type:

93 name=ID;

94

95 // ==> Constants

96 // -------------------------------------

97 ConstantDecls:

98 "constant" constants+=OneTypeConstantDecls ("," constants+=OneTypeConstantDecls

)* ";";

99

100 OneTypeConstantDecls:

101 constants+=ConstantWithValue ("," constants+=ConstantWithValue)* ":" type=

TypeIdentifier;

102

103 ConstantWithValue:

104 constant=Constant ("=" value=ConstantAtom)?;

105

106 Constant returns kexpressions::ValuedObject:

107 {Constant} name=ID;

108

109 ConstantAtom:

110 INT | ConstantLiteral;

111

112 ConstantLiteral:

113 Float | Boolean | ID | STRING;

114

115 // ==> Functions

116 // -------------------------------------

117 FunctionDecl:

118 "function" functions+=Function ("," functions+=Function)* ";";

119

120 Function:

121 name=ID "(" (idList+=TypeIdentifier ("," idList+=TypeIdentifier)*)? ")" ":"

type=TypeIdentifier;

122

123 // ==> Procedures

124 ProcedureDecl:

125 "procedure" procedures+=Procedure ("," procedures+=Procedure)* ";";

126

127 Procedure:

145

A Sources

128 name=ID "(" (idList1+=TypeIdentifier ("," idList1+=TypeIdentifier)*)? ")" "(" (

idList2+=TypeIdentifier (","

129 idList2+=TypeIdentifier)*)? ")";

130

131 // ==> Tasks

132 TaskDecl:

133 "task" tasks+=Task ("," tasks+=Task)* ";";

134

135 Task:

136 name=ID "(" (idList1+=TypeIdentifier ("," idList1+=TypeIdentifier)*)? ")" "(" (

idList2+=TypeIdentifier (","

137 idList2+=TypeIdentifier)*)? ")";

138

139 // ==

140 // === B.4 Statements ===

141 // ==

142 Statement:

143 Sequence ({Parallel.list+=current} "||" list+=Sequence)*;

144

145 AtomicStatement returns Statement:

146 Abort | Assignment | Await | Block | ProcCall | Do | Emit | EveryDo | Exit |

Exec | Halt | IfTest | LocalSignalDecl |

147 Loop | Nothing | Pause | Present | Repeat | Run | Suspend | Sustain | Trap |

LocalVariable | VarStatement | WeakAbort;

148

149 // --> B.4.1 Control Flow Operators <--

150 Sequence returns Statement:

151 AtomicStatement ({Sequence.list+=current} ";" list+=AtomicStatement)* ";"?;

152

153 Block:

154 "[" statement=Statement "]";

155

156 VarStatement returns Statement:

157 vardecl=IVariable;

158

159 // Assignment

160 // -------------------------------------

161 Assignment:

162 var=[kexpressions::IVariable|ID] ":=" expr=Expression;

163

164 // --> B.4.2 abort: Strong Preemption

165 // -------------------------------------

166 Abort:

167 "abort" statement=Statement "when" body=AbortBody;

168

169 AbortBody:

170 AbortInstance | AbortCase;

171

172 AbortInstance:

146

173 delay=DelayExpr ("do" statement=Statement "end" (optEnd="abort")?)?;

174

175 AbortCase:

176 cases+=AbortCaseSingle (cases+=AbortCaseSingle)* "end" (optEnd="abort")?;

177

178 AbortCaseSingle:

179 "case" delay=DelayExpr ("do" statement=Statement)?;

180

181

182 // --> B.4.25 weak abort: Weak Preemption

183 // -------------------------------------

184 WeakAbort returns Abort:

185 {WeakAbort} "weak" "abort" statement=Statement "when" body=WeakAbortBody;

186

187 WeakAbortBody:

188 WeakAbortInstance | WeakAbortCase;

189

190 WeakAbortEnd:

191 {WeakAbortEnd} "end" (optEnd=WeakAbortEndAlt)?;

192

193 WeakAbortEndAlt:

194 (end="weak")? endA="abort";

195

196 WeakAbortInstance returns AbortInstance:

197 {WeakAbortInstance} delay=DelayExpr ("do" statement=Statement end=WeakAbortEnd)

?;

198

199 WeakAbortCase returns AbortCase:

200 {WeakAbortCase} cases+=AbortCaseSingle (cases+=AbortCaseSingle)* end=

WeakAbortEnd;

201

202 // --> B.4.3 await: Strong Preemption

203 // -------------------------------------

204 Await:

205 "await" body=AwaitBody;

206

207 AwaitBody:

208 AwaitInstance | AwaitCase;

209

210 AwaitInstance:

211 delay=DelayExpr ("do" statement=Statement end=AwaitEnd)?;

212

213 AwaitCase:

214 cases+=AbortCaseSingle (cases+=AbortCaseSingle)* end=AwaitEnd;

215

216 AwaitEnd:

217 "end" "await"?;

218

219 // --> B.4.4 call: Procedure Call

147

A Sources

220 // -------------------------------------

221 ProcCall:

222 "call" proc=[Procedure|ID] "(" (varList+=[kexpressions::IVariable|ID] (","

varList+=[kexpressions::IVariable|ID])*)?

223 ")"

224 "(" (kexpressions+=Expression ("," kexpressions+=Expression)*)? ")";

225

226 // --> B.4.5 do-upto: Conditional Iteration (deprecated)

227 // --> B.4.6 do-watching: Strong Preemption (deprecated)

228 // -------------------------------------

229 Do:

230 "do" statement=Statement (end=DoUpto | end=DoWatching);

231

232 DoUpto:

233 "upto" expr=DelayExpr;

234

235 DoWatching:

236 "watching" delay=DelayExpr (end=DoWatchingEnd)?;

237

238 DoWatchingEnd:

239 "timeout" statement=Statement "end" (optEnd="timeout")?;

240

241 // --> B.4.7 emit: Signal Emission <--

242 // -------------------------------------

243 Emit:

244 "emit" ((signal=[kexpressions::ISignal|ID]) | tick=Tick) ("(" expr=Expression "

)")?;

245

246 // --> B.4.8 every-do: Conditional Iteration

247 // -------------------------------------

248 EveryDo:

249 "every" delay=DelayExpr "do" statement=Statement "end" (optEnd="every")?;

250

251 // --> B.4.10 exit: Trap Exit

252 // -------------------------------------

253 Exit:

254 "exit" trap=[TrapDecl|ID] ("(" expression=Expression ")")?;

255

256 // --> B.4.11 halt: Wait Forever

257 // -------------------------------------

258 Halt:

259 {Halt} "halt";

260

261 // --> B.4.12: if: Conditional for Data

262 // -------------------------------------

263 IfTest:

264 "if" expr=Expression (thenPart=ThenPart)? (elsif+=ElsIf)* (elsePart=ElsePart)?

