
Behavior Trees in SCCharts

Yorik Timo Hansen

Bachelor’s thesis
September 2024

Prof. Dr. Reinhard von Hanxleden
Real-Time and Embedded Systems Group

Department of Computer Science
Kiel University

Advised by
Dr. Alexander Schulz-Rosengarten

Selbstständigkeitserklärung

Hiermit erkläre ich, dass ich die vorliegende Arbeit selbstständig verfasst und keine anderen
als die angegebenen Quellen und Hilfsmittel verwendet habe.

Weiterhin erkläre ich, dass die digitale Fassung dieser Arbeit, die dem Prüfungsamt per
E-Mail zugegangen ist, der vorliegenden schriftlichen Fassung entspricht.

Kiel,

iii

Abstract

Behavior Trees (BTs) offer simplicity and modularity for modeling reactive systems where the
focus is on responding to environmental changes. In contrast, Sequentially Constructive State-
charts (SCCharts) provide a state-driven execution flow, allowing synchronous execution with a
high level of abstraction. This thesis explores different approaches for translations of Behavior
Trees into SCCharts, aiming to combine the advantages of both models. It presents a system-
atic approach to translating Behavior Trees into SCCharts while preserving their modularity
and reactivity. The research analyzes challenges in mapping implicit state behaviors from
Behavior Trees and optimizing SCChart models for readability and scalability. The presented
results demonstrate both the benefits and limitations of this translation, suggesting future
improvements such as the incorporation of dataflow mechanisms and enhanced visualization
techniques to better manage complexity.

Acknowledgements

I would like to express my gratitude to Prof. Dr. Reinhard von Hanxleden and the Real-
Time and Embedded Systems Group for their assistance in addressing my questions and
for offering a welcoming and supportive environment within the working group. Special
thanks go to my advisor, Dr. Alexander Schulz-Rosengarten, for his guidance and support
throughout the process.

I am also deeply grateful to Finn Evers, Merlin Felix, and Tokessa Hamann for their
valuable feedback and companionship, especially during the final days of writing.

Lastly, I would like to extend my appreciation to Dr. h. c. Marit Hansen for taking the
time to proofread this thesis.

v

Contents

1 Introduction 1

2 Preliminaries 3
2.1 Behavior Trees . 3

2.1.1 Leaf Nodes . 4
2.1.2 Sequence and Fallback Nodes . 4
2.1.3 Parallel Node . 5
2.1.4 Decorator Nodes . 5
2.1.5 Shared Memory with Blackboards . 5
2.1.6 Sequence with Memory . 5

2.2 Finite State Machines and Hierarchical State Machines 6
2.3 Sequentially Constructive Statecharts . 7

3 Related Work 9

4 Concept 11
4.1 The Structure of Behavior Trees . 11
4.2 Categorizing the Concepts of Behavior Trees and Comparing Them to Hierar-

chical State Machines . 13
4.3 Encoding the Control Flow of Behavior Trees in SCCharts with Immediate

Transitions . 15
4.4 Extending the Approach . 17

4.4.1 Parallel Nodes . 19
4.4.2 Decorators . 22

4.5 Optimizing for SCCharts . 23
4.6 Detecting State in Behavior Trees . 24

4.6.1 The State Pattern . 24
4.6.2 The Memory Nodes . 24
4.6.3 States on the Blackboard . 26
4.6.4 State in Actions . 27

4.7 Ideas for Other Approaches . 27
4.7.1 Semantically Different RUNNING Actions 28
4.7.2 Potential for Dataflow Integration . 28

5 Evaluation 29
5.1 Challenges in State Detection . 29
5.2 Modularity and Reuse . 29

vii

Contents

5.3 Readability and Visual Complexity . 30
5.4 Semantical Equivalence . 30

6 Conclusion & Future Work 31
6.1 Summary . 31
6.2 Future Work . 31

A Proof of Concept: Python Script 33

Bibliography 49

List of Abbreviations 51

viii

List of Algorithms

1 Pseudocode of a parallel node . 11

ix

List of Figures

2.1 A simple BT for a cleaning robot . 4
2.2 Comparison of a sequence with memory node and implicit memory with BT . 6
2.3 SCChart visual syntax overview . 8

4.1 Comparison of two different BTs that model the same behavior 12
4.2 A BT for a waiter robot . 13
4.3 Comparison of the state machines of Colledanchise and Ögren and the SCChart

translation . 16
4.4 An example for a sequence node in a BT . 17
4.5 The sequence node from Figure 4.4 as an SCChart 17
4.6 A more complex BT with nested trees . 18
4.7 The BT from Figure 4.6 as an SCChart . 18
4.8 A parallel node with two child nodes and a threshold of 1 20
4.9 The parallel node from Figure 4.8 as a product automaton 20
4.10 The parallel node from Figure 4.8 as an SCChart with variables 21
4.11 The parallel node from Figure 4.8 as an SCChart with parallel regions 21
4.12 The inverter decorator as an SCChart . 22
4.13 The repeat N times decorator as an SCChart with N = 3 22
4.14 The BT from Figure 4.6 as an SCChart with scoped signals 23
4.15 The state pattern in a BT . 25
4.16 A BT with a state that is changed by the environment and the actions of the robot 25
4.17 The sequence with memory node from ?? as an SCChart 26
4.18 A BT with a blackboard where orderStep encodes a sensible state while productId

is only an identifier . 27
4.19 A BT for a pacman game . 28

xi

List of Tables

2.1 The return values of the different control flow nodes in a BT 3

4.1 Comparison of the concepts of BTs and HSMs. 13

xiii

Chapter 1

Introduction

Behavior Trees (BTs) and state machines are two widely used models for controlling the
behavior of systems. Behavior Trees, initially popularized in the gaming industry, have
since been adopted across various domains, including robotics and automation, due to their
simplicity, modularity, and ability to manage complex tasks in a reactive manner. They model
system behavior using a hierarchical structure of nodes that determine the flow of execution
based on the state of the environment. On the other hand, Finite State Machines (FSMs) and
Hierarchical State Machines (HSMs) are foundational in modeling deterministic processes
where system behavior is dictated by distinct states and transitions.

With Sequentially Constructive Statecharts (SCCharts), a programming language for reactive
HSMs using the Sequentially Constructive Model of Computation (SC MoC), there exists a
formalism that allows for the modeling of complex systems in a synchronous environment
while maintaining a high level of abstraction.

This thesis explores different methods for translating Behavior Trees into SCCharts, aiming
at preserving the core benefits of Behavior Trees while leveraging the structured, state-driven
execution flow provided by SCCharts. By analyzing the structural and functional similarities
between Behavior Trees and HSMs, this work identifies systematic translation patterns that
maintain semantic equivalence, modularity, and reactivity. Furthermore, the research examines
the challenges posed by Behavior Trees’ implicit state and the potential for optimizing SCCharts

to reduce complexity and improve scalability.
The objective of this thesis is to evaluate different translation possibilities between Behavior

Trees and SCCharts. Through the development of a proof-of-concept translation tool, this work
provides a practical implementation of the proposed translation strategies, enabling the
generation of SCChart models from Behavior Trees Extensible Markup Language (XML) files.
The results highlight both the advantages and limitations of the approach, including the
potential for maintaining modularity and responsiveness as well as the visual complexity
introduced by the translation process. This study also outlines potential future improvements,
such as incorporating dataflow mechanisms and blackboard variables to enhance modularity
and control within SCCharts.

1

Chapter 2

Preliminaries

In this chapter, a foundational understanding of the key concepts and models relevant to this
thesis is provided. To contextualize the translation of Behavior Trees into SCCharts, the concept
of the Behavior Tree and its structure are first introduced, followed by a discussion on FSMs

and HSMs. Additionally, the SCChart language, is introduced. These preliminary concepts form
the basis for the analysis and translation processes that are explored later in this thesis.

2.1 Behavior Trees

Behavior Trees are a way to model the behavior of a system. They are a tree structure, where
the behavior is controlled by a small set of node types that each return one of the three values
SUCCESS, FAILURE or RUNNING to its parent node. A Behavior Tree works with ticks. A tick is a
discrete time step in which the whole tree is evaluated. A tick starts at the root node, which
then ticks its single child node which ticks its child nodes recursively. In the end of a tick, the
nodes return their value to their parent node. The root node then returns the value of the
whole tree to the caller. The tree is ticked again in the next time step.

The few available node types that are depicted in Table 2.1 can be differentiated into leaf
nodes, control flow nodes and decorator nodes, where the leaf nodes represent the actual
behavior of the system while the control flow nodes decide which child to tick next. Decorator
nodes are a type of control flow node that, depending on the implementation of the Behavior

Table 2.1. The return values of the different control flow nodes in a Behavior Tree with N children
(abbreviated as ch). This table is adapted from [MCS+14, Tbl. III] and [CÖ17, Tab. 1.1].

Node Type Symbol Returns SUCCESS Returns FAILURE Returns RUNNING

Root H Tree succeeds Tree fails Tree is running

Sequence Ñ All ch succeed One ch fails One ch is running

Fallback ? One ch succeeds All ch fail One ch is running

Parallel ⇒ ¥ M ch succeed ¡ N �M ch fail Otherwise

Decorator Custom Custom Custom

Conditon If true If false Never

Action On completion Impossible Not yet completed

3

2. Preliminaries

∅

→

?

→In Room

Clean Room

Open Door Move Through Door

Figure 2.1. A simple Behavior Tree for a cleaning robot. The robot first checks if it is in the room. If it
is, it cleans the room. If it is not, it opens the door and moves through it to clean the room.

Tree framework, can be used to influence the behavior of the tree as well.
If not stated otherwise, the following definitions are based on [CÖ17].

2.1.1 Leaf Nodes

Leaf nodes are either condition nodes or action nodes. They do not have any child nodes. A
condition node returns SUCCESS if the condition is met and FAILURE otherwise. An action node
returns SUCCESS if the action was successful, FAILURE if the action failed, and RUNNING if the
action did not finish in the current tick.

