Page tree
Skip to end of metadata
Go to start of metadata

You are viewing an old version of this page. View the current version.

Compare with Current View Page History

« Previous Version 11 Next »

We compose our railway controller from several train controllers, combined with controllers for mutual exclusion.

Mutual Exclusion

Normal segments

For each block we generate one mutex controller, similar to the following pattern.

For each controlled train one state and the corresponding transitions are added.

A train must signal the wish to enter a segment by setting the variable bool <segment>_req[trainNum] to true.
The right to enter a segement is given to the train by setting the variable int <segment>_perm to the train number.
After leaving a segment the train must remove its request by setting <segment>_req[trainNum] to false again.

For a free track the *_perm variable is set to -1 and all tracks, apart from starting positions, are initialized with -1. For the starting positions the *_perm variables are set to the corresponding train number and the *_req variable for the train is set to true.

A train must not enter a segment or alter the settings of a segment without holding the lock for the segment. No exceptions from this rule are allowed.

Kicking Horse Pass

To prevent collisions on the track, a special controller manages the rights to enter or leave the Kicking Horse Pass.

The controller splits the pass into two parts, left and right, corresponding to the track layout chart. (Simplified track layout)

Each part has two operational modes, in and out, being active when trains are allowed to either enter or leave the pass. When entering the pass the controller counts the entering trains and only lets two trains enter (one after the other). When leaving the pass the trains are removed from the counter, freeing space for the next train.

Train controller

Each train controller is set in a separate region with a referenced state. This state has the following interface

    input int *_perm;         # All permission variables (Tracks)
input bool *_perm # KH permission variables
  input int trainNum;
    input bool cleanup;
input bool debug;
output bool *_req[]; # All request variables

The train controller is composed of several Station-2-Station controllers. These are combined to form a complete schedule. Additionally the cleanup signal has to be watched to abort the schedule and return back to the initial position.

Station-2-Station controller

Each station-2-station controller realizes the movement from one of the stations (IC,OC,KH) to a second station. All controllers using IC or OC parts have to respect the traveling directions. For the Kicking Horse Pass two separate controllers, forwards and backwards, are used.

The controllers starting from Kicking Horse Pass Station make an assumption of the direction of the train. These are dependent of the directions of the inner or outer circle, e.g. the KHIC controller starts backwards because this is the only valid direction to travel this path. To drive a train from the Kicking Horse Station (facing forward) to the Inner Circle we have to combine the KHOC and OCIC controllers.

When arriving on a station the train controller must first call the function void railArrival(int train, int station). This starts the waiting timer for the train.
Next the train must wait for int railDeparture(int train) to return 1.
After the waiting has finished the controller can reach a final state and pass the control back to the train controller.

Structure   

input int *_perm;
output bool *_req[11];
input int trainNum;
input int depTrack;
input int destTrack;
input bool cleanup;
input bool debug;
output int arrTrack;
int i_arrOnTrack;
 
initial state *_ST {
    entry debug / 'println([trainNum][ST-ST] ... )';
 
    initial state waitForPerm {
        entry / *_ST_4_req[trainNum] = true;
        entry / *_LN_0_req[trainNum] = true;
    }
    --> gotPerm with (*_ST_4_perm == trainNum) & (*_LN_0_perm == trainNum)
    --> backOff with (*_ST_4_perm == trainNum) | (*_LN_0_perm == trainNum);
 
    state backOff
    --> backOff1;
 
    state backOff1 {
entry / *_ST_4_req[trainNum] = false;
entry / *_LN_0_req[trainNum] = false;
    }
    --> waitForPerm;
 
final state gotPerm;
}
>-> Dep_*_ST;
 
state Dep_IC_ST {
    entry / 'railPoint(*,STRAIGHT)';
    entry / 'railSignal(*_LN_0, FWD, RED)';
    entry / 'railTrack(*_LN_0,FWD,trainNum,NORMAL)';
    entry / 'railTrack(*_ST_4,FWD,trainNum,NORMAL)';
    entry depTrack == 1 / 'railSignal(*_ST_1, FWD, GREEN)';
    entry depTrack == 2 / 'railSignal(*_ST_2, FWD, GREEN)';
    entry depTrack == 3 / 'railSignal(*_ST_3, FWD, GREEN)';
    ..........
  } --> *_LN_0 with 'railContact(*_LN_0,0)';
 