"end" (optEnd="if")?;

265

148

266 ElsIf:

267 "elsif" expr=Expression (thenPart=ThenPart)?;

268

269 ThenPart:

270 "then" statement=Statement;

271

272 ElsePart:

273 "else" statement=Statement;

274

275 // --> B.4.13 loop: Infinite Loop

276 // --> B.4.14 loop-each: Condition Iteration

277 // -------------------------------------

278 Loop:

279 "loop" body=LoopBody (end1=EndLoop | end=LoopEach);

280

281 EndLoop:

282 "end" "loop"?;

283

284 LoopEach:

285 "each" LoopDelay;

286

287 LoopDelay:

288 delay=DelayExpr;

289

290 LoopBody:

291 statement=Statement;

292

293 // --> B.4.15 nothing: No Operation

294 // -------------------------------------

295 Nothing:

296 "nothing" {Nothing};

297

298 // --> B.4.16 pause: Unit Delay

299 // -------------------------------------

300 Pause:

301 "pause" {Pause};

302

303 // --> B.4.17 present: Conditional for Signals

304 // -------------------------------------

305 Present:

306 "present" body=PresentBody (elsePart=ElsePart)? "end" (optEnd="present")?;

307

308 PresentBody:

309 PresentEventBody | PresentCaseList;

310

311 PresentEventBody:

312 event=PresentEvent (thenPart=ThenPart)?;

313

314 PresentCaseList:

149

A Sources

315 cases+=PresentCase (cases+=PresentCase)*;

316

317 PresentCase:

318 "case" event=PresentEvent ("do" statement=Statement)?;

319

320 PresentEvent:

321 expression=SignalExpression | "[" expression=SignalExpression "]" | tick=Tick;

322

323

324 // --> B.4.18 repeat: Iterate a Fixed Number of Times

325 // -------------------------------------

326 Repeat:

327 (positive?="positive")? "repeat" expression=Expression "times" statement=

Statement "end" (optEnd="repeat")?;

328

329 // --> B.4.19 run: Module Instantiation

330 // -------------------------------------

331 Run:

332 "run" module=ModuleRenaming ("[" list=RenamingList "]")? | "copymodule" module=

ModuleRenaming ("[" list=RenamingList

333 "]")?; //deprecated

334

335

336 // Renamings

337 // -------------------------------------

338 ModuleRenaming:

339 module=[Module|ID] | (newName=ID "/" module=[Module|ID]);

340

341 RenamingList:

342 list+=Renaming (";" list+=Renaming)*;

343

344 Renaming:

345 "type" renamings+=TypeRenaming ("," renamings+=TypeRenaming)*
346 | "constant" renamings+=ConstantRenaming ("," renamings+=ConstantRenaming)*
347 | "function" renamings+=FunctionRenaming ("," renamings+=FunctionRenaming)*
348 | "procedure" renamings+=ProcedureRenaming ("," renamings+=ProcedureRenaming)*
349 | "task" renamings+=TaskRenaming ("," renamings+=TaskRenaming)*
350 | "signal" renamings+=SignalRenaming ("," renamings+=SignalRenaming)*;

351

352 TypeRenaming:

353 (newName=[Type|ID] | newType=ValueType) "/" oldName=[Type|ID];

354

355 ConstantRenaming:

356 (newName=[kexpressions::ValuedObject|ID] | newValue=ConstantAtom) "/" oldName=[

kexpressions::ValuedObject|ID];

357

358 FunctionRenaming:

359 (newName=[Function|ID] | newFunc=BuildInFunction) "/" oldName=[Function|ID];

360

150

361 ProcedureRenaming:

362 newName=[Procedure|ID] "/" oldName=[Procedure|ID];

363

364 TaskRenaming:

365 newName=[Task|ID] "/" oldName=[Task|ID];

366

367 SignalRenaming:

368 (newName=[kexpressions::ISignal|ID] | "tick") "/" oldName=[kexpressions::

ISignal|ID];

369

370 // renamings can also rename build in types and functions

371 BuildInFunction:

372 "*" | "/" | "+" | "-" | "mod" | "=" | "<>" | ">" | "<" | "<=" | ">=" | "not" |

"and" | "or";

373

374 // --> B.4.21 suspend: Preemption with State Freeze

375 // -------------------------------------

376 Suspend:

377 "suspend" statement=Statement "when" delay=DelayExpr;

378

379 // --> B.4.22 sustain: Emit a Signal Indefinitely

380 // -------------------------------------

381 Sustain:

382 "sustain" ((signal=[kexpressions::ISignal|ID]) | tick=Tick) ("(" expression=

Expression ")")?;

383

384 // --> B.4.23 trap: TrapDeclaration and Handling

385 // -------------------------------------

386 Trap:

387 "trap" trapDeclList=TrapDeclList "in" statement=Statement

388 (trapHandler+=TrapHandler)* "end" (optEnd="trap")?;

389

390 TrapDeclList:

391 trapDecls+=TrapDecl ("," trapDecls+=TrapDecl)*;

392

393 TrapDecl returns kexpressions::ISignal:

394 {TrapDecl} name=ID channelDescr=(ChannelDescription)?;

395

396 TrapHandler:

397 "handle" trapExpr=TrapExpr "do" statement=Statement;

398

399 // --> B.4.24 var: Local Variable Declaration

400 // -------------------------------------

401 LocalVariable:

402 var=InterfaceVariableDecl "in" statement=Statement "end" (optEnd="var")?;

403

404 // ==

405 // === B.3 Expressions ===

406 // ==

151

A Sources

407

408 // esterel is a bit richer than what is provided by kexpressions. These rules are

introduced here

409 // care about order of the rules!