In the example Behavior Tree in Figure 2.1, the leaf nodes are the condition node In Room
and the action nodes Open Door, Move Through Door, and Clean Room.

2.1.2 Sequence and Fallback Nodes

The sequence node as well as the fallback a.k.a. selector node are control flow nodes. Sequence
(fallback) nodes tick their child nodes in order from left to right until one of the children
returns FAILURE (SUCCESS) or RUNNING. If all children return SUCCESS (FAILURE), the sequence
(fallback) node returns SUCCESS (FAILURE). If a child returns RUNNING, the sequence (fallback)
node also returns RUNNING.

This means, that the Behavior Tree in Figure 2.1 will first tick the sequence node. This
node will check with a fallback node, if the robot is in the room. If it is, the fallback node
returns SUCCESS and the sequence node will tick the Clean Room action. If the robot is not in
the room, the fallback node ticks its second child, which is a sequence node. This sequence
node will first tick the Open Door action and if that is successful, the Move Through Door
action. If any of these actions fail, the sequence node will return FAILURE. As there is no third

4

2.1. Behavior Trees

child in the fallback node, it will propagate the FAILURE to the sequence node, which will then
return FAILURE to the root node.

2.1.3 Parallel Node

The parallel node is a control flow node that ticks all of its children. After all child nodes have
been ticked, the parallel node calculates the return value based on a threshold value M. If at
least M children return SUCCESS, the parallel node returns SUCCESS. If on the other hand more
than N �M children return FAILURE, the parallel node returns FAILURE. If neither of the two
conditions are met, the parallel node returns RUNNING.

2.1.4 Decorator Nodes

Decorators are a special type of nodes that allow a lot of flexibility in the Behavior Tree, as
they are customizable. Every decorator has exactly one child node. The decorator can map the
return value of the child node to another value and can also control the number of times the
child node is ticked. Some examples of decorators are the inverter decorator, which inverts
the return values SUCCESS and FAILURE, and the repeater decorator, which ticks the child node
a fixed number of times.

Depending on the framework, this customization can be done programmatically during
runtime or by defining the Behavior Tree in a configuration file. This allows for a degree of
flexibility that blurs the line between leaf and control flow nodes, as decorators may be used
to execute actions while controlling the flow of the tree. In some implementations like the
Unreal Engines Behavior Tree framework, it is recommended to use decorators instead of
condition nodes1.

2.1.5 Shared Memory with Blackboards

Shared memory in Behavior Trees is generally not defined. Many frameworks solve this issue
by extending Behavior Trees with blackboards. The blackboard is a globally shared memory
where data is stored in key-value pairs. This allows for nodes to read and write data to the
blackboard and thus share information between nodes. Some definitions of Behavior Trees
allow for locally scoped blackboard variables (i.e.: [SAC+24]). Other definitions explicitly
forbid scopes other than global [GBJ+20].

2.1.6 Sequence with Memory

Another common extension are sequence with memory nodes. The sequence with memory
node is a sequence node that remembers the child that was last ticked. If it returns RUNNING,
it will skip the previous child nodes in the next iterations and tick the child that was ticked

1https://dev.epicgames.com/documentation/en-us/unreal-engine/behavior-tree-in-unreal-engine---overview?application_

version=5.4

5

https://dev.epicgames.com/documentation/en-us/unreal-engine/behavior-tree-in-unreal-engine---overview?application_version=5.4
https://dev.epicgames.com/documentation/en-us/unreal-engine/behavior-tree-in-unreal-engine---overview?application_version=5.4

2. Preliminaries

∅

→*

action1() action2()

(a) A sequence with memory node.

∅

?

→ inv

?

Action 1 done action1()

?

Action 2 done action2()

→ resetActions() resetActions()

(b) The same behavior by using implicit memory.

Figure 2.2. Two Behavior Trees that implement the same behavior. The tree on the left uses a sequence
with memory node, while the tree on the right uses implicit memory by using a sequence and a
blackboard. Adapted from [CÖ17, Fig. 1.8] with the addition that the Behavior Tree here also resets
the memory after the sequence has been completed.

last. If it returns SUCCESS, it will tick the next child in the sequence until it reaches the end of
the sequence or a child returns FAILURE. Sequence with memory nodes can be implemented
using blackboards and normal sequence and fallback nodes as shown in Figure 2.2. Some
frameworks also offer fallback with memory nodes, which work accordingly.

Some implementations of Behavior Trees like Panda BT use sequence with memory nodes
as the default sequence node2. This is contradicting to the philosophy of Behavior Trees as it
leads to less reactivity and is not as expressive as using implicit memory in blackboards to
store the currently active child, but it makes the trees smaller and more readable [BZS21].

2.2 Finite State Machines and Hierarchical State Machines

A FSM is a computational model used to represent and control execution flow based on a
finite number of states. It consists of states, transitions between these states, inputs, and
actions. In an FSM, the system resides in one state at a time, and transitions between states
occur in response to specific inputs. FSMs are commonly used in control systems, parsers, and
sequential logic, as they provide a structured approach for modeling deterministic processes
where the system’s future behavior is fully determined by its current state and input.

2https://www.youtube.com/watch?v=W7p34qhBux8

6

https://www.youtube.com/watch?v=W7p34qhBux8

2.3. Sequentially Constructive Statecharts

A HSM extends the concept of an FSM by allowing states to be organized hierarchically.
This introduces the concept of superstates and substates, where superstates can encapsulate
common behaviors across multiple substates, reducing redundancy and improving scalability
in complex systems. HSMs allow for more efficient modeling of systems with nested or
overlapping states, making them useful in applications where complex state dependencies or
transitions occur.

2.3 Sequentially Constructive Statecharts

SCChart is a synchronous language that extends the concept of HSMs in the SC MoC. It is a
textual language that generates graphical HSM models. As a synchronous language, SCCharts

are executed in ticks where the system is in a well-defined state at the beginning and end of
each tick [Mot17].

SCCharts have a large set of features that make them suitable for modeling complex systems,
as shown in Figure 2.3. The Features are split into two categories: Core SCCharts and Extended
SCCharts. Core SCCharts are the basic features of the language, while Extended SCCharts are
syntactic sugar to simplify the modeling process. This allows for a high level of abstraction
while maintaining a clear and structured representation of the system’s behavior. Some of the
key features of SCCharts that are used for this work include:

During actions Actions that are executed while a state is active, enabling continuous monitor-
ing or adjustments during a state.

History transitions Retain the most recent active substate within a superstate, allowing a
system to resume from where it last left off.

Immediate transitions These enable state transitions to occur within the same tick, allowing for
rapid responses to events.

Local declaration of signals Enables signals to be declared within a local scope, facilitating
modular design and reducing the complexity of signal management.

Parallel regions Allow for concurrent execution of states, enhancing the modeling of systems
with simultaneous activities.

Transition priority Ensures that when multiple transitions are possible, they are executed in a
defined order of importance.

Terminations and weak aborts Terminations signal the end of a state while weak aborts allow
for interrupting ongoing actions under specific conditions without losing intermediate
results.

7

2. Preliminaries

Figure 2.3. SCChart visual syntax overview [Mot17, Figure 3.2.1].

8

Chapter 3

Related Work

The synthesis of FSMs from Behavior Trees was first explored by Kim et al. [KMW+12]. They
introduced a formal transformation from Behavior Tree models to UML state machines,
providing a pathway from natural language requirements to executable models. While their
work was pioneering in linking Behavior Trees and FSMs, they have used Behavior Trees as
described by Dromey [Dro03] while this work focusses on the kind of Behavior Trees that is
also used in the video game industry.

Further advancements in the relationship between Behavior Trees and formal languages
were demonstrated by Schulz-Rosengarten et al. [SMA+23], who established a representation
of Behavior Trees in the synchronous programming language Esterel. This work showcased
how Behavior Trees can function within synchronous languages, expanding their applicability
to fields such as industrial automation and robotics.

In more recent studies, Ahmad [Ahm23] pointed out the need to extend Behavior Trees
with explicit dataflow modeling to handle data dependencies within Behavior Trees, ad-
dressing potential issues like non-determinism. Building on this, Schulz-Rosengarten et al.
[SAC+24] proposed integrating dataflow mechanisms within Behavior Trees using the Lingua
Franca polyglot coordination language, improving modularity and reuse.

A notable body of research has focused on comparing FSMs and Behavior Trees, as well
as HSMs. Colledanchise and Ögren [CÖ17] introduced foundational concepts for translating
between FSMs/HSMs and Behavior Trees, contributing to the growing understanding of their
similarities and differences. Iovino et al. [IFF+24] conducted a practical comparison of FSMs

and Behavior Trees in robotics, highlighting the benefits of Behavior Trees, especially in
complex task management, in terms of modularity and maintainability over FSMs.

Additionally, Ghzouli et al. [GBJ+23] provided a comprehensive study comparing Behavior
Trees and state machines in robotic applications, analyzing their usage within domain-specific
languages and open-source projects. Their work demonstrates an increasing trend toward
adopting Behavior Trees in real-world systems and suggests significant overlap in the design
concepts of both behavior modeling languages.

Finally, Klöckner [Klö15] proposed methods for encoding internal states directly and
explicitly within Behavior Trees, offering solutions for tasks requiring memory. By embedding
FSMs in Behavior Trees tasks and incorporating memory tasks, they provide hybrid solutions
for working with stateful tasks and Behavior Trees.

9

Chapter 4

Concept

The objective of this thesis is to evaluate different translation methods for converting Behavior
Trees into SCCharts. To achieve this, it is necessary to analyze the structural relationship
between these two formalisms. This chapter will explore patterns within Behavior Trees that
can be systematically mapped to SCCharts, aiming to identify a translation process that is both
general and adaptable to various Behavior Trees implementations. Additionally, the chapter
will investigate how implicit states within Behavior Trees can be detected and effectively
utilized during the translation to SCCharts.