  state *_LN_0 {
    entry / 'println("[trainNum][ST-ST] Entering *_LN_0")';
    entry debug / 'println("[trainNum][ST-ST] Requesting permission for *_LN_1")';
    entry depTrack == 1 / 'railSignal(*_ST_1, FWD, RED)';
    entry depTrack == 2 / 'railSignal(*_ST_2, FWD, RED)';
    entry depTrack == 3 / 'railSignal(*_ST_3, FWD, RED)';
    entry / *_LN_1_req[trainNum] = true;
 
    region Travel:
      initial state Entry
      --> Continue with 'railContact(*_LN_0,0)' & (*_LN_1_perm == trainNum)
      --> Slowdown with 'railContact(*_LN_0,0)';
 
      state Slowdown {
        entry debug / 'println("[trainNum][ST-ST] Slowing down on *_LN_0")';
        entry / 'railTrack(*_LN_0,FWD,trainNum,CAUTION)';
      }
      --> Waiting with 'railContact(*_LN_0,1)'
      --> Continue with *_LN_1_perm == trainNum;
 
      state Waiting {
        entry debug / 'println("[trainNum][ST-ST] Stopping on *_LN_0")';
        entry / 'railTrackBrake(*_LN_0)';
      }
      --> Continue with *_LN_1_perm == trainNum;
 
      final state Continue {
        entry debug / 'println("[trainNum][ST-ST] Continuing on *_LN_0")';
        entry / 'railSignal(*_LN_0,FWD,GREEN)';
        entry / 'railTrack(*_LN_0,FWD,trainNum,NORMAL)';
        entry / 'railTrack(*_LN_1,FWD,trainNum,NORMAL)';
        entry / 'railSignal(*_LN_1, FWD, RED)';
      };
 
    region Cleanup:
      initial state Entry
      --> cleanup with 'railContact(*_LN_0,0)';
 
      final state cleanup {
      entry debug / 'println("[trainNum][ST-ST] Entered *_LN_0 completely")';
      entry / 'railTrackOff(*_ST_4)';
      entry / *_ST_4_req[trainNum] = false;
      };
  }>-> *_LN_0_*_LN_1;
 
  state IC_LN_0_IC_LN_1
  --> IC_LN_1 with 'railContact(IC_LN_1,0)';
 
// ...................
// Set of track segment controlling states such as before
// ...................
 
state *_LN_5 {
    int perm_all_next_segments = false;
    entry / 'println("[trainNum][ST-ST] Entering *_LN_5")';
    entry / 'railSignal(*_LN_4, FWD, RED)';
 
    region Travel:
      initial state Entry
      --> Continue with 'railContact(*_LN_5,0)' & perm_all_next_segments
      --> Slowdown with 'railContact(*_LN_5,0)';
 
      state Slowdown {
        entry debug / 'println("[trainNum][ST-ST] Slowing down on *_LN_5")';
        entry / 'railTrack(*_LN_5,FWD,trainNum,CAUTION)';
      }
      --> Waiting with 'railContact(*_LN_5,1)'
      --> Continue with perm_all_next_segments;
 
      state Waiting {
        entry debug / 'println("[trainNum][ST-ST] Stopping on *_LN_5")';
        entry / 'railTrackBrake(*_LN_5)';
      }
      --> Continue with perm_all_next_segments;
 
      final state Continue {
        entry debug / 'println("[trainNum][ST-ST] Continuing on *_LN_5")';        
        entry i_arrOnTrack == 1 / 'railTrack(*_ST_1,FWD,trainNum,NORMAL)';
        entry i_arrOnTrack == 2 / 'railTrack(*_ST_2,FWD,trainNum,NORMAL)';
        entry i_arrOnTrack == 3 / 'railTrack(*_ST_3,FWD,trainNum,NORMAL)';
        ----------
        entry / arrTrack = i_arrOnTrack;
      };
 
    region Cleanup:
      initial state Entry
      --> cleanup with 'railContact(*_LN_5,0)';
 
      final state cleanup {
        entry debug / 'println("[trainNum][ST-ST] Entered *_LN_5 completely")';
        entry / 'railTrackOff(*_LN_4)';
        entry / *_LN_4_req[trainNum] = false;
      };
 