410 AtomicExpression returns kexpressions::Expression:

411 FunctionExpression

412 | TrapExpression

413 | BooleanValue

414 | ValuedObjectTestExpression

415 | TextExpression

416 | ’(’ BooleanExpression ’)’

417 | ConstantExpression;

418

419 TrapExpression returns kexpressions::Expression:

420 {TrapExpression} "??" trap=[kexpressions::ISignal|ID];

421

422 FunctionExpression returns kexpressions::Expression:

423 {FunctionExpression} function=[Function|ID] "(" (kexpressions+=Expression (","

kexpressions+=Expression)*)? ")";

424

425 ConstantExpression returns kexpressions::Expression:

426 {ConstantExpression} (constant=[Constant|ID] | value=ConstantAtom);

427

428 // --> B.3.5 Trap Expressions <--

429 // -------------------------------------

430 TrapExpr returns kexpressions::Expression:

431 SignalExpression;

432

433 // --> B.3.3 Signal Expressions <--

434 // -------------------------------------

435 SignalExpression returns kexpressions::Expression:

436 SignalAndExpression ({kexpressions::OperatorExpression.subExpressions+=current}

operator=OrOperator

437 subExpressions+=SignalAndExpression)*;

438

439 SignalAndExpression returns kexpressions::Expression:

440 SignalNotExpression ({kexpressions::OperatorExpression.subExpressions+=current}

operator=AndOperator

441 subExpressions+=SignalNotExpression)*;

442

443 SignalNotExpression returns kexpressions::Expression:

444 {kexpressions::OperatorExpression} operator=NotOperator subExpressions+=(

SignalNotExpression) |

445 SignalAtomicExpression;

446

447 SignalAtomicExpression returns kexpressions::Expression:

448 SignalReferenceExpr

449 | "(" SignalExpression ")"

450 | SignalPreExpr

152

451 | TrapReferenceExpr // maybe place this somewhere else

452 ;

453

454 SignalReferenceExpr returns kexpressions::ValuedObjectReference:

455 valuedObject=[kexpressions::ISignal|ID];

456

457 SignalPreExpr returns kexpressions::Expression:

458 {kexpressions::OperatorExpression} operator=PreOperator ’(’ subExpressions+=

SignalReferenceExpr ’)’;

459

460 TrapReferenceExpr returns kexpressions::ValuedObjectReference:

461 {TrapReferenceExpr} valuedObject=[TrapDecl|ID];

462

463 // --> B.3.4 Delay Expressions <--

464 // -------------------------------------

465 DelayExpr:

466 (expr=Expression event=DelayEvent) | event=DelayEvent | (isImmediate?="

immediate" event=DelayEvent);

467

468 DelayEvent:

469 tick=Tick | expr=SignalReferenceExpr | "[" expr=SignalExpression "]";

470

471 // --> Exec

472 // -------------------------------------

473 Exec:

474 ("exec" task=[Task|ID] body=ExecBody "return" retSignal=[kexpressions::ISignal]

("do" statement=Statement)? | "exec"

475 execCaseList+=ExecCase (execCaseList+=ExecCase)*) "end" (optEnd="exec")?;

476

477 ExecBody:

478 {ExecBody} "(" (vars+=[kexpressions::IVariable|ID] ("," vars+=[kexpressions::

IVariable|ID])*)? ")" "("

479 (kexpressions+=Expression ("," kexpressions+=Expression)*)? ")";

480

481 ExecCase:

482 "case" task=[Task|ID] body=ExecBody "return" retSignal=[kexpressions::ISignal]

("do" statement=Statement)?;

483

484 // ==

485 // === B.2 Namespaces and Predefined Objects ===

486 // ==

487 Tick:

488 "tick";

489

490 terminal Esterel_SL_Comment:

491 ’%’ !(’\n’ |

492 ’\r’)* (’\r’? ’\n’)?;

493

494 terminal Esterel_ML_Comment:

153

A Sources

495 (’%’ ’{’)->(’}’ ’%’);

496

497 // allow escaping by double quotes ("this is a ""quote"", how nice.") -

esterelstyle

498 terminal STRING returns ecore::EString:

499 ’"’ (!(’"’) | (’"’ ’"’))* ’"’;

154

Listing A.2: The KiesUtil.ext extension file
1 import ecore;

2 import annotations;

3 import kexpressions;

4 import synccharts;

5 import utilities;

6 import esterel;

7

8 extension feature;

9 extension org::eclipse::xtend::util::stdlib::cloning; // provides clone

functionality

10

11 /*
12 * Convenient methods used by the Esterel to SyncCharts transformation.

13 */

14

15 /**
16 * extracts the expression and immediate information of a esterel::DelayExpr

17 * and adds them to the synccharts::Transition

18 */

19 Void addTriggerToTransition(synccharts::Transition t, DelayExpr delay):

20 if delay.isImmediate then

21 t.setIsImmediate(true) ->

22 // clone the expression as in should stay in esterel model too

23 t.setTrigger((Expression)clone(delay.event.expr)) ->

24 if delay.expr != null then

25 t -> // not yet supported, as synccharts do not offer a delay expression!

26 t

27 ;

28

29 /**
30 * extracts all signals from the InterfaceSignalDecl and adds them to the state

31 */

32 Void extractSignals(InterfaceSignalDecl decl, State s):

33 let clonedDecl = (InterfaceSignalDecl) clone(decl):

34 let copy = (List[Signal]) copyList(clonedDecl.signals):

35 switch {

36 // clone loses the information

37 case Input.isInstance(decl) : (copy.setIsInput(true) -> copy.setIsOutput(

false))

38 case Output.isInstance(decl) : (copy.setIsInput(false) -> copy.setIsOutput(

true))

39 case InputOutput.isInstance(decl) : (copy.setIsInput(true) -> copy.

setIsOutput(true))

40 default : decl //no information about input/output

41 } ->

42 if clonedDecl.signals.size > 0 then

43 copy.addSignalToState(s)

44 ;

155

A Sources

45

46 Void addSignalToState(Signal sig, State st):

47 st.signals.add(sig)