4.1 The Structure of Behavior Trees

The strength of Behavior Trees lies in their simplicity and their reactiveness. The simplicity
comes from the fact that Behavior Trees only use a few different types of nodes and that
the control flow is controlled using only three return types. The reactiveness is achieved by
evaluating the tree on every tick from the root node. The hierarchical structure of Behavior
Trees enables modelling and modularizing complex behavior in simple ways. The upwards
propagation of return types allows actions to easily change the control flow of the current
tick.

Algorithm 1: Pseudocode of a parallel node with N children and a success threshold
M [CÖ17].
1 for i Ð 1 to N do
2 childStatus(i) Ð Tick(child(i))

3 if Σi:childStatus(i)=Success1 ¥ M then
4 return Success
5 else if Σi:childStatus(i)=Failure1 ¡ N �M then
6 return Failure

7 return Running

Colledanchise and Ögren provide a pseudo code snippet (as seen in Algorithm 1) that
defines the behavior of parallel nodes. According to this definition, parallel nodes in Behavior
Trees are executed in a order defined by the programmer. This ensures determinicity but
loses some advantages of parallel execution as it does only allow for limited shared resources
and does not facilitate processes that wait for each other in a single tick. The return value

11

4. Concept

Enter Room

∅

→

→ Clean Room

Open Door Move Through Door

(a) A Behavior Tree where a robot enters a room
before cleaning it. The "Enter Room" subtree is
reusable for other Behavior Trees.

Enter Room

∅

→

Move Through DoorOpen Door Clean Room

(b) A Behavior Tree where a robot enters a room
before cleaning it. It is less modular than the tree
in Figure 4.1a.

Figure 4.1. Comparison of two different Behavior Trees that model the same behavior. The tree in
Figure 4.1a is more modular than the tree in Figure 4.1b, but also larger.

of a parallel node is checked after every child node has terminated. Therefore action nodes
are prevented from aborting the execution of other child nodes. These limitations ensure
that subtrees of parallel nodes are not interfering with each other. Similar definitions can
be found in many scientific publications on Behavior Trees [MCS+14; CN22; Ögr]. Recently,
other implementations of parallel nodes have been proposed that are more flexible [SMA+23;
SAC+24].

The core of Behavior Trees is very modular, as the tree structure makes it simple to reuse
subtrees in different Behavior Trees. This modularity sometimes results in larger trees. In
Figure 4.1, two different Behavior Trees are shown that model the same behavior. A robot
enters a room before cleaning it. Entering the room requires opening a door and passing
through it. While this is modeled with its own sequence node in Figure 4.1a, the tree in
Figure 4.1b does not contain this subtree. This flattens the tree but makes it harder to reuse the
behavior of entering a room. Generally, Behavior Trees can be flattened by removing sequence
nodes that have a sequence node as a parent as well as removing fallback nodes that have a
fallback node as a parent. This can be done recursively until the tree is flat, without changing
the behavior of the tree. This often makes the tree harder to maintain as the modularity is
lost, but in certain cases with small Behavior Trees it can be beneficial to reduce the size of
the tree and make it thereby easier to understand.

As Behavior Trees are designed to easily model complex behaviors of systems, they are
often modeled on a high level of abstraction. For example the Behavior Tree in Figure 4.2
shows the model for a waiter robot. Actions like FindBottle() are a black box that can be
implemented in many different ways. This high level of abstraction makes the Behavior Tree
easy to understand and to design, although it decreases the expressiveness of the model
[BZS21].

12

4.2. Categorizing the Concepts of Behavior Trees and Comparing Them to Hierarchical
State Machines

∅

?

→

?

RoomKnown

RobotInRoom GoToRoom()

FollowHuman()

?

BottleFound FindBottle()

?

InvPoseComputed

→

InvPoseValid

?

ComputeInvPose()

?

RobotAtInvPose →

KeepArmsForGrasp() GoToInvPose()

?

BottleLocated LocateBottle()

→

?

?

GraspBottle()

?

BottleGrasped SetInvPoseInvalid()

GlassLocated LocateGlass()

→

PourDrink()

ContentPoured

→ AskForHelp()

Figure 4.2. A Behavior Tree for a waiter robot. Based on Yarp-SmartSoft-Integration1.

4.2 Categorizing the Concepts of Behavior Trees and Comparing
Them to Hierarchical State Machines

This section provides an overview of the key concepts of Behavior Trees and compares
them with the corresponding concepts in HSM. The table below presents a detailed side-by-
side comparison, highlighting similarities and differences in aspects such as control flow,
modularity, and concurrency.

Table 4.1: Comparison of the concepts of Behavior Trees and Hierarchical State Machines.

Root The root node of a Behavior Tree
is ticked every time step.

The initial state of an HSM is the
first state ticked. Subsequent ticks
process the current state.

Conditions Condition nodes read the state of
the environment.

Conditions serve as guards for
transitions between states.

Concept Behavior Trees Hierarchical State Machines

Continued on next page

1https://github.com/CARVE-ROBMOSYS/Yarp-SmartSoft-Integration/

13

https://github.com/CARVE-ROBMOSYS/Yarp-SmartSoft-Integration/

4. Concept

Table 4.1: Comparison of the concepts of Behavior Trees and Hierarchical State Machines.
(Continued)

Actions Action nodes define system
behavior, with multiple actions
executed in the same tick.

Actions execute on transitions,
with some frameworks allowing
execution during state entry, exit,
or presence. Multiple actions per
tick can be achieved via
immediate transitions.

Control Flow Sequence and fallback nodes
control the tree’s flow, relying
solely on the environment.

Control flow in HSMs is governed
by transitions between states,
depending on both the
environment and the current
state.

Modularity Behavior Trees are inherently
modular, allowing subtrees to be
designed and reused
independently.

HSMs are also modular, with state
machines used as substates, and
scoped variables enabling better
information control across states.

Concurrency In scientific publications parallel
nodes are often ticked in a
deterministic predefined order
while frameworks often come
with concurrent execution of child
nodes that introduce race
conditions and unpredictable
behavior [CN22].

Depending on the framework,
HSMs may support parallel
regions through multithreading
or deterministic scheduling, such
as in SCCharts, preventing race
conditions.

Blackboard As discussed in Section 4.6.3,
Behavior Trees often use a
blackboard for storing
information globally, effectively
treating it as part of the
environment. There exist other
implementations that allow for
scoped variables [SAC+24].

HSMs utilize scoped variables for
sharing information between
states, offering more controlled
information management.
SCCharts provide deterministic
semantics.

Concept Behavior Trees Hierarchical State Machines

Continued on next page

14

4.3. Encoding the Control Flow of Behavior Trees in SCCharts with Immediate Transitions

Table 4.1: Comparison of the concepts of Behavior Trees and Hierarchical State Machines.
(Continued)

Responsiveness
to Changes in
the Environment

Behavior Trees actions are driven
solely by the environment state.

HSMs actions depend on both the
environment and the current
state, with more reactive behavior
enabled by state abortion without
needing full transitions.

Expressiveness Behavior Trees provide a
high-level abstraction for
modeling system behavior,
offering simplicity for complex
tasks.

According to [CÖ17], HSMs offer a
lower-level abstraction, typically
closer to implementation, and can
be more complex. This depends
on the framework. For example
with their extended feature set
SCCharts offer a more readable, but
less expressive model that works
on a higher abstraction level, but
core SCCharts operate on a lower
abstraction level. A detailed view
on the expressiveness of different
Behavior Trees and HSMs can be
found in [BZS21].

Concept Behavior Trees Hierarchical State Machines

4.3 Encoding the Control Flow of Behavior Trees in SCCharts with
Immediate Transitions

Colledanchise and Ögren proposed a way to translate Behavior Trees to HSMs that keeps the
reactiveness and modularity of the Behavior Trees, by preserving the original hierarchy of the
Behavior Tree and using immediate transitions to switch between the different states [CÖ17].
Exactly one delayed transition is used to tick the inner state machine. Figure 4.3a shows the
proposed translation and how a similar approach could translate a Behavior Tree to an SCChart

side by side. The following differences can be observed:

� Colledanchise and Ögren did not explicitly use a specific framework for their translated
HSMs. Their proposed translation does not differentiate between immediate and delayed
transitions. As Behavior Trees evaluate the whole tree in every tick, the SCChart must use
only transient states. This means that the state machine does not maintain any persistent
internal state across execution cycles and purely relies on immediate transitions. Every
state (except the "AwaitTick" state) is exited in the same tick it is entered.

� In SCCharts, the SUCCESS, FAILURE and RUNNING states are final states as this makes it easier

15

4. Concept

(a) An FSM behaving like a Behavior Tree [CÖ17, Fig. 2.5].

Tick Source

Generic BT
signal success, failure, running

In

Atomic action or Composition
signal success, failure, running
+

F
entry / failure

3: failure

S
entry / success

1: success

R
entry / running

2: running

-

-

(b) An SCChart behaving like a Behavior Tree.

Figure 4.3. Comparison of the state machines of Colledanchise and Ögren and the SCChart translation.
The SCChart uses signals to communicate the output values of the nodes.

to leave the inner state machine only when it traversed the whole Behavior Tree. As it is
not possible to connect inner states and outer states with transitions, the output value is
read from local signals that are scoped to the inner state machine.

� Colledanchise and Ögren completely ignore guards on their transitions. In SCCharts the
guards are used to map the output value to the corresponding final state. They therefore
check the signal emitted by the inner state machine and transition to the corresponding
final state.

As a proof of concept of the following work, this approach is implemented in a python
script that takes a Behavior Tree in the form of an XML file (compatible with the Behav-
iorTree.CPP framework2) and generates an SCChart file. This shows that it is possible to
systematically map the control flow of Behavior Trees to executable SCCharts using immediate
transitions. The script can be found in the in Appendix A.

The most basic nodes, the leaf nodes, are a black box in translated SCCharts. As long as
a action node emits one of the three output signals or the condition node emits SUCCESS or
FAILURE, the corresponding states can do anything to interact with the environment. It is
therefore possible to use SCCharts as action and condition nodes.