    region Permissions:
      initial state checking {
        entry / *_ST_0_req[trainNum] = true;
        entry destTrack == 1 | !cleanup / *_ST_1_req[trainNum] = true;
        entry destTrack == 2 | !cleanup / *_ST_2_req[trainNum] = true;
        entry destTrack == 3 | !cleanup / *_ST_3_req[trainNum] = true;
      }
      --> success with destTrack == 1 & *_ST_0_perm == trainNum 
& *_ST_1_perm == trainNum / i_arrOnTrack = 1
      --> success with destTrack == 2 & *_ST_0_perm == trainNum 
& *_ST_2_perm == trainNum / i_arrOnTrack = 2
      --> success with destTrack == 3 & *_ST_0_perm == trainNum 
& *_ST_3_perm == trainNum / i_arrOnTrack = 3
      --> success with *_ST_0_perm == trainNum & *_ST_1_perm == trainNum / i_arrOnTrack = 1
      --> success with *_ST_0_perm == trainNum & *_ST_2_perm == trainNum / i_arrOnTrack = 2
      --> success with *_ST_0_perm == trainNum & *_ST_3_perm == trainNum / i_arrOnTrack = 3
      --> resolving with *_ST_0_perm == trainNum | *_ST_3_perm == trainNum 
| *_ST_2_perm == trainNum
| *_ST_1_perm == trainNum;
 
      state resolving
      --> resolving1;
 
      state resolving1 {
        entry / *_ST_0_req[trainNum] = false;
        entry / *_ST_1_req[trainNum] = false;
        entry / *_ST_2_req[trainNum] = false;
        entry / *_ST_3_req[trainNum] = false;
      }
      --> checking;
 
      state success
      --> success1;
 
      final state success1 {
        entry !(i_arrOnTrack == 1) / *_ST_1_req[trainNum] = false;      
        entry !(i_arrOnTrack == 2) / *_ST_2_req[trainNum] = false;
        entry !(i_arrOnTrack == 3) / *_ST_3_req[trainNum] = false;
        entry / perm_all_next_segments = true;
      };
  }>-> *_LN_5_*_ST;
 
  state *_LN_5_*_ST
  --> Arr_*_ST with i_arrOnTrack == 1 & 'railContact(*_ST_1,0)'
  --> Arr_*_ST with i_arrOnTrack == 2 & 'railContact(*_ST_2,0)'
  --> Arr_*_ST with i_arrOnTrack == 3 & 'railContact(*_ST_3,0)';
 
  state Arr_*_ST {
    entry / 'railSignal(*_LN_5, FWD, RED)';
    entry / 'railTrackOff(*C_LN_5)';
    entry / 'railTrack(*_ST_0,FWD,trainNum,SLOW)';
    entry i_arrOnTrack == 1 / 'railTrack(*_ST_1,FWD,trainNum,SLOW)';
    entry i_arrOnTrack == 2 / 'railTrack(*_ST_2,FWD,trainNum,SLOW)';
    entry i_arrOnTrack == 3 / 'railTrack(*_ST_3,FWD,trainNum,SLOW)';
    entry / *_LN_5_req[trainNum] = false;
 
    initial state SlowEntry
    --> Slow with i_arrOnTrack == 1 & 'railContact(*_ST_1,0)'
    --> Slow with i_arrOnTrack == 2 & 'railContact(*_ST_2,0)'
    --> Slow with i_arrOnTrack == 3 & 'railContact(*_ST_3,0)';
 
    state Slow {
      entry / 'railTrackOff(*_ST_0)';
      entry / *_ST_0_req[trainNum] = false;
    }
    --> Halt with i_arrOnTrack == 1 & 'railContact(*_ST_1,1)'
    --> Halt with i_arrOnTrack == 2 & 'railContact(*_ST_2,1)'
    --> Halt with i_arrOnTrack == 3 & 'railContact(*_ST_3,1)';
 
    final state Halt {
      entry i_arrOnTrack == 1 / 'railTrackBrake(*_ST_1)';
      entry i_arrOnTrack == 2 / 'railTrackBrake(*_ST_2)';
      entry i_arrOnTrack == 3 / 'railTrackBrake(*_ST_3)';
      entry i_arrOnTrack == 1 / 'railArrival(trainNum, *_ST_1)';
      entry i_arrOnTrack == 2 / 'railArrival(trainNum, *_ST_2)';
      entry i_arrOnTrack == 3 / 'railArrival(trainNum, *_ST_3)';
    };
  }
  >-> done;
 
  state done
  --> reallyDone with 'railDeparture(trainNum)';
 
  final state reallyDone;