48 ;

49

50 /**
51 * extract all variables

52 */

53 Void extractLocalVariables(VariableDecl decl, State s):

54 let vars = (List[IVariable]) clone(decl.variables):

55 vars.addVariableToState(s)

56 ;

57

58 Void addVariableToState(kexpressions::Variable v, State s):

59 s.variables.add(v)

60 ;

61

62 /**
63 * extracts all local signals

64 */

65 Void extractLocalSignals(LocalSignalList lsl, State s):

66 if LocalSignal.isInstance(lsl) then

67 (let copy = (List[ISignal]) clone(((LocalSignal)lsl).signal):

68 copy.addSignalToState(s)

69)

70 ;

71

72 /**
73 * connects a transition with the two passed states

74 */

75 Void connectTransition(Transition t, State source, State target):

76 t.setSourceState(source) ->

77 t.setTargetState(target) ->

78 source.outgoingTransitions.add(t)

79 ;

80

81 /**
82 * removes EVERYTHING !! body text, sets state type to NORMAL

83 */

84 Void removeBodyText(State s):

85 s.bodyText.removeAll(s.bodyText) ->

86 s.setBodyReference(null) ->

87 s.setType(StateType::NORMAL)

88 ;

89

90 /**
91 * clears bodycontents of ALL child states of State s.

92 */

93 Void clearBodyReferences(State s):

156

94 let states = (Set[State]) s.eAllContents.select(e| State.isInstance(e)

95 \&\& ((State)e).bodyReference != null):

96 states.add(s) ->

97 states.setBodyReference(null)

98 ;

99

100 /**
101 * only sets the label if there’s no previous label

102 */

103 Void setLabelIfEmpty(State s, String label):

104 (s.label == null || s.label.trim().length == 0) ?

105 s.setLabel(label) : s

106 ;

107

108 // collect all traps in an "or" expression

109 Void collectTraps(TrapDeclList traps, OperatorExpression expr):

110 traps.trapDecls.addTrapToExpression(expr)

111 ;

112 // as trap just extends ISignal .. TrapDecl is unknown here

113 Void addTrapToExpression(ISignal trap, OperatorExpression expr):

114 let ref = new ValuedObjectReference:

115 ref.setValuedObject(trap) ->

116 expr.subExpressions.add(ref)

117 ;

118

119 /*
120 * esterel provides additional expression constructs which need to be converted

121 * into a synccharts adequate form.

122 * These are: - FunctionExpression (replaced by hostcode)

123 * - ConstantExpression (replaced by corresponding primitive type)

124 *
125 */

126 Expression convertEsterelExpression(Expression e):

127 if e != null then

128 convertEsterelExpressionRec(e) -> e

129 ;

130 // in case there is no expression at all, null is no problem here

131 Expression convertEsterelExpression(Void v):

132 null

133 ;

134 Void replaceWithCorrespondingExpression(Expression e):

135 let parent = (ComplexExpression) e.eContainer:

136 parent.subExpressions.add(e.convertEsterelExpression()) ->

137 parent.subExpressions.remove(e)

138 ;

139 // apply conversion on children

140 Expression convertEsterelExpressionRec(Expression e):

141 if ComplexExpression.isInstance(e) then

142 ((ComplexExpression) e).subExpressions.convertEsterelExpression()

157

A Sources

143 ;

144 // Function expression

145 Expression convertEsterelExpressionRec(FunctionExpression fe):

146 let textExpr = new TextExpression:

147 textExpr.subExpressions.addAll(fe.kexpressions) ->

148 textExpr.setCode(fe.function.name) ->

149 textExpr

150 ;

151 // Constant expression

152 Expression convertEsterelExpression(ConstantExpression te):

153 convertConstantExpressionJava(te)

154 ;

155

156 /**
157 * finds and returns the initial state of the passed region.

158 * In case an inconsistency occurs, a dummy state is created giving feedback about

the problem.

159 */

160 State findInitialState(Region r):

161 let initials = r.states.select(e|e.isInitial):

162 if initials.isEmpty then

163 (let s = new State:

164 s.setLabel("Inconsistency! Could not find initial state in this region.")

->

165 r.states.add(s) ->

166 initials.add(s)) ->

167 initials.get(0)

168 ;

169

170 /**
171 * creates an immediate weakly aborting transition between the two passed states.

172 */

173 Void createImmediateWeakAbortTo(State from, State to, Transition original):

174 let t = new Transition:

175 from.outgoingTransitions.add(t) ->

176 t.setSourceState(from) ->

177 t.setTargetState(to) ->

178 t.addEffects(original.effects) ->

179 to.incomingTransitions.add(t) ->

180

181 t.setType(TransitionType::WEAKABORT) ->

182 t.setIsImmediate(true)

183 ;

184

185 /**
186 * copies a normal transition with "from" as the new source state.

187 */

188 Void copyNormalTransitionFrom(State from, Transition t):

189 let newT = new Transition:

158

190 newT.setSourceState(from) ->

191 newT.setType(t.type) ->

192 newT.setTrigger((Expression) clone(t.trigger)) ->

193 newT.setEffects((List[Effect]) clone(t.effects)) ->

194 newT.setTargetState(t.targetState) ->

195 from.outgoingTransitions.add(newT) ->

196 t.targetState.incomingTransitions.add(newT)

197 ;

198

199 /**
200 * adds all the passed effects to the transition (clones them previously)

201 */

202 Void addEffects(Transition t, List[Effect] effects):

203 // make sure to clone! as it’s containment

204 t.effects.addAll(clone(effects))

205 ;

206

207 /**
208 * removes the passed transition from all containments

209 */

210 Void removeTransition(Transition t):

211 let source = t.sourceState:

212 let target = t.targetState:

213 t.setTargetState(null) ->

214 t.setSourceState(null) ->

215 source.outgoingTransitions.remove(t) ->

216 target.incomingTransitions.remove(t)

217 ;

218

219 /**
220 * remove a state from its parent region if the state was the last one within that

region.

221 * the region is removed as well.