The control flow nodes get translated by transitioning between nodes of the same hierarchy.
For example a basic sequence node as shown in Figure 4.4 gets translated into an SCChart as
being presented in Figure 4.5. The initial state is connected to the first child node. If a child
node terminates with SUCCESS, the state machine transitions into the next child node. If any
child node terminates with FAILURE, the state machine transitions into the FAILURE state, and if
any child node terminates with RUNNING, the state machine transitions into the RUNNING state.
The SUCCESS state is only reached if all child nodes terminate with SUCCESS.

2https://www.behaviortree.dev/

16

https://www.behaviortree.dev/

4.4. Extending the Approach

∅

→

Open Front Door Pass Through Door

Figure 4.4. An example for a sequence node in a Behavior Tree. The robot opens a door and only
passes through if opening the door was successful [CÖ17, Fig. 2.8].

Sequence(Open Front Door, Pass Through Door)
signal success, failure, running

In

Open Front Door
signal success, failure, running

In

signal success, failure, running
+ Atomic Action

F
entry / failure

3: failure

S
entry / success

1: success

R
entry / running

2: running

-

Pass Through Door
signal success, failure, running

In

signal success, failure, running
+ Atomic Action

F
entry / failure

3: failure

S
entry / success

1: success

R
entry / running

2: running

-

1: success

F
entry / failure

2: failure

3: failure

S
entry / success

1: success

R
entry / running

3: running

2: running

-

Figure 4.5. The sequence node from Figure 4.4 as an SCChart. The state machine transitions between
the child nodes depending on their output values.

The fallback nodes are generated accordingly. As the hierarchy level of the SCChart corre-
sponds to the depth of the Behavior Tree, nested trees are translated to nested state machines.
As a result, the more complex Behavior Tree in Figure 4.6 generates the SCChart in Figure 4.7.
The structure of the original Behavior Tree is preserved in the SCChart but is less readable due
to the large number of states and transitions. The SCChart starts evaluating with the outermost
"In"-state and traverses the inner state machines as the Behavior Tree would. The outer state
simulates a fallback node while the two inner states each simulate sequence nodes.

4.4 Extending the Approach

In their work, Colledanchise and Ögren do not define how to handle parallel nodes or
decorators. Following the pattern of simulating the control flow with immediate transitions,
the pattern of the previous section can be extended to handle parallel nodes and decorators
as described in this section.

17

4. Concept

∅

?

→

Open Front Door Pass Through Door

→

Open Back Door Pass Through Door

Figure 4.6. A more complex Behavior Tree with nested trees [CÖ17, Fig. 2.10].

Fallback(Sequence(Open Front Door, Pass Through Door), Sequence(Open Back Door, Pass Through Door))
signal success, failure, running

In

Sequence(Open Front Door, Pass Through Door)
signal success, failure, running

In

Open Front Door
signal success, failure, running

In

signal success, failure, running
+ Atomic Action

F
entry / failure

S
entry / success

R
entry / running

1: success 2: running 3: failure

-

Pass Through Door
signal success, failure, running

In

signal success, failure, running
+ Atomic Action

F
entry / failure

S
entry / success

R
entry / running

1: success 2: running 3: failure

-

F
entry / failure

S
entry / success

R
entry / running

1: success

2: failure

3: running

1: success

2: running

3: failure

-

Sequence(Open Back Door, Pass Through Door)
signal success, failure, running

In

Open Back Door
signal success, failure, running

In

signal success, failure, running
+ Atomic Action

F
entry / failure

S
entry / success

R
entry / running

1: success 2: running 3: failure

-

Pass Through Door
signal success, failure, running

In

signal success, failure, running
+ Atomic Action

F
entry / failure

S
entry / success

R
entry / running

1: success 2: running 3: failure

-

F
entry / failure

S
entry / success

R
entry / running

1: success

2: failure

3: running

1: success

2: running

3: failure

-

F
entry / failure

S
entry / success

R
entry / running

1: success 2: running3: failure

1: success 2: running3: failure

-

Figure 4.7. The Behavior Tree from Figure 4.6 as an SCChart. The generated SCChart is more complex
and less readable due to the amount of transitions and generated states.

18

4.4. Extending the Approach

4.4.1 Parallel Nodes

One challenge with parallel nodes is that they must wait for all child nodes to return a value
before deciding on the output value depending on the number of returned SUCCESS and
FAILURE values. In FSM this could be achieved by building a product automaton. However,
the number of states grows exponentially with the number of child nodes as can be seen
in Figure 4.9. This FSM works without variables by storing the number of child nodes that
have terminated with SUCCESS and FAILURE in the state itself. In the example, the threshold
M is set to 1, which means that the parallel node terminates with SUCCESS if at least one
child node terminates with SUCCESS, RUNNING or FAILURE. For example, the Action 2 state from
Figure 4.9 has three copies representing the numbers of the return values of the previous
child nodes. The comparison with the threshold M and the number of child nodes N is also
directly encoded in the transitions. As M is 1, the state machine will always transition to the
SUCCESS state if the first child node terminates with SUCCESS or any of the second child nodes
terminates with SUCCESS. It will only return FAILURE if both child nodes terminate with FAILURE.
Changing this value would require the generation of a new FSM.

Since SCCharts allow the use of variables, the number of states can be reduced by using
counter variables to keep track of the number of child nodes that have terminated with
SUCCESS or FAILURE. As an example Figure 4.8 shows a parallel node with two child nodes
and a threshold M of 1. The SCChart in Figure 4.10 keeps track of the number of child nodes
that terminated with SUCCESS and FAILURE with successCounter and failureCounter. After a
termination of a child node, the corresponding counter is incremented. If the child node
returns RUNNING, the control flow continues with the next child node without changing any
counter. If the last child node has terminated, the output state is determined by checking the
counter variables. If the number of children that have terminated with SUCCESS is greater or
equal to the threshold M, the state machine transitions into the SUCCESS state. If the number
of children that have terminated with FAILURE is greater than N � M, the state machine
transitions into the FAILURE state. Otherwise the state machine transitions into the RUNNING

state. This approach does not only use variables to reduce the number of states, but encodes
the number of child nodes N and the threshold M as constants in the SCChart. This makes the
SCChart more readable and easier to maintain.

Building on the idea of using variables, ticking the child nodes in parallel is possible by
using parallel regions. As discussed in Section 4.1, this is not semantically equivalent to the
definition by Colledanchise and Ögren, but it fulfills the general definition of ticking every
child node and deciding on the output value after all child nodes have returned a value.
Figure 4.11 shows that this strategy still needs variables to keep track of the return values of
the child nodes. Additionaly, it is necessary to use join transitions to ensure that the child
nodes have all terminated before deciding on the output value. Using parallel regions comes
with the benefits of the SC MoC such as being able to handle shared resources in a single tick.
The compiler schedules the execution of the different parallel regions in a deterministic order,
where write processes are executed before read processes. This is not real concurrency, as the
execution order is pre defined and the program is running on a single thread. As synchronous

19

4. Concept

∅

→
→

action1() action2()

Figure 4.8. A parallel node with two child nodes and a threshold of 1.

Parallel[M=1](Action 1, Action 2)
signal success, failure, running

In

Action 1 (S: 0; R: 0; F: 0)
signal success, failure, running

In

signal success, failure, running
+ Atomic Action

F
entry / failure

3: failure

S
entry / success

1: success

R
entry / running

2: running

-

Action 2 (S: 1; R: 0; F: 0)
signal success, failure, running

In

signal success, failure, running
+ Atomic Action

F
entry / failure

3: failure

S
entry / success

1: success

R
entry / running

2: running

-

1: success

Action 2 (S: 0; R: 0; F: 1)
signal success, failure, running

In

signal success, failure, running
+ Atomic Action

F
entry / failure

3: failure

S
entry / success

1: success

R
entry / running

2: running

-

2: failure

Action 2 (S: 0; R: 1; F: 0)
signal success, failure, running

In

signal success, failure, running
+ Atomic Action

F
entry / failure

3: failure

S
entry / success

1: success

R
entry / running

2: running

-

3: running

F
entry / failure

2: failure

S
entry / success

1: success

2: failure

3: running

1: success

1: success

R
entry / running

3: running

2: failure

3: running

-

Figure 4.9. The parallel node from Figure 4.8 as a product automaton.

languages work under the assumption that atomic actions and computations do not take time,
this is not a problem [BG92].

20

4.4. Extending the Approach

Parallel[M=1](Action 1, Action 2)
const int N = 2
const int M = 1
int successCount = 0
int failureCount = 0
signal success, failure, running

In

Action 1
signal success, failure, running

In

signal success, failure, running
+ Atomic Action

F
entry / failure

3: failure

S
entry / success

1: success

R
entry / running

2: running

-

Action 2
signal success, failure, running

In

signal success, failure, running
+ Atomic Action

F
entry / failure

3: failure

S
entry / success

1: success

R
entry / running

2: running

-

1: success / successCount++

2: failure / failureCount++

3: running

1: success / successCount++

2: failure / failureCount++

3: running

F
entry / failure

2: failureCount > N - M

S
entry / success

1: successCount >= M

R
entry / running

3:

-

Figure 4.10. The parallel node from Figure 4.8 as an SCChart with variables.

Parallel[M=1](Action 1, Action 2)
const int N = 2
const int M = 1
int successCount = 0
int failureCount = 0
signal success, failure, running

In

In

Action 1
signal success, failure, running

In
signal success, failure, running
+ Atomic Action

F
entry / failure

3: failure

S
entry / success

1: success

R
entry / running

2: running

-

Out

1: success / successCount++ 2: failure / failureCount++ 3: running

-

In

Action 2
signal success, failure, running

In
signal success, failure, running
+ Atomic Action

F
entry / failure

3: failure

S
entry / success

1: success

R
entry / running

2: running

-

Out

1: success / successCount++ 2: failure / failureCount++ 3: running

-

S
entry / success

1: successCount >= M

F
entry / failure

2: failureCount > N - M

R
entry / running

3:

-

Figure 4.11. The parallel node from Figure 4.8 as an SCChart with parallel regions.