// All permissiions variables

// All request variables

// Train number

// Departure track number

// Destination track number

// Cleanup flag for selecting the track of destination

// Debug flag for additional output

// Arrival track

// Variable (arrival track) for selecting correct station elements

 

// Handles departing from a station

// Additional output for debugging

 

// State, which set requests for needed tracks

 

 

 

// Transition for received all needed permissions

// Tranisition for received some needed permissions

 

// State for waiting an additional Tick

 

 

// State, which releases the requests for needed tracks

 

 

 

// Transition to trying the requesting again

 

 

 

// Transition to the departure state

 

// State, which handles the train departure

// Set of entry-Actions to set tracks, points and signals according to depTrack

 


 

 

 

 

 

// Transition to next track segment, if contact is readed

 

// State for handling the train on track *_LN_0

// Outputs for debugging

 

// Entry-Actions to set the previous signals to RED

 

 

// Requesting the next segment

 

// Region for handling train driving

 

// Transition to continuing state, if permitted

// Transition to slowing down else

 

// State for slowing down

// Addtitional output for debugging

// Entry-Action for slowing down the train

 

// Transition to waiting state

// Transition to continuing state, if permitted

 

// Waiting state

// Addtitional output for debugging

// Entry-Action for stopping the train

 

// Tranisition to continuing state

 

// State to continuing driving on the track

// Addtitional output for debugging

// Entry-Actions to set tracks and signals for driving

 

 

 

 

 

// Region for handling cleanup-functionalities

 

// Transition to cleanup state

 

// Cleanup state

// Addtitional output for debugging

// Entry-Action to switching off the previous track

// Entry-Action to release the previous track

 

// Transition to transitional state

 

// Transitional state

// Transition to next track segment, if contact is readed

 

 

 

 

 

// State for entering a station

// Variable for checking all needed permissions

// Output

// Setting signal to RED

 

// Region for handling train driving

 

// Transition to continuing state, if permitted

// Transition to slowing down else

 

// State for slowing down

// Addtitional output for debugging

// Entry-Action for slowing down the train

 

// Transition to waiting state

// Transition to continuing state, if permitted

 

// Waiting state

// Addtitional output for debugging

// Entry-Action for stopping the train

 

// Tranisition to continuing state

 

// State to continuing driving on the track

// Addtitional output for debugging

// Set of entry-Actions for setting tracks, points and signals according to i_arrOnTrack

 

 

 

// Setting the arrival track (output)

 

 

// Region for handling cleanup-functionalities

 

// Transition to cleanup state

 

// Cleanup state

// Addtitional output for debugging

// Entry-Action to switching off the previous tracks

// Entry-Action to release the previous tracks

 

 

// Region for handling permissions of all needed tracks

// State for requesting all needed tracks according to destination track and cleanup-Flag

 

 

 

 

 

// Transitions for permitted tracks match wished tracks

 

 

// Transitions for permitted tracks don't match wished tracks

 

 

// Transition for not all tracks permitted

 

// State for waiting an additional tick

 

 

// State for releasing track requests

 

 

 

 

 

// Transition for trying the requesting again

 

// State for waiting an additional tick

 

 

// State for releasing not used track requests and

 

 

 

// Settting perm_all_next_segments to true

 

// Transition to station entry states

 

// State waiting for station entry

 

 

 

 

// State for setting tracks, points and signals according to i_arrOnTrack

// and releasing previous track request

 

 

 

 

 

 

 

// State for slowing down, if train completely on track

 

 

 

 

// State for switching off previous track and releasing the request

 

 

 

// Transitions to halt states, if train at second contact of a track

 

 

 

 

// Entry-Actions for braking the train on correct track

 

 

// Entry-Actions for waiting for timer on correct track

 

 

 

 

 

 

 

// Transition to final state, if timer is ready

  • No labels