222 */

223 Void removeStateFromRegion(State state):

224 let parent = state.parentRegion:

225 state.outgoingTransitions.removeAll(state.outgoingTransitions) ->

226 state.incomingTransitions.removeAll(state.incomingTransitions) ->

227 parent.states.remove(state) ->

228 if parent.states.isEmpty then

229 (if parent.parentState != null then

230 parent.parentState.regions.remove(parent))

231 ;

232

233 /**
234 * adds all states of r to the list

235 */

236 Void collectStates(Region r, List[State] states):

237 states.addAll(r.states)

159

A Sources

238 ;

239

240 /**
241 * collects the number of already defined traphalt signals

242 */

243 Integer getNumberOfTraphalts(State s):

244 s.parentRegion.parentState != null ?

245 getNumberOfTraphalts(s.parentRegion.parentState) :

246 getNumberOfTraphaltsFromRoot(s)

247 ;

248 Integer getNumberOfTraphaltsFromRoot(State root):

249 let signals = root.eAllContents.select(e|Signal.isInstance(e)) :

250 let traphalts = signals.select(e|((Signal)e).name.contains("traphalt")):

251 traphalts.size

252 ;

253

254 /**
255 * adds the trap as signal to the specified state.

256 */

257 Void addTrapSignalToState(ISignal trap, State s):

258 addSignalToState((ISignal) clone(trap), s)

259 ;

260

261 /**
262 * collect all traphalts in between an exit and the fired trap

263 */

264 List[ISignal] findAndAddCorrespondingTraphalts(ISignal trap, State s, Transition t

):

265 let found = (Collection[ISignal]) {}:

266 collectTrapHalts(trap, s, found) ->

267 found.addTrapHalt(t) ->

268 found

269 ;

270 Void collectTrapHalts(ISignal trap, State s, Collection[ISignal] found):

271 if !(s.signals.containsSignalWithSameName(trap)) then

272 (let currentHalts = s.signals.select(e|e.name.contains("traphalt")):

273 found.addAll(currentHalts) ->

274 collectTrapHalts(trap, s.parentRegion.parentState, found))

275 ;

276 Void addTrapHalt(Signal traphalt, Transition t):

277 let emission = new Emission:

278 emission.setSignal(traphalt) ->

279 t.effects.add(emission)

280 ;

281 Boolean containsSignalWithSameName(List[Signal] signals, Signal s2):

282 let sameName = signals.select(e|(e.name.matches(s2.name))):

283 !sameName.isEmpty

284 ;

285

160

286 /**
287 * creates a new valued object reference for the passed valued object.

288 */

289 ValuedObjectReference createValObjReference(ValuedObject obj):

290 let ref = new ValuedObjectReference:

291 ref.setValuedObject(obj) ->

292 ref

293 ;

294

295 /**
296 * returns a copy of the passed list, just the list is new, all elements

297 * remain the same

298 */

299 List copyList(List list):

300 let copy = {}:

301 copy.addAll(list)

302 ;

303

304 // to avoid casting

305 List[Transition] copyListTrans(List[Transition] list):

306 let copy = {}:

307 copy.addAll(list)

308 ;

309

310 /**
311 * Predicates used to determine the optimization capacity of a state.

312 */

313

314 Boolean isConditional(State s):

315 s.type == StateType::CONDITIONAL

316 ;

317

318 Boolean isTransitionWithoutTaE(Transition t):

319 t.trigger == null && t.effects.size == 0

320 ;

321

322 Boolean isTransitionWithoutT(Transition t):

323 t.trigger == null

324 ;

325

326 Boolean isImmediateTransition(Transition t):

327 t.isImmediate

328 ;

329

330 Boolean isParallelMacroState(State s):

331 s.regions.size > 1

332 ;

333

334 Boolean isSimpleState(State s):

161

A Sources

335 !s.hasSignalsVariables()

336 && s.regions.isEmpty

337 && s.entryActions.isEmpty

338 && s.innerActions.isEmpty

339 && s.exitActions.isEmpty

340 && s.suspensionTrigger == null

341 ;

342

343 Boolean hasSignalsVariables(State state):

344 scopeHasSignalsVariables(state)

345 ;

346

347 Boolean hasOnlySelfLoop(State s):

348 let self = s.incomingTransitions.select(e|e.targetState == e.sourceState):

349 self.size > 0 && self.size == s.outgoingTransitions.size

350 ;

351

352 Boolean hasNumberOfSubStates(State s, Integer number):

353 let states = (List[State]) {}:

354 s.regions.collectStates(states) ->

355 states.size == number

356 ;

357

358 Boolean hasNumberOfOutgoingTrans(State s, Integer n):

359 s.outgoingTransitions.size == n

360 ;

361

362 Boolean hasNumberOfIncomingTrans(State s, Integer n):

363 s.incomingTransitions.size == n

364 ;

365

366 Boolean hasOutTransitions(State s):

367 !s.outgoingTransitions.isEmpty

368 ;

369

370 Boolean hasOutWeakTransitions(State s):

371 let weaks = s.outgoingTransitions.select(e|e.type == TransitionType::WEAKABORT)

:

372 weaks.size > 0

373 ;

374

375 // only use after checking for existing transitions

376 Boolean hasOnlyMatchingTriggerTrans(State s):

377 let in = s.incomingTransitions.get(0):

378 let out = s.outgoingTransitions.get(0):

379 // incoming trans may not have any effect

380 (in.effects.isEmpty) ?

381 in.compareTrigger(out)

382 :

162

383 false

384 ;

385

386 Boolean hasOutNormalTransitions(State s):

387 let normals = s.outgoingTransitions.select(e|e.type == TransitionType::

NORMALTERMINATION):

388 normals.size > 0

389 ;

390

391 Boolean hasOutStrongTransitions(State s):

392 let strongs = s.outgoingTransitions.select(e|e.type == TransitionType::

STRONGABORT):

393 strongs.size > 0

394 ;

395

396 Boolean hasFinalSubState(State s):

397 let states = (List[State]) {}:

398 s.regions.collectStates(states) ->

399 !states.select(e|e.isFinal).isEmpty

400 ;

401

402 Boolean hasMultipleSimpleFinalSubStates(State s):

403 let regions = s.regions.select(e | e.states.select(e|e.isSimpleState() && e.

isFinal).size > 1):

404 !regions.isEmpty

405 ;

406

407 Boolean hasParentMacroState(State s):

408 s.parentRegion.parentState != null

409 ;

410

411

412 /**
413 * Methods calling Java

414 */

415

416 /**
417 * converts a ConstantExpression into a kexpressions valid form. See javadoc for

further information.