21

4. Concept

BTInvert
signal success, failure, running

In

signal success, failure, running

F
entry / failure

2: success

S
entry / success

1: failure

R
entry / running

3: running

-

Figure 4.12. The inverter decorator as an SCChart.

BTRepeat(N = 3)
signal success, failure, running

In

A (1)
signal success, failure, running

A (2)
signal success, failure, running

1: success || failure

A (3)
signal success, failure, running

1: success || failure

F
entry / failure

2: failure

S
entry / success

1: success

R
entry / running

2: running

2: running

3: running

-

Figure 4.13. The repeat N times decorator as an SCChart with N = 3.

4.4.2 Decorators

The translation of decorator nodes depends on the type of decorator. Remapping the output
types of a child node is straightforward, as the inverter decorator in Figure 4.12 illustrates.
Changing the number of times a child node is ticked is not as trivial, because deterministic
state machines do not work with immediate loops. If the number of times a child node is
ticked is known at compile time, the child node can be duplicated and the output states of the
child node can be mapped to the output states of the decorator. This is shown in Figure 4.13.
The output of the child node can be changed by mapping the output states of the child node
to the output states of the decorator.

22

4.5. Optimizing for SCCharts

BTRoot
signal success, failure, running

In

Fallback(Sequence(Open Front Door, Pass Through Door), Sequence(Open Back Door, Pass Through Door))
signal success, failure, running

In

Sequence(Open Front Door, Pass Through Door)
signal failure

In

Open Front Door
signal success

In + Atomic Action

-

Pass Through Door
signal success

In + Atomic Action

-

S
entry / success

success

success

-

Sequence(Open Back Door, Pass Through Door)
signal failure

In

Open Back Door
signal success

In + Atomic Action

-

Pass Through Door
signal success

In + Atomic Action

-

S
entry / success

success

success

-

F
entry / failure

failure failure

-

F
entry / failure

S
entry / success

R
entry / running

1: success 2: running 3: failure

-

Figure 4.14. The Behavior Tree from Figure 4.6 as an SCChart with scoped signals.

4.5 Optimizing for SCCharts

The approach presented in Section 4.3 is very verbose and generates large state machines
with many transitions. For example RUNNING is propagated upwards unless the parent node
is a parallel node. This means that every inner state machine has to have a RUNNING state, a
corresponding signal for that state and transitions to the state.

Using properly scoped signals and utilizing aborts can reduce the size of the generated
SCChart and improve the readability. Using the previous example of Figure 4.7 in Figure 4.14,
signals (and states) can be reduced. Signals only need to be defined in the scope in which they
are relevant for a reaction. This means that the RUNNING signal is only needed in the outermost
scope or in specific decorators. For children of sequence (fallback) nodes, the output signals
can be scoped so that the FAILURE (SUCCESS) signal of the child is directly connected to the
FAILURE (SUCCESS) signal of the parent node.

23

4. Concept

4.6 Detecting State in Behavior Trees

The previous sections showed how the control flow of Behavior Trees can be translated into
SCCharts. The objective of this thesis is to evaluate different translations especially for utilizing
the state of the Behavior Tree in the SCChart. As responsiveness to the environment is a key
feature of Behavior Trees, detecting state in Behavior Trees is unintuitive and non trivial due
to the lack of explicit state in Behavior Trees [Klö15]. There are different possibilities of how
state could be encoded in Behavior Trees and how this state could be detected and used in
the translation to SCCharts, as elaborated in the following subsections.

4.6.1 The State Pattern

In their work, Colledanchise and Ögren do not only explore a way to create FSMs from
Behavior Trees, but also a process to perform a translation the other way around. They
propose an approach where the state of the FSM is encoded by a state variable and depending
on its value, the Behavior Tree executes different actions [CÖ17]. As seen in Figure 4.15, the
pattern consists of a fallback node with sequence nodes as children. Each sequence nodes
models a state. The sequence nodes start with a condition that checks the state variable. After
that, it is checked if transitions between the states should be taken. If so, the state variable is
updated. If the state variable is not updated, the actions of the state are executed. This can be
abstracted into a pattern where a fallback node combined with many sequence nodes which
start with conditions that check the state variable can be used to simulate a state machine.
This and similar patterns can be found in many Behavior Trees (e.g. in Figure 4.2).

As the pattern is expressive, it is detectable and theoretically even possible to extract a
state machine from it.

This pattern is sometimes obfuscated by the use of modular subtrees, so before detecting
this pattern the Behavior Tree must be flattened. Additionally, Figure 4.16 shows that the
pattern does not always use a single level of hierarchy to encode the state or explicitly switches
state. Here the state condition In Room can be inverted and the actions Enter Room and Clean
Room can be swapped to see the pattern more clearly. The state in this example is changed
by the environment and the actions of the robot. Detecting transitions between states is not
possible in this example.

4.6.2 The Memory Nodes

As discussed in Section 2.1.6, there is a Behavior Tree extension for sequence with memory
nodes. In their paper, Ghzouli et al. [GBJ+23] analyze the quantity of different node types in
Behavior Trees. Unfortunately, they grouped memory nodes with their memoryless counter-
parts and did not provide a detailed analysis of the usage of memory, but analyzing their
publicly available dataset3 shows that 30% of the examined Behavior Trees used memory
nodes to encode state. Additionally, some frameworks only provide memory nodes to store

3https://bitbucket.org/easelab/behaviortrees

24

https://bitbucket.org/easelab/behaviortrees

4.6. Detecting State in Behavior Trees

∅

?

→ →

In state 1 action1()
check possible transitions
and change state variable

if necessary
In state 2 action2()

check possible transitions
and change state variable

if necessary

Figure 4.15. The state pattern in a Behavior Tree. Based on [CÖ17, Fig. 2.13].

∅

?

→

Charge BatteryRequires Charging

→

Open DoorDoor is Closed

→

? Clean Room

Enter RoomIn Room

Figure 4.16. A Behavior Tree where the state is changed by the environment and the actions of the
robot. The state is not explicitly encoded in the Behavior Tree.

state or do this by default. This implies that a non-negligible amount of Behavior Trees use
memory nodes to explicitly store state. As the state is stored in the memory nodes, it is
possible to extract the state from the Behavior Tree and potentially use it in the translation to
the SCChart.

Additionaly there are some decorators like the "Run until Success" decorator, where the
state can also be translated directly to the SCChart. It is important to note that there might be
other decorators that store state internally, as they are custom for different Behavior Trees
and therefore it is not possible to generalize this state extraction method.

The attached python script converts the memory nodes to normal sequence nodes and
introduces state variables (as described in Section 2.1.6) to keep track of the state. This solution
adds many states and transitions to the SCChart and is therefore not optimal.

A different approach can be seen in Figure 4.17. The sequence with memory is encoded as

25

4. Concept

SeqMem

BTGlobal
signal success, failure, running

Main
signal success, failure, running

In

Sequence
signal success, failure, running

In

State1
signal success
+ Action 1

State2
signal success
+ Action 2

success
S

entry / success
success

- SequenceNode

1: pre(running) 2:

S
entry / success

1: success

F
entry / failure

2: failure

R
entry / running

3: running

- SequenceWithMemoryNode

S
entry / success

1: success

F
entry / failure

2: failure

R
entry / running

3: running

- Global

AwaitTick

-

Figure 4.17. The sequence with memory node from Figure 2.2a as an SCChart with shallow history
transitions.

a wrapper around the sequence node. If the sequence node terminated with RUNNING in the
previous tick, the sequence with memory node uses a shallow history transition to continue
with the last child node in the sequence. This approach is more readable but did not compile
successfully during testing.

4.6.3 States on the Blackboard

Memory nodes can be substituted by using only pure Behavior Tree nodes and storing
information on the blackboard. This is the most expressive way to store state in Behavior
Trees [BZS21], but is also very hard to detect as the blackboard might contain all kinds of
information.

This can be seen in Figure 4.18. The Behavior Tree models a robot that takes an order,
prepares it and handles the payment. These steps will always be executed in the same order.
The robot stores the current step on the blackboard in the orderStep variable. The productId

is only an identifier and does not encode a sensible state. It is not trivial and in general not
possible to detect which variables encode state and which do not, as systems can use the
blackboard for many different purposes.

26

4.7. Ideas for Other Approaches

∅

?

→

orderStep == 0

Ask for Order

orderStep++

→

?orderStep == 1 orderStep++

→

orderStep == 2 Handle Payment

→

productId == 1 Produce Product 1

→

productId == 2 Produce Product 2

→

Save Order in productID

Figure 4.18. A Behavior Tree with a blackboard where orderStep encodes a sensible state while
productId is only an identifier.

A solution to this problem could be a special node or a decorator that marks variables on
the blackboard as state variables and transition actions as state transitions. It is to be noted
that this would only work for specific Behavior Trees and would decrease the responsiveness
to changes in the environment.

4.6.4 State in Actions

As Behavior Trees are used to control the actions of a system on a higher abstraction level, the
state of the system is often encoded in the actions themselves. This means that the Behavior
Tree is only used to determine which action to take next and the actions keep track of the
progress that has been made. The Behavior Tree in Figure 4.19 shows an example of this. The
Behavior Tree models a pacman Artificial Intelligence (AI). The actions are on a high level of
abstraction. The Behavior Tree includes no information about the environment around the
pacman, and keeps track of the state of the game in the actions, as this is encoded in the
actions themselves. The Behavior Tree only determines which action to take.

Detecting this state by only analyzing the Behavior Tree is not possible, but when the
actions are SCCharts themselves, the state of the system would be directly encoded in the
translated SCChart.

4.7 Ideas for Other Approaches

This section explores other ideas for translating Behavior Trees to SCCharts. These ideas are
not as well elaborated as the previous ones and are therefore only briefly discussed.

27

4. Concept

∅

?

→

?Ghost Close

→

Ghost Scared Chase Ghosts

Eat Pills

Avoid Ghosts

Figure 4.19. A Behavior Tree for a pacman game. The state of the game is encoded in the actions.
Based on [CÖ17, Fig. 1.11].