418 */

419 Expression convertConstantExpressionJava(ConstantExpression e):

420 JAVA de.cau.cs.kieler.kies.transformation.util.TransformationUtil.

convertConstantExpression(de.cau.cs.kieler.kies.esterel.ConstantExpression)

421 ;

422

423 /**
424 * sets the state’s body reference and adds TextualCode for the specific esterel

element.

425 */

163

A Sources

426 Void setJavaBodyReference(State s, emf::EObject esterelElement):

427 JAVA de.cau.cs.kieler.kies.transformation.util.TransformationUtil.

setBodyReference(de.cau.cs.kieler.synccharts.State, org.eclipse.emf.ecore.

EObject)

428 ;

429

430 /**
431 * adds all elements of list2 to the front of list1.

432 */

433 Void addToFrontOfList(List list1, List list2):

434 JAVA de.cau.cs.kieler.kies.transformation.util.TransformationUtil.

addToFrontOfList(java.util.List, java.util.List)

435 ;

436

437 /**
438 * compares the two passed triggers and returns wheter they are equivalent.

Ignores possible delays and t2’s effects.

439 */

440 Boolean compareTrigger(Action t1, Action t2):

441 JAVA de.cau.cs.kieler.kies.transformation.util.TransformationUtil.

compareTrigger(de.cau.cs.kieler.synccharts.Action,

442 de.cau.cs.kieler.synccharts.Action)

443 ;

444

445 Void debug(Object obj):

446 JAVA de.cau.cs.kieler.kies.transformation.util.TransformationUtil.debug(java.

lang.Object)

447 ;

164

Bibliography

[Ame10] Torsten Amende. Synthese von SC-Code aus SyncCharts. Diploma the-
sis, Christian-Albrechts-Universität zu Kiel, Department of Computer
Science, May 2010. http://rtsys.informatik.uni-kiel.de/~biblio/

downloads/theses/tam-dt.pdf. xi, 11

[And96] Charles André. SyncCharts: A visual representation of reactive behav-
iors. Technical Report RR 95–52, rev. RR 96–56, I3S, Sophia-Antipolis,
France, Rev. April 1996. 1

[And03] Charles André. Semantics of S.S.M (Safe State Machine). Technical
report, Esterel Technologies, Sophia-Antipolis, France, April 2003. http:
//www.esterel-technologies.com. 6, 10

[BC84] Gérard Berry and Laurent Cosserat. The ESTEREL Synchronous Pro-
gramming Language and its Mathematical Semantics. In Seminar on
Concurrency, Carnegie-Mellon University, volume 197 of LNCS, pages
389–448. Springer-Verlag, 1984. 4

[Ber00] Gérard Berry. The Esterel v5 Language Primer, Version v5_91. Cen-
tre de Mathématiques Appliquées Ecole des Mines and INRIA, 06565
Sophia-Antipolis, 2000. ftp://ftp-sop.inria.fr/esterel/pub/papers/

primer.pdf. xiii, 1, 5, 31, 35

[Ble10] Joachim Bleidiessel. A domain specific language for railway control.
Diploma thesis, Christian-Albrechts-Universität zu Kiel, Department of
Computer Science, December 2010. 140

[EJL+03] Johan Eker, Jörn W. Janneck, Edward A. Lee, Jie Liu, Xiaojun Liu,
Jozsef Ludvig, Stephen Neuendorffer, Sonia Sachs, and Yuhong Xiong.
Taming heterogeneity—the Ptolemy approach. Proceedings of the IEEE,
91(1):127–144, Jan 2003. 1

[Est06] Esterel Technologies. SCADE Technical Manual, 5.1 edition, February
2006. 1

[EZ07] Stephen A. Edwards and Jia Zeng. Code generation in the Columbia
Esterel Compiler. EURASIP Journal on Embedded Systems, Article ID
52651, 31 pages, 2007. 9

165

http://rtsys.informatik.uni-kiel.de/~biblio/downloads/theses/tam-dt.pdf
http://rtsys.informatik.uni-kiel.de/~biblio/downloads/theses/tam-dt.pdf
http://www.esterel-technologies.com
http://www.esterel-technologies.com
ftp://ftp-sop.inria.fr/esterel/pub/papers/primer.pdf
ftp://ftp-sop.inria.fr/esterel/pub/papers/primer.pdf

Bibliography

[Fow05] Martin Fowler. Language Workbenches: The Killer-App for Domain
Specific Languages? June 2005. http://martinfowler.com/articles/

languageWorkbench.html. 16

[Fuh11] Hauke Fuhrmann. On the Pragmatics of Graphical Modeling. Disser-
tation, Christian-Albrechts-Universität zu Kiel, Faculty of Engineering,
Kiel, 2011. xi, 2, 24, 26

[FvH10a] Hauke Fuhrmann and Reinhard von Hanxleden. On the pragmatics
of model-based design. In Foundations of Computer Software. Fu-
ture Trends and Techniques for Development—15th Monterey Workshop
2008, Budapest, Hungary, September 24–26, 2008, Revised Selected Pa-
pers, volume 6028 of LNCS, 2010. 2

[FvH10b] Hauke Fuhrmann and Reinhard von Hanxleden. Taming graphical mod-
eling. In Proceedings of the ACM/IEEE 13th International Conference
on Model Driven Engineering Languages and Systems (MoDELS’10),
LNCS, Oslo, Norway, October 2010. Springer. 2, 26, 141

[GGBM91] Paul Le Guernic, Thierry Goutier, Michel Le Borgne, and Claude Le
Maire. Programming real time applications with SIGNAL. Proceedings
of the IEEE, 79(9), September 1991. 1

[GW06] Holger Giese and Robert Wagner. Incremental model synchronization
with triple graph grammars. In Oscar Nierstrasz, Jon Whittle, David
Harel, and Gianna Reggio, editors,Model Driven Engineering Languages
and Systems, volume 4199 of Lecture Notes in Computer Science, pages
543–557. Springer Berlin / Heidelberg, 2006. 10.1007/11880240_38. 12