4.7.1 Semantically Different RUNNING Actions

If a child of the sequence or fallback nodes returns RUNNING, the signal will be propagated
to the parent node until it reaches the root or a parallel node. Under the assumption that a
node that did not terminate with SUCCESS or FAILURE should be ticked again in the next tick,
nodes that return RUNNING could be viewed as states that the program stays in until proper
termination. This could result in more efficient SCCharts, but makes it a lot harder to detect the
different reasons why a node should not be ticked again but aborted. This would therefore
only work for specific Behavior Trees.

4.7.2 Potential for Dataflow Integration

The approach in Section 4.3 depends purely on immediate transitions between states. This
does not make use of the advantages of an HSM, but is very similar to data flow diagrams. As
SCCharts support data flow, building the data flow diagram of the Behavior Tree is a viable
approach to translate Behavior Trees to SCCharts. This was already done in lingua franca
[SAC+24]. As this work focuses on the relationship between state machines and Behavior
Trees, this approach has not been further investigated.

28

Chapter 5

Evaluation

This chapter evaluates the SCChart representation of Behavior Trees by discussing utilization
of SCChart features, responsiveness to the environment, modularity, and readability. The aim
is to explore the strengths and limitations of translating Behavior Trees into SCCharts while
considering the trade-offs between semantic equivalence and model complexity.

5.1 Challenges in State Detection

Extracting states from Behavior Trees to create SCCharts poses several challenges. In Behavior
Trees, states are often hidden within the action nodes. Additionally, responding to unexpected
events in the environment requires multiple actions to be executed in a single tick. This
requires the use of immediate transitions in the SCChart model to ensure that the system
promptly reacts to changes in the environment. As a result, the proposed strategy does not
make use of non-transient states. Unlike traditional FSMs and SCCharts, where states retain
memory across ticks, all states in the generated SCChart model are transient. This means that
the state machine does not maintain any persistent internal state across execution cycles. Each
state is exited after a single tick, and the system transitions immediately to the next state
based on the environment.

This work shows that detecting states of memory nodes is straightforward, as they are
explicitly defined in the SCChart model. However, utilizing this information in combination
with the otherwise non-transient states remains a challenge.

5.2 Modularity and Reuse

One of the key strengths of Behavior Trees is their inherent modularity. Subtrees in a Behavior
Tree can be designed and tested independently, allowing for easy reuse and scalability in
complex systems. This property is preserved in the SCChart representation, as the hierarchy
of the Behavior Tree is directly translated into the hierarchy of SCCharts. This is not only
beneficial for the development process and the maintainability of the system, but it also
improves the performancy of the compilation process [Lüd21].

29

5. Evaluation

5.3 Readability and Visual Complexity

Despite the advantages of modularity, the generated SCCharts tend to suffer from readability
issues. As more transitions are added to preserve responsiveness and transient states are used
for every node, the visual complexity of the model increases. A large number of transitions
and states make the SCChart difficult to comprehend, especially in cases where multiple
environmental conditions have to be handled within a short span of time. This can lead
to a cluttered and confusing model, which may hinder the understanding of the system’s
behavior.

5.4 Semantical Equivalence

The proposed translation strategy aims to preserve the semantics of the Behavior Tree in the
generated SCChart model, as the strategies for the different node types are designed to reflect
the control flow of the original Behavior Tree. Parallel nodes would benefit from the use of
parallel regions as their semantics are well defined in SCCharts.

30

Chapter 6

Conclusion & Future Work

This chapter presents a summary of the research conducted in this thesis and provides
directions for future work.

6.1 Summary

The SCChart representation of Behavior Trees offers a promising method for combining the
reactive nature of Behavior Trees with the formal structure of state machines. Extracting
state from Behavior Trees is inherently challenging due to the Behavior Tree philosophy of
avoiding internal states to maximize responsiveness to environmental changes. Despite this
challenge, Behavior Trees can be translated directly into Sequentially Constructive Statecharts,
preserving key behavioral properties such as modularity and semantic equivalence.

Using Behavior Trees in Sequentially Constructive Statecharts enables high-level abstrac-
tion of behavior while allowing for detailed implementation of actions within state charts. This
combination provides a powerful tool for modeling systems that require both high reactivity
and formal state management. However, this approach comes with trade-offs, notably the
use of transient states and a high number of transitions, which can lead to significant visual
complexity.

Although Sequentially Constructive Statecharts preserve the modularity and responsive-
ness of Behavior Trees, managing the resulting models can become challenging due to their
complexity. Future work could mitigate these issues by incorporating dataflow mechanisms
and exploring new visualization techniques to improve scalability and readability.

6.2 Future Work

Future research will focus on several areas to further enhance the integration of Behavior Trees
with SCCharts. One key direction is the development of a Domain-Specific Language (DSL)
for Behavior Trees that compiles directly into SCCharts. This would streamline the process
of generating SCCharts models from Behavior Trees and facilitate their integration into the
Kiel Integrated Environment for Layout Eclipse Rich Client (KIELER) framework. Such a DSL

could provide an abstraction layer that simplifies the modeling and implementation process,
making the combined use of Behavior Trees and SCCharts more accessible and scalable.

Additionally, the use of blackboard variables, which are commonly employed in Behavior
Trees, presents an opportunity for improved information sharing within SCCharts. By exploring

31

6. Conclusion & Future Work

how blackboard variables can be effectively incorporated into SCChart models, future work can
enable more efficient handling of shared memory between states, ensuring better modularity
and controlled access to state information.

Finally, the implementation of these proposed approaches in the KIELER framework will
be a significant step forward. This will allow for the practical evaluation of the methods
discussed, testing their efficiency and scalability in real-world applications. The integration of
these tools into KIELER will provide a practical foundation for further experimentation and
refinement of the combination of Behavior Trees and SCCharts.

32

Appendix A

Proof of Concept: Python Script

from typing import Optional, Tuple, Set, List

import xml.etree.ElementTree as ET

import sys

Global variable to indicate if the environment interface has actions

(if it provides <action>Success, <action>Failure, <action>Running signals)

interface_has_actions = False

def sequence_node(

children: List[ET.Element],

listens_to: str = ’success, failure, running’,

imports: Optional[Set[str]] = None,

state_vars: Optional[Set[str]] = None

) -> Tuple[str, Optional[Set[str]], Optional[Set[str]]]:

"""

Generates SCChart code for a sequence node with multiple children.

Args:

children (List[ET.Element]): The child nodes of the sequence node.

listens_to (str): Signals the node listens to

(default: ’success, failure, running’).

imports (Optional[Set[str]]): Set of imported modules (default: None).

state_vars (Optional[Set[str]]): Set of state variables (default: None).

Returns:

Tuple[str, Optional[Set[str]], Optional[Set[str]]]: A string of

generated SCChart code, imports, and state variables.

"""

out = f’’’

/* Sequence node with {len(children)} children */

signal {listens_to}

33

A. Proof of Concept: Python Script

region SequenceNode {{

initial state In

immediate go to {’State1’ if len(children) else ’S’}

final state S {{

entry do success

}}

’’’

for i, child in enumerate(children):

parsed_tree, imports, state_vars = parse_tree(

child, ’success’, imports, state_vars)

out += f’’’

state State{i + 1} {{

{parsed_tree}

}}

immediate if success go to {

’State’ + str(i + 2) if i + 1 < len(children) else ’S’

}

’’’

out += ’’’

}

’’’

return out, imports, state_vars

def fallback_node(children: List[ET.Element],

listens_to: str = ’success, failure, running’,

imports: Optional[Set[str]] = None,

state_vars: Optional[Set[str]] = None

) -> Tuple[str, Optional[Set[str]], Optional[Set[str]]]:

"""

Generates SCChart code for a fallback node with multiple children.

Args:

children (List[ET.Element]): The child nodes of the fallback node.

listens_to (str): Signals the node listens to

(default: ’success, failure, running’).

imports (Optional[Set[str]]): Set of imported modules (default: None).

34

state_vars (Optional[Set[str]]): Set of state variables (default: None).

Returns:

Tuple[str, Optional[Set[str]], Optional[Set[str]]]: A string of

generated SCChart code, imports, and state variables.

"""

out = f’’’

/* Fallback node with {len(children)} children */

signal {listens_to}

region FallbackNode {{

initial state In

immediate go to {’State1’ if len(children) else ’F’}

final state F {{

entry do failure

}}

’’’

for i, child in enumerate(children):

parsed_tree, imports, state_vars = parse_tree(

child, ’failure’, imports, state_vars)

out += f’’’

state State{i + 1} {{

{parsed_tree}

}}

immediate if failure go to {

’State’ + str(i + 2) if i + 1 < len(children) else ’F’

}

’’’

out += ’’’

}

’’’

return out, imports, state_vars

def parallel_node(

children: List[ET.Element],

failure_count: int,

success_count: int,

35

A. Proof of Concept: Python Script

listens_to: str = ’success, failure, running’,

imports: Optional[Set[str]] = None,

state_vars: Optional[Set[str]] = None

) -> Tuple[str, Optional[Set[str]], Optional[Set[str]]]:

"""

Generates SCChart code for a parallel node with multiple children.

Args:

children (List[ET.Element]): The child nodes of the parallel node.

failure_count (int): Number of failures allowed before the parallel

node fails.

success_count (int): Number of successes required for the parallel

node to succeed.

listens_to (str): Signals the node listens to

(default: ’success, failure, running’).

imports (Optional[Set[str]]): Set of imported modules (default: None).

state_vars (Optional[Set[str]]): Set of state variables (default: None).

Returns:

Tuple[str, Optional[Set[str]], Optional[Set[str]]]: A string of

generated SCChart code, imports, and state variables.