[HR01] Nicolas Halbwachs and Pascal Raymond. A Tutorial of Lustre, 2001. 1

[JABK08] Frédéric Jouault, Freddy Allilaire, Jean Bézivin, and Ivan Kurtev. ATL:
A model transformation tool. Science of Computer Programming, 72(1-
2):31 – 39, 2008. Special Issue on Second issue of experimental software
and toolkits (EST). 11

[JM03] Timothy Jacobs and Benjamin Musial. Interactive visual debugging
with UML. In Proceedings of the 2003 ACM Symposium on Software
Visualization, SoftVis 03, pages 115–122, New York, NY, USA, 2003.
ACM. 12

[JS09] Angelika Kusel Werner Retschitzegger Wieland Schwinger Manuel Wim-
mer Johannes Schönböck, Gerti Kappel. Catch me if you can – debug-
ging support for model transformations. In Models in Software Engi-
neering Workshops and Symposia at MODELS 2009, LNCS 6002, pages
5–20, 2009. 12

166

http://martinfowler.com/articles/languageWorkbench.html
http://martinfowler.com/articles/languageWorkbench.html

Bibliography

[Küh06] Lars Kühl. Transformation von Esterel nach SyncCharts. Diploma
thesis, Christian-Albrechts-Universität zu Kiel, Department of Com-
puter Science, February 2006. http://rtsys.informatik.uni-kiel.de/

~biblio/downloads/theses/lku-dt.pdf. 10, 39, 45, 46, 47, 48, 52, 54,
56, 58, 60, 62, 64, 66, 68, 70, 72, 74, 76, 78, 80, 82, 84, 86, 90, 137

[KW07] Ekkart Kindler and Robert Wagner. Triple graph grammars: Concepts,
extensions, implementations, and application scenarios. Technical re-
port, Software Engineering Group, Department of Computer Science,
University of Paderborn, 2007. 12

[LS11] Edward A. Lee and Sanjit A. Seshia. Introduction to Embedded Systems,
A Cyber-Physical Systems Approach. 2011. http://LeeSeshia.org. 1

[Luk10] Adriana Lukaschewitz. Transformation von Esterel nach SyncCharts in
KIELER. Bachelor thesis, Christian-Albrechts-Universität zu Kiel, De-
partment of Computer Science, March 2010. http://rtsys.informatik.
uni-kiel.de/~biblio/downloads/theses/adl-bt.pdf. 10

[Mat10] Michael Matzen. A generic framework for structure-based editing
of graphical models in Eclipse. Diploma thesis, Christian-Albrechts-
Universität zu Kiel, Department of Computer Science, March 2010.
http://rtsys.informatik.uni-kiel.de/~biblio/downloads/theses/

mim-dt.pdf. 11, 42

[MFvH09] Christian Motika, Hauke Fuhrmann, and Reinhard von Hanxleden. Se-
mantics and execution of domain specific models. Technical Report 0923,
Christian-Albrechts-Universität zu Kiel, Department of Computer Sci-
ence, December 2009. 24

[MG06] Tom Mens and Pieter Van Gorp. A taxonomy of model transforma-
tion. Electronic Notes in Theoretical Computer Science, 152:125 – 142,
2006. Proceedings of the International Workshop on Graph and Model
Transformation (GraMoT 2005). 18

[Mot09] Christian Motika. Semantics and execution of domain specific
models—KlePto and an execution framework. Diploma thesis,
Christian-Albrechts-Universität zu Kiel, Department of Computer Sci-
ence, December 2009. http://rtsys.informatik.uni-kiel.de/~biblio/

downloads/theses/cmot-dt.pdf. xi, 10, 24, 25

[Mot10] Christian Motika. Executing synccharts with ptolemy. Presentation at
the 17th International Open Workshop on Synchronous Programming
(SYNCHRON’10), Frejus, France, December 2010. 11

[MSF+11] Christian Motika, Miro Spönemann, Hauke Fuhrmann, Christoph
Krüger, John Julian Carstens, and Reinhard von Hanxleden. KIELER

167

http://rtsys.informatik.uni-kiel.de/~biblio/downloads/theses/lku-dt.pdf
http://rtsys.informatik.uni-kiel.de/~biblio/downloads/theses/lku-dt.pdf
http://LeeSeshia.org
http://rtsys.informatik.uni-kiel.de/~biblio/downloads/theses/adl-bt.pdf
http://rtsys.informatik.uni-kiel.de/~biblio/downloads/theses/adl-bt.pdf
http://rtsys.informatik.uni-kiel.de/~biblio/downloads/theses/mim-dt.pdf
http://rtsys.informatik.uni-kiel.de/~biblio/downloads/theses/mim-dt.pdf
http://rtsys.informatik.uni-kiel.de/~biblio/downloads/theses/cmot-dt.pdf
http://rtsys.informatik.uni-kiel.de/~biblio/downloads/theses/cmot-dt.pdf

Bibliography

Actor Oriented Modeling (KAOM). Poster presented at 9th Biennial
Ptolemy Miniconference (PTCONF’11), Berkeley, CA, USA, February
2011. 11

[Mül10] Martin Müller. View management for graphical models. Master thesis,
Christian-Albrechts-Universität zu Kiel, Department of Computer Sci-
ence, December 2010. http://rtsys.informatik.uni-kiel.de/~biblio/

downloads/theses/mmu-mt.pdf. 26

[Nat08] National Instruments. LabVIEW, visited 03/2008. http://www.ni.com/
labview/. 1

[PBEB07] Dumitru Potop-Butucaru, Stephen A. Edwards, and Gérard Berry.
Compiling Esterel. Springer, May 2007. 4, 31

[PTvH06] Steffen Prochnow, Claus Traulsen, and Reinhard von Hanxleden. Syn-
thesizing Safe State Machines from Esterel. In Proceedings of ACM
SIGPLAN/SIGBED Conference on Languages, Compilers, and Tools
for Embedded Systems (LCTES’06), Ottawa, Canada, June 2006. 1, 4,
10