"""

if failure_count < 0:

failure_count = len(children) + failure_count

if success_count < 0:

success_count = len(children) + success_count

out = f’’’

/* Parallel node with {len(children)} children */

signal {listens_to}

int maxFailureCount = {failure_count}

int maxSuccessCount = {success_count}

region ParallelNode {{

initial state In {{

signal running

int failureCount = 0

int successCount = 0

’’’

36

for i, child in enumerate(children):

parsed_tree, imports, state_vars = parse_tree(

child, ’success, failure, running’, imports, state_vars)

out += f’’’

region Region{i + 1} {{

initial state In {{

{parsed_tree}

}}

immediate if success do successCount++ join to Out

immediate if failure do failureCount++ join to Out

immediate if running join to Out

final state Out

}}

’’’

out += ’’’

}

immediate if failureCount >= maxFailureCount join to F

immediate if successCount >= maxSuccessCount join to S

immediate join to R

final state S {{

entry do success

}}

final state F {{

entry do failure

}}

final state R {{

entry do running

}}

}

’’’

return out, imports, state_vars

def action_node(

code: str,

listens_to: str = ’success’,

37

A. Proof of Concept: Python Script

imports: Optional[Set[str]] = None,

state_vars: Optional[Set[str]] = None

) -> Tuple[str, Optional[Set[str]], Optional[Set[str]]]:

"""

Generates SCChart code for an action node.

Args:

code (str): The action code to execute.

listens_to (str): Signals the node listens to (default: ’success’).

imports (Optional[Set[str]]): Set of imported modules (default: None).

state_vars (Optional[Set[str]]): Set of state variables (default: None).

Returns:

Tuple[str, Optional[Set[str]], Optional[Set[str]]]: A string of

generated SCChart code, imports, and state variables.

"""

if interface_has_actions:

return f’’’

/* Action node */

signal {listens_to}

region ActionNode {{

initial state In

immediate do {code} go to C

connector state C

immediate if {code}Success go to S

immediate if {code}Failure go to F

immediate if {code}Running go to R

immediate go to F

final state S {{

entry do success

}}

final state F {{

entry do failure

}}

final state R {{

entry do running

38

}}

}}

’’’, imports, state_vars

else:

return f’’’

/* Action node */

signal {listens_to}

region ActionNode {{

initial state In

immediate do {code} go to S

final state S {{

entry do success

}}

}}

’’’, imports, state_vars

def condition_node(

condition: str,

listens_to: str = ’success, failure’,

imports: Optional[Set[str]] = None,

state_vars: Optional[Set[str]] = None

) -> Tuple[str, Optional[Set[str]], Optional[Set[str]]]:

"""

Generates SCChart code for a condition node.

Args:

condition (str): The condition to check.

listens_to (str): Signals the node listens to

(default: ’success, failure’).

imports (Optional[Set[str]]): Set of imported modules (default: None).

state_vars (Optional[Set[str]]): Set of state variables (default: None).

Returns:

Tuple[str, Optional[Set[str]], Optional[Set[str]]]: A string of

generated SCChart code, imports, and state variables.

"""

return f’’’

/* Condition node */

39

A. Proof of Concept: Python Script

signal {listens_to}

region ConditionNode {{

initial state In

immediate if {condition} go to S

immediate go to F

final state S {{

entry do success

}}

final state F {{

entry do failure

}}

}}

’’’, imports, state_vars

def sctx_node(import_name: str,

chart_name: str,

mapping: str,

listens_to: str = ’success, failure, running’,

imports: Optional[set] = None,

state_vars: Optional[set] = None):

"""

Generates SCChart code for an SCTX node (A node that embeds an external

SCChart).

Args:

import_name (str): Name of the imported module.

chart_name (str): Name of the embedded SCChart.

mapping (str): Mapping of signals between the parent and embedded

SCChart.

listens_to (str): Signals the node listens to

(default: ’success, failure, running’).

imports (Optional[Set[str]]): Set of imported modules (default: None).

state_vars (Optional[Set[str]]): Set of state variables (default: None).

Returns:

Tuple[str, Optional[Set[str]], Optional[Set[str]]]: A string of

40

generated SCChart code, imports, and state variables.

"""

listens_to_mapping = ’’.join([f’, {sig} to {sig.upper()}’ for sig in [

’success’, ’failure’, ’running’]])

if imports:

imports.add(import_name)

else:

imports = set([import_name])

state_var = chart_name[0].lower() + f’{chart_name}CurrentState’[1:]

if state_vars:

state_vars.add(state_var)

else:

state_vars = set([state_var])

state_var_mapping = f’, {state_var} to currentState’

return ’’’

/* SCTX node */

signal ’’’ + listens_to + ’’’

region SCTXNode {

initial state In

immediate go to Action

state Action is ’’’ + chart_name + \

’’’(’’’ + mapping + listens_to_mapping + state_var_mapping + ’’’)

immediate join to Out

final state Out

}

’’’, imports, state_vars

def sequence_with_memory_node(

children: List[ET.Element],

listens_to: str = ’success, failure, running’,

imports: Optional[set] = None,

state_vars: Optional[set] = None

) -> Tuple[str, Optional[set], Optional[set]]:

"""

41

A. Proof of Concept: Python Script

Generates SCChart code for a sequence with memory node.

This implementation uses global variables to store the state of the sequence.

Args:

children (List[ET.Element]): The child nodes of the sequence with

memory node.

listens_to (str): Signals the node listens to

(default: ’success, failure, running’).

imports (Optional[Set[str]]): Set of imported modules (default: None).

state_vars (Optional[Set[str]]): Set of state variables (default: None).

Returns:

Tuple[str, Optional[Set[str]], Optional[Set[str]]]: A string of

generated SCChart code, imports, and state variables.

"""

state_vars = state_vars or set()

state_var = ’statevar’ + str(len(state_vars))

state_vars.add(state_var)

modified_children = []

for i, child in enumerate(children):

fallback_element = ET.Element(’Fallback’)

sequence_element = ET.Element(’Sequence’)

sequence_element.extend([

child,

ET.Element(’Script’, attrib={

’code’: f’{state_var}++’

})

])

fallback_element.extend([

ET.Element(’ScriptCondition’, attrib={

’code’: f’pre({state_var}) > {i}’

}),

sequence_element

])

modified_children.append(fallback_element)

modified_children[-1][-1][-1].attrib[’code’] = f’{state_var} = 0’

sequence_element = ET.Element(’Sequence’)

sequence_element.extend(modified_children)

42

return parse_tree(sequence_element, listens_to, imports, state_vars)

def convert_bt_to_scchart(xml_file: str, output_file: str, name: str) -> None:

"""

Converts a Behavior Tree (BT) XML file to an SCChart.

Args:

xml_file (str): Path to the input XML file.

output_file (str): Path to the output SCChart file.

name (str): Name of the SCChart.

"""

tree = ET.parse(xml_file)

root = tree.getroot()

if root[0].tag == ’BehaviorTree’:

root = root[0]

with open(output_file, ’w’) as f:

parsed_tree, imports, state_vars = parse_tree(root[0])

imports = imports or set()

state_vars = state_vars or set()

f.write(

’’’import "’’’ + name.lower() + ’’’.environment"

’’’ + ’\n’.join(f’import "{i}"’ for i in imports) + ’’’

scchart ’’’ + name + ’’’BT extends ’’’ + name + ’’’Environment {

’’’ + ’\n’.join(f’int {var} = 0’ for var in state_vars) + ’’’

initial state BTGlobal {

signal success, failure, running

region Global {

initial state Main {

’’’ + parsed_tree + ’’’

}

immediate if success go to S

immediate if failure go to F

43

A. Proof of Concept: Python Script

immediate if running go to R

final state S {

entry do success

}

final state F {

entry do failure

}

final state R {

entry do running

}

}

}

join to AwaitTick

state AwaitTick

go to BTGlobal

}

’’’)

def parse_tree(

node: ET.Element,

listens_to: str = ’success, failure, running’,

imports: Optional[Set[str]] = None,

state_vars: Optional[Set[str]] = None

) -> Tuple[str, Optional[Set[str]], Optional[Set[str]]]:

"""

Parses an XML node representing part of a Behavior Tree (BT) and generates

SCChart code.

Args:

node (ET.Element): The XML node to parse.

listens_to (str): Signals the node listens to

(default: ’success, failure, running’).

imports (Optional[Set[str]]): Set of imported modules (default: None).

state_vars (Optional[Set[str]]): Set of state variables (default: None).

Returns:

44

Tuple[str, Optional[Set[str]], Optional[Set[str]]]: A string of

generated SCChart code, imports, and state variables.

"""

imports = imports or set()

state_vars = state_vars or set()

match node.tag:

case ’Sequence’:

return sequence_node(

list(node),

listens_to=listens_to,

imports=imports,

state_vars=state_vars

)

case ’Fallback’:

return fallback_node(

list(node),

listens_to=listens_to,

imports=imports,

state_vars=state_vars

)

case ’Parallel’:

return parallel_node(

list(node),

int(node.attrib[’failure_count’]),

int(node.attrib[’success_count’]),

listens_to=listens_to,

imports=imports,

state_vars=state_vars

)

case ’ParallelAll’:

return parallel_node(

list(node),

int(node.attrib[’max_failures’]),

0,

listens_to=listens_to,

imports=imports,

state_vars=state_vars

)

case ’Script’:

45

A. Proof of Concept: Python Script

return action_node(

node.attrib[’code’],

listens_to=listens_to,

imports=imports,

state_vars=state_vars

)

case ’ScriptCondition’:

return condition_node(

node.attrib[’code’],

listens_to=listens_to,

imports=imports,

state_vars=state_vars

)

case ’AlwaysSuccess’:

return condition_node(

’true’,

listens_to=listens_to,

imports=imports,

state_vars=state_vars

)

case ’AlwaysFailure’:

return condition_node(

’false’,

listens_to=listens_to,

imports=imports,

state_vars=state_vars

)

case ’SCTX’:

return sctx_node(

node.attrib[’import’],

node.attrib[’chartName’],

node.attrib[’mapping’],

listens_to=listens_to,

imports=imports,

state_vars=state_vars

)

case ’SequenceWithMemory’:

return sequence_with_memory_node(

list(node),

listens_to=listens_to,

imports=imports,

46

state_vars=state_vars

)

case _:

raise Exception(’Unknown node type: ’ + node.tag)

if __name__ == ’__main__’:

if len(sys.argv) != 4:

print(’Usage: python bt2scchart.py input.xml output.sctx name’)

print(’\tinput.xml: the input behavior tree XML file’)

print(’\toutput.sctx: the output SCChart file’)

print(’\tname: the name of the SCChart’)

else:

convert_bt_to_scchart(sys.argv[1], sys.argv[2], sys.argv[3])

47

Bibliography

[Ahm23] Akash Ahmad. “A DSL for Behavior Trees in Lingua Franca”. Bachelor’s Thesis.
Christian-Albrechts-Universität zu Kiel, Sept. 2023. url: https://rtsys.informatik.
uni-kiel.de/~biblio/downloads/theses/aah-bt.pdf.

[BG92] Gérard Berry and Georges Gonthier. “The Esterel synchronous programming
language: design, semantics, implementation”. In: Science of Computer Program-
ming 19.2 (1992), pp. 87–152. issn: 0167-6423. doi: https : / / doi . org / 10 . 1016 / 0167 -

6423(92)90005-V. url: https://www.sciencedirect.com/science/article/pii/016764239290005V.

[BZS21] Oliver Biggar, Mohammad Zamani, and Iman Shames. “An expressiveness
hierarchy of Behavior Trees and related architectures”. In: IEEE Robotics and
Automation Letters 6.3 (2021), pp. 5397–5404. doi: 10.1109/LRA.2021.3074337.

[CN22] Michele Colledanchise and Lorenzo Natale. “Handling concurrency in Behavior
Trees”. In: IEEE Transactions on Robotics 38.4 (2022), pp. 2557–2576. doi: 10.1109/TRO.

2021.3125863.

[CÖ17] Michele Colledanchise and Petter Ögren. “Behavior Trees in robotics and AI:
an introduction”. In: CoRR abs/1709.00084 (2017). arXiv: 1709.00084. url: http:

//arxiv.org/abs/1709.00084.

[Dro03] R. G. Dromey. “From requirements to design: formalizing the key steps”. In:
First International Conference on Software Engineering and Formal Methods. 2003,
pp. 2–11. doi: 10.1109/SEFM.2003.1236202.

[GBJ+20] Razan Ghzouli, Thorsten Berger, Einar Broch Johnsen, Swaib Dragule, and
Andrzej Wąsowski. “Behavior Trees in action: a study of robotics applications”.
In: Proceedings of the 13th ACM SIGPLAN International Conference on Software
Language Engineering. SLE 2020. Virtual, USA: Association for Computing Ma-
chinery, 2020, pp. 196–209. isbn: 9781450381765. doi: 10.1145/3426425.3426942. url:
https://doi.org/10.1145/3426425.3426942.

[GBJ+23] Razan Ghzouli, Thorsten Berger, Einar Broch Johnsen, Andrzej Wasowski, and
Swaib Dragule. “Behavior Trees and state machines in robotics applications”.
In: IEEE Transactions on Software Engineering 49.9 (2023), pp. 4243–4267. doi:
10.1109/TSE.2023.3269081.

[IFF+24] Matteo Iovino, Julian Förster, Pietro Falco, Jen Jen Chung, Roland Siegwart, and
Christian Smith. Comparison between Behavior Trees and finite state machines. 2024.
arXiv: 2405.16137 [cs.RO]. url: https://arxiv.org/abs/2405.16137.

49

https://rtsys.informatik.uni-kiel.de/~biblio/downloads/theses/aah-bt.pdf
https://rtsys.informatik.uni-kiel.de/~biblio/downloads/theses/aah-bt.pdf
https://doi.org/https://doi.org/10.1016/0167-6423(92)90005-V
https://doi.org/https://doi.org/10.1016/0167-6423(92)90005-V
https://www.sciencedirect.com/science/article/pii/016764239290005V
https://doi.org/10.1109/LRA.2021.3074337
https://doi.org/10.1109/TRO.2021.3125863
https://doi.org/10.1109/TRO.2021.3125863
https://arxiv.org/abs/1709.00084
http://arxiv.org/abs/1709.00084
http://arxiv.org/abs/1709.00084
https://doi.org/10.1109/SEFM.2003.1236202
https://doi.org/10.1145/3426425.3426942
https://doi.org/10.1145/3426425.3426942
https://doi.org/10.1109/TSE.2023.3269081
https://arxiv.org/abs/2405.16137
https://arxiv.org/abs/2405.16137

Bibliography

[Klö15] Andreas Klöckner. “Behavior Trees with stateful tasks”. In: Advances in Aerospace
Guidance, Navigation and Control. Ed. by Joël Bordeneuve-Guibé, Antoine Drouin,
and Clément Roos. Cham: Springer International Publishing, 2015, pp. 509–519.
isbn: 978-3-319-17518-8.

[KMW+12] Soon-Kyeong Kim, Toby Myers, Marc-Florian Wendland, and Peter A. Lindsay.
“Execution of natural language requirements using state machines synthesised
from Behavior Trees”. In: Journal of Systems and Software 85.11 (2012), pp. 2652–
2664. issn: 0164-1212. doi: https://doi.org/10.1016/j.jss.2012.06.013. url: https://www.

sciencedirect.com/science/article/pii/S0164121212001690.

[Lüd21] Gavin Lüdemann. “Modular code generation for SCCharts”. Bachelor’s Thesis.
Christian-Albrechts-Universität zu Kiel, Sept. 2021. url: https://rtsys.informatik.
uni-kiel.de/~biblio/downloads/theses/glu-bt.pdf.

[MCS+14] Alejandro Marzinotto, Michele Colledanchise, Christian Smith, and Petter Ögren.
“Towards a unified Behavior Trees framework for robot control”. In: 2014 IEEE
International Conference on Robotics and Automation (ICRA). 2014, pp. 5420–5427.
doi: 10.1109/ICRA.2014.6907656.

[Mot17] Christian Motika. SCCharts – language and interactive incremental compilation. Kiel
Computer Science Series 2017/2. Dissertation, Faculty of Engineering, Kiel Uni-
versity, Germany. Department of Computer Science, 2017. isbn: 9783746009391.
doi: 10.21941/kcss/2017/02.

[Ögr] Petter Ögren. “Increasing modularity of UAV control systems using computer
game Behavior Trees”. In: AIAA Guidance, Navigation, and Control Conference.
doi: 10.2514/6.2012-4458. eprint: https://arc.aiaa.org/doi/pdf/10.2514/6.2012-4458. url:
https://arc.aiaa.org/doi/abs/10.2514/6.2012-4458.

[SAC+24] Alexander Schulz-Rosengarten, Akash Ahmad, Malte Clement, Reinhard von
Hanxleden, Benjamin Asch, Marten Lohstroh, Edward A. Lee, Gustavo Quiros
Araya, and Ankit Shukla. Behavior Trees with dataflow: coordinating reactive tasks
in Lingua Franca. 2024. arXiv: 2401.09185 [cs.PL]. url: https://arxiv.org/abs/2401.09185.

[SMA+23] Alexander Schulz-Rosengarten, Michael Mendler, Joaquin Aguado, Malte Clement,
and Reinhard von Hanxleden. Trapping Behavior Trees in Esterel. 2023. url: https:
//rtsys.informatik.uni-kiel.de/~biblio/downloads/papers/fdl23.pdf.

50

https://doi.org/https://doi.org/10.1016/j.jss.2012.06.013
https://www.sciencedirect.com/science/article/pii/S0164121212001690
https://www.sciencedirect.com/science/article/pii/S0164121212001690
https://rtsys.informatik.uni-kiel.de/~biblio/downloads/theses/glu-bt.pdf
https://rtsys.informatik.uni-kiel.de/~biblio/downloads/theses/glu-bt.pdf
https://doi.org/10.1109/ICRA.2014.6907656
https://doi.org/10.21941/kcss/2017/02
https://doi.org/10.2514/6.2012-4458
https://arc.aiaa.org/doi/pdf/10.2514/6.2012-4458
https://arc.aiaa.org/doi/abs/10.2514/6.2012-4458
https://arxiv.org/abs/2401.09185
https://arxiv.org/abs/2401.09185
https://rtsys.informatik.uni-kiel.de/~biblio/downloads/papers/fdl23.pdf
https://rtsys.informatik.uni-kiel.de/~biblio/downloads/papers/fdl23.pdf

List of Abbreviations

AI Artificial Intelligence

BT Behavior Tree

DSL Domain-Specific Language

FSM Finite State Machine

HSM Hierarchical State Machine

KIELER Kiel Integrated Environment for Layout Eclipse Rich Client

SC MoC Sequentially Constructive Model of Computation

SCChart Sequentially Constructive Statechart

XML Extensible Markup Language

51

	Introduction
	Preliminaries
	Behavior Trees
	Leaf Nodes
	Sequence and Fallback Nodes
	Parallel Node
	Decorator Nodes
	Shared Memory with Blackboards
	Sequence with Memory

	Finite State Machines and Hierarchical State Machines
	Sequentially Constructive Statecharts

	Related Work
	Concept
	The Structure of Behavior Trees
	Categorizing the Concepts of Behavior Trees and Comparing Them to Hierarchical State Machines
	Encoding the Control Flow of Behavior Trees in SCCharts with Immediate Transitions
	Extending the Approach
	Parallel Nodes
	Decorators

	Optimizing for SCCharts
	Detecting State in Behavior Trees
	The State Pattern
	The Memory Nodes
	States on the Blackboard
	State in Actions

	Ideas for Other Approaches
	Semantically Different running Actions
	Potential for Dataflow Integration

	Evaluation
	Challenges in State Detection
	Modularity and Reuse
	Readability and Visual Complexity
	Semantical Equivalence

	Conclusion & Future Work
	Summary
	Future Work

	Proof of Concept: Python Script
	Bibliography
	List of Abbreviations