[PvH07] Steffen Prochnow and Reinhard von Hanxleden. Enhancements of
Statechart-modeling—the KIEL environment. In Proceedings of the
Design, Automation and Test in Europe University Booth (DATE’07),
Nice, France, April 2007. With accompanying poster. 10

[Sch08] Arne Schipper. Layout and Visual Comparison of Statecharts. Diploma
thesis, Christian-Albrechts-Universität zu Kiel, Department of Com-
puter Science, December 2008. http://rtsys.informatik.uni-kiel.de/
~biblio/downloads/theses/ars-dt.pdf. 1

[Sch09] Matthias Schmeling. ThinKCharts—the thin KIELER SyncCharts ed-
itor. Student research project, Christian-Albrechts-Universität zu Kiel,
Department of Computer Science, September 2009. http://rtsys.

informatik.uni-kiel.de/~biblio/downloads/theses/schm-st.pdf. 27

[Sch11] Christian Schneider. On integrating graphical and textual modeling.
Diploma thesis, Christian-Albrechts-Universität zu Kiel, Department of
Computer Science, February 2011. http://rtsys.informatik.uni-kiel.
de/~biblio/downloads/theses/chsch-dt.pdf. xi, 13, 16, 141

[SSBD99] Sanjit A. Seshia, R. K. Shyamasundar, A. K. Bhattacharjee, and S. D.
Dhodapkar. A translation of Statecharts to Esterel. In J. Wing,
J. Woodcock, and J. Davies, editors, FM’99 volume 2— World Congres
on Formal Methods, volume 1709 of LNCS, pages 983–1007. Springer-
Verlag, 99. 9

168

http://rtsys.informatik.uni-kiel.de/~biblio/downloads/theses/mmu-mt.pdf
http://rtsys.informatik.uni-kiel.de/~biblio/downloads/theses/mmu-mt.pdf
http://www.ni.com/labview/
http://www.ni.com/labview/
http://rtsys.informatik.uni-kiel.de/~biblio/downloads/papers/date07-spr-poster.pdf
http://rtsys.informatik.uni-kiel.de/~biblio/downloads/theses/ars-dt.pdf
http://rtsys.informatik.uni-kiel.de/~biblio/downloads/theses/ars-dt.pdf
http://rtsys.informatik.uni-kiel.de/~biblio/downloads/theses/schm-st.pdf
http://rtsys.informatik.uni-kiel.de/~biblio/downloads/theses/schm-st.pdf
http://rtsys.informatik.uni-kiel.de/~biblio/downloads/theses/chsch-dt.pdf
http://rtsys.informatik.uni-kiel.de/~biblio/downloads/theses/chsch-dt.pdf

Bibliography

[TAvH11] Claus Traulsen, Torsten Amende, and Reinhard von Hanxleden. Com-
piling SyncCharts to Synchronous C. In Proceedings of the Design,
Automation and Test in Europe (DATE’11), Grenoble, France, March
2011. 11

[Tra10] Claus Traulsen. Reactive Processing for Synchronous Language
and its Worst Case Reaction Time Analysis. PhD thesis, Christian-
Albrechts-Universität zu Kiel, Faculty of Engineering, 2010.
http://eldiss.uni-kiel.de/macau/servlets/MCRFileNodeServlet/

dissertation_derivate_00003253/ClausTraulsen.pdf. 4, 5, 6

[vH09] Reinhard von Hanxleden. SyncCharts in C—A Proposal for Light-
Weight, Deterministic Concurrency. In Proceedings of the International
Conference on Embedded Software (EMSOFT’09), Grenoble, France,
October 2009. 11

[vHF10] Reinhard von Hanxleden and Hauke Fuhrmann. Taming graphical mod-
eling. Presentation at the 17th International Open Workshop on Syn-
chronous Programming (SYNCHRON’10), Frejus, France, December
2010. 1

169

http://eldiss.uni-kiel.de/macau/servlets/MCRFileNodeServlet/dissertation_derivate_00003253/ClausTraulsen.pdf
http://eldiss.uni-kiel.de/macau/servlets/MCRFileNodeServlet/dissertation_derivate_00003253/ClausTraulsen.pdf

	Introduction
	KIELER
	Problem Statement
	Structure of this Document
	Esterel v5
	SyncCharts

	Related Work
	Esterel
	Statecharts to Esterel
	Synthesizing SyncCharts from Esterel

	Model Transformations
	Transformation Languages
	KIELER Transformations
	Triple Graph Grammars
	Visual Debugging
	Integrating Textual and Graphical Modeling

	Used Technologies
	Eclipse
	Plug-in Mechanism
	Eclipse Modeling Framework
	Xtext
	Xtend

	JUnit
	KIELER
	KIELER Execution Manager
	KIELER Viewmanagement
	Thin KIELER SyncCharts Editor

	Adaption of the Esterel Grammar in KIELER
	Concept
	KExpressions

	Implementation
	Obstacles
	Result

	Visual Transformation
	A Generic Approach
	Graphical User Interface

	Esterel to SyncCharts Transformation
	nothing
	pause
	halt
	abort
	assign
	await
	do-upto
	do-watching
	emit
	every
	if
	local-signal
	local-variable
	loop
	loop-each
	parallel
	present
	call
	sequence
	suspend
	sustain
	trap
	exit

	Optimization of SyncCharts
	Concept
	Removal of Unessential Conditional Pseudostates
	Removal of Unessential Simple States (1)
	Removal of Unessential Simple States (2)
	Merging of Simple Final States
	Removal of Unessential Normal Terminations
	Removal of Unessential Macro States
	Removal of Macro States with Only One Sub-State
	Checking of a State's Final Character

	Implementation
	Creation of a TransformationContext
	Generic Execution

	Implementation of the Esterel to SyncCharts Transformation
	Initial Transformation
	Xtend Implementation
	Java Implementation

	Implementation of the SyncCharts Optimization
	Xtend Implementation
	Java Implementation

	Implementation of the Controlling Combination

	Validation and Experimental Results
	Testing the Esterel Grammar
	Testing the Transformation Implementation
	Experimental Results
	Transformation Durations
	Optimization Quality

	Concluding Results
	Summary
	Conclusions
	Future Work

	Sources
	Bibliography